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Squirming in a viscous fluid enclosed by a Brinkman medium
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Cell motility plays important roles in a range of biological processes, such as reproduction and infections.
Studies have hypothesized that the ulcer-causing bacterium Helicobacter pylori invades the gastric mucus
layer lining the stomach by locally turning nearby gel into sol, thereby enhancing its locomotion through the
biological barrier. In this work, we present a minimal theoretical model to investigate how heterogeneity created
by a swimmer affects its own locomotion. As a generic locomotion model, we consider the swimming of a
spherical squirmer in a purely viscous fluid pocket (representing the liquified or degelled region) surrounded
by a Brinkman porous medium (representing the mucus gel). The use of the squirmer model enables an exact,
analytical solution to this hydrodynamic problem.We obtain analytical expressions for the swimming speed, flow
field, and power dissipation of the swimmer. Depending on the details of surface velocities and fluid properties,
our results reveal the existence of a minimum threshold size of mucus gel that a swimmer needs to liquify in
order to gain any enhancement in swimming speed. The threshold size can be as much as approximately 30% of
the swimmer size. We contrast these predictions with results from previous models and highlight the significant
role played by the details of surface actuations. In addition to their biological implications, these results could
also inform the design of artificial microswimmers that can penetrate into biological gels for more effective drug
delivery.
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I. INTRODUCTION

Locomotion of microorganisms plays important roles in
a wide range of biological processes, from swimming of
spermatozoa in reproduction [1] to bacterial foraging and
infections [2,3]. Many microorganisms use one or more
appendages, called flagella and cilia, for propulsion [4,5].
Some eukaryotic cells swim by beating their flexible flagella,
which is caused by the action of molecular motors within
the flagellum. Ciliated microorganisms (e.g., Paramecium and
Volvox [6]) are covered by arrays of cilia on their surfaces,
which beat in coordinated manners to generate propulsion.
Bacterial cells, on the other hand, utilize rotary motors em-
bedded in the cell walls to rotate their passive, rigid helical
flagella for swimming [4,7]. Taylor pioneered the hydrody-
namic analysis of swimming microorganisms by modeling
flagellar swimming of a spermatozoon as a waving sheet in
Stokes flows [8]. The spherical squirmer model by Lighthill
and Blake [9,10] for ciliary propulsion has also gained pop-
ularity as a generic locomotion model for different types of
swimmers [11]. Extensive hydrodynamic analyses of different
microorganisms in the past several decades have improved our

general understanding of low-Reynolds-number locomotion
[12–14], which has also informed the design of artificial mi-
croswimmers [15–18]. These synthetics possess vast potential
for biomedical applications such as microsurgery and drug
delivery [19–21].

Both biological and artificial microswimmers often need
to traverse heterogenous biological environments with vastly
varying properties. The capability to maintain robust loco-
motive capabilities across different media represents a major
achievement of biological evolution and is essential for practi-
cal biomedical applications of artificial microwimmers. Inter-
estingly, studies have hypothesized that some bacteria actively
create heterogeneous geometries to enhance their locomotion.
These include the local depletion of polymer concentration
around rotating flagella of the bacterium Escherichia coli [22],
and the invasion of the ulcer-causing bacterium Helicobacter
pylori into the gastric mucus layer via local alternation of the
surrounding mucus gel [23,24]. In this work, we focus on the
latter example and consider a simple model to elucidate how
heterogeneity created by the swimmer affects its propulsion
performance. We also discuss the implications of our results
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on the proposed mechanism of enhanced motility of H. pylori
and the design of artificial microswimmers for drug delivery.

Different biological barriers defend the human body
against the invasion of pathogens. These barriers include
the mucus layers adherent to the epithelial surfaces of the
stomach and intestinal tract, which hinder the penetration
of pathogens into the host’s tissues [25]. The mucus layer
is a gel under acidic condition in the stomach, making it
difficult for pathogens to penetrate. However, bacteria H.
pylori have developed strategies to overcome the mucus bar-
rier. The bacterium releases the urease enzyme to catalyze
the hydrolysis of urea, which generates ammonia to locally
neutralize the acidic environment. This local increase in pH
induces a transition of the surrounding mucus from gel to
sol [23,24]. Such a degelling process allows the bacterium to
swim in a liquefied region (a fluid pocket) encompassed by
the mucus gel. The enhanced motility of the bacterium in the
liquefied or degelled region is hypothesized to be a plausible
mechanism for H. pylori to move through the mucus barrier
and cause infections that affect half of the world’s population
[26,27]. As a remark, these mucus barriers not only defend
against invading pathogens but also drug carriers. The latter
presents a major obstacle for more effective drug delivery.
Inspired by the strategy employed by H. pylori to swim
through the mucus barrier, artificial microswimmers with
surface-immobilized urease have been developed to penetrate
biological gels [28]. This biomimetic approach demonstrated
the possibility to engineer microparticles that can actively
modify their surrounding environment for enhanced mobility
and thus more efficient drug delivery systems.

