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Abstract

Integrating engineering design into K-12 curricula is increasingly important as engi-
neering has been incorporated into many STEM education standards. However, the
ill-structured and open-ended nature of engineering design makes it difficult for an
instructor to keep track of the design processes of all students simultaneously and
provide personalized feedback on a timely basis. This study proposes a Bayesian
network model to dynamically and automatically assess students’ engagement with
engineering design tasks and to support formative feedback. Specifically, we applied a
Bayesian network to ||l ninth-grade students’ process data logged by a computer-
aided design software program that students used to solve an engineering design
challenge. Evidence was extracted from the log files and fed into the Bayesian net-
work to perform inferential reasoning and provide a barometer of their performance
in the form of posterior probabilities. Results showed that the Bayesian network
model was competent at predicting a student’s task performance. It performed well
in both identifying students of a particular group (recall) and ensuring identified

'School of Teaching & Learning, College of Education, University of Florida, Gainesville, United States
2The Concord Consortium, Concord, Massachusetts, United States
Corresponding Author:

Wanli Xing, College of Education, University of Florida, Gainesville, FL 3261 |, United States.
Email: wanlixing@coe.ufl.edu


https://orcid.org/0000-0002-1446-889X
https://orcid.org/0000-0002-4086-3017
mailto:wanli.xing@coe.ufl.edu
http://us.sagepub.com/en-us/journals-permissions
http://dx.doi.org/10.1177/0735633120960422
journals.sagepub.com/home/jec
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0735633120960422&domain=pdf&date_stamp=2020-09-23

2 Journal of Educational Computing Research 0(0)

students were correctly labeled (precision). This study also suggests that Bayesian
networks can be used to pinpoint a student’s strengths and weaknesses for applying
relevant science knowledge to engineering design tasks. Future work of implement-
ing this tool within the computer-aided design software will provide instructors a
powerful tool to facilitate engineering design through automatically generating per-
sonalized feedback to students in real time.

Keywords
Bayesian network, engineering design, assessment, learning analytics, educational
data mining

Introduction

Engineering education often involves situating problem-solving in realistic set-
tings within which students are supposed to integrate science knowledge of
various domains into generating viable solutions (Asunda & Hill, 2007;
English, 2016; Lewis, 2005; Mangold & Robinson, 2013). As a heated topic
in engineering education, engineering design is widely regarded as an impor-
tant ingredient in STEM education and thus the Next Generation Science
Standards call for its use (Bybee, 2014; National Research Council, 2012).
Engineering design tasks in K-12 settings are important not only because
they offer training and realistic experience to future STEM major students
but because they foster all students’ ability to apply diverse knowledge
taught separately in school to solve real-world problems (Chabalengula &
Mumba, 2017; Mentzer et al., 2015; Yuen et al., 2015). This is a desirable
goal of education since it equips the next generation with necessary problem-
solving skills (Razzouk & Shute, 2012; Zheng et al., 2020).

Teaching engineering design successfully requires effective and efficient
assessment methods to provide accurate and timely feedback to facilitate a
student’s learning and solution-generation during the design process
(Arastoopour et al., 2016; Vieira et al., 2016). This is difficult to achieve for
two reasons. The first problem is that like other design tasks engineering design
is open-ended and ill-structured (Bartholomew, 2017; Jonassen, 2010; Li et al.,
2020). The complexity of such tasks at all levels (number of actions or action
sequences, paths of solution generation, end artifacts, etc.) requires an advanced
computerized engineering design system that can track fine-grained design pro-
cess data. However, the intricacy of a sea of design process data that students
generate in these tasks makes it difficult to infer a student’s intention based on
observable evidence, which induces uncertainty in building assessment models
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(Kodagoda et al., 2017; Rahman et al., 2019). Applying inadequate models in
assessment is likely to provide misleading information as to student learning
(Clow, 2012). The second obstacle to accurate and timely feedback is that the
methods that are currently popular in analyzing engineering design process tasks
are unable to provide insight before students complete the task. Powerful and
insightful as they are, traditional approaches such as video analysis and artifacts
analysis also require enormous time and labor of instructors (Blikstein et al.,
2014; Vieira et al., 2016).

