
Neural Network-Inspired Analog-to-Digital Conversion to Achieve

Super-Resolution with Low-Precision RRAM Devices

Weidong Cao*, Liu Ke*, Ayan Chakrabarti** and Xuan Zhang*

* Department of ESE, ** Department of CSE, Washington University, St.louis, MO, USA

Abstract— Recent works propose neural network- (NN-)
inspired analog-to-digital converters (NNADCs) and demon-
strate their great potentials in many emerging applications.
These NNADCs often rely on resistive random-access memory
(RRAM) devices to realize the NN operations and require
high-precision RRAM cells (6∼12-bit) to achieve a moderate
quantization resolution (4∼8-bit). Such optimistic assumption
of RRAM resolution, however, is not supported by fabrication
data of RRAM arrays in large-scale production process. In this
paper, we propose an NN-inspired super-resolution ADC based
on low-precision RRAM devices by taking the advantage of
a co-design methodology that combines a pipelined hardware
architecture with a custom NN training framework. Results
obtained from SPICE simulations demonstrate that our method
leads to robust design of a 14-bit super-resolution ADC using 3-
bit RRAM devices with improved power and speed performance
and competitive figure-of-merits (FoMs). In addition to the
linear uniform quantization, the proposed ADC can also sup-
port configurable high-resolution nonlinear quantization with
high conversion speed and low conversion energy, enabling
future intelligent analog-to-information interfaces for near-
sensor analytics and processing.

I. INTRODUCTION

Many emerging applications have posed new challenges

for the design of conventional analog-to-digital (A/D) con-

verters (ADCs) [1]–[4]. For example, multi-sensor systems

desire programmable nonlinear A/D quantization to maxi-

mize the extraction of useful features from the raw analog

signal, instead of directly performing uniform quantization

by conventional ADCs [3], [4]. This can alleviate the compu-

tational burden and reduce the power consumption of back-

end digital processing, which is the dominant bottleneck in

intelligent multi-sensor systems. However, such flexible and

configurable quantization schemes are not readily supported

by conventional ADCs with dedicated circuitry that has fixed

conversion references and thresholds.

To overcome this inherent limitation of conventional

ADCs, several recent works [5]–[7] have introduced neural

network-inspired ADCs (NNADCs) as a novel approach

to designing intelligent and flexible A/D interfaces. For

instance, a learnable 8-bit NNADC [7] is presented to

approximate multiple quantization schemes where the NN

weight parameters are trained off-line and can be config-

ured by programming the same hardware substrate. Another

example is a 4-bit neuromorphic ADC [6] proposed for

general-purpose data conversion using on-line training by

leveraging the input amplitude statistics and application sen-

sitivity. These NNADCs are often built on resistive random-

access memory (RRAM) crossbar array to realize the basic

NN operations, and can be trained to approximate the spe-

cific quantization/conversion functions required by different

systems. However, a major challenge for designing such

NNADCs is the limited conductance/resistance resolution

of RRAM devices. Although these NNADCs optimistically

assume that each RRAM cell can be precisely programmed

with 6∼12-bit resolution, measured data from realistic fab-

rication process suggest the actual RRAM resolution tends

to be much lower (2∼4-bit) [8], [9]. Therefore, there exists

a gap between the reality and the assumption of RRAM

precision, yet lacks a design methodology to build super-

resolution NNADCs from low-precision RRAM devices.

In this paper, we bridge this gap by introducing an NN-

inspired design methodology that constructs super-resolution

ADCs with low-precision RRAM devices. Taking advantage

of a co-design methodology that combines a pipelined hard-

ware architecture with deep learning-based custom training

framework, our method is able to achieve an NN-inspired

ADC whose resolution far exceeds the precision of the

underlying RRAM devices. The key idea of a pipelined

architecture is that many consecutive low-resolution (1∼3-

bit) quantization stages can be cascaded in a chain structure

to obtain higher resolution. Since each stage now only needs

to resolve 1∼3-bit, we can accurately train and instantiate it

with low-precision RRAM devices to approximate the ideal

quantization functions and residue functions. Key innova-

tions and contributions in this paper are as follow:
• We propose a co-design methodology leveraging

pipelined hardware architecture and custom training

framework to achieve super-resolution analog-to-digital

conversion that far exceeds the limited precision of the

RRAM device.