Mirbagheri and Fu [29] pioneered the theoretical analy-
sis of the motility of H. pylori in the gastric mucus layer.
They employed a two-dimensional waving sheet model to
investigate the relation between the swimming speed and the
size of the degelled region. The degelled region around the
swimmer is modeled as a Newtonian fluid, which is bounded
by the mucus gel, modeled as a Brinkman porous medium.
Their analysis found that the size of the degelled region
should be large relative to the size of the swimmer, for a self-
consistent solution between the swimming problem and the
mass transport of ammonia. More recently, Reigh and Lauga
[30] presented a three-dimensional squirmer model swimming
in a low-viscosity Newtonian fluid (degelled region), which
is enclosed by another Newtonian fluid of a higher viscosity
(mucus gel). An exact, analytical solution was obtained to this
two-fluid problem, which accounts for the three-dimensional
geometry and finite size of the swimmer. However, while it
is hypothesized that H. pylori can enhance its locomotion
by liquifying its surrounding medium, this two-fluid model
for a squirmer does not predict an enhanced speed when the
squirmer is immersed in the degelled region, regardless of the
size of the degelled region. In this paper, we will demonstrate
that by accounting for the porous structure of the mucus gel,
we find swimming characteristics not observed in previous
models. Our results generate a physical picture that is consis-
tent with the benefits of degelation for enhanced locomotion.

This paper is organized as follows. We present the math-
ematical formulation of the problem in Sec. II, where the
squirmer model (Sec. II A) and solutions to the governing
equations in the liquified region and mucus gel (Sec. II B) are

Swimmer

Viscous
fluid

Brinkman
medium

a
b

θ

U

(degelled region)

FIG. 1. Setup of a minimal model for a spherical swimmer in
a viscous solution (representing the liquified or degelled region)
enclosed by a Brinkman porous medium (representing the mucus
gel). The swimmer of radius a propels at a speed U via a distribution
of surface velocities. The boundary of the degelled region is at a
distance b from the center of the swimmer, with λ = b/a.

formulated. In Sec. III, we then calculate the swimming speed
(Sec. III A), flow field, and power dissipation (Sec. III B) of
the swimmer. We then compare these results with those of
previous models and discuss their implications, before some
concluding remarks in Sec. IV.

II. FORMULATION

A. The squirmer model

We model the swimmer as a spherical squirmer of radius
a (Fig. 1). The squirmer model was first studied by Lighthill
and Blake [9,10] as an idealized model for ciliary propulsion.
The beating of cilia is represented by surface velocities on the
spherical cell body. We follow this approach and consider a
squirmer with prescribed, time-independent velocities decom-
posed into a series of the form at the surface (r = a) as [11]

usq =
∞∑
n=1

BnVn(cos θ )eθ , (1)

whereVn(cos θ ) = −2P1
n (cos θ )/[n(n + 1)] and P1

n (cos θ ) are
the associated Legendre polynomials of the first kind, with θ

being the polar angle measured with the axis of symmetry and
r being the distance from the center of the squirmer (Fig. 1).
The coefficients Bn are related to Stokes singularity solutions.
In Stokes flow, the B1 mode corresponds to a source dipole and
is the only mode contributing to swimming. The B2 mode cor-
responds to a Stokes force dipole and is the slowest decaying
spatial mode in the far field. Therefore, often only the first two
modes, B1 and B2, of the series are considered in locomotion
problems [11] and their relative signs can be adjusted to
represent different types of swimmers: B2/B1 > 0 represents a
puller, which generates thrust from its front end (e.g., the alga
Chlamydomonas), whereas B2/B1 < 0 represents a pusher,
which generates propulsion from its rear part (e.g., the bac-
terium Escherichia coli), and the B2/B1 = 0 case corresponds
to a neutral squirmer. We will therefore focus our analysis
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on the first two swimming modes and set Bn = 0 for n > 2.
For its simplicity and elegance, the squirmer model has been
extensively employed to probe different complexities that
can arise in locomotion in practical and biological scenarios
[11], including nutrient uptake [31–34], confinement [35–42]
and inertial [43–45] effects, complex rheology [46–56], and
collective behaviors [57–62], among others [63–66].