The extremely fast development of computer storage and computational
power has made possible the application of learning analytics (LA) and edu-
cational data mining (EDM) in educational settings of all levels (Xing et al.,
2019). EDM is an interdisciplinary field that combines statistics, data science,
and computer systems to mine useful knowledge from educational data to
support all components of the instructional cycle (Lang et al., 2017;
Papamitsiou & Economides, 2014; Romero & Ventura, 2013). Student assess-
ments could implement EDM using approaches such as decision trees, k-near-
est Neighbor (KNN), support vector machine (SVM), and Bayesian inferential
methods to generate association rules, classifiers, and clusters with useful
information (Slater et al., 2017; Sundar, 2013).Among those common EDM
techniques, Bayesian inferential processes such as the application of Bayesian
Networks (BNs) are particularly suited to perform certain inferential tasks in
assessing student performance in engineering design (Wipulanusat et al., 2020).
With relevant factors appropriately included and their dependencies set in
terms of conditional probabilities, a BNs model could be seen as a represen-
tation of the real-world scenario under consideration (Asif et al., 2017; Lacave
et al., 2018; Millan et al., 2010; Ramirez-Noriega et al., 2017). Given the
“white-box” nature of BNs that relevant variables and their relationships
are carefully worked out to abstract the situation of interest, the posterior
probabilities of each affected node could be updated with ready interpretability
during the challenge learning process. The automatic assessment results from
BNs can be translated into concrete feedback to students during the engineer-
ing design process. In addition, since each variable within such a model is
represented as a probability distribution, instructors could use the BNs model
to handle uncertainties that pervade the assessment of an engineering design
process where systems record student actions without an understanding of the
intention (Conati et al., 2002).

In this study, we aimed to build a BNs model that simulates the scenario
when a student tackles an engineering design challenge and utilize it to infer the
level at which the student applies relevant knowledge in the design process. We
examined the performance of the results in terms of certain metrics and com-
pared this model with three other benchmark classification models
(DecisionTree, KNN, and SVM). We also discussed some representative
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examples identified through the BNs model and their implications in engineering
design practice. We asked two research questions below:

1. How well does a BNs model predict a student’s design solution reflected by
the performance of his final artifact in comparison to some benchmark data
mining methods?

2. How might instructors use a BNs model to determine a student’s science
knowledge application during the engineering design process to provide
useful feedback during the process?

Literature Review

Engineering design education is gaining ever-increasing popularity within the
STEM education community (English, 2016; Lewis, 2005; Xie et al., 2018). In
order to perform well in an engineering design project, students need to show
adequate understanding of relevant science knowledge from an interdisciplinary
perspective as well as certain design thinking content knowledge and skills
(Lewis, 2005; Zheng, Xing, Huang et al., 2020). The need to include engineering
related topics that are appropriate to students’ knowledge level in these tasks
imposes certain difficulties. For example, due to the complexity of engineering
processes and the open-ended nature of design artifacts, it is hard for teachers to
keep track of each student’s current progress, not mentioning offering custom-
ized feedback in a timely manner.

Teachers and researchers have used several methods to evaluate students’
engineering design products and process. These include verbal protocol analysis
of students’ process (Atman & Bursic, 1998; Atman et al., 2008), design replays
from software and student-generated notes as a means to identify informed
design patterns (Purzer et al., 2015), and artifact elicitation interviews to
assess design thinking (Eyeman et al., 2018). However, these methods provide
assessment in a post hoc manner and usually require a huge amount of human
labor on the part of assessors. New technologies offer avenues to address these
issues (Lee & Lee, 2016). Hauge and Riedel (2012) and Hew and Cheung (2010)
provide two examples. The former conducted a research study utilizing two
serious games for teaching engineering and manufacturing. By analyzing col-
lected data including chat log files recorded by the gaming environment, they
were able to determine how college engineering students communicate to each
other during the game. The latter did a comprehensive review of how instructors
have used 3D immersive virtual environments in K-12 and higher education
settings.

Research on the application of technologies to the use of engineering design
problems in the education remains thin. The lack of viable tools to allow authen-
tic engineering education is one probable reason. But the implementation of
technological tools and huge amount of process data accompanying them also
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require a compatible method to automatically negotiate pinpoint and in-time
assessments.

As an emerging field that takes advantage of modern computers, LA and
EDM has proved promising in several educational tasks such as predicting stu-
dent performance, providing customized feedback, promoting self-reflection, etc.
based on educational big data (Papamitsiou & Economides, 2014; Romero &
Ventura, 2013). Many studies have explored the application of EDM in educa-
tional settings of all kinds and obtained meaningful results (Antonenko et al.,
2012; Castro et al., 2007; Chen et al., 2014; Romero et al., 2008; Vialardi et al.,
2009). Several research studies have documented the use of EDM techniques
within engineering education. For example, Yadav and Pal (2012) applied and
compared several classification algorithms based on student-related variables
such as gender, high school grade, admission type, etc. to predict their final
exam performance. Pal (2012) built predictive models to help identify potential
dropout engineering students based on new students’ records in order to provide
corresponding support. Ito et al. (2018) applied text mining techniques to assess
effectiveness of pedagogy in open engineering design tasks. Uskov et al. (2019)
compared eight benchmark machine learning models for predictive analytics and
offered usage recommendations in STEM education. The automatic nature of
the EDM approach makes it easy to scale and able to provide feedback to both
teachers and students during the design process.

