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Abstract—Drivers’ identities are essential information that can
facilitate a broad range of applications. For example, by under-
standing who is driving the vehicle when an accident happens,
insurance companies could determine the liability and payment in
a car accident claim case with high confidence. Another example,
pick-up service companies could track the identities of their
drivers to ensure that authorized drivers are driving esteemed
clients to their destinations. While there are existing studies
that can utilize video cameras and dedicated sensors to identify
drivers, they either have privacy issues or require additional
hardware, which is not practical enough for daily uses. In this
paper, we devise a low-cost driver identification system, which can
determine drivers’ identities by using sensors readily available
in wearable devices. Our system captures the unique driving
behaviors during pervasive but momentary driving events (i.e.,
turning at intersections) with motion sensors, which are widely
integrated into commodity wearable devices (e.g., smartphones
and activity trackers). Toward this end, we extensively analyze
people’s driving behaviors and identify the critical turning events
that capture people’s unique behavioral patterns for driver iden-
tification. We design a fine-grained turning segmentation method
that divides sensor data into critical turning stages (i.e., before,
during, and after-turn stages), which provide multiple dimensions
of turning behavioral metrics facilitating driver identification.
The system extracts unique turning behavior features from time
and frequency domains to enable driver identification based on
drivers’ turning behaviors at different types of turns. Extensive
experiments are conducted with 12 drivers and various types of
turns in real-road conditions. The results demonstrate that our
system can identify drivers with high accuracy and low false-
positive rate based on one single turning event.

Index Terms—Driver ldentification, Smartphone

I. INTRODUCTION

Drivers’ identities are critical information that is highly
desirable by various vehicle businesses, including insurance,
rental, and on-demand transportation service. For instance,
vehicle insurance and rental companies could leverage the
information to identify the thief for a stolen car [1] or
determine the liability of the drivers involved in a car ac-
cident [2], respectively. On-demand transportation services,
such as Uber and Lyft, could utilize such technology to verify
their drivers’ identity, tracking their service and providing
security precaution for female passengers riding alone at night.
Moreover, by identifying a driver, vehicle manufactures can
build an in-vehicle operating system that can automatically
switch the vehicle’s settings, such as air-condition, rear-view
mirror, navigation system and engine tuning, to the driver’s

Fig. 1. Illustration of applications that may benefit from driver identification.

preferences. In addition, individuals can also benefit from
real-time driver identification. For example, parents would
like to know whether or not the driver that drives their kids
home is authorized. Figure 1 illustrates the applications that
may benefit from having a driver’s identification. Existing
works on user identification either use PIN, or rely on user
gestures [3]-[5]. However, their approaches require active user
inputs or dedicated devices (e.g., a smartwatch), which is not
safe and scalable for general driving scenarios. Therefore, a
low-cost, passive user identification mechanism that can obtain
the driver’s identification during driving without requiring the
driver’s input is highly desirable.

Recently, there are several driver identification studies try
to address the issue by using drivers’ driving behaviors, such
as accelerating or braking patterns in different scenarios (e.g.,
car following, highways, and turns). For example, embedded
sensors and On-Board Diagnostic (OBD-II) of vehicles are
used to analyze drivers’ behavior and differentiate them [1],
[2]. David ef al. [1] analyze drivers’ actions when they turn
at corners and use the data from the sensors embedded in
vehicles to capture the activities for differentiating drivers. In a
similar work, Miro et al. [2] study long haul driving data from
various in-vehicle sensors of brakes, gas pedals, and steering
wheels, and use the combination of the sensor data for driver
identification. Though such studies can identify drivers with
moderate accuracy, they require access to the car’s sensing
platform or additional sensors deployed at different positions
of the vehicle, which is not convenient for normal users and
various vehicles without dedicated sensors. In other cases, for
example, Zhang et al. [6] can identify drivers based on long-



time driving data, which makes the identification process less
reliable in short distance driving cases. Whereas, they use a
large feature set, which might be difficult to deploy in mobile
devices with limited resources.

In this work, we propose to identify drivers passively
based on their distinct turning maneuvers. We chose turns
for driver identification mainly because 1) turning procedures
contain a series of controlling events that include not only
the driver’s accelerating and braking behaviors but also the
steering behaviors; 2) drivers’ unique driving behaviors in
turning procedures are less likely to be impacted by uncon-
trollable road conditions than those in any other times (e.g.,
the driver may have variant his/her braking behaviors due
to unpredictable traffic or weather conditions). Toward this
end, we develop a low-cost driver identification system, which
exploits readily available motions sensors (i.e., accelerometers
(Acc) and gyroscopes (Gyro)) in commodity mobile devices
to capture drivers’ unique turning-behavior characteristics for
driver identification. Compared to existing works, our system
is a practical solution as it only requires a single mobile device
in the vehicle. Moreover, as far as we know;, it is the first driver
identification system that can accurately identify drivers based
on single-turn data.