We consider in the main text squirmers with tangential
surface velocities described by Eq. (1), which are more com-
monly studied in the literature [11]. Results on squirmers with
radial surface velocities can be obtained in the same manner
and are presented in Appendix A for comparison with the
tangential case.

B. The Stokes-Brinkman model

The degelled region immediately adjacent to the squirmer
is modeled as a purely viscous fluid, governed by the Stokes
equation,

−∇pS + μ∇2uS = 0, (2)

for an incompressible flow (∇ · uS = 0), where μ is the fluid
viscosity, and uS and pS represent the velocity and pressure
fields in the degelled region, the annulus a � r � b. This fluid
pocket is surrounded by the mucus gel, which is modeled as
a Brinkman medium [29,67] and an incompressible flow (∇ ·
uB = 0). The Brinkman equation

−∇pB + μ∇2uB − μα2uB = 0 (3)

includes the additional hydrodynamic resistance −μα2uB due
to the network of stationary obstacles. Here, α−2 is the
permeability, and uB and pB are the average velocity and
pressure fields, respectively. The Brinkman equation was in-
troduced as a phenomenological model, but its validity at low
particle volume fraction was established by proper averaging
methods [68–71]. Even for moderately concentrated porous
media, the Brinkman equation is still effective in capturing the
qualitative behavior [72]. This effective medium approach via
the Brinkman equation has been applied to study locomotion
problems in porous media in recent studies [29,73–78].

We nondimensionalize the problem as follows: Velocities
are scaled by the first mode B1, and lengths are scaled by
the squirmer radius a. The dimensionless size of the degelled
region is hence characterized by λ = b/a, while stresses and
pressure are scaled by μB1/a. The dimensionless surface
velocities in Eq. (1) hence become

ũsq =
∞∑
n=1

βnVn(cos θ )eθ , (4)

where the ratio βn = Bn/B1 and we focus on only the first two
swimming modes by setting βn = 0 for n > 2.

In dimensionless forms, the Stokes equation, which gov-
erns the flow in the degelled region (1 < r̃ < λ), is given by

−∇ p̃S + ∇2ũS = 0, (5)

and the Brinkman equation, which governs the flow in the
mucus gel (r̃ > λ), is given by

−∇ p̃B + ∇2ũB − δ2ũB = 0. (6)

Here δ = aα is the dimensionless resistance in the Brinkman
medium, which depends on the ratio of the squirmer radius a
to the Brinkman screening length α−1. Hereafter, we drop the
tildes for simplicity and refer only to dimensionless variables
unless otherwise stated.

In the laboratory frame, the flow velocity in the far field
decays as

uB(r → ∞) = 0, (7)

and on the squirmer surface as

uS (r = 1) = U + usq, (8)

where U is the unknown swimming speed of the squirmer due
to the squirming motion usq in Eq. (4).

At the interface between the viscous fluid and the
Brinkman medium, r = λ, we maintain the continuity of the
velocity and traction [29,79,80]

uS = uB, TS · n = TB · n, (9)

where T j = −pjI + γ̇ j , with j = S,B denoting the stress in
the Stokes and Brinkman domains respectively, and n and γ̇ ,
respectively, denote the unit normal vector and rate-of-strain
tensor.

The solution to the Stokes equation, Eq. (5), for this
axisymmetric problem can be obtained by a stream function
formulation or directly given by Lamb’s general solution
[30,81] for the velocity field uS = uSer + vSeθ as

uS =
∞∑
n=0

(
Onr

n+1 + Qnr
n−1 + Rn

rn
+ Sn

rn+2

)
Pn(cos θ ), (10)

vS =
∞∑
n=1

(
− n + 3

2
Onr

n+1 − n + 1

2
Qnr

n−1

+ n − 2

2

Rn

rn
+ n

2

Sn
rn+2

)
Vn(cos θ ), (11)

where On, Qn, Rn, and Sn are unknown coefficients to be
determined by boundary conditions.

We obtain the solution to the Brinkman equation, Eq. (6),
by the stream function formulation, where

uB