Among several LA and EDM methods that could be applied to assess a
student’s performance in engineering design tasks powered by technologies,
the Bayesian network classifier is particularly appropriate. During an engineer-
ing design process, students might implicitly conduct multiple lines of reasoning
at the same time, which leads to high uncertainties that could not be handled
easily (Conati et al., 2002). A BNs model uses probabilities to represent uncer-
tainties of all its variables and those probabilities could be updated constantly
depending on fed evidence observed in real time (Jameson, 1995; Liu, 2006;
Millan et al., 2010). Such a white-box model — a realistic approximation of
the real scenario — provides ready understandability that has important impli-
cations for teaching practice. For example, Sharabiani et al. (2014) built a
Bayesian network to predict engineering students’ grades in certain courses in
order to provide timely help to at-risk students. Lacave and Molina (2018)
reported a case study on the relationship between data heterogeneity and BNs
model adjustment when applying such probabilistic models to the dropout prob-
lem of engineering students. In a web-based education system, Garcia et al.
(2007) found that BNs are a promising tool for detecting students’ different
learning styles. Xu et al. (2016) used BNs to assess teaching competency of 23
teaching assistants interacting with a 3D virtual training environment. Feng
et al. (2017) developed a dynamic Bayesian network, a type of BNs that con-
siders variable dependencies between time slices, to classify engagement levels of
interactions between a therapeutic robot and children with autism. Such kind of
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BNs was also applied by scholars to assess a student’s performance in educa-
tional video games (Levy, 2019).

While many predictive models exist based on various kinds of educational big
data using LA and EDM approaches, there is little research on building such
models from engineering design process data. Among the limited amount of
studies on engineering design process using LA and EDM methods, few studies
have leveraged white-box models such as BNs to understand how students apply
science knowledge during the engineering design process, thus automatically
providing insightful feedback (Dasgupta et al., 2019; Rahman et al., 2019;
Vieira et al., 2016). This study aims to address this gap by comparing BNs
with traditional machine learning models and use BNs to draw inferences on
the extent where the student applies relevant knowledge in the design process.

Methodology

Research Context

This study examined a design task assigned to students using Energy3D scien-
tific simulation and design software (Figure 1). Within Energy3D, users can
easily build 3D structures that are related to solar energy production ranging
from buildings mounted with solar panels to solar power plants featuring arrays
of solar panel racks or solar thermal power systems. Based on built models,
certain simulations could be performed for analysis purposes. Many professio-
nals use Energy3D to build and test prototypes due to its convenience to use and

Figure I. Energy3D User Interface.
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scientific accuracy. The software logs all interactions between the Energy3D
interface and its users with timestamps. This information can be extracted in
JSON format for research purposes.

A total of 111 ninth graders in five physical sciences honor classes from a
suburban high school in the northeastern United States participated in the
study. Among those students, 47% are males and 53% are females. One stu-
dents withdrew from the study before it ended; two students’ log files were
missing due to hardware problems; and three students’ submissions included
either multiple buildings or broken files that made energy analysis inaccurate or
impossible. After eliminating those participants, the remaining 105 students
formed our sample for this research.

At the first class meeting during the study, students took a pretest that probed
their design thinking as well as their ability to apply the scientific knowledge
needed to perform the two design challenges that would follow. The first engi-
neering design task, the Energy Plus Home Project, required them to design
three detached homes, one each in the Cape Cod, Colonial, and Ranch styles,
mounted with solar panels. Their goal was to meet specified energy consumption
goals on a yearly basis in the Boston area. Students spent six 1-hour sessions on
this task. The second task, the Bad Design Improvement Project, was completed
in one 1-hour session. This required them to lower the yearly energy consump-
tion of a given house design, also under Boston-area weather conditions. At the
final class meeting students re-took the test they had taken eight days earlier.
Each student’s problem-solving process was recorded by Energy3D and pooled
together by researchers at the end of the tasks.

The Bad Design Improvement Project. This study focused on students’ performance
on the Bad Design Improvement Project. In this design challenge, every student
received an initial house file (Figure 2 left) manifesting inefficient design features

Figure 2. The Comparison Between a Bad Design (Left) and a Better Design (Right) in Terms
of Annual Energy Cost.
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compared to the solution students would create to receive a perfect grade
(Figure 2 right). These features include having solar panels mounted on the
north-facing roof, which receive less solar energy annually in Boston area
than panels on the other side would. Also, the initial solar panel efficiency
was set to 10% while students could increase to 20%, doubling the electricity
generation. Besides optimizing the position and efficiency of solar panels to
maximize output, students could also change the U-factor, which represent
the insulation of windows, walls, roofs, and doors regarding heat transfer, to
control heat loss in winter and unnecessary air-conditioning cost in summer.
Students could also take advantage of the Solar Heat Gain Coefficient (SHGC)
of windows and the position of trees to adjust the seasonal effect of solar radi-
ation. For example, SHGC could be lowered to block solar radiation through
windows in summer. However, a low SHGC value could also mean transmitting
less solar energy in winter. Planting deciduous trees in front of the windows
would block solar radiation that would otherwise overheat the house without
blocking heat-generating sunshine in winter, as the trees would be leafless from
November to March (Figure 2).