• We systematically evaluate the impacts of NN size

and RRAM precision on the accuracy of NN-inspired

sub-ADC and residue block and perform design space

exploration to search for optimal pipelined stage con-

figuration with balanced trade-off between speed, area,

and power consumption.

• SPICE simulation results demonstrate that our proposed

method is able to generate robust design of a 14-bit

super-resolution NNADC using 3-bit RRAM devices.

Comparisons with both the state-of-the-art ADCs and

other NNADC designs reveal improved performance

and competitive figure-of-merits (FoMs).

• Our proposed ADC can also support configurable non-

linear quantization with high-resolution, high conver-

sion speed, and low conversion energy.
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II. PRELIMINARIES

A. RRAM Device, Crossbar Array and NN

1) RRAM device: A RRAM device is a passive two-

terminal element with variable resistance and possesses

many special advantages, such as small cell size (4F 2, F–

the minimum feature size), excellent scalability (<10nm),

faster read/write time (<10ns) and better endurance (∼1010

cycles) than Flash devices [2], [10].

2) RRAM crossbar array: RRAM devices can be orga-

nized into various ultra-dense crossbar array architectures.

Fig. 1(a) shows a passive crossbar array composed of

two sub-arrays to realize bipolar weights without the use

of power-hungry operational-amplifiers (op-amps) [7]. The

relationship between the input voltage “vector” (�Vin) and

output voltage “vector” (�Vo) can be expressed as Vo,j =∑
k Wk,j · Vin,k + Voff,j . Here, k (k ∈ {1, 2, . . . , H}) and

j (j ∈ {1, 2, . . . ,M}) are the indices of input ports and

output ports of the crossbar array. The weight Wk,j can be

represented by the subtraction of two conductances in upper

(U ) sub-array and lower (L) sub-array as

Wk,j = (gUk,j − gLk,j)/
∑

,
∑

=
∑

k
(gUk,j + gLk,j). (1)

Therefore, the RRAM crossbar array is capable of per-

forming analog vector-matrix multiplication (VMM) and the

parameters of the matrix rely on the RRAM resistance states.

3) Artificial NN: With the RRAM crossbar array, an NN

shown in Fig. 1(b) can be implemented on such hardware

substrate. Generally, the NN processes the data by executing

the following operations layer-wise [17]:

�yi+1 = f(Wi,i+1 · �xi +�bi+1). (2)

Here, Wi,i+1 is the weight matrix to connect the layer i and

layer (i+ 1). f(·) is a nonlinear activation function (NAF).

These basic NN operations, e.g., VMM and NAF, can be

mapped to the RRAM crossbar array and CMOS inverters

shown in Fig. 1(a), where the voltage transfer characteristic

(VTC) is used as an NAF [7].

B. NN-Inspired ADCs

ADC can be viewed as a special case of classification

problems which maps a continuous analog signal to a multi-

bit digital code. An NN can be trained to learn this input-

output relationship, and a hardware implementation of this

NN can be instantiated in the analog and mixed-signal

domain. This is the basic idea behind NNADCs which imple-

ments the learned NN on a hardware substrate to approximate

the desired quantization functions for data conversion:

M∑
i=1

2i−1 · bo,i = round

(
Vin − Vmin

Vmax − Vmin
× (2M − 1)

)
, (3)

where, M is the resolution; Vin is input analog signal and

bo is the output digital codes; Vmin and Vmax are the

minimum and maximum values of the scalar input signal Vin.

Since RRAM crossbar array provides a promising hardware

substrate to build NNs, recent work has demonstrated several

NNADCs based on RRAM devices [5]–[7]. Although the NN

architectures adopted by these NNADCs are various, they all
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Fig. 1: (a) Hardware substrate to perform basic NN operations, where the
passive crossbar array with two sub-arrays executes VMM and the VTC of
CMOS inverter acts as NAF. (b) An example of NN.

rely on a training process to learn the appropriate NN weights

to approximate flexible quantization schemes that can be

configured by programming the weights stored in RRAM

conductance/resistance. However, existing NNADCs [5]–

[7] often exhibit modest conversion resolution (4∼8-bit)

and invariably rely on optimistic assumption of the RRAM

precision (6∼12-bit), which is not well substantiated by mea-

surement data from realistic RRAM fabrication process [8],

[9]. This resolution limitation severely constrains the appli-

cation of NNADCs in emerging multi-sensor systems that

require high-resolution (>10-bit) A/D interfaces for feature

extraction and near-sensor processing [1], [3], [4].

C. Pipelined ADCs

Pipelined architecture is a well-established ADC topology

to achieve high sampling rate and high resolution with low-

resolution quantization stages [11]. Fig. 2(a) illustrates a

typical pipelined ADC with M stages whose resolution

RESO can be achieved by concatenating Ni-bit of each stage

with digital combiner: RESO =
∑M

i=1 Ni. Note that Ni is

usually ≤ 4 and not necessarily identical in all stages. As the

Fig. 2(a) illustrates, an arbitrary stage-i contains two sub-

blocks: a sub-ADC and a residue. The sub-ADC resolves

Ni-bit binary codes DNi from input residue ri−1, while

the residue part amplifies the subtraction between the input

residue ri−1 and the analog output of sub-ADC by 2Ni to

generate the output residue ri for next stage. This process

can be expressed as a simple function:

ri = [ri−1 − REF(DNi
)] · 2Ni . (4)

Here, REF(DNi
) is the analog output of sub-DAC that

depends on DNi
. For example, assuming ri−1 ∈ [0, VDD]

and Ni = 1, then REF(0) = 0 and REF(1) = VDD/2;

and Fig. 2(b) shows the corresponding residue function. To

understand the basic working principle of pipelined ADCs,

we use a 4-bit pipelined ADC with four 1-bit stages in

Fig. 2(c) as an example. Assuming the initial analog input

is 0.7V (VDD = 1V ), then the first stage will output “1”—

a digital code, and “0.4V ”— an analog residue according

to Eq. (4) which will be processed by the following stage

in the same way as initial analog input. Finally, we can

obtain 4-bit outputs 1011, which is the quantization of 0.7V
(0.7/1 = 11.2/24 ≈ 11/24). This example also shows that

a higher resolution (4-bit) can indeed be constructed with

low-precision (1-bit) stages in a pipelined ADC.
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Fig. 2: (a) General architecture of pipelined ADC. (b) An example of residue
function when Ni = 1. (c) A quantization example of a 4-bit pipelined ADC
with four 1-bit stages.

III. CO-DESIGN METHODOLOGY

A. Hardware Substrate

1) Pipelined architecture: The observation from tradi-

tional pipelined ADCs motivates us to extend such archi-

tecture to NNADC to enhance its resolution beyond the

limit of RRAM precision. The overall hardware architec-

ture for the proposed high-resolution NNADC is presented

in Fig. 3(a), where a pipelined architecture composed of

cascaded conversion stages is adopted in the design. This

pipelined architecture brings two direct benefits. First, each

stage in the proposed NNADC now only needs to resolve

1∼3-bit quantization, which is well within the precision

limit of current RRAM fabrication process [8], [9] and can

be easily achieved with the automated design methodology

introduced in previous work [7]. Second, although many

cascading stages are needed, there only exist three distinct

low-resolution configurations to choose from for each stage,

namely Ni = 1, 2, 3. This allows us to simplify the design

process by focusing on optimizing the sub-block design

of each stage with different resolutions. The full pipelined

system can then be assembled by iterating through different

combinations of the sub-blocks with different resolutions.

2) Low-resolution NNADC stage: For stage-i in the pro-

posed NNADC, we use a five-layer NN to implement the

sub-ADC and the residue block. The five-layer NN can

be decomposed into two three-layer sub-blocks, and each

of them can be mapped into the corresponding sub-ADC

and residue in Fig. 2(a). The cornerstone of this mapping

methodology is the universal approximation theorem that

a feed-forward three-layer NN with a single hidden layer

can approximate arbitrary complex functions [13]. We use

the RRAM crossbar array and CMOS inverter illustrated in

Fig. 1(a) as the hardware substrate to design the sub-blocks

of each stage. As Fig. 3(b) shows, for the sub-ADC, the input

analog signal represents the single “place holder” neuron in

MLP’s input layer. Therefore, the weight matrix dimensions

are HF,i × 1 between the hidden and the input layer, and

HF,i×Si between the hidden and the output layer, assuming

there are HF,i and Si neurons in the hidden and output

layer. Here, we use a redundant “smooth” Si → Ni encoding

method to replace the standard Ni-bit binary encoding with

Si bits (Si > Ni) according to previous work [7], as it

improves the training accuracy and reduces hidden layer

size of the sub-ADC. For example, we use 3 → 2 smooth

codes to train a 2-bit sub-ADC with 3-bit smooth codes as

output in Fig. 4(b). For the residue, there are (1 + Si) input

neurons (one analog input and Si-bit smooth digital codes

from the proceeding sub-ADC block), and only one analog

output neuron; therefore, the weight matrix dimensions are

HR,i × (1+Si) between the hidden and the input layer and

HR,i× 1 between the hidden and the output layer, assuming

there are HR,i hidden neurons. The sampling/hold (S/H)

circuits [18] are used in the output layer to drive the next

stage. Since the op-amps in Fig. 2(a) are eliminated in the

NN-inspired design of residue circuit, considerable power

saving can be obtained from each stage.

B. Training Framework

1) Training overview: We propose a training framework

that accurately captures the circuit-level behavior of the

hardware substrate in its mathematical model and is able

to learn the robust NNs and its associated hardware design

parameters (i.e., RRAM conductance) to approximate the

sub-ADC and residue for each stage. The training frame-

work incorporates two important features. First, we employ

collaborative training for the two sub-blocks in each stage.

The sub-ADC is initially trained to approximate the ideal

quantization function with high-fidelity, then its digital out-

puts and original analog input are directly fed to the residue

block for the residue training. This collaborative training flow

can effectively minimize the discrepancy between the circuit

artifacts and the ideal conversion at each stage. Second, non-

idealities of devices, such as process, voltage and temperature

(PVT) variations of the CMOS device and limited precision

of the RRAM devices, can be incorporated into training to

make the proposed NNADC robust to these defects [14].

This is another advantage of the proposed NNADC over

traditional ADC designs, where even with delicate calibration

techniques, the non-idealities cannot be fully mitigated [11].

2) Training steps: The detailed training flow is shown

in Fig. 3(b), which consists of four steps. We focus on de-

scribing the training steps for the residue block, as we adopt

similar sub-ADC training method that has been elaborated

in previous work [7], [14].

Step 1©: establish learning objective. For the residue

circuit, its output is an analog value; therefore, the hardware

substrate can be modeled as a three-layer NN with a “place-

holder” output neuron:

h̃i = L1(ri−1, DSi
; θ1,i), ri = L2(hi; θ2,i). (5)

Here, hi = σVTC,i(h̃i). DSi indicates the digital output of the

ADC (“1” means VDD, and “0” means GND), and ri−1 is the

scalar residue input of stage-i; h̃i denote the outputs of the

first crossbar layer, which are modeled as a linear function L1

of ri−1 and DSi
, with learnable parameters θ1,i = {W1, V1}

corresponding to RRAM crossbar array conductances. Each

of these voltages is passed through an inverter (shown in

Fig. 1(a)), whose input-output relationship is modeled by

the nonlinear function σVTC,i(·), to yield the vector hi. The

linear function L2 models the second layer of the crossbar to
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produce the output residue ri for next stage, with learnable

parameters θ2,i = {W2, V2}. The learning objective is to

find optimal values for the parameters {θ1,i, θ2,i} such that

for all values of ri−1 in the input range, the circuit yields

corresponding residue ri that are equal or close to the desired

“ground truth” rGT in Eq. (4). To achieve this aim, we define a

cost function C(ri, rGT) to measure the discrepancy between

predicted ri and true rGT based on the mean-square loss:

C(ri, rGT) =
∑

j
[rGT(j)− ri(j)]

2. (6)

Step 2©: model hardware constraints. Hardware constraints

come from three aspects: CMOS neuron PVT variations,

limited precision of RRAM device, and passive crossbar

array. To reflect these hardware constraints, we first group all

VTCs obtained by Monte Carlo simulations in AVTC using

the technology specification in Section IV-A. Meanwhile,

we control the precision of weight with AR-bit during the

training. Finally, we let the summation of all elements

(absolute value) in each column (“0”) of W1,2 be < 1:∑
(abs(W1), 0) < 1;

∑
(abs(W2), 0) < 1, (7)

to reflect the weights constraints in Eq. (1).

Step 3©: hardware-oriented training. We initialize the

parameters {θ1,i, θ2,i} randomly, and update them itera-

tively based on gradients computed on mini-batches of

{(ri−1, DNi , rGT)} pairs randomly sampled from the input

range. To incorporate the hardware constraints in step 2©
into training, we let each neuron j in Eq. (5) randomly pick

up a VTC from AVTC during training:

σj
VTC,i

= AVTC[randint(N)], j = 1, 2, ..., HR,i. (8)

We then periodically clip all values of W1 between [−1/(1+
Ni), 1/(1+Ni)], as well as W2 between [−1/HR,i, 1/HR,i]
to satisfy Eq. (7).

Step 4©: instantiate conductance values. We adopt the

same instantiation method based on previous work [7], which

is proven to always find a set of equivalent conductances

from the trained weights and biases to map to the RRAM
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Fig. 4: Illustrations of trained sub-ADC and residue functions for a pipeline
stage with different resolution. (a) 1-bit stage (Ni = 1). (b) 2-bit stage
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devices in the hardware substrate. After this, we perturb each

resistance R by:

R ← R · eθ; θ ∼ N(0, σ2), (9)

to evaluate the robustness of the NN model to the stochastic

variation of RRAM resistance [2].

C. Examples of Trained Sub-ADC and Residue

Fig. 4 illustrates the SPICE simulation of different trained

stages with the proposed training framework. The sub-ADC

and the residue in Fig. 4(a) are trained through a 1 × 3 × 2

NN and a 3×5×1 NN respectively by setting Ni = 1, while

the sub-ADC and the residue in Fig. 4(b) are trained through

a 1×4×3 NN and a 4×7×1 NN by setting Ni = 2. In both

figures, we use 3-bit RRAM and set σ = 0.05 in Eq. (9) for

evaluation. The comparison between the trained function and

the ideal function shows that each stage with low-precision

RRAM can accurately approximate the ideal stage function

with the aid of the proposed training framework.
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IV. EXPERIMENTAL RESULTS

A. Experimental Methodology

1) Training configuration: We set Ni = 1, 2, 3 to get three

distinct resolution configurations in each pipeline stage in our

experiments. For each stage, we train different NN models

and each NN model is trained via stochastic gradient descent

with the Adam optimizer using TensorFlow [15]. The weight

precision AR during training is set to be 1∼7-bit. The batch

size is 4096, and the projection step is performed every 256

iterations. We train for a total of 2×104 iterations for each

sub-ADC model and residue model, varying the learning rate

from 10−3 to 10−4 across the iterations.

2) Technology model: We use the HfOx-based RRAM

device model to simulate the crossbar array [16]. We set the

resistance stochastic variation σ = 0.05, since it is a moder-

ate variation based on the evaluations from prior work [17].

The transistor model is based on a standard 130nm CMOS

technology. The inverters, output comparators, and transistor

switches in the RRAM crossbars are simulated with the

130nm model using Cadence Spectre. The VTC group AVTC

is obtained by running 100 times Monte Carlo simulations.

The simulation results presented in the following section are

all based on SPICE simulation.

3) Metric of training accuracy: The trained accuracy

of the sub-ADC/proposed NNADC is represented by the

effective number of bits (ENOB)–a metric to evaluate the

effective resolution of an ADC. We report ENOB based on

its standard definition ENOB=(SNDR-1.76)/6.02, where the

signal to noise and distortion ratio (SNDR) is measured from

the sub-ADC’s/proposed NNADC’s output spectrum. The

training accuracy of the residue circuit is represented by the

mean-square error (MSE) between predicted residue function

and ideal residue function. We report the MSE based on 2048

uniform sampling points in the full range of input [0, VDD].

B. Sub-block Evaluations

1) Resolution and robustness: To find a robust design for

each stage, we study the relationship between the trained

accuracy and RRAM precision of each sub-block with dif-

ferent NN sizes at a fixed stochastic variation. For these

experiments, we first incorporate both CMOS PVT variations

and limited precision of RRAM device into training, and

then instantiate several batches of 100-run Monte Carlo

simulations with a resistance variation σ = 0.05 in Eq. (9),

and finally compute the median accuracy of each model.

We plot the trends in Fig. 5. Generally, an (Ni + 1)-
bit RRAM precision is enough to train an NN model to

accurately approximate an Ni-bit sub-ADC, which confirms

the conclusion in previous work [7]. Particularly, larger

size NN models with more hidden neurons can even accu-

rately approximate an Ni-bit sub-ADC with Ni-bit RRAM

precision. Similar conclusions can also be made from the

trained performance of residue circuits. As the Fig. 5(b)

shows, an (Ni + 2)-bit RRAM precision is enough to train

an NN model to accurately approximate a residue circuit.

Moreover, a larger size NN with more hidden layer neurons
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Fig. 5: Sub-block training performance using different NN models and
RRAM precision at a fixed stochastic variation σ = 0.05. (a) The trend
between ENOB and RRAM precision of sub-ADC under different NN
models, where the Ni is set as 1, 2, 3 respectively. (b) The trend between
MSE and RRAM precision of residue circuit under different NN models,
where the Ni is set as 1, 2, 3 respectively.

can accurately approximate the residue circuit of Ni-bit stage

with (Ni + 1)-bit RRAM precision.

2) Sub-block design trade-off: Each stage-i has design

trade-off among power consumption Pi, sampling rate fS,i
and area As,i. A completed design space exploration may

involve the searching of different NN sizes of each sub-

block in stage-i, RRAM precision and stochastic variations.

Here, we use three pairs of sub-blocks highlighted by the

solid boxes in Fig. 5 as an example to illustrate the design

trade-off, since each of them shows enough accuracy and

robustness with no more than 4-bit RRAM precision. For

these experiments, we combine each pair of sub-blocks to

form three distinct sub-blocks with resolution Ni = 1, 2, 3,

respectively. We then fix the precision of RRAM device with

3-bit for for all building blocks except for the residue in

Ni = 3 stage, which use 4-bit RRAM device. We finally

study the relationship between the power Ej , speed fj , and

area Aj of each distinct stage-j (j = 1, 2, 3) by simulating

the minimum power consumption/area of each distinct stage

that works well at different sampling rates.

The trends are plotted in Fig. 6, which shows clear trade-

offs between speed and power consumption, as well as speed

and area, for each distinct stage. This is because in order

to make each sub-block work well under faster speed, we

need to increase the driving strength of the neurons by

sizing up the inverters, which results in an increase of power

consumption and area for each stage.

3) Design optimization: Based on the exploration of dif-

ferent sub-block configurations, an optimal design for the
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Fig. 6: Design trade-offs of three distinct stages, with resolution Ni = 1, 2, 3
respectively. (a) Power VS speed. (c) Area VS speed.

proposed ADC with a given resolution can be derived by

solving the following optimization problem:

min FoMW = P/(2ENOB · fS)
min AADC

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ENOB ≤
M∑
i=1

Ni Ni ∈ {1, 2, 3},

P =
M∑
i=1

Pi Pi ∈ {E1, E2, E3},
fS = min

1≤i≤M
{fS,i} fS,i ∈ {f1, f2, f3},

AADC =
M∑
i=1

As,i As,i ∈ {A1, A2, A3}.

(10)

Here, the first optimal objective FoMW (fJ/conv) is a stan-

dard figure-of-merit that describes the energy consumption of

one conversion for an ADC, and the second optimal objective

AADC is the area of the proposed ADC. We set FoMW as

the main optimal objective, since energy efficiency usually

is the most important consideration for most applications.

In this way, as shown in Fig. 7, we can obtain an optimal

design for a maximum 14-bit pipelined NNADC with 12.5

bits of ENOB, and 11.6fJ/conv of FoMW working at 1GS/s.

It showcases the advantages of our proposed co-design

framework that incorporates many circuit-level non-idealities

in the training process, allowing us to realize a robust design

cascading up to eleven stages, a level often unattainable with

traditional pipelined ADCs.

C. Full Pipelined NNADC Evaluation

We choose the three distinct stages in Section IV-B to eval-

uate the quantization ability of the proposed full pipelined

NNADC. We find that although the co-design framework can

help us to train a low-resolution stage to approximate the

ideal quantization function and residue function with high-

fidelity, the minor discrepancy between the trained stage and

ideal stage will propagate and aggregate along the pipeline

and finally results in a wrong quantization. Our simulations

based on various combinations of different pipeline stages

show that a maximum 14-bit pipelined NNADC working at

1GS/s can be achieved by cascading nine 1-bit stages, one 2-

bit stage and one 3-bit sub-ADC with 3-bit RRAM precision.

Note that the last stage of the 14-bit pipelined NNADC does

not need to generate residue. The reconstructed signal of

this 14-bit ADC is shown in Fig. 7(a), where the ENOB is

12.5 bits under 1GHz sampling frequency. We also report the

SNDR trend with input signal frequency in Fig. 7(b). The

SNDR begins to degenerate after 0.5GHz input, verifying
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Fig. 7: (a) Reconstruction of a 14-bit pipelined NNADC with 3-bit RRAM
whose pipelined chain consists of eleven stages: nine 1-bit stages, one 2-bit
stage and one 3-bit sub-ADC. (b) SNDR trend.
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the sampling frequency (×2 of input signal frequency) of

the proposed 14-bit NNADC is well above 1GHz.

Finally, we train a nonlinear ADC based on the same

methodology using a logarithmic encoding on the input sig-

nal by replacing Vin in Eq. (3) with Vin,log = VDD ·log2(a+1)
(a ∈ {0, 1}) to train a 1-bit stage. We find that a 10-bit

logarithmic ADC with 9.1-bit ENOB working at 1GS/s can

be achieved by cascading ten such 1-bit stages, and the

reconstructed signal is illustrated in Fig. 8.

D. Performance Comparisons

1) Comparison with existing NNADCs: We first design

an optimal 8-bit NNADC by cascading eight 1-bit stages in

Section IV-B and compare it with previous NNADCs [6], [7].

The comparative data are summarized in the left columns of

Table I. Compared with them, the proposed 8-bit NNADC

can achieve the same resolution and higher energy effi-

ciency with ultra-low precision 3-bit RRAM devices. Both

NNADC1 and NNADC2 adopt a typical NN (Hopfield or

MLP) architecture to directly train an 8-bit ADC without

the optimization of architecture; therefore, they needs high-

precision RRAM to achieve the targeted resolution of ADC.

NNADC1 uses a large size (1 × 48 × 16) three-layer MLP

as the circuits model, where parasitic aggregations on the

large size crossbar array degenerates the conversion speed. In

addition, more hidden neurons are used in NNADC1 which

consume more energy. Since each stage in the proposed 8-

bit NNADC resolves only 1-bit and has very small size,

it can achieve faster conversion speed with higher energy-

efficiency, and high-resolution with low-precision RRAM

devices. Please note that the FoMW reported in NNADC2 is

based on sampling a low frequency (44KHz) signal at high

frequency (1.66GHz). Therefore, it is considered outside the

scope of a Nyquist ADC, and cannot be compared directly

with our work on the same FoMW basis.

2) Comparison with traditional nonlinear ADCs: We then

compare the trained 10-bit logarithmic ADC with state-of-
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TABLE I: Performance comparison with different types of ADCs.

ADC types NNADC Nonlinear ADC Uniform ADC

Work NNADC1 [7]* NNADC2 [6]* This work* JSSC 09’ [11]** ISSCC 18’ [3]** This work* JSSC 15’ [12]** This work*

Technology (nm) 130 180 130 180 90 130 65 130
Supply (V ) 1.2 1.2 1.5 1.62 1.2 1.5 1.2 1.5

Area (mm2) 0.2 0.005/0.01 0.02 0.56 1.54 0.03 0.594 0.1
Power (mW ) 30 0.1/0.65 25 2.54 0.0063 31.3 49.7 67.5
fS (S/s) 0.3G 1.66G/0.74G 1G 22M 33K 1G 0.25G 1G

Resolution (bits) 8 4/8 8 8 10 10 12 14
ENOB (bits) 7.96 3.7/(N/A) 8 5.68 9.5 9.1 10.6 12.5

FoMW (fJ/c) 401 8.25/7.5 97.7 2380 263 57 108.5 11.6
RRAM precision 9 6/12 3 N/A N/A 3 N/A 3
Reconfigurable ? Yes Yes/Yes Yes No Yes Yes No Yes

* The results are shown based on simulation.
** The results are shown on chip.

the-art traditional nonlinear ADCs [3], [11]. The comparative

data are summarized in the middle columns of Table I. As it

shows, the proposed 10-bit logarithmic ADC has competitive

advantages in area, sampling rate, and energy efficiency.

JSSC 09’ [11] uses a pipelined architecture to implement

an 8-bit logarithmic ADC. Due to the devices mismatch,

its ENOB degenerates a bit from the targeted resolution.

ISSCC 18’ [3] requires >10-bit capacitive DAC to achieve a

configurable 10-bit nonlinear quantization resolution; there-

fore, it can achieve high ENOB but only works at ∼KS/s
with significant area overhead. Since we adopt the proposed

training framework to directly train a log-encoding signal

using small-sized NN models and incorporating device non-

idealities, we can achieve a logarithmic ADC with small area,

high sampling rate and high ENOB.

3) Comparison with traditional uniform ADC: Finally,

we compare the trained 14-bit uniform ADC with state-of-

the-art traditional uniform ADC. The comparative data are

summarized in the right columns of Table I. It shows that the

proposed 14-bit NNADC has competitive advantages in sam-

pling rate, ENOB, and energy efficiency. JSSC 15’ [12] uses

power hungry op-amps and dedicated calibration techniques,

resulting in the power consumption overhead and degen-

eration of conversion speed. The proposed 14-bit NNADC

uses low-resolution stages with very small NN size, enabling

faster conversion speed with higher energy efficiency. The

slight ENOB degeneration of the proposed ADC is caused

by the discrepancy (between the trained stage and ideal stage)

propagation along the pipeline stages. Also note that the

performance of the proposed NNADCs and the performance

of previous NNADCs are based on simulations, while the

performance of the traditional nonlinear ADCs and uniform

ADC are based on measurements.

V. CONCLUSION

In this paper, we present a co-design methodology that

combines a pipelined hardware architecture with a cus-

tom NN training framework to achieve high-resolution NN-

inspired ADC with low-precision RRAM devices. A sys-

tematic design exploration is performed to search the design

space of the sub-ADCs and residue blocks to achieve a

balanced trade-off between speed, area, and power consump-

tion of each distinct low-resolution stages. Using SPICE

simulation, we evaluate our design based on various ADC

metrics and perform a comprehensive comparison of our

work with different types of state-of-the-art ADCs. The

comparison results demonstrate the compelling advantages of

the proposed NN-inspired ADC with pipelined architecture

in high energy efficiency, high ENOB and fast conversion

speed. This work opens a new avenue to enable future

intelligent analog-to-information interfaces for near-sensor

analytics using NN-inspired design methodology.
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