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ABSTRACT

With the end of Dennard scaling, power constraints have led to

increasing compute specialization in the form of differently spe-

cialized accelerators integrated at various levels of the general-

purpose system hierarchy. The result is that the most common

general-purpose computing platform is now a heterogeneous mix

of architectures even within a single die. Consequently, mapping

application code regions into available execution engines has be-

come a challenge due to different interfaces and increased software

complexity. At the same time, the energy costs of data movement

have become increasingly dominant relative to computation en-

ergy. This has inspired a move towards data-centric systems, where

computation is brought to data, in contrast to traditional processing-

centric models. However, enabling compute nearer memory entails

its own challenges, including the interactions between distance-

specialization and compute-specialization. The granularity of any

offload to near(er) memory logic would impact the potential data

transmission reduction, as smaller offloads will not be able to amor-

tize the transmission costs of invocation and data return, while

very large offloads can only be mapped onto logic that can support

all of the necessary operations within kernel-scale codes, which

exacerbates both area and power constraints.

For better energy efficiency, each set of related operations should

be mapped onto the execution engine that, among those capable

of running the set of operations, best balances the data movement

and the degree of compute specialization of that engine for this

code. Further, this offload should proceed in a decentralized way

that keeps both the data and control movement low for all transi-

tions among engines and transmissions of operands and results. To

enable such a decentralized offload model, we propose an architec-

ture interface that enables a common offload model for accelerators

across the memory hierarchy and a tool chain to automatically iden-

tify (in a distance-aware fashion) and map profitable code regions

on specialized execution engines. We evaluate the proposed archi-

tecture for a wide range of workloads and show energy reduction

compared to an energy-efficient in-order core. We also demonstrate

better area efficiency compared to kernel-scale offloads.
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1 INTRODUCTION

With the end of Dennard scaling, the slow-down in Moore’s law,

and the exacerbation of existing memory wall constraints in an era

of data-intensive computing, further improvements in many com-

puting platforms are increasingly becoming efficiency-bound [33].

Compute specialization is a traditional approach for increasing

computational efficiency [19, 37, 77]. However, given the contin-

ued unequal scaling of logic and interconnect over the past sev-

eral process generations, focusing on compute specialization alone

is unlikely to achieve transformative efficiency changes absent

commensurate specialization of data movement. Both the energy

overhead of data movement and memory wall have necessitated

systems to be increasingly data-centric, where the primary goal has

shifted to customizing compute at different locations in the mem-

ory hierarchy (distance specialization) - including cache [2, 30, 52],

memory [35, 69, 71, 80], and storage [26, 27, 68]. Thus, the design

of future energy-efficient large-scale processing platforms must

fundamentally involve a co-design of computational specialization

and near(er) data computing techniques that balances the inherent

tension between moving computation to a processing engine bet-

ter capable of efficiently performing the upcoming operations and

moving execution and/or data to where the upcoming operators

are or will need to be, because these two locations are not always the

same.

The addition of many specialized accelerators to the system,

including integrated GPUs and FPGAs, has increased the host over-

head in managing the control dependencies between various calls

to different accelerators, and the communication between various

compute units in the form of data transfers [6]. From a performance

standpoint, it is not efficient for a high-performing IPC-optimized

general-purpose core to just coordinate multiple offload calls. In

view of this, existing specialization approaches assuming a host
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issuing offloads onto different execution engines is inefficient. Con-

sidering that the cost of communication increases with distance be-

tween the host and co-processor units, although it can be balanced

with increased offload task size, the primary reason for increased

cost of offload is because the host is the central point of control

throughout compute-specialized and in many distance-specialized

models. This work addresses this problem by decentralizing acceler-

atable code regions such that the specialized hardware can sequence

subsequent operations by itself rather than being entirely managed

by the host. We exploit the well-known technique of chaining oper-

ators [23, 72], while ensuring distance-aware specialization of code

regions. Enabling decentralized execution of accelerators entails

the following primary challenges:

1. Determining candidate offloads: Given an arbitrary source

code and an underlying architecture that does not define the func-

tion or kernel boundary, a challenge arises in identifying the best

candidate to offload for an optimization metric.

2. Host-accelerator offload interface: The architecture interface

should enable seamless low-cost operand and control transfer, when

necessary. With more and more heterogeneous accelerators getting

added at various points in the architecture, it is important that

the interface remain inter-operable across architectures to improve

programmability, and be future-proof.

3. Co-optimizing compute and distance: Identifying the code

regions for specialization based on the location at which these need

to be mapped to keep both control and data movement low.

This paper proposes a generic architecture interface and an au-

tomated profile-based compiler method for general purpose work-

loads with energy reduction from reduced control and data move-

ment as the primary goal for a memory-centric heterogeneous

architecture. The architecture interface enables a common asyn-

chronous offload model that is independent of the offload gran-

ularity and distance of the compute engine from the host. The

compiler identifies fine-grained code regions from arbitrary source

code that are profitable in terms of reduced data and control move-

ment, and generates runtime library variants based on the target

execution engine. While the different execution platforms, namely

general-purpose processors (GPPs), field-programmable gate arrays

(FPGAs), coarse-grain reconfigurable arrays (CGRAs) or application-

specific integrated circuits (ASICs) dictate the generality, area and

energy efficiency tradeoffs of the accelerator architecture, our focus

is more on identifying the offload candidates, and on determining

how it should be mapped and invoked for better energy efficiency.

For evaluation, we assume a system model that employs a CGRA

fabric near-cache and near-memory. Our key contributions include:

•We posit a design space generated by compute and distance spe-

cialization axes and identify the design tradeoffs for future energy-

efficient heterogeneous computing architectures.

•We present a generic architecture interface that enables energy-

efficient management of control and data dependencies between

multiple offloads to memory-centric computation cores.

•We propose a compiler framework that enables automatic iden-

tification, heterogeneous mapping, and co-placement of compute

offloads onto execution engines with energy as the primary metric.

• We build an evaluation system with an in-order processor

and CGRAs integrated near cache and memory, both of which

support execution of heterogeneous offloads and compare the en-

ergy efficiency and performance of centralized and decentralized

offload models for applications with varied locality characteristics.

The results show that our proposed decentralized model can pro-

vide energy efficiencies and EDP improvements of 1.2 × −3.9× and

1.37 × −4.4× for cache-sensitive applications, and 1.17 × −2.55×

and 1.4 × −9.82× for applications with streaming/random memory

accesses, respectively.

2 BACKGROUND AND MOTIVATION

In this section, we broadly classify the evolved heterogeneous von

Neumann architecture design space into three classes to analyze

their qualitative trade-offs. We then identify the critical design

factors and challenges for future computing systems, followed by

presenting motivating experimental data for our approach.

2.1 Design Space and Taxonomy

There have been significant architecture innovations in the tra-

ditional von Neumann computational model evolving towards a

heterogeneous model with processing elements of varying func-

tions, granularities and architectures that are positioned in and near

memory elements [7, 19, 29, 39, 67, 70, 77]. Figure 1a shows how we

classify these approaches into three regions within the design space

of combining compute and distance specializations. The horizontal

axis describes increasingly narrow architecture specialization from

left to right and the vertical axis represents the distinct points in the

system hierarchy where compute can be mapped for a progressively

better memory-centric system from top to bottom.

Classes 1a and b include architectures which primarily distin-

guish their specialization along the distance axis, retaining general

or nearly general computation capability at all loci of executions.