The Bad Design Improvement Project suits this study for three reasons. First,
students began working on this project after they had completed the Energy Plus
Home project and had thus gained considerable familiarity with Energy3D as
well as having the opportunity to acquire relevant energy-related science knowl-
edge. Second, students were asked to fix possible issues without changing the
basic shape of the house so they could focus solely on reducing annual energy
cost. This is important since it allows us to isolate tasks undertaken to improve
energy. Third, the fact students had a 1-hour session to complete this task,
which meant that they were less likely to adopt a trial-and-error approach to
gradually approximate to better solutions than to actively utilize what they
knew to tackle the challenge.

Data Preparation and Analysis

This study primarily focused on students’ performance in terms of the net
annual energy gain of their final artifacts and the log files of the Bad Design
Improvement Project.

Students’ annual energy output were used to represent their performance
level in this design task. They were first separated into two groups (high per-
former vs. low performer) and the group assignments served as the target label
for various classification algorithms in this study.

Table 1 shows relevant statistics of the two student groups labeled by con-
sidering annual energy output of their final design.

Analysis was mainly conducted with Bayesian networks (BNs) given BNs’
capability for real-time feedback and explainability to yield implications on
students’ learning (Lacave & Molina, 2018; Millan et al., 2010; Sharabiani
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Table 1. Student Group Assignment Based on Annual Energy Output.

Annual output (kWh)

Group Student count Mean Std
High 52 6140.0 2421.2
Low 53 3623.2 2050.2

et al., 2014). Bayesian networks are probabilistic graphical models that specify
random variables as nodes and dependencies between variables as arrows
(Neapolitan, 2003; Pearl, 1988). Once a Bayesian network is built and prior
probabilities are populated for each node, Bayesian probabilistic algorithms
could be used to update posterior probabilities of latent nodes in the network
as long as the states of observable nodes change (de Klerk et al., 2015). Prior
probabilities describe researchers’ belief on the distribution of random variables
without seeing the data (Xenos, 2004), which can be informative and non-
informative. Informative priors are set with expert knowledge and experience.
The ability to incorporate additional information in models mark one of the key
advantages of Bayesian inference (Yu & Abdel-Aty, 2013). Non-informative
priors are used when a researcher has only vague or little knowledge about
the distribution of the interested parameters before observing data, usually in
the form of Uniform or flatten-curved distribution (Ni & Sun, 2003). On the
other hand, posterior probabilities are updated belief on random variables after
incorporating observed data (Xenos, 2004). Like other models in the Bayesian
analysis, the core formula of BNs (see formula (1)) is Bayes theorem, where
P(A|B) is the posterior probability of A, P(A,B) is the joint probability of A
and B, and P(B) is the marginal likelihood that describes observed data’s dis-
tribution. In reality, the joint probability is not essential, as we can compute it
with prior P(A) and likelihood P(B|4) (Xenos, 2004).

P(A[B) — % (1)
P(A,B) = P(B|4) - P(A) )

Another important property BNs has is local Markov property, which
defines that a node is conditionally independent of its non-descendants,
given its parents. For example, students’ problem-solving performance in
Figure 3 can be simplified to be only conditioned on hidden nodes, without
being affected by evidence nodes. The local Markov property of BNs can
greatly reduce the number of parameters, thus reducing computation in a
fairly complexed model.
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Figure 3. The Proposed Bayesian Network for Analyzing a Student’s Problem-Solving
Performance.

Other than the advantage of using expert knowledge and efficient computa-
tion, the BNs model is a “white-box” model since it allows for reasoning about
the scenario once its structure and conditional probabilities have been formu-
lated (Xenos, 2004). In engineering design tasks given to students, any recorded
observable action can be fed to the model immediately and probabilities for
dependence hidden and knowledge application performance updated. Those
updated probabilities could serve as indicators of confidence on how a student
performs on each knowledge application subtask and could automatically
inform a teacher’s customized instructional decisions.

In order to build a Bayesian network for analysis, favorable actions that
contribute to a better design were elicited and their dependencies were sorted
out. We leveraged the advantage of Bayesian inference and used informative
priors, since the subject matter expert of our research group is well experienced
with the learning process in the designing environment. Figure 3 shows a rep-
resentation of the built Bayesian network for this study. Since we are interested
in the influence of students’ designing process on their knowledge application,
the target node is set to students’ knowledge application level based on their
design process. In order to achieve a high level of rating, students must perform
three subtasks during the engineering design process to demonstrate different
sets of knowledge on energy efficiency. These three subtasks are modelled as
nodes in the hidden nodes layer because they cannot be observed directly from
the process data. Seven types of competency evidence was captured by calcula-
tion from a student’s logged actions and then fed into the nodes in the evidence
layer directly throughout the design process. For example, students need to
increase electricity generation from solar panels to meet the annual energy
needs of the house; in order to increase solar panel output, they should either
position solar panels pointing toward the south to gain more solar energy since
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Figure 4. Initial Bayesian Network Model for Reasoning.

most months of the year the sun moves to the south of Boston area in the
daytime, or increase the solar panel efficiency coefficient to facilitate the con-
version of light to electricity. Once students move or add solar panels on the
roof or changes the efficiency level, their actions are logged and could then be
calculated to update the probabilities of corresponding nodes in the network to
begin reasoning.

For this study, we used collected log files of the whole session and simplified
evidence calculation by assuming that if observations show that a student
behavior changes in the same direction repeatedly over a certain threshold,
the behavior can be considered to be observed. For example, if a student
changes the position of one solar panel to south, it might be due to random
movement; it is easy to drag a solar panel and move it, and the software will
record this movement with related parameters such as the origin and destination
in the form of point coordinates in a 3D Cartesian system. However, if a student
moves five solar panel movements in a row toward the south, this indicates a
specific decision to move them there to increase efficiency. The probability of the
corresponding “Move Solar Panel to the South” node could then be updated to
True (100% observed). The same logic applies to evidence calculation related to
other nodes. Students who show certain systematic behavior in relevant knowl-
edge applications are therefore considered competent, which in turn factors into
deciding their posterior probabilities in completing each subtask and their like-
lihood of knowledge application level belongings. Using information gained
from subsequent actions offers strength to inferring the true probability that a
student is able to be successful in solving problems.

Figure 4 shows the BNs model that approximates the real scenario when a
student is working on the Bad Design Improvement Project. It was created using
aGrUM, a modeling software that could be used to build graphical models such
as BNs. This BNs model has initial parameters that could be utilized to perform
certain inference tasks. In order to compare this model to other benchmark
models, evidence of valid observable actions is calculated for each student
and updated to corresponding nodes in the BNs model, and the probabilities
of high or low performance level belongs were then obtained.
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Performance Metrics

Once pieces of evidence were calculated from each student’s log files and fed into
the built BNs model, the probabilities of a student belonging to a high or low
performing group could be calculated. If students belonging to the high per-
forming group with high probability of performing well on the annual energy
analysis of their final design, this will validate the BNs model. In order to see
how well the BNs model prediction aligns with group assignments based on
annual energy gain performance, classification accuracy was calculated and
reported. The same set of observed evidence and group assignments were used
as the input and output to apply another three benchmark classification algo-
rithms (DecisionTree, KNN, and SVM) and corresponding accuracy values
were obtained and compared.

The accuracy index alone serves no function to differentiate misclassified
students. For example, those who successfully complete the design challenge
might not perform well in tests; such students were presumably different from
those who excelled in tests but did poorly in the design task. To evaluate how the
BNs model worked as compared with different misclassified cases, precision and
recall values were calculated and analyzed.

Precision was calculated using equation (3). According to its definition, it
measures whether identified cases were relevant. In our study, a high precision
value for identified high performing students means a large proportion of those
identified students who are actually high performers; this idea also applies to the
low performing group.

True positives

(©)

Precision = — —
True positives + False positives

Recall was calculated using equation (4). It measures how well true cases were
correctly identified. In this study, a high recall value for identified high perform-
ing students means a large percentage of true high performers are correctly
labelled; this principle also applies to the low performing group.

True positives

Recall = “4)

True positives + False negatives

Results

Performance Comparison for RQ [

In this study, the application of BNs was used to infer students’ problem-solving
level based on each of their observable actions when working on the Bad Design
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Table 2. Confusion Matrix.

Predicted
High Low
Actual High 40 I
Low 12 42

Improvement project. The predicted class was then compared with each student
design’s annual energy performance. Based on the relative improvement of
students between the tests, 51 were identified as high performers while 54
were assigned to the low performing group. Corresponding numbers of students
were then sorted out based on the posterior probabilities of their performance
level calculated by the BNs model.

The prediction accuracies of the BNs, DecisionTree, KNN, and SVM model
are 78.1%, 67.6%, 65.7%, and 73.0%, respectively. The accuracies of the latter
three benchmark classifiers were calculated after executing 10-fold cross-
validation. The BNs model outperformed other models by correctly classifying
students of both the high and low group based on evidence observed from their
problem-solving process.

The confusion matrix which shows the detailed prediction results as com-
pared to each student’s true label was presented in Table 2. The precision and
recall of predicting high performing students are 76.9% and 78.4% respectively,
while the precision and recall are 77.8% and 79.2% for predicting low perform-
ing students. This indicates that the BNs model we utilized in this study did a
similar job in both predicting and identifying as many high performers as pos-
sible as in both classifying and finding existing low performers correctly.

Science Knowledge Application Inference and Feedback for RQ2

Gray/White-Box Models V.S. Black-box Models. The value of training a model to
predict a student’s group belonging, however, lies not in its mere prediction
accuracy, precision, and recall but in its ability to reveal patterns that could
provide actionable insights to facilitate teaching and learning. Learning analyt-
ics approaches stress this objective by implementing learned models with certain
satisfying classification accuracy in practice. Compared with “black-box”
models such as SVM, KNN, etc., which lack interpretability for their decision
mechanism and thus are restricted to be used with confidence, “gray-box” or
“white-box” models such as BNs and DecisionTree could provide manipulative
strategies in prediction. For instance, the DecisionTree method could mine and
deliver possible sets of rules in the readily understandable “if-then” format.
Figure 5 shows a calculated DecisionTree model with a depth of three (the
length of the longest path from a leaf node to the root node is three).
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Figure 5. Calculated Decision Tree With a Depth of Three and Lower Prediction Accuracy.

Figure 6. Calculated Decision Tree With a Depth of Seven and Higher Prediction Accuracy.

This model is readily implementable in the engineering design task to judge a
student’s performance in integrating relevant knowledge to generate viable sol-
utions. However, this relatively simple set of rules was calculated at the expense
of classification accuracy for the testing set (50.4%).

Figure 6 shows a more complex learned DecisionTree with better prediction
accuracy than the DecisionTree in Figure 5. However, the understandability of
this model was seriously undermined given a too-large set of rules. Figure 6 is
included to simply show the complexed structure of a better-performed
DecisionTree and does not require careful reading. The outline of the graph is
therefore grayed out to avoid over-interpretation.
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Figure 7. The Screenshot of a Low Performing Student’s Design.

Table 3. The Prior and Posterior Probability Comparison of a Low-Performing Student’s
Performance on Each Subtask.

Solar panel output Energy saved Seasonal solar
increase from transfer heat gain adjust
Prior probability 47% 55% 66%
Posterior probability 55% (1) 40% () 55% (1)

Representative Examples Identified by the BNs Model. The BNs model could capture
such distinctiveness in the form of posterior probabilities on each affected node
based on specified topology of the network, which allows for instant interpret-
ability and thus has the affordances for meaningful feedback. Figure 7 shows the
final design of a student who was correctly classified as a low performer in the
design challenge and Table 3 shows the prior and posterior probability compar-
ison on subtasks based on evidence observed from his design process. This
student achieved 8% improvement in the posterior probability of promoting
output of the solar panels by increasing their efficiency. He also managed to
gain more output by moving or adding some solar panels to the south-facing
roof, but he left the majority of solar panels on the north-facing side, indicating
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a gap in applying related knowledge to optimize the position of solar panels.
This student also failed to achieve better performance on the other two subtasks.
Specifically, he did not reduce heat loss by decreasing the U-factor of walls,
windows, the roof, etc. Although he lowered the SHGC of the windows to
prevent overheating caused by solar radiation during summer, which incurs
additional cost on air-conditioning, he made no more effort to either move
deciduous trees to the south to gain solar radiation in winter and block it in
summer or to adjust the size or number of the windows accordingly to achieve
better energy performance.

Figure 8 shows both north and south sides of a correctly predicted high
performing student’s artifact. Combining with the calculated prior and posterior
probabilities comparison as listed in Table 4, we could conclude that this student
achieved considerable improvement from 47% to 70% in managing the solar
panels to produce more electricity. He did this by laying all solar panels on the
south-facing roof and increasing the efficiency of those panels to gain better
output per unit. This student showed a good understanding of the insulation
properties of buildings by decreasing the U-factor to prevent unnecessary heat
loss during winter or air-conditioning cost during summer. However, this stu-
dent seemed to perform less ideally in adjusting seasonal solar heat gain to
achieve a better design. He appropriately removed three windows on the
south-facing wall to decrease solar radiation through windows during summer

Figure 8. The Screenshot of the South-Facing Side (Left) and the North-Facing Side (Right) of
a High Performing Student’s Design.

Table 4. The Prior and Posterior Probability Comparison of a High-Performing Student’s
Performance on Each Subtask.

Solar panel Energy saved Seasonal solar
output increase from transfer heat gain adjust
Prior probability 47% 55% 66%

Posterior probability 70% (1) 60% (1) 65% ()
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and planted two deciduous trees in front of the remaining two south-facing
windows to further prevent overheating in summer and promote heat gain in
winter. But he left too many north-facing windows without lowering their size or
number or managing SHGC to deal with solar radiation. However, the interplay
among tree types, tree position, window area, facing, and SHGC are complex
and even high achieving students could err in reasoning easily. And the BNs
model could pinpoint the sources of error by reasoning from evidence gathered
from a student’s design process.

That the BNs model reasons based on different students’ observable evidence
during their design process could be further illustrated by comparing different
final designs. Figure 9 shows two correctly identified high performing students’
design artifacts that are visually different from each other. Table 5 shows the
prior and posterior probabilities on three subtask nodes of the student who
generated the design in the left side of Figure 9, while Table 6 listed those
probabilities of the right side design. According to both tables, students of
both designs showed good understanding of the U-factor in controlling heat
transfer. However, the student of the left design put more effort in maximizing
solar panels output, while the student of the right design allocated more energy
in saving air-conditioning in summer and gaining solar radiation in winter. This
is manifest in the screenshots of both designs. The house on the left has more
solar panels on the south-facing roof, no trees surrounding it, and the student

Figure 9. The Comparison of Two High Performers’ Final Design.

Table 5. The Prior and Posterior Probability Comparison of the Performance of the Student
on Each Subtask Whose Design Appears in Figure 9 Left.

Solar panel Energy saved Seasonal solar
output increase from transfer heat gain adjust
Prior probability 47% 55% 66%

Posterior probability 70% (1) 60% (1) 79% (1)
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Table 6. The Prior and Posterior Probability Comparison of the Performance of the Student
on Each Subtask Whose Design Appears in Figure 9 Right.

Solar panel Energy saved from Seasonal solar heat
output increase transfer gain adjust
Prior probability 47% 55% 66%
Posterior probability 55% (1) 60% (1) 85% (1)

Figure 10. The Designs of Two Misidentified Cases.

more or less kept the windows intact, with only minor changes to position and
size. The design on the right has fewer solar panels on the south roof but reflects
significant changes in the position and size of windows and the placement of
deciduous trees in front of each window.

While it makes sense to provide specific feedback to identified high perform-
ers to continually make improvements or to engage additional instructional
resources for potential low performing students, it is equally interesting to
look at misclassified cases. In this study, the built BNs model was used to
reason based on students’ design process and then predict their design’s
annual energy performance. There are two kinds of misclassification: those
whose products did not show good net gain on a yearly basis but who excelled
in the engineering design challenge, and those whose artifacts showed high
energy-efficiency but whose logged behaviors suggest they would be low per-
formers. Figure 10 shows two students’ designs; student of the left design were
predicted as low performers by the BNs model but regarded as high performers
in terms of design performance, whereas student of the right design represents a
false positive case. Table 7 and Table 8 listed the posterior probabilities on three
subtask nodes of their designs respectively. The student who produced the left
design made good annual energy gain. As shown in Table 7, he in fact arranged
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Table 7. The Prior and Posterior Probability Comparison of a Student’s (Figure 10 Left)
Performance on Each Subtask.

Solar panel output Energy saved Seasonal solar
increase from transfer heat gain adjust
Prior probability 47% 55% 66%
Posterior probability 70% (1) 60% (1) 55% ()

Table 8. The Prior and Posterior Probability Comparison of a Student’s (Figure 10 Right)
Performance on Each Subtask.

Solar panel output Energy saved Seasonal solar
increase from transfer heat gain adjust
Prior probability 47% 55% 66%
Posterior probability 70% (1) 60% (1) 65% ()

all solar panels on the south-facing roof and increased their efficiency to achieve
maximum output and in limiting heat loss through transfer. However, he did not
meet the threshold posterior probability to be classified as a high performing
student since he removed all trees surrounding the house while leaving too many
windows exposed to solar radiation that would increase air-conditioning cost in
summer. Although this student fell short of meeting the high threshold set to
find high performers, he did show competency in applying some knowledge to
solve the problem. The student who completed the right design shown in
Figure 10 appropriately positioned the solar panels toward the sun trajectory
and planted deciduous trees in front of windows that receive solar radiation. He
also changed solar panel efficiency to gain more energy output and decrease the
U-factor to achieve desirable insulation that could further cut down the air-
conditioner and heater costs, which caused the BNs model to classify him as a
high performer. However, too many windows arranged on the west side of the
building incur additional cost in heating since additional heat gain through
incoming sunshine in the winter afternoon could not make up the overall
heat loss.

Discussion

Engineering design projects can provide a valuable pedagogical tool in K-12
settings (Chabalengula & Mumba, 2017; National Research Council, 2012).
However, the open-ended and ill-structured nature of such tasks often contrib-
ute to an unduly complex situation with pervasive uncertainties that render it
difficult to build student models to understand their learning process.
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Conventional methods such as analyzing based on verbal protocols, video clips,
and artifacts could help in assessment (Schwarz et al., 2009), but such
approaches often involve extensive amounts of time and effort and are not
suited for early intervention.

The introduction of certain engineering design software with logging features
as well as LA and EDM techniques could help alleviate this adverse condition
by keeping track of user actions and performing analyses to predict performance
in real time. Among those techniques, gray/white-box models such as
DecisionTree and the BNs model report not only prediction accuracy measures
but means to understand the classification process under the hood and therefore
possess advantages for application in educational settings. The BNs model, in
particular, could represent and update uncertainties instantly in terms of prob-
abilities of relevant variables (Asif et al., 2017; Lacave et al., 2018; Liu, 2006).

We extracted observable evidence that factors into a student’s performance in
an engineering design task as logged by the CAD software and fed such evidence
into a constructed BNs network, following relevant literature (de Klerk et al.,
2015; Millan et al.,, 2010; Neapolitan, 2003; Pearl, 1988). Through its inferenc-
ing algorithm, the BNs model output each student’s performance prediction in
the form of posterior probabilities. The comparison of these predictions to stu-
dent artifacts” annual energy performance showed better accuracy value than
other benchmark classification algorithms. The BNs model also showed com-
petence in precisely labelling identified cases correctly and satisfyingly recalling
many students with corresponding labels.

The above mentioned properties of the BNs model enable it not only to
predict a student’s problem-solving performance level but to provide detailed
information on why he succeeds or fails on certain subtasks in time. This is
particularly useful since in a complex engineering design task with an unlimited
solution space, a mere label of high or low performing group might sometimes
be not enough to capture the intricacy of what a student did to solve the prob-
lem. Students take different paths to meet the design requirements and specific
inferences based on each student’s data stream go a long way in providing
customized, timely feedback. The results presented in this study showed how
the constructed BNs model could automatically distinguish a student’s knowl-
edge application level on each subtask and compare it to other students.

The ability of the BNs model to handle uncertainties and pinpoint the sources
of error by reasoning from observed evidence generated by a student during the
problem-solving process could help both formative and summative assessment.
This was illustrated by the misclassified cases in this study. For both false pos-
itive and false negative cases, the BNs model could provide information to help
them to improve based on identified weaknesses and justify the classification
results.

This study has some limitations. First, the observable evidence nodes of the
built BNs model only considered a true or false input. That is, once the
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occurrences of an observed action defined by its corresponding node exceed a
given threshold, the probability of observing such an action is set directly to
100%. However, such probability could be modeled to be any value between 0
and 1, depending on the confidence level of observing the action. And this is
particularly useful when implementing dynamic Bayesian network models that
consider the temporal dynamics among certain variables within the network.
Second, this study did not consider pretest and posttest scores as a representa-
tion of a student’s level of knowledge application, while it might be interesting to
see how well such test scores correlate with problem-solving process. However,
since various sets of knowledge were needed to solve different items in the test,
there exists a mismatch to use a composite score to represent an uneven distri-
bution of knowledge understanding among students. A Bayesian knowledge
tracing model might be more accurate to correlate a student’s observed evidence
of mastery to specific items that test the same knowledge.

Conclusion

This study aimed to explore possible solutions to handle ubiquitous uncertain-
ties during an engineering design process in order to automatically customize
feedback to students. We extracted each student’s design process data logged by
an engineering design software, calculated evidence relevant to their problem-
solving performance level, and then fed these evidence to our built BNs model to
obtain posterior probabilities of students’ performance on related tasks. Results
showed that the BNs model performed better than other three popular classifi-
cation algorithms (DecisionTree, KNN, and SVM) in predicting a student’s
knowledge application level by accuracy. This study demonstrated that BNs
could be used in engineering design tasks to pinpoint a student’s strengths
and weaknesses in knowledge application and could be implemented in real
time to provide customized feedback.

There is, however, much room left for future exploration. First, multiple time
slices could be considered separately to apply the BNs model to identify mile-
stones of a student’s design process. Second, a probability value between zero
and one could represent more accurately observable evidence based on its cred-
ibility calculated from actions. Third, a dynamic Bayesian network model could
be considered to account for dependencies of nodes between time segments. The
above means, when combined and tuned, could better represent the relation-
ships among important variables within the design scenario and obtain more
fruitful implications to a student’s learning.
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