To use the low-cost motion sensors of a single mobile device
to differentiate drivers based on the momentary data from one
single turn, our system has several challenges. First, since
there are different types of turns and various road conditions
in practical driving scenarios. It is really hard to model a
driver’s distinct behavioral characteristics by using the low-
cost motion sensors of a single mobile device. Secondly,
the motion sensors in the mobile device capture not only
the driving behaviors but also a significant amount of noise
from the driving environment, including sliding, vibrations,
user operations, etc. Therefore, our system needs to mitigate
various sensor noises in real-driving scenarios and provide
robust driver identification for practical use. Thirdly, many
applications would demand timely driver identity information
(e.g., parent monitoring and theft detection). Our system aims
to provide the driver identification results within the time of
a momentary turning event, which is also challenging for the
low-cost single device system.

To better understand drivers’ turning behaviors, we ex-
tensively study the motion sensor data corresponding to ac-
celerating, braking, and turning activities of 12 drivers in
various real turning scenarios. Based on our findings, we adopt
a novel analysis approach by defining three critical stages
for each turn, namely before-, during-, and after-turn stages,
which capture independent driving behaviors that can facilitate
driver identification. Our system is designed to detect different
types of turns (e.g., left/right turns, sharp/90-degree turns, and
turns with/without stop events) by using the low-cost motion
sensors. For each type of turn, the system determines the
three critical stages by using a behavior-based segmentation
algorithm and extracts fine-grained turning features to capture
drivers’ distinct turning behaviors in each stage. Furthermore,
our system employs a low-cost and effective classifier using
the Gradient Boosting Tree (GBT) algorithm that can be easily
deployed in commodity mobile devices to identify different

drivers based on the turning features extracted.
The main contributions of our work are summarized as
follows:

o We extensively study drivers’ behaviors during turns and
develop a driver identification system that can recognize
a driver’s identity based on the driver’s driving behaviors
captured by a single commodity mobile device in a single
turn.

o Our system enables accurate passive driver identification
by utilizing unique turning features captured by low-cost
motion sensors and GBT-based classifier.

o We develop a novel behavior-based segmentation algo-
rithm to separate motion sensor data into critical turn-
ing segments, which facilitate fine-grained analysis of
drivers’ turning behaviors and robust driver identification
using the limited amount of data within a single turn.

o We evaluate our system in real driving experiments with
12 drivers and different models of cars. The results
demonstrate that our system can achieve 98% accuracy
and low false positive rate for driver identification.

II. RELATED WORKS

There are existing works trying to identify drivers using sen-
sors in vehicles [2], [7]-[10]. Wakita et al. [7] use embedded
sensors in a car to capture driving behaviors (e.g., accelerating
and braking) and other environmental factors (e.g., turning
signals, speed, and distance) for driver identification in car-
following scenarios. Choi et al. [8] develops a system that
can detect distraction and identify drivers using the collected
data from the CAN-Bus in vehicles. Similarly, Van Ly et
al. [9] analyze driving events such as acceleration, braking,
and turns using vehicles’ inertial sensors from the CAN-
bus to identify drivers. All these works require access to
multiple dedicated sensors in vehicles, which are not practical.
Recently, Wallace ef al. [10] and Miroet al. [2] show that
drivers have consistent driving habit , and it is possible to
differentiate drivers based on their long-term driving behaviors
captured by the sensors in vehicles. These works require long-
term monitoring on drivers’ behaviors, which is not convenient
and useful for real-time applications.

With the emerging use of smartphones, researchers try to
differentiate drivers by using smartphones. Zhang et al. [6]
collect data from sensors in both vehicles and smartphones for
driver identification. While their approach has more promising
results, the size of the feature set used to identify drivers is too
large to run on smartphones. Ezzini ef al. [11] build a system
that uses the inertial sensors in smartphones and ECG sensors
on drivers’ fingers to differentiate drivers, which still requires
long-term sensor data to improve the identification accuracy.
Yan et al. [12] exploit the sensors in drivers’ smartwatches
to model their driving behaviors for driver identification.
However, smartwatch-based approaches are prone to body
movements. Thus, any body movement can significantly effect
the results which limits the capability of the model.