General-purpose processors exercise sequential or multiple flows

of control mechanism as in multi-core or manycore processors to

extract the parallelism available in the workloads. Decades of data

specialization with low-latency caches and multiple flows of con-

trol kept the performance growing in the past era. The need to be

data-centric has moved part of the control flow (single or multiple

instruction offload [57, 79]) to be mapped onto near cache/memory

(class 1a) or in-memory (class 1b) processors.

Class 2 includes architectures that exploit compute specialization

for better performance or energy. The benefit from compute spe-

cialization can arise from the inherent efficiency in customizing

the functional operator [41] and from exploiting the parallelism

available in the application and/or from localizing the control flow

within the target code region [59]. Code regions with high par-

allelism or with critical datapath operations are offloaded to cus-

tomized hardware units, either for better performance [8, 14, 41, 75]

or better energy [77]. Automatic (static [77] or dynamic [19]) or

semi-automatic (user directives [45]) compiler mechanisms exist to

allow exploitation of the underlying accelerator resources.

Classes 3a and b include architectures which specialize for com-

puting near where the data is. The goal of class 3 architectures is

primarily either to achieve better performance/energy efficiency by

reducing the data movement. Processing in/near main memory has

been shown to be beneficial both in reducing delay and energy for

graph applications with low temporal reuse [4, 56]. On the other
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Figure 1: (a) Co-design space of compute specialization and distance specialization and (b) Relation between offload granularity

and distance from the host. Design decisions in the taxonomy (a) have traditionally led to distance-proportionate granularity offloads

seen in (b) to handle both data and control movement costs. As a result, the design choices are not independent of offload models required to

move computation through various memory-centric processing engines.

hand, for applications with streaming or highly parallel memory

access characteristics, manually identified kernels [7, 31, 34] or

domain-specific loop offloads [43] have been shown to improve

performance.

Summary: The general-purpose nature of class 1a and 1b archi-

tectures makes the computation itself energy-inefficient because

it does not exercise compute specialization, and furthermore the

energy and area requirements for achieving high performance (i.e.

an IPC-optimized general-purpose core) are significant. Although

the class 2 targets architectures providing better compute energy

efficiency and performance, these approaches do not inherently

specialize for distance. Sharing of data among physically distant

specialized cores can increase data movement costs relative to a

general-purpose solution, diluting or overshadowing the energy ef-

ficiency gains of datapath specialization. Although memory latency

can be hidden in many cases by overlapping instruction executions,

the data movement through the cache/memory hierarchy still ex-

ists irrespective of application reuse characteristics. While class

3 architectures enable moving along both axes of specialization

at the same time, there are key design challenges in obtaining its

potential benefits, which we discuss below. 1

Automation: Current challenge of identifying candidate of-

floads is exacerbated by the increase in distance from the host.

While operator specialization for potential execution can be deter-

mined statically, data usage patterns and control dependencies may

be dependent on dynamic inputs and improper compute partition-

ing would lead to unnecessary data and control transfers between

different loci of computations. Figure 1b displays the conventional

relation between the offload model and the distance of the spe-

cialized compute engine from the host [15]. For the asynchronous

accelerators in the lower right of the design space, offloadable code

regions are usually identified manually [4, 7, 31, 34], as opposed to

the synchronous accelerator space (upper triangle) which comprises

of small granularity accelerators closely coupled with the host. Find-

ing large granularity code regions within arbitrary applications is

1While our focus is on class 3a in this paper, we believe that the insights gained
generalize for class 3b as well.

not widely automated in practice because of increased software

complexity and scalability involved in hardware mapping. Loop

accelerators are suitable only for perfect loop nests that are rare

in arbitrary codes which have unknown loop bounds and complex

control flows of runtime checks for vectorized operations.

Interfacing:While accelerators closely integrated with the host

or with fixed function definitions profit from synchronous calls

through low latency ISA extensions, with increasing distance from

the host and with standardization, asynchronous accelerators use

high-level libraries. Although customized ISA extensions reduce the

control overhead, it would need a larger number of such extensions

for coverage. Further, both function-customized ISA extensions and

high-level libraries have inflexible function boundaries restricting

the composability of multiple offloads [15].

Granularity: Technologies such as computing within SRAM

and DRAM arrays have enabled bit-parallel computations [2, 30]

and simple bounded operations [4, 35, 63]. Although being able to

compute within memory structures can reduce application data

movement, the granularity of such offloads is at odds with tradi-

tional offload models, as increased fine-grained offloads will esca-

late the dynamic control overhead for the host. Current proposals

balance the invocation and communication latencies by virtue of

application characteristics like graph applications (low temporal

reuse) [4, 40] or by offloading larger granularity computations

to amortize the latency [31, 34] as seen in Figure 1b. For a near-

memory logic layer, function-level accelerator definitions can cause

load balancing issues, and would need larger area while also de-

manding better implementation coverage of underlying accelerator

architectures. Also, the area constraints make it harder to exploit

the available bandwidth benefits with large granularity kernel-level

parallelism.

2.2 The case for decentralization

In view of the fact that class 3 architectures specializing along

both compute and distance are more energy-efficient, being able to

decentralize compiler-identifiable offloads is essential to decouple

the need to offload larger granularity and the underlying problem
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initiate only the first offload and rest of the offload invocations are

chained from the previous invocations. We list the fundamental

characteristics of a decentralized model we aim for below:

(1) Lower invocation overhead: By being able to decentralize

multiple offloads independent of the host, the effective work done

by a group of accelerators is larger, which amortizes the invoca-

tion overhead for accelerators over large distances. Current near-

memory acceleration approaches such as PEI [4], HRL [34] and

NDA [31] target only fixed function blocks/kernels which limit

composability. In such cases, decentralized models will help lower

control overhead.

(2) Better area efficiency: Larger area requirements translate to

load balancing issues and increased accelerator context overheads.

While an entire loop body or kernel can be offloaded to amortize

control overheads, the resulting area requirement will be higher.

This cost can be prohibitive when co-running multiple accelerated

applications and does not lend itself to the reuse of code patterns

acrossmultiple code regions in the same or different processes.With

a decentralized model, not all parts of the offload need to be simul-

taneously active, thereby decreasing area requirements and adding

dynamic flexibility in resource load-balancing among competing

processes. Further, lower context overhead helps in migrating to

different locations in the memory hierarchy dynamically.

(3) Heterogeneous fine-grained specialization:We abstract the

control flows and datapaths independently, allowing both to be spe-

cialized differently along compute and distance axes. While the

data paths can be mapped on to an ILP-exploiting dataflow accel-

erator or other fixed function hard blocks in the memory element,

control heavy and low-ILP paths can be mapped onto processing

elements that more heavily emphasize energy reduction than high

performance in order to best achieve global energy-efficiency.

(4) Increased opportunities for specialization: If there was a

non-acceleratable part in the loop in Figure 3, a centralized offload

model would prevent offload of entire loop body, whereas a de-

centralized model could be made to return to a general-purpose

processor only for that region.

We propose a compiler-hardware framework to accomplish de-

centralized fine-grained offloading with the compiler distinguishing

between different data and control paths in the application, and the

architecture enabling these offloads to happen in a host-transparent

way irrespective of the size of each offload. In the scope of this pa-

per, the compiler extracts all the accelerator functions as a library

(detailed in Section 3.3). The compiler will perform heuristic-based

offload accelerator extraction, emit a library of potential offload-

able memory-centric accelerator definitions, and insert necessary

control operations to activate offload sites when the necessary

resources are available. Depending on where the offload must hap-

pen, the compiler may insert multiple shims into the original flow

to allow for dynamic adaptation of the granularity of offload at

runtime.