Hallac et al.’s research [1] is the closest to this work. They
study drivers’ behaviors in single turns using the data from
the sensors in vehicles and develop a system that can identify
drivers based on drivers’ behaviors in the most frequent-appear
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Fig. 2. Comparison among four drivers’ accelerations on the X- and Y-axis
in a right turn without stop event.

turns. While this work shows it is possible to use vehicle’s
sensors to capture drivers’ unique behaviors and identify
drivers in a single turn, it does not provide a good accuracy for
more than two drivers. In this work, we develop a smartphone-
based driver identification system that can differentiate drivers
based on their unique behaviors in single turns. Compared
to the existing works, our system utilizes the features that
can capture finer-grained characteristics of turning behaviors
considering different driving conditions (e.g., turning types and
w/o stop events), which makes our system more accurate and
robust in practical driving scenarios. Moreover, our feature
set is small enough to be analyzed using smart devices with
limited resources while achieving high accuracy.

ITII. FEASIBILITY STUDY

In this work, we find that the drivers’ behaviors through
the turning process is complicated and unique, which could
facilitate robust and accurate driver identification. The insight
is that drivers have different preferences in the braking and
accelerating behaviors in the terms of time and the pressure
applied on the brake or gas pedals [10], [13]-[15]. In addition,
different drivers may have different preferred radius when
making similar types of turns, which adds another layer of
unique characteristics to turning behaviors on top of the
accelerating and braking behaviors. We envision that all of
these characteristics can be captured by sensors in smartphones
(i.e., Acc and Gyro) and enable driver identification based on
turning behaviors.

To study the feasibility of using turning behaviors to dif-
ferentiate drivers, we ask four different drivers to drive a
same car with a smartphone fixed on the dashboard. In these
experiments, we log accelerations on the X and Y axes (i.e.,
Acc-X: centripetal acceleration and Acc-Y: tangential acceler-
ation) of the smartphone, which are determined by the speed
and the angle of the turn and accelerating/braking incidents,
respectively. We collect data from 100 right turns at several
locations without stop events. From Figure 2, we can observe
that all drivers have distinct turning behaviors. The start and
end points of a turn (i.e., the time when Acc-X is turning
from zero to positive and back to zero) occur at different
times in different drivers’ data. In addition, Figure 2(a) shows
that on average, all four drivers have maximum Acc-X at
different times with different amplitudes, indicating that the
drivers have different preferences of speed and turning radius.
Furthermore, we find that the minimum Acc-Y indicates the
moment that a driver starts to release the brake pedal, and the
maximum Acc-Y indicates the moment that the driver starts
to release the gas pedal. Thus, from Figure 2(b) we can infer

Brake

Fig. 3. Illustration of the different percentages of accelerating and braking
events among four different drivers in their right turns.

Acc

that on average: 1) Driver D2 has a higher acceleration in the
Before-Turn segment. Therefore he/she likes to brake with
higher intensity compared to others. 2) Drivers D3 and D4
prefer releasing the brake pedal in the Before-Turn segment,
while drivers D1 and D2 prefer releasing the brake pedal in
the During-Turn segment. 3) Drivers D1, D2, and D3 like to
release the gas pedal in the During-Turn segment, only Driver
D4 keeps increasing the acceleration and stops increasing the
acceleration in the After-Turn segment.

To better illustrate the overall differences between drivers in
their turning behaviors, we define two behavioral categories,
braking event and acceleration event, which can be extracted
from Acc-Y. Figure 3 shows the average percentage of events
in each behavioral category over all the turns for four different
drivers. For example, D2 has more acceleration events (e.g.,
pressing the gas pedal) while D3 has more brake events,
respectively. All these observations suggest that it is feasible
to use sensors in smartphones to capture the unique turning
behaviors and identify drivers.

IV. SYSTEM DESIGN AND CHALLENGES

A. Overview

The purpose of this study is to identify different drivers
based on their driving behaviors in making a turn. We choose
to use turns because they contain a variety of behavioral
patterns in a short time, which could facilitate real-time driver
identification. Although making a turn seems to be simple,
its whole process can be divided into critical stages, such
as before, during, and after-turn. Each of the critical stages
contains independent and distinct driving behaviors, including
wheel rotation, accelerating, and braking. We find that even in
the turns that are affected by different road conditions, such as
traffic lights and stop signs, the way that each driver handles
such situations is still unique and distinguishable.

The basic idea of our work is to analyze drivers’ behaviors
in fine-grained stages of a turn. We find that each driver
has his/her preferences or habits in making a turn from
approaching to completing and finally leaving a turn. For
example, drivers usually decelerate or brake before making
turns. However, the intensity and timing of these actions
vary from driver to driver, which has been illustrated in
Section III. Besides, drivers also rotate the steering wheel
differently during a turn. For instance, a driver may prefer to
start rotating the steering wheel at an early stage of a turn and
rotate it slowly. Such different turning behaviors on turns also
persistent under different traffic or driving conditions, such as
turns with/out stop events. The flow of our system is shown
in Figure 4.
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Fig. 4. Overview of the smartphone-based driver identification system.

Our system first takes the data as input from the sensors in
smartphones (i.e., Acc and Gyro). Then it conducts the Data
Pre-Processing (Noise Removal and Data Rotation) to remove
noises and rotate the sensor data to the vehicle’s coordinate
system. Next, the system adopts the Coarse-grained Turn
Detection to identify the sensor data contains turning behaviors
based on Gyro-Z readings. After obtaining the turning data,
the Turn Type Classification separates the turning data into
four categories based on the turning direction (i.e., left or
right) and traffic condition (i.e., with or without stop events
(defined in the later section)). Next, the Behavior-Oriented
Turn Segmentation applies fine-grained segmentation on the
turning data using different strategies based on the turn type.
Each fine-grained segment contains unique driving behaviors
corresponding to a particular stage of a turn, including before,
during, and after the turn. Note that for the turns with stop
events, the during turn segment will be further divided into
finer-grained segments to facilitate the driver identification.
Then, the system performs the Turning Behavior Feature
Extraction to derive the features that can capture the unique
driving behaviors within each fine-grained segment of the
turning data. Last, the features are processed by the Driver
Identity Classification to identify registered drivers. In this
step, a separate binary Gradient Boosting Tree (GBT) classifier
is built for each registered driver. The final decision of
the driver’s identity will be determined by using a majority
vote mechanism based the confidence scores from the binary
classifiers in each segment.

B. Challenges

Realizing a driver identification system using the single-turn
data from a smartphone is very challenging. We list several
major challenges as shown below:

Practical Modeling of Unique Turning Behaviors. We
use turning behaviors for driver identification in this paper.
Although turning behaviors have drivers’ unique character-
istics, like any other driving behaviors, they could also be
interfered with by various events on the road as listed in

Fig. 5. Illustration of the Gyro-Z readings during a left turn and the start and
end points.

Table. I. Many of the events are completely dynamic and
stochastic. For example, the waiting time in front of a stop sign
could be a function of the traffic but also depends on drivers’
preferences. Therefore, modeling unique turning behaviors
considering dynamic road conditions in practice is challenging,
if not impossible. We need to come up with a robust solution
that can model drivers’ turning behaviors effectively under
practical driving scenarios.

Robust Driver Identification Using Mobile Devices. An-
other challenging part of the project is using a single smart
device such as a smartphone to identify drivers. Although
it is easy to obtain sensor data from smartphones, such
sensor data is usually sensitive to noises caused by road
conditions. Additionally, in order to get a good understanding
of drivers’ behaviors, we need fine-grained information from
the sensor data, which requires high sampling rates in the
sensors. However, having a high sample rate can be power and
memory consuming for smartphones. Therefore, the design of
our system should be able to mitigate various sensor noises and
provide robust driver identification results when the sensors are
running at a low sampling rate (e.g., ten samples/s).

Accurate Classification Using Single-turn Data. The last
but not the least challenge in this research is to be able to
identify drivers only using the data of one single turn. It
means that we aim to identify drivers only with limited data.
Mostly any driving session starts with coming out of a parking
lot or leaving residential areas in which a driver experiences
several turns of different types. We aim to identify drivers
using very limited data which does not need a long time of
driving data. Due to the short time duration of each turn, our
system needs to model a driver’s behavior and determine the
driver’s identity based on very few samples. We note that
using turns for driver identification is practical. Usually, a
driving session starts with coming out of a parking lot or
leaving residential areas. Therefore, the driver experiences
several turns of different types, which provide the opportunity
for our driver identification solution.



V. FINE-GRAINED TURN SEGMENTATION
A. Coarse-grained Turn Detection

After obtaining the sensor data from the smartphone, our
system first performs the noise filtering and coordinate align-
ment, which is detailed in Section VII. Then we conduct the
Coarse-grained Turn Detection to identify turning events and
extract the data segments containing the turning behaviors.
The Coarse-grained Turn Detection has three steps. First,
we determine a turn using a threshold on Gyro-Z amplitude
[16]. Through empirical study with 12 drivers, we set the
threshold to 0.13rad/s, which gives over 99% accuracy of
identify turning events. Using this threshold we can filter the
events such as lane changing.

Next, we determine the start and end points of a turn As
illustrated in Figure 5, which are the points to reach zero
before and after the peak in Gyro-Z readings. Since 90-degree
turns are the most common type of turns in practice, especially
in residential areas and city environments, our system focuses
on using these turns and filter the turns with other angles.
Therefore, in the third step, we find the 90-degree turns by
examining the turning angle that is calculated by accumulating
the Gyro-Z readings between the start and end points. If
the turning angle is between 70 degrees and 100 degrees,
we consider the turn is 90 degrees and use it for driver
identification.

B. Turn Type Classification.

After determining the coarse-grained segment we classify
the turns into “left/right” and “with/out stop events” categories.
This is a necessary step because we find that drivers can have
different behaviors in left and right turns. For example, drivers
need to cross a lane to complete a left lane, they have more
space to accelerate compared to right turns. Moreover, when
drivers encounter events like stop signs, their turning behaviors
are unlikely to be the same as when they turn without stop. In
particular, we use Gyro-Z to determine left/right turns, which
has been used in existing work [16]. To determine if a turn
encounters any stop events or not, we need to consider various
conditions that can cause the driver to stop in turns as shown
in Table I. To simplify the problem, we define the driving
conditions that require a driver to stop the vehicle as Stop
Events and divide turns into two categories, “Turn with Stop
Events” and “Turns Without Stop Events” based on whether
the turns involve stop events or not. For example, turns with
driving conditions such as “Pedestrian, Stop sign, and Red
traffic light” are categorized as the “Turns with Stop Events”.
Otherwise, they are categorized as the “Turns Without Stop
Events”. Note that we focus on the turns with regular stop
events, such as waiting for pedestrians, stop signs, and red
traffic lights. We do not consider turns with random stop events
caused by road traffic or accidents, which usually occur with
small probability in practice.

Specifically, we check whether the turn involves stop events
or not based on a threshold on the calculated speed before
the start point of a turn. Our system tracks the speed of the
vehicle by accumulating the Acc-Y when the vehicle starts
moving [17]. Intuitively, all the scenarios in the “Turns with
Stop Event” category make a driver to drive slowly or stops
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Fig. 6. Illustration of fine-grained segmentation for turns with stop events on
Acc-Y of different drivers.

before the turn. Therefore, when the speed of the vehicle at
the start point of a turn is lower than a threshold, we consider
the turn involves the stop events and belongs to the category
of Turn with Stop Events. Otherwise, the turn is classified
as the Turn without Stop Events. Through our experimental
results, we find that the speed 3km/h is a good threshold that
can help separate most of the turns with stop events from the
turns without stop events.

C. Behavior-oriented Turn Segmentation

General Segmentation. There are several driving behav-
iors involved when people making turns including braking,
acceleration and rotating the steering wheel. One major be-
havior is steering wheel maneuver. We define the During-
Turn segment to facilitate fine-grained analysis on this steering
wheel maneuver behaviors in addition to other behaviors such
as braking and acceleration. In order to have a more depth
analysis on turning behaviors, we also define Before-Turn and
After-Turn segments which can capture the unique braking
and acceleration patterns of drivers when approaching and
leaving a turn, respectively. More specifically, we empirically
determine the Before-Turn segment is the 5s before the start
point of a turn, and the After-Turn segment is the 5s after the
end point of a turn, and the segment between the start and end
point of a turn is defined as the During-Turn segment. This
segmentation captures how the driver approaches the turn, how
he makes the turn and leaves it.

Finer-Grained Segmentation for Turns with Stop Events.
The general segmentation is applied to all turns, but for turns
with stop events we need more fine-grained segmentation to
capture drivers’ unique turning behaviors. Compared to the
turns without stop events, drivers on turns with stop events
have less freedom because they need to brake to make a stop
before turns and accelerate during and after turns. Therefore,
we need to analyze the turns with stop events in a finer-grained
manner to achieve high driver identification accuracy.

Particularly, we divide the during-turn segment into two
finer-grained segments (denoted as FS1 and FS2) to capture
the distinct driving behaviors when drivers make turns after
stop events. FS1 is defined as the period from the start
point of the turn to the minimum Acc-Y in the during-turn
segment. FS2 is defined as the period from the minimum Acc-
Y to the end point of the turn. Figure 6 illustrates the fine-
grained segmentation on the turns with stop events from two
different drivers. As we can see, the two drivers get to their
minimum Acc-Y at different times with different intensity,
and our finer-grained segments can dynamically adapt to each
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drivers behaviors, capturing the drivers unique behaviors at its
maximum resolution. For instance, we can capture how the
driver increases its speed to the maximum value. We can also
capture how the driver controls the speed for the rest of the
turn.

VI. DRIVER IDENTIFICATION USING TURNING
BEHAVIORS
A. Behavior Definition on Turns

We divide two main behaviors (i.e., braking and accelera-
tion) into more detailed ones that can give information of how
the driver changes the speed as follows: Increasing/Decreasing
Acceleration, Increasing/Decreasing Braking, and timing and
intensity for each behavior. The definition of these behaviors
are listed below.

« Increasing Acceleration (Acc): This behavior is defined
as when the driver presses the gas pedal with ascending
pressure.

o Decreasing Acceleration (De-Acc): This behavior is de-
fined as when the driver presses the gas pedal with
descending pressure.

o Decreasing Braking(De-Brake): This is defined as when
the driver is pressing the brake pedal with descending
pressure.

« Increasing Braking(Brake): This is defined as when the
driver presses the brake pedal with ascending pressure.

o The intensity of the defined behaviors is defined as how
hard the driver presses the gas or brake pedal.

o The consistency of the changes of the pressure of the gas
and brake pedal.

These behaviors can be derived from the Acc-Y and its
first derivative. When a driver is pressing the gas pedal the
acceleration reading is positive, and when the driver is pressing
the brake pedal the acceleration reading places in the negative
side. Moreover, based on the pressure on the gas/brake pedal
the acceleration can be increasing or decreasing. For example,
if the driver is an aggressive driver and tends to brake
suddenly we observe a sudden sharp negative decrease in the
acceleration reading, which also is shown in [18]. Figure 7
shows these behaviors on Acc-Y. By defining these behaviors,
we extract features based on the type and the segment of a
turn.

B. Turning Behavior Feature Extraction

In order to analyze the sensors data in fined-grained manner
and extract features that can reflect the drivers unique behav-
iors each turn is divided into three different segments(e.g. be-
fore, during, and after-turn). Different types of sensors should

TABLE 11
FEATURES EXTRACTED FROM ACC-Y AND GYRO-Z IN DIFFERENT
CRITICAL TURNING STAGES.

Before-Turn
(Acc-Y)

Acc, De-Acc,Brake, De-Brake:(value, time,changes),
statistical features of each behavior and their first derivative,
i.e., mean, max, min, mode, var.
During-Turn
(Acc-Y)

Acc, De-Acc, Brake, De-Brake:(value, time,changes),
statistical features of each behavior and their first derivative,
i.e., mean, max, min, mode, var.

(Gyro-Z)
statistical features of the changes in the rotation angle
from zero to 45-degree(middle point of a 90-degrees)
and from 45-degrees to 90-degree
After-Turn
(Acc-Y)

Acc, De-Acc, Brake, De-Brake:(value, time,changes),
statistical features of each behavior and their first derivative,
i.e., mean, max, min, mode, var.
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Fig. 8. Example of different drivers and corresponding features.

be considered for feature extraction at different turn’s segment.
Since the acceleration data is changed through out the whole
turn, it is used for feature extraction in all segments. However,
Gyro-Z has nonzero values only during turn segment, this
sensor reading is not considered for feature extraction in before
and after the turn. For analyzing Acc-Y before a turn, different
behaviors such as Acc, De-Acc, Brake, and De-Brake can be
defined in this segment. These behaviors can be analyzed
by their value, timing, and their changes. Figure 8 shows
examples of different features in identifying different drivers.
Specifically, Figure 8 (a) shows the features extracted before
and during a right turn for four different drivers. Figure 8
(b) shows the features extracted before and during a left turn
for two different drivers. Those extracted features are quiet
helpful in identifying different drivers. Table II summarizes
the features that we extracted from the each type of sensor
Acc-Y and Gyro-Z. In total 200 features are extracted from
all segments.

C. Driver Identity Classification

Gradient Boosting Tree based Classification. For feature
classification, Gradient Boosting Tree (GBT) algorithm is
being used [19]. GBT is chosen because it is famous for its
robustness to different types of features with different scales.
In other words, we do not need to normalize or whiten the
feature data before classification which is required for other
classifiers such as Support Vector Machine (SVM).

GBT involves three elements. A loss function that can be
optimized, a weak learner to make the predictions, and an
additive model to add weak learners to minimize the loss



functions. The loss function depends on type of the problem.
For classification, the logarithmic loss can be used. Decision
tress are used as the weak learner in GBT. Trees are added
once at a time to the existing trees in the model. Specifically
the GBT tries to find a function to minimize the loss function.
A fixed number of trees are added or training stops when the
loss reaches the acceptable level.

In our study, we use the GBT implementation from the
SQBIib library. The loss function is ”logloss”, with the shrink-
age factor as 0.1 and 200 iterations. These GBT parameters
optimized in term of accuracy based on our empirical data.
After determining the loss function, a binary classifier is
being built for each segment for each driver. We build binary
classifier, because it can have higher accuracy in distinguishing
one class versus other classes, whereas a multi-class classifier
would have relatively lower accuracy in classifying multiple
classes.

Single-turn Classification. Next, we discuss how we make
the classifier for driver identification. As mentioned before,
each turn is divided into different segments. For example, if
we have N segmentsS;, So, ... , Sy, we build D, binary
classifier Gradient Boosted Tree at each segment which D, is
the number of drivers. One turn from the test set is chosen
randomly for driver identification. Each segment results a
driver’s id denoted as D;. We integrate the results from all
the segments to decide the driver’s identity. In particular we
use the mode function as equation 1.

M

The final result of the system is the DriverID which is resulted
from most of the segments.

Multiple-turns Classification. Intuitively, we can use more
than one turn for driver identification since it is common to
encounter multiple turns in daily driving experiences. In this
work, we use odd number of turns(/, 3, 5, ...) for driver
identification. The intuition is that we conduct the majority
vote concept over the results from multiple turns as well. For
example, if we consider N7 turns in which (N mod 2 # 0)
for classification, the finalp,iverr4 can be resulted using the
mode function on the resulted from different turns as describe
before. The final result of the system is the Driver/D which is
resulted from most of the turns. This process can reduce the
driver identification error and increase the robustness of the
system.

final priverra = mode(D1, Da, ..., Dy).

VII. DATA PRE-PROCESSING

Coordinate Alignment. Commonly, a smartphone can be
placed in any arbitrary position in a car. In other word,
the phone’s coordinate system may not be aligned with the
vehicle’s coordinate system. Therefore, the smartphone sensor
data must be rotated to the vehicle’s coordinate system to
describe the driving behaviors. We adopt a rotation matrix
R [16] to rotate the smartphone’s sensor data to the vehicle’s
coordinate system. Specifically, the sensor data are rotated to
the vehicle’s coordinate system by using V' = R x P, where

is the sensor data vector in the smartphone’s coordinate
system, and V' is the sensor data vector in vehicle’s coordinate
system. By using the coordinate alignment, the smartphone’s
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Fig. 9. Confusion matrix of identifying 12 drivers using a single right turn.

in-vehicle position does not impact the performance of our
system. We note that our system is not designed for the
scenarios where the driver uses his/her phone while driving,
which is illegal in most states and very reckless.

Noise Filtering. After rotating the smartphone’s coordinate
system, the next step is to remove the noises from the sensor
data. The sensor data may have noises due to bad road
conditions such as potholes and non-smooth surfaces. Such
conditions may cause sudden high-power values in the sensor
data. To mitigate these noises on the road, we first remove the
bursts of high-power signals from the sensors data by using an
outlier filter [20]. Then, we apply a moving average filter to
remove the noises caused by the non-smooth road conditions.
We empirically determine the size of the window used in the
moving average filter to be 4 samples.

VIII. SYSTEM EVALUATION
A. Experimental Methodology

Experimental Setup. We conducted real driving experi-
ments in our study. In particular, we have 12 drivers perform-
ing right and 7 drivers performing left turns. The experiments
are conducted in the residential area, which contains two types
of turns (i.e., right and left turns) with and without stop
events. The stop events include stop signs and waiting for
pedestrians and passing cars. We conduct the experiments at
different times of different days, which cover different traffic
conditions (e.g., light-traffic during weekends and heavy-traffic
after working hours) and weather conditions (e.g., sunny and
rainy days). In total, we extracted more than 2800 turns
in our experiments. The experiments involve three cars of
different models (i.e., one Dodge Caliber 2007, one Ford
Taurus 2010, and one Jeep Explorer 2015). We develop an
Android application for collecting the motion sensor data
together with GPS locations. A smartphone (LG Nexus 5X
phone) is fixed on the dashboard of the car running the data
collection application during the experiments. The sampling
rate of the sensors are set to 10 samples/second and data is
processed using our system implemented by MATLAB offline.

B. Evaluation metrics.

True Positive Rate. The percentage of the testing turns
from the target driver that are correctly classified as from that
target driver.

False Positive Rate. The percentage of the testing turns
from other drivers that are mistakenly classified as from the
target driver.

Receiver Operating Characteristic (ROC). ROC curve
shows the trade-off between the True Positive Rate and the



True positive rate
True positive rate

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 04
False positive rate False positive rate

(a) Right turns without stop events (b) Right turns with stop events

T 7

Qo Q
5095 5095
(] o
2 =
B 09 3 09
o o
o a
3 s
2085 085

08 08

0 0.1 0.2 03 04 0 0.1 0.2 0.3 0.4

False positive rate
(c) Left turns without stop events

False positive rate
(d) Left turns with stop events
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False Positive Rate. The more the ROC curve close to the
point (0, 1), the better the performance.

Confusion Matrix. The degree of color darkness in the
matrix corresponds to the percentage of correctly classified
turns.

Accuracy. The average of True Positive Rate of classifying
all the drivers.

C. Driver Identification Performance

Figure 9 depicts the confusion matrix for identifying 12
different drivers on right turns with and without stop events,
respectively. Each entry D;; denotes the percentage of the
turns conducted by drivers i was classified as from driver j.
The diagonal entries show the average accuracy of identifying
each driver. In our work, the training and testing data are not
overlapped and from the same data set that includes multiple
instances from several different turns. In particular, 70% of the
turns of each driver are used for training and only one turn
from the rest of the turns is used for testing. 100 combinations
of turns are chosen as the training data randomly from each
driver. It should be mentioned that we use the same size
of training data for each drivers to ensure the results are
not biased. The training size is determined by the minimum
number of turns performed by a driver. We can see that the
average driver identification accuracy is 98.91% and 85% for
turns without and with the stop events, respectively. The results
confirm that it is promising to use commodity smartphone to
distinguish different drivers.

D. Impact of Various Factors

Impact of Turn Types. We next study the impact of
different types of turns on the performance. As shown in Fig-
ure 10, different types of turns (i.e., “right turns with/without
stop events” and left turns with/without stop events”) have
different ROC curves in identifying drivers. This is because
drivers have different behaviors on different types of turns with
different situations. In particular, we observe that ROC curve
of turns with stop events is farther to the point (0, 1) than the
turns without stop events. The reason is that different drivers
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Fig. 11. Impact study: average accuracy of different sizes of training and
testing data.

tend to have more similar behaviors when turning with a stop
event. These same behaviors result in worse performance in
distinguishing different drivers. In addition, we also find that
the True Positive Rate of identifying drivers on left turns is
lower than on right turns. The reason is that when making
a left turn, the drivers need to adjust their behaviours more
cautiously to avoid the upcoming cars, the pedestrians, and
bicycle rider from both left and right side [21]. All of these
factors decrease the consistency of the driver’s behavior on left
turns than right turns. Those results show that our system could
maintain the decent performance even though the different
types of turns have some impacts.

Impact of Training Size and Number of Turns for
Testing. Figurell shows the performance of the system on
different types of turns under different sizes of training set with
different number of turns for testing. Particularly, we choose
percentages of 70%, 50%, and 30% of each turn category
data set for training the classifier, and adopt 1, 3, and 5 turns
from the corresponding testing set for testing. The number of
training turns per drivers for right turns without stop events
is 23, for right turns with stop events is 36, and for left
turns with/without stop events is 40 turns. We observe that
our system can achieve the accuracy of 95.33% among 12
drivers on right turns without stop events when using only
30% turn data (i.e., 6 turns/driver) for training and only 1 turn
for testing. As the size of the training or the number of turns
for testing increases, the performance of the system improves
as well. When having 70% turn data (i.e., 16 turns/driver)
for training and 5 turns for testing, we can achieve 100%
accuracy among 12 drivers for right turns without stop events.
The results indicate that our system can achieve a very good
accuracy with limited size of training and turns for testing in
identifying different drivers, which ensures the convenience
for usage on smartphones.

Impact of Different Segments of a Turn. In this section,
we analyze the driver identification results in terms of the
different segments of a turn. Figure 12 shows the system
performance on four different types turns (i.e., right turns
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without stop event (R/), right turns with stop events (R2),
left turns without stop events (LI), and left turns with stop
events (L2)). All these results are calculated using 70% of the
data set for training and only | turn for testing. We observe
that on average, the results corresponding to before/after-
turn stages are worse than the during-turn stage. Based on
our experiments, the reason is that the driver can encounter
more dynamic driving events before/after he performs the turn.
While during the turn, the driver is not usually encountering
any specific events. Those results show that the segments
during a turn is more suitable for driver identification.

Impact of Different Types of Cars. We further analyze
drivers’ data from two different sedans (i.e., Dodge and
Ford) to demonstrate that our system is car-independent. In
particular, data collected from one care is used for training
and 1, 3, and 5 random turns from the data set collected from
second car are chosen for testing. As shown in Figure 12,
the accuracy for classifying these two drivers is 85%, 87.5%
and 92.5% respectively. This result shows that our system
can identify different drivers with good accuracy even though
their data for training and testing is coming from different
cars, which suggests that our driver identification system is
independent of vehicle types.

IX. CONCLUSION

This paper presents a low-cost and robust solution for identi-
fying drivers using smartphones. Different from existing work
using general driving behaviors, we focus on using drivers’
turning behavior, which is the most complicated behavior on
the road, to facilitate accurate driver identification with low
training effort. We classify turns into different categories by
considering the turns orientations and stop events. Further-
more, based on our extensive study of turning behaviors, we
design the fine-grained segmentation to ensure the system
can capture the distinct turning behaviors of different drivers
under different traffic conditions. By analyzing the sensor
data in each fine-grained segment, we determine the turning
behavior related features and develop a Gradient boosting
tree (GBT) based classifier for driver identification. Extensive
experiments with more than 2800 turns collected from 12
drivers demonstrate that our system can identify different
drivers with high accuracy and low false-positive rate under
various real driving scenarios.
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