3.2 Architecture Interface

Figure 4 provides an overview of the key design components in sup-

porting offload. The interface is intentionally generic to support a

broad array of potential accelerator types of different granularities.

A level of virtualization is provided so that applications can com-

municate with logical IDs for accelerators rather than physical IDs.

While this virtualization imposes some additional requirements for

OS involvement, it also simplifies using user-mode instructions for

ISA-extensions for the accelerator communication interfaces, as

well as simplifying revocation, interruption, and context switching

at inter-accelerator invocation boundaries.

3.2.1 Interface Definition. The needs of the architecture inter-

face to support decentralization are two-fold. Firstly, the interface

should be able to support a wide granularity of accelerators ranging

from simple vector operations to entire kernels as this ensures that

any sequence of accelerators required to cover a given code can be

invoked without requiring interface complexity to scale with the

degree of heterogeneity. Secondly, where possible, the accelerator

interface instructions should act asynchronously to support acceler-

ators that are physically distant from the host without exposing the

host pipeline to potentially large round-trip latencies. The first re-

quirement allows the accelerator functions to be arbitrarily defined

based on application needs and the second allows each accelerator

to iteratively call itself 3 or another accelerator.

Although the interface can support a wide variety of processing

engines spanning GPPs, reconfigurable or programmable fabrics

and domain-specific fixed functions, as with many other accelerator

interfaces, it requires a memory-mapped I/O interface (MMIO) shar-

ing the host address space to expose the communication registers

visible at each accelerator. Three co-processor (cp) instructions are

defined as part of the generic user interface:

(i) cpset fnid, regid, val: An asynchronous instruction that is used

to configure the input register regid of an accelerator executing a

function fnid with value val.

(ii) val = cprun fnid: A non-blocking instruction that is used to

invoke the execution of the function fnid. Optionally, it can also

acknowledge the status of execution by returning a value, val once

it is complete.

(iii) cpload fnid, regid, n: A blocking instruction to load n bytes

starting from output register regid for the function fnid.

The fnid, regid, val fields are 16, 8 and 64 bits, respectively. The

cpload instruction supports burst-reads. The key parameter fnid

identifies the target acceleratable functionality, which is defined by

the compiler and runtime libraries, thereby allowing flexibility of

accelerator definitions. To let multiple offloads happen simultane-

ously and thereby exploit parallelism, the compiler distinguishes

each static offload within the context of a thread with a distinct ID.

While the instruction generality might compromise on the amount

of control data that is transferred per offload, these can be mitigated

by being able to share common register settings across multiple

accelerators and with compiler support as explained in Section 3.3.1.

3.2.2 Interface Implementation. An accelerator functionality

model with each accelerator having n accelerator resources (AR),

an AR controller, configuration memory, and MMIO register in-

terface as seen in Figure 4a is assumed. Each AR is assumed to

be a partitioned logical segment of the hardware which is either

defined at design time (e.g. a fixed-function unit implemented as an

3while general recursion could be supported with modest extensions to this model
its exploration is beyond the scope of this work and we only consider tail-recursive
invocations to simplify resource management complexity
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ASIC in an SoC style heterogeneous design) or by the compiler (e.g.

an NxN array of functional units in a CGRA or a reconfigurable

partition in the case of an FPGA implementation). Note that, in

most heterogeneous designs, not all accelerator definitions will

be co-active for the currently running application, allowing for

some space efficiency to be reclaimed via temporal multiplexing

of resources. To be able to share register settings across multiple

ARs, the register space is distributed and shared across a logical

group of ARs. The grouping of accelerators ensures that multiple

ARs can share the same registers and AR controller can maintain

the ownership of the resources until freed by the application.

The compiler generates the offload configuration table (Figure 4b)

as part of the application binary for the underlying hardware archi-

tecture. Each offload also has other attributes such as the logical

definition of what constitutes an AR within the context of the appli-

cation, required number of AR, group ID, and number of input and

output registers. The interface definition does not limit the fields in

the offload configuration table to enable the compiler and runtime

to flexibly coordinate based on different aspects of the offloads.

The fundamental functionality of the AR controller is to manage

the resource allocation table (Figure 4c) with valid mappings of

each AR to fnids and to load/configure the AR for the oncoming

offloads at runtime based on the offload configurations table. TheAR

controller has access to a configuration memory which is loaded at

program start time with the offload configuration table containing

either the configuration bitstream and/or static register settings

for all possible offloads for the application. The AR controller can

raise an interrupt to the host if there were other exceptions with

the executing contexts.

Chaining of Control and Data: To support decentralization

of host control, the accelerator architecture allows the executing

accelerator to chain-invoke another accelerator from the next possi-

ble fnids, as defined in the offload configurations table. Empirically,

the number of possible successor accelerators is limited, making

chain invocation resource-allocation practical without substantial

optimization in the applications we have studied. However, if the

nodes in the graph of potential chaining destinations had partic-

ularly high arity, some form of resource prediction would likely

be required to ensure high performance within practical resource

budgets.

Accelerator Context: While, in the scope of this work, we as-

sume that an accelerator can only invoke another upon completing

its execution to maintain low context overhead, the interface nei-

ther requires the accelerator design to be preemptible, nor does

it preclude preemption. In this work, we focus on a coarse recon-

figurable fabric such as a CGRA for which the accelerator context

constitutes the input and output register values. Since the register

values are shared across accelerators, the register context must stay

alive for the duration of the parent function/loop context. During a

context switch, the OS coordinates with the AR controller to save

the register values into the thread context.

3.2.3 Support for Accelerators in the Memory Hierarchy.

While, conceptually, accelerators can be coherent or non-coherent

with the host, to support near-memory execution, improve data

locality, and avoid expensive cache traffic over off-chip pins, the

compiler uses profiling data to identify memory regions accessed by

potential offload sites and swaps the respective memory-allocation

library calls with a custom implementation that allocates the data

structures to a contiguous memory space [21, 50]. The cpset in-

struction is used to transfer the address translation for each distinct

region to the address generation logic in the AR controller. During

profile time, if the number of uncacheable CPU requests are more,

meaning that there were significant non-offloadable code regions,

the runtime cost model marks the offloads as non-profitable for

near-memory execution. We extend the basic offload configuration

table to also contain the coherency needs of the application and

preferred location of execution. For near-memory execution with

non-cacheable data, the CP instructions bypass on-chip accelera-

tors to near-memory accelerators. Hence the host does not have

to maintain or specify an explicit context of accelerator definitions

and their locations.

3.2.4 Runtime. Multiple allocation policies can be used to acquire

ARs for a given thread.When the host encounters a cpset instruction,

the runtime software can acquire theminimumneeded resources for

that particular function from the OS and hand-over to the hardware

AR controller, which can raise an exception to the host if additional

ARs are needed for subsequent accelerator invocations. In this work,

we assume that each thread is statically allocated with two ARs

which are dynamically reconfigured by the AR controller during

computation to hide the reconfiguration latencies.

3.3 Compiler Support

The compiler tool chain is shown in Figure 5a. In addition to the

standard compilation steps, two more phases are added. At the

front end, the application is optimized and converted to single

static assignment (SSA) form. To maximize compute specialization,

unrolling and vectorization are done besides the standard O3 opti-

mizations. Function calls inside loops are inlined and if statements

as part of feed-forward datapath regions are converted to predicated

instructions where possible. In phase I, offloadable code blocks are

identified based on cost-based analysis. In phase II, to decentralize

the profitable offloads, the compiler identifies synthesizable code
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Figure 5: (a) Compiler tool chain (b) Control flow offloading

regions that, although they may be non-profitable in terms of paral-

lelizable operations, exert control and data dependencies with the

identified candidate offloads. In the backend, the offloaded blocks

are mapped to the target accelerator architecture and the configu-

rations are combined with the binary. We describe the two phases

in detail below.

3.3.1 Feed-forward region selection (phase I). In this phase,

an offload is a set of feed-forward basic blocks (e.g. a hyperblock or

path within a hyperblock) and the compiler looks for maximally ex-

ploiting the ILP available while also accounting for data movement.

The cost of offloading is in terms of data movement like TOM [43],

but unlike TOM, this phase of the compiler aims to offload feed-

forward vector datapaths rather than highly parallel loops that are

available in GPU workloads. An offload is profitable if the total

number of bytes required to initialize the live-in register values is

less than the amount of traffic to and from the nearby memory ele-

ment. A runtime condition based on resource availability is added to

either execute the software or offload version. Basic blocks are split

around non-inlinable function calls to maximize the opportunities

of finding offloads. A simple cost model in terms of data transfers

and compute area cost is modeled, where a feed-forward region is

outlined for possible offload if the communication cost is less than

the cost of accessing the data across the memory hierarchy. Hence,

at compile time, the condition: 8 + G < " , where, M is the number

of data bytes accessed per execution of the region, is examined.

Since there is a possibility that some of the live-in values will be

constant across multiple invocations of the region, such values are

hoisted so that the common values are of size i bytes. x denotes

the number of bytes that vary across multiple invocations. While

hoisting increases the data dependencies across the offloads in each

context, it also reduces the host control overhead. For workloads

with high temporal reuse and deep loop nest like matrix multipli-

cation, the above equation will be insufficient. Hence, at profile

time, the condition: 8 + # ∗ G < � , is checked for profitability of

offloads. The above equation ensures that the runtime initialization

cost, N being the total execution count of the region, is less than

the size of the data structures (D) used within the offload. Thirdly,

the compute cost of specializing the set of blocks is calculated in

terms of area and compared against the design constraint, if any.

The synthesizability check assures that the region offloaded can be
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Figure 6: (a) Target architecture (b) Accelerator architecture

reasonably mapped onto configurable accelerator architectures and

the host involvement is not necessary.

3.3.2 Control path outlining (phase II). While outlining feed-

forward paths enables the reduction of data movement, the repeated

invocation and associated communication costs, depending on con-

trol flow characteristics, might offset the benefit of reducing data

movement negatively, as these are fine-grained offloads. To reduce

this cost, the compiler identifies control paths around the possible

candidate feed-forward offloads and outlines these as individual

offloads. Figure 5b shows a loop and how it gets divided into five

fine-grained offloads. The flow of control is encoded as the logic

outcomes of every offload, which is used during mapping stage or

written to an output register to invoke the next accelerator. Identi-

fication of control flow is an iterative process with the number of

iterations varying with different depth of loop nests and across mul-

tiple independent loops. For the evaluated workloads, a maximum

of three levels provide considerable profits. To ease the runtime

to schedule reconfiguration of all the blocks, the compiler creates

distinct groups of the offloads within a code region (function or

a loop nest) and adds a group ID as a hint to the runtime library.

This also lets the accelerators within a region share the input and

output register space.

3.4 Execution model

Figure 6a shows the target architecture for the study with accelera-

tors near memory and near host. For our evaluation, we assume a

CGRA fabric which is divided into groups of accelerator resources

with multiple functional units (FU) as in Figure 6b. Each AR has an

input and output queue (not shown in the figure) through which

the memory operations pass. The steps of execution are set out

below:

• The compiler-identified offloads are synthesized/mapped for

the underlying accelerator architectures. The offload configuration

table is loaded at program initialization time.

•When a cpset instruction is executed in a thread, the host for-

wards it to the nearest AR controller in the system hierarchy, where

offload configuration table is looked up to identify the function to

be configured. If the application uses uncacheable memory pages,
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Table 1: Design configurations and benchmarks (sim.run denotes simulated #instructions in the region of interest)

Core In-order, 1GHz

Cache line 64 Bytes

D cache 32 KB 4-way

L2 cache 256 KB 8-way, 8.2pJ per access

L3 cache 2 MB 16-way, 17.2pJ per access

On-chip crossbars 128-bit width, 2.4pJ/flit

Serial link 4 links of 10Gbps 2pJ/bit (8cm)

Memory
HMC 16-vaults, 4 layers, 32MB

per vault, 2.47pJ/bit

Cache per vault
32 KB, 32nm,

20.9/24.7pJ per read/write access

Memory Crossbar
4-cycle latency, 256-bit flit [10],

1 GHz 28pJ/access

Accelerator CGRA, 1 GHz

Benchmark Domain Input dataset Sim. run

Disparity [76] Stereo vision 288x352 images 9.84M

HotSpot [17] Structured grid 512x512 grid 9.35M

Feature Tracking [76] Robot tracking 288x288 images 35.25M

StreamCluster [12] Data mining 8192 points,64 point dimension 230.43M

Principle Component Analysis [74] Feature extraction 722x800 matrix 74.24M

Breadth First Search Graph analysis scale-12,edge factor-32 2.15M

Robot Localization [76] Image understanding 500 images of 88x5 88.79M

Scale Invariant Feature Transform [76] Image analysis 288x352 images 213.56M

Merge sort [65] Sort algorithm 512k elements of 8 bits each 67.14M

Kmeans [17] Dense linear algebra 1000 objects; 36 attributes 27.33M

Singular Value Decomposition [74] Feature extraction 250x250 image 241.74M

Latent Dirichlet Allocation [74] Natural language processing 251 docs; 12420 terms 153.51M

BlackScholes [12] Financial analysis 655KB 170.39M

the runtime with OS support allocates the number of ARs required

near memory and forwards the cpset to the AR controller near

memory which in turn configures the ARs. The runtime system

routes the following cpsets and cprun in the given thread to the

same location. If the offload does not use uncacheable memory page

flag, then the offload is placed near host.

• Upon receiving a cprun from the AR controller, the accelera-

tor begins execution. Compute, register, and memory operations

mapped in parallel are executed simultaneously. Reads and writes to

memory are routed as packets through the AR queues for enforcing

memory ordering. The ARs support multi-cycle memory and com-

pute operations through a valid-ready interface between multiple

FU s. The AR controller performs reconfiguration of the subsequent

accelerator functions, if any, based on the offload configuration

table in parallel with the computations.

• The cpload instruction blocks until the accelerator finishes

execution and it can be issued ahead to overlap the communication

latency with the execution of the accelerator.

•As the accelerator finishes execution, the status is updated in its

output register, based onwhich theAR controller invokes successive

AR calls or issues an acknowledgement to the host or responds to

the cpload instructions from host. Optionally, an accelerator chain-

invokes another in a sequence if these are placed and mapped

statically within one AR.

3.4.1 Discussion. Since we target generality over specificity, we

show heterogeneity in the kinds of operations that get special-

ized rather than in the kind of substrate such as FPGA, CGRA,

programmable or domain-specific hardware. While this may not

strictly maximize the efficiency gains within a given accelerator

pipeline, we expect the insights gained into the benefits of the of-

fload model itself to generalize across different implementations

of the accelerators themselves. In the context of this work, the

loci of computations are specified to be near-memory or near-L1

cache based on offline profiling. While the offloads themselves are

dynamically reconfigured and invoked during the execution, the

hardware or runtime can further be extended to incorporate hard-

ware structures that monitor the memory access characteristics and

thereby dynamically decide the placement of offloads either based

on application locality characteristics and/or resource availability.

In this work, our evaluation focuses on near-memory/cache,

rather than multi-placement accelerator models. However, the

compiler-driven approach and architectural interface presented are

general and could also be applied to models that include offloads

to multiple levels of the memory hierarchy [16, 52]. Additionally,

while we have only discussed offloads within a single application,

the AR controller and runtime system could be further enhanced to

support dynamic resource allocation based on load balancing across

multiple simultaneously executing applications, as the fundamental

interfaces are already virtualized.

4 METHODOLOGY

To evaluate the generality of our proposed decentralized offload

model, we choose applications from varied domains with different

locality characteristics and multiple architecture configurations.

Simulation framework: The input C/C++ applications are com-

piled using a compiler framework based on the LLVM compiler

infrastructure (9.0.0) [48]. Based on profiling runs, we identify func-

tion calls that need to be inlined to reduce the overheads of toggling

between multiple loci of computations. The framework is extended

with passes to identify and outline offloadable code regions for hard-

ware mapping (as discussed in Section 3.3). We use the compiler’s

intermediate representation (IR) for hardware mapping. During the

mapping stage, instructions in each basic block are topologically

ordered and placed on a CGRA with an NxN array of functional

units following a greedy approach.

For performance estimations, binary instrumentation is done to

generate a dynamic instruction trace containing computation and

memory events from both in-order core and accelerator executions.

The compute timing annotations are relative to the memory events

and are based on instruction-CGRA FU mapping and critical path

analysis. The captured compute and memory events are replayed in

Gem5 [13] respecting the original program’s memory dependencies

for the modeled memory system as per the approach by Nilakantan

et al. in Synchrotrace [58]. Table 1 shows the parameters of the

evaluated system. For configurations with accelerators near the

cache hierarchy, the accelerator shares the L1 cache with the host.

Memory is modeled as a hybrid memory cube with 16 vaults and 4

ranks per vault [9, 62]. The logic layer contains a 32 KB cache for

each vault and a crossbar interconnect connecting the accelerators

to the vault caches. We assume a 22nm technology for the host

processor, caches, interconnects, and CGRA on-chip. We conser-

vatively model the CGRA and the caches on the logic layer of the

HMC with a 32nm technology.
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Host core, cache hierarchy, and interconnect energy are esti-

mated using McPAT [49]. Cacti 7 [11, 18] is used to estimate the

energy for near-memory cache, configuration cache, memory ac-

cess queues in the accelerator, and 3D memory. Serial energy is

assumed to be 2 pJ/b following previous literature [1, 31, 62]. The

CGRA functional unit energies are scaled [73] from previous litera-

ture [31] for a LP 0.9V 32nm technology.

Benchmarks:We target C/C++ applications and kernels from Cor-

tex/SDVBS [74, 76], Parsec [12], Machsuite [65] and Rodinia [17].

These benchmarks have varied data sizes, and each is simulated

for regions of interest, the size of which is shown in the Table 1 in

terms of number of dynamic IR instructions in the O3-optimized

software baseline. We select applications with limited dependencies

on external libraries and complex data structures, as the automation

aspects of our tool are in the early stages of development, and com-

plex library dependencies do not currently synthesize to hardware

efficiently.

System configurations: We consider the following architecture

configurations:

• In-order host (H-SW): In-order processor without accelerators

• Centralized datapath operator specialization: Compound

vector feed-forward datapaths mapped on CGRA fabric with the

host controlling each offload decision:

−→Near-cache centralized (C-C) (DySER-like [37]): Accelerators

near L1-cache with a centralized host having 2-cycle overhead of

writing its register

−→ Near-memory centralized (M-C) (PEI-like [4]): Accelerators

near-memory with a centralized host having 20-cycle overhead of

writing its register. The granularity of offloads in this configuration

is like PEI for graph, sort and streamcluster benchmarks. While

PEI implements the parallel version of BFS, which in turn helps in

amortizing the access latencies, we use the sequential implementa-

tion and group multiple operations to amortize the initialization

and invocation costs of this centralized fine-grained offload model.

• Decentralized datapath + control flow specialization: In

addition to feed-forward compound vector datapaths, these accel-

erators support chaining of other accelerators (discussed in Sec-

tion 3.2.2) upon their completion. We evaluate various degrees of

decentralized offloads (as discussed in Section 3.3.2) with diverse

area requirements:

−→ Near-memory decentralized - degree-1 (M-D1): Accelera-

tors near-memory with up to two iterations of control flow offload-

ing.

−→ Near-cache decentralized - degree-2 (C-D2): Accelerators

near-L1 cache with three or more iterations of control flow offload-

ing.

−→ Near-memory decentralized - degree-2 (M-D2): Accelera-

tors near-memory with three or more iterations of control flow

offloading.

−→ Area constrained near-memory decentralized - degree-2

(M-D2+AC): We assume an area-constrained static CGRA mapping

on top of the previous configuration only for logic near memory.

All the system configurations with accelerator executions use

our proposed architecture interface and compiler framework from

Section 3.

Table 2: Geometric mean and maximum (in brackets) met-

rics normalized to H-SW configuration over all applications

H-SW C-C C-D2 M-C M-D1 M-D2 M-D2+AC

Energy efficiency
1.00

(1.00)

3.45

(9.10)

5.39

(24.22)

1.97

(5.48)

3.39

(6.45)

3.48

(5.75)

3.50

(6.42)

Speedup
1.00

(1.00)

1.83

(2.90)

2.16

(4.04)

1.56

(7.16)

1.89

(7.57)

2.32

(7.51)

1.90

(7.55)

EDP improvement
1.00

(1.00)

6.33

(26.42)

11.64

(44.86)

3.06

(39.24)

6.41

(48.82)

8.06

(42.61)

6.66

(48.47)
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Figure 7: Geometric mean of normalized metrics for centralized

versus decentralized configurations over all applications

5 RESULTS

We emphasize that our primary goal is to evaluate the efficiency

of decentralized offload decisions and understand its potential and

tradeoffs while specializing at near-cache and near-memory loca-

tions. This section illustrates the major benefits of decentralization

and provides detailed analysis of the sources of performance im-

provements. We demonstrate that the overhead costs of decentral-

ization in terms of area and reconfiguration energy are nominal.

5.1 Major Benefits from Decentralization

Table 2 compares the geometric mean and maximum (in brack-

ets) achieved energy efficiencies, speedups and EDP improvements

for all architecture configurations normalized to the baseline in-

order configuration (H-SW ) over all applications. The data shows

that compute specialization of datapath alone - C-C and M-C can

provide an energy efficiency of 3.45× and 1.97× compared to an

in-order core (H-SW ), while the performance improves by 1.83×

and 1.56×, respectively. Specializing the control path further with

decentralization degree of two improves the energy efficiency of

near-cache C-D2 and near-memory M-D2 configurations by 5.39×

and 3.48×, while speedups improve by 2.16× and 2.32×, respec-

tively. For applications with cache resident datasets and high reuse

distances, decentralizing near-cache can achieve a maximum en-

ergy efficiency of 24.22×, while for applications with streaming or

random memory accesses decentralizing near-memory can achieve

a maximum speedup of 7.57× along with an EDP improvement of

48.82× compared to H-SW baseline.

While these results are from evaluating applications of varied

data locality characteristics, the key points of comparison are be-

tween the centralized and decentralized configurations, namely C-C

versus C-D2 and M-C versus M-D1/2, which show the potential of

localizing control in a way that is amenable to compiler automation

while also keeping energy and area constraints in perspective. Fig-

ure 7 shows that the host decentralized configuration C-D2 has a
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Table 3: Control movement and area statistics for M-D2+AC configuration and area of function-sized offloads. Columns: #

Dynamic Offloads shows the # offloads from processor and from chaining; Avg. run length (operation cycles without memory latencies)

gives the average critical path latency of a chain of offloads and of one offload; #Registers is the range of register space required for all

offloads in the application; Offload area is the range of FUs required per offload definition; Function area gives the range of FUs required

for a function if the entire function is to be offloaded

Apps

# Dynamic Offloads

(Control movement)

Avg. run length

(cycles)

#Registers

(Context size)

Offload area

(FUs)

Function area

(FUs)

host chain chain offload min max min max avg min max avg

disp 13 451943 874590 25 1 30 8 361 56 187 3286 769

hots 2 381312 7336715 38 12 38 14 237 100 1034 1034 1034

trac 164 926436 258109 45 1 37 8 445 61 232 6841 1268

sc 46503 217595595 298303 63 3 32 11 210 63 76 43986 5148

pca 4 1677629 22166684 52 2 21 13 312 57 686 2825 1601

bfs 2 1594654 12229324 15 3 15 19 45 30 116 157 136

loc 5394 8712107 47649 29 2 43 9 422 64 129 2857 668

sift 2757465 79806755 915 30 1 49 7 683 61 232 12042 1401

merg 3 14207028 78117699 16 3 84 14 329 78 202 1911 975

kmea 4 5279363 34324644 26 2 27 13 103 28 131 1258 527

svd 5 30844855 346689590 56 3 46 11 800 65 355 9529 2560

lda 249450 75626505 13745 45 0 27 6 202 55 11 3567 727

bs 1 4915500 571802602 116 1 7 13 184 74 209 209 209

speedup of 1.18× and energy efficiency of 1.56× compared to the

centralized configuration-C-C, while near-memory decentralized

configuration M-D2 has better speedup and energy efficiency of

1.49× and 1.77× compared to M-C, respectively. The decentraliza-

tion of control helps in reducing the processor-accelerator communi-

cation overheads and the benefits of decentralization increases with

increasing distance of the accelerator from the host.

To illustrate what this means for near-memory accelerators, Ta-

ble 3 quantifies the control movement and reduction of area re-

quirements in terms of CGRA functional units (FU). In the context

of this table, the number of dynamic offloads is considered as a

metric of control data movement. For most of the applications, the

host overhead of offloading forms only a small percentage of the

chaining overhead (less than 1% for all and up to 4% for sift). Prior

studies mitigate this offload overhead by increasing the size of the

offload or by issuing multiple offloads in parallel. While larger sized

offloads are difficult to extract and need higher area requirements,

issuingmultiple offloads still incurs the control movement overhead.

Assuming a simple design without additional pipelining hardware,

a kernel-sized offload would require a maximum of 43K units,

whereas M-D2+AC configuration requires only up to a maximum

of 800 units. The table also shows the average run length of a

single offload to be in the range of 16-116 clock cycles, while the

average run length of a single chain of offload is in the range of

887-571M clock cycles. The number of registers required per ac-

celerator (0-84) translates to the context size of the offload. Overall,

decentralization of offloads helps in reducing the control data move-

ment while also maintaining fine-granularity offloads with reduced

area requirements.

5.2 Detailed Performance Analysis

Since we have applications with diverse locality characteristics,

we discuss the sources of performance variations below. Energy

efficiency and EDP improvement are shown in Figures 8a and 8b,

respectively. We present the results normalized to the near-cache

datapath-only offloads C-C to contextualize the general efficacy of

our decentralized offload decisions. In general, the decentralized

configurations (C-D2 and M-Dx) show consistently better energy

efficiency in the range of 1.17×-3.9× and EDP improvement in the

range of 1.37×-9.82× than the C-C configuration.

There are two classes of applications we consider, since the near-

memory caches are not configured to accommodate large reuse

distances. Applications with low reuse distance or random memory

accesses (disp, hots, trac, sc, pca, bfs and loc termed as Group-1) show

better energy efficiency and EDP improvement in architectures with

distance specialization near-memory, while the other applications

with longer reuse distance and/or cache-resident workloads (termed

as Group-2) perform better with near-cache specialization.

Effect of data and control movement: The energy efficiency of

the M-C configuration for disp, hots, trac, and pca is due to both

compute specialization and data localization, and is in the range

of 1.05×-2.0× compared to baseline C-C. The reduced energy con-

sumption from data movement through serial link and on-chip

interconnects can be seen in Figure 8e and Table 4. However, in the

case of sc, bfs, and loc, the energy costs of control data movement

through serial-link, (control-move (SL) component in Figure 8e),

are higher than the benefit from localizing application data. M-C

also has serial link energy overhead due to any non-cacheable data

movement in non-offloadable code regions as seen in loc bench-

mark. Overlapping computation with control transfer, where appli-

cable, could amortize the delay overhead for theM-C configuration,

although the data/control movement will remain. In these cases,
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(d) Total delay breakdown: computation (comp-ops) and memory (mem-ops) delay in the host (core) and CGRA
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(e) Interconnect energy components: data and control movement in serial link, data movement in on-chip interconnects, and data movement in memory crossbar, respectively
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Figure 8: Key evaluated metrics (with breakdown) for various architecture configurations and benchmarks
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decentralized M-Dx configurations reduce the energy overhead of

control transfer and hence have better energy efficiency and per-

formance (disp, hots, trac, sc, pca, bfs, loc, and sift) compared toM-C

and C-C. Decentralizing more than three iterations of control flows

brings an energy reduction in hots, trac, and loc due to the decrease

in data and control movement. Comparing C-C versus M-Dx, all

applications show reduction in data movement energy through

on-chip cache hierarchy and on-chip interconnect as seen in Fig-

ure 8e. However, for cache-sensitive applications, this translates to

increased data movement through the near-memory crossbar (Fig-

ure 8e) and additional memory energy because the near-memory

caches do not capture accesses with long reuse distance.

While C-C is nearer to host and has comparatively better control

locality compared toM-C, it must fetch the data all the way through

the cache hierarchy. As a result, the data movement through cache

hierarchy and serial link still exists. The energy reduction in C-

D2 compared to its centralized configurations is attributable to

reduced latency overhead of control transfer and communication

between host and accelerator as seen in reduced latency in the host

computation (core comp-ops component in Figure 8d).

M-D1 and M-D2 perform better than C-C for applications with

random/streaming memory accesses, whereas C-D2 performs better

than C-C for cache-sensitive applications. Generally, decentralization

reduces energy overhead costs for near-memory offloads and reduces

latency costs for near-host offloads.

Host Dynamic Instruction Reduction: Figure 8f shows the in-

structions broken down into arithmetic/logical compute or memory

operations versus control instructions executed by host and accel-

erator. Host and acc refer to the dynamic compute/memory instruc-

tions executed by the host processor and accelerator, respectively.

Host_ctrl accounts for the number of branch and offload instruc-

tions executed by the host. acc_ctrl accounts for the chained offload

instructions of accelerators. Although the C-C and M-C configu-

rations specialize for datapath operations, the host still executes a

significant proportion of dynamic instructions. The decentralization

of control in C-D2, M-D1 and M-D2 reduces the dynamic instruc-

tion overhead of the host significantly (for instance, disp shows a

~25% reduction). The accelerator control overhead accounting for

co-processor instructions gets converted into logical outcomes writ-

ten to adjacent registers or forwarded to adjacent functional units

when multiple accelerators are mapped within an AR. Hence, the

execution of co-processor control within a local accelerator group

are overlapped with computation and both the latency and energy

overheads of these instructions are negligible for the workloads

considered. Decentralization increases the percentage of execution

time expended on an accelerator to ~99%.

BandwidthUtilization:Memory bandwidth: Besides compute spe-

cialization and localized control/data, offloading datapath opera-

tions near memory (M-C, M-Dx) optimized for instruction-level

parallelism shows both better energy efficiency and performance for

group-1 applications owing to being able to exploit high bandwidth

near memory, seen as reduced memory delay (CGRA mem-ops)

in Figure 8d for disp, hots, trac, sc and pca. Due to contention in

the crossbar and higher memory traffic, sift, sc, lda and pca show

increase in energy for M-D2 configuration, and pca and lda show

reduced speedup for M-D2 than M-D1. Off-chip bandwidth: Table 4

shows fine-grained data movement in the system hierarchy. The

Table 4: Data movement in the system hierarchy. Columns (3-

8): #bytes read andwritten to L1 from host or near-cache accelerator,

#bytes from L1 to L2, L2 to L3, L3-offchip serial links, #bytes from

both serial links and accelerator to near-memory cache, and #bytes

accessed in DRAM

App Config H/A-L1 L1-L2 L2-L3 L3-SL SL/A-NM$ NM$-M

d
is
p

C-C 34.53M 37.36M 44.19M 24.26M - 24.24M

M-C 9.64K 9.94K 9.94K 9.94K 34.52M 37.33M

M-D2 260 392 392 392 34.53M 37.33M

h
o
ts

C-C 10.73M 11.72M 8.18M 7.61M - 7.61M

M-C 0 0 0 0 10.73M 8.91M

M-D2 0 0 0 0 10.73M 8.91M

tr
ac

C-C 66.93M 122.47M 75.53M 31.52M - 31.49M

M-C 3.06M 2.45M 2.45M 2.45M 63.87M 77.66M

M-D2 1.83M 1.63M 1.63M 1.63M 53.85M 58.75M

sc

C-C 252.45M 138.80M 138.87M 123.29M - 122.37M

M-C 2.34M 263.94K 263.94K 263.94K 250.12M 138.22M

M-D2 1.54M 1.82K 1.82K 1.82K 289.98M 158.23M

p
ca

C-C 368.39M 1403.78M 1403.75M 1403.73M - 1401.96M

M-C 92.12K 102.31K 89.83K 90.09K 368.30M 1400.83M

M-D2 0 0 0 0 376.27M 1431.89M

b
fs

C-C 5.02M 4.98M 4.71M 4.42M - 4.41M

M-C 116.24K 116.24K 116.24K 116.24K 4.90M 4.80M

M-D2 34 34 34 34 5.02M 4.80M
lo
c

C-C 203.59M 44.09M 28.67M 26.70M - 26.69M

M-C 62.66M 52.00M 51.75M 50.73M 140.93M 33.76M

M-D2 122.32K 156.04K 136.71K 136.71K 203.47M 33.70M

si
ft

C-C 202.61M 25.72M 27.90M 18.63M - 18.62M

M-C 5.69M 5.69M 5.69M 5.69M 196.92M 25.43M

M-D2 216 272 272 272 176.40M 23.73M

m
er
g C-C 49.81M 46.58M 43.73M 1.05M - 1.05M

M-C 0 0 0 0 49.81M 44.44M

M-D2 0 0 0 0 49.81M 44.44M

k
m
ea

C-C 69.31M 4.96M 157.89K 158.21K - 158.21K

M-C 1.49M 10.58K 10.58K 10.78K 58.84M 4.48M

M-D2 16 16 16 16 60.34M 4.72M

sv
d

C-C 362.68M 281.62M 382.66K 285.31K - 285.31K

M-C 1.39M 1.38M 1.38M 1.38M 361.29M 137.29M

M-D2 8 8 8 8 354.37M 137.14M

ld
a

C-C 459.67M 598.15M 230.02M 1.98M - 1.97M

M-C 4.95M 3.16M 3.16M 3.17M 454.72M 315.98M

M-D2 2.20M 2.15M 2.15M 2.15M 419.92M 288.67M

b
s

C-C 216.27M 362.69M 52.39M 459.46K - 459.46K

M-C 12 128 128 128 216.27M 659.46M

M-D2 12 128 128 128 216.27M 856.07M

energy consumption over the serial-link due to both control and

data reduces forM-D2 configuration in group-1 applications, which

translates to off-chip bandwidth savings seen in the L3-SL compo-

nent in the table. ComparingM-C andM-D2 shows that, irrespective

of the type of interconnect (2.5D or 3D) between the accelerator and

memory chip, decentralization helps in localizing data movement

to the computation, thereby offering both performance and energy

advantages.

5.3 Reducing Overheads of Decentralization

Area: As shown in Table 3, the range of area overheads for the

decentralized offloads within each application is much smaller than

the area required if each function were to be placed entirely. To
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reduce the area overheads further for logic layer implementation, in-

structions within an offload are mapped to a 40x40 AR fabric of func-

tional units capable of performing integer/floating-point addition,

subtraction, and logical operations.We assume twoARs for the area-

constrained configuration M-D2+AC and the number of pipelined

multiplier and divider units is limited to one for every two ARs. The

area required for a 40x40 AR alongwith twomultiplier/divider units,

memory access queues and interconnect switches is 0.41<<
2 per

vault, and a near-vault cache takes 0.086<<
2 for a 32nm technology.

Additionally, the geometric mean of the static CGRA instruction

size of all the considered applications is 7.2KB, and the area for a

configuration cache of 16 KB takes 0.04<<
2. Offloads with width

higher than 40 are wrapped around and with depth higher than 40

are split across multiple ARs. The control path offloads are placed

statically within AR based on a greedy policy. For longer control

paths, the instructions are mapped onto a functional unit, denoted

by CP in the Figure 6b, which executes the given instructions se-

quentially. Adding a resource constraint of only two ARs introduces

a performance overhead of 1.2× forM-D2+AC with respect toM-D2

configuration. In cases where the design is constrained by near-

memory crossbar or memory traffic, area constraining helps in

reducing the energy as seen in Figure 8c for the sc, sift, pca, svd, lda

and bs benchmarks.
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Figure 9: Dynamic energy breakdown of CGRA

Reconfiguration:With the configuration bits for intra-AR func-

tional unit and switch being six and three bits, respectively, Figure 9

shows the CGRA energy components for functional units (Ops),

intra and inter-AR interconnects (IC) and reconfiguration (Reconf ).

Reconfiguration and interconnect constitute 25% and 5.3% of the

total CGRA energy (geometric mean), respectively. For the given

applications, the oncoming AR reconfiguration is pipelined with

the ongoing AR computation. For other applications with a high

branching factor of accelerator invocations, in addition to resource

prediction, statically placing the critical blocks first and pipelining

reconfiguration at a finer granularity of the oncoming AR functions

can reduce the reconfiguration latency overhead during chaining.

6 RELATED WORK

Our work spans three main areas: compute specialization, near-data

computing, and accelerators with specialized control flows.

Compute specialization: The rise of single-application silicon

markets has made specializing computations via diverse dedicated

hardware accelerators economically viable [32, 44, 53, 60]. Cata-

pult [64] seeks to accelerate datacenter applications like web search

with reconfigurable architectures. ASIC clouds [53] are made of

large arrays of ASIC accelerators designed to be TCO-optimal for

datacenters. Despite improved performance and energy efficiency,

increased specialization makes it difficult to use resources more

efficiently outside the target area [47]. On the other hand, pro-

grammable specialization architectures cater to both generality and

specialization. DySER [37] targets highly parallel code regions and

dynamically specializes these to deliver significant performance

benefits for a broader range of application domains. Unlike spe-

cializing parallel and regular code regions, conservation-cores [77]

are designed to improve energy efficiency for hot irregular code

regions. By the nature of these architectures, most of these acceler-

ators are closely coupled with the processor for control sequencing

and data sharing, and hence do not exercise distance specialization.

Near-data architectures: The trend towards data-centric comput-

ing has prompted research towards many near-memory specialized

architectures [3, 7, 28]. HRL [34] and NDA [31] propose to map can-

didate offloads on a coarse reconfigurable unit (CGRA) nearmemory.

Manual programmer changes are not a scalable solution. Further,

while kernel offloads may be compute-intensive, they need not nec-

essarily be memory-intensive as well. Secondly, not all parts of the

kernel need to be concurrently executed, causing under-utilization

of the area. IRAM [61] assumes a co-processor tailored to support

vector and bit-manipulation operations near memory. PEI [4] pro-

poses specialized fixed function blocks for graph workloads by ex-

tending the host ISA with specialized simple processing-in-memory

operations such as atomic integer-increment and floating-point ad-

dition. While offloading such computations reduces application

data movement through the memory hierarchy, having the host

sequence multiple such operations requires a lot of communica-

tion and control to be transferred, incurring energy overheads. We

demonstrate that both control and data locality are essential to

improving energy efficiency.

MEALib has similar philosophical reasoning behind using ac-

celerator libraries, although the authors aim to only accelerate

fixed operations in Intel’s MKL library [38]. Livia [52] proposes

memory services and a task-based programming model, which lets

programmers express the offloadable computations explicitly and

the architecture dynamically places these tasks at various points in

the memory hierarchy based on data locality. While new program-

ming models are promising, they require the existing applications

to be rewritten and not all workloads fit the task-based abstractions.

Control specialization: In LSSD [59], the authors propose spe-

cialization principles based on observations from domain-specific

accelerators and present an accelerator design with a spatial fabric

for exploiting concurrency and a low-power core for coordina-

tion for workloads with significant parallelism and defined coarse-

grained work units. While they present an accelerator architecture,

we propose an architecture and compiler framework with auto-

mated offload mechanisms that exploits analogous principles for

computation cores across the memory hierarchy.

Charm [24] and camel [22] provide virtualization and compos-

ability of coarse-grain configurable accelerators with hardware

resource management. RegionSeeker [81] targets application code
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regions of varying granularities and identifies sub-graphs with con-

trol flow that are amenable to offload based on area constraints.

These architectures do not specialize to reduce data or control move-

ment. TOM [43] looks at transparently identifying code regions

for GPU systems. While this is good for GPU workloads, it does

not scale well for arbitrary workloads, as GPUs might prove to be

power-inefficient if the resources are under-utilized. We propose

an automated offload identification mechanism for arbitrary work-

loads with energy as primary metric and a common decentralized

offload-model for memory-centric compute cores.

7 FUTUREWORK

This work proposes an architecture interface and an offload mecha-

nism that enables independently coordinated fine-grained offload

sequencing given the design space we have examined. This mech-

anism better matches future heterogeneous systems, where host

overhead in spending time and bandwidth to get remote resources

to perform an offload is higher. Traditionally, this overhead has

been amortized by increasing the offload granularity. However, it

does not opportunistically exploit all the specializable code regions

since the control mechanisms do not match fine-grained vector

offloads in cases where the computation engine is remote from the

host.

While we have shown that a fine-grained memory-centric offload

model that has both data and control locality can provide orders of

magnitude better energy efficiency than an in-order core, there are

extensions and directions of exploration for future inquiry which

were not covered in this paper because of time constraints and tool

limitations.

Extensions: The tradeoffs in specializing different types of control

flows within an application can be studied to identify the hardware-

software support needed to make these more amenable for better

performance. Further, virtualization of compute engines in themem-

ory hierarchy can help increase the degree of dynamism in where

an offload will run, as also mentioned in Section 3.4.1. Other effi-

cient accelerator architectures built on FPGA fabric can be explored

further, given that the time-to-market of such programmable fabrics

is shorter, and our framework enables compile-time generation of

accelerator libraries with adaptive granularity that are suitable for

being placed at different points in the memory hierarchy. The accel-

erator extraction mechanisms can further be augmented with the

recent advances in HLS techniques to output core definitions with

better pipelining and hardware library support [25, 42, 54, 55, 82].

We also intend to extend the evaluation platform to more deeply

explore the use of both more aggressive (out-of-order) cores and

heterogeneous general-purpose core types within the platform in

combination with the offload accelerators. We plan to also explore

the benefits of further compute specialization by identifying iso-

morphic patterns within the offloaded code regions of one or more

application suites and synthesizing these as ASIC modules for in-

creased energy efficiency and performance [19, 78].

Future Directions: This work presented a design space with com-

pute and distance specializations as the main axes of differentiation

among designs. This design space can be broadened with an addi-

tional dimension of data specialization, which aims to reorganize the

data within memory [5, 36], across multiple memory elements [52]

or with the help of dynamic data structures [51, 66] so as to reduce

the adverse effects of the high memory access latency and data

movement.

Given that future systems will have multiple loci of computa-

tion, the question then arises as to whether conventional cache

hierarchies designed based on applications’ reuse distance analyses

are still the appropriate design point in a model that incorporates

data specialization, localization, and custom compute engines, or

whether an equally heterogeneous on-chip memory system will

need to be developed to fully realize the potential benefits of these

systems.

8 CONCLUSION

Energy efficiency in computing and data movement is becoming

increasingly important. Both compute and distance specialization

techniques must be co-designed for better energy efficiency. Driven

by this, wemake the case for a decentralized architecture framework

that dynamically composes fine-grained accelerator definitions spe-

cializing both compute and control through the memory hierarchy

to reduce data and control movement between various computa-

tion units. To achieve this, we first propose a generic architecture

interface for supporting accelerators of flexible definitions and

granularity with the ability to chain-invoke others. Our framework

identifies acceleratable computations and control flows around the

offload candidates from arbitrary applications. We assess the pro-

posed decentralized offload decisions onmultiple architectures with

computation cores near cache and near memory. Across diverse

classes of benchmarks, we see consistent benefits. Compared to

an in-order core with centralized datapath accelerator, the energy

efficiency is between 1.2×-3.9× and EDP improvement is between

1.37×-4.4× for applications with cache affinity, while for applica-

tions with low reuse distances and/or random memory accesses

the energy efficiency is between 1.17×-2.55× and EDP improves by

1.4×-9.82×, thereby validating the promise of decentralization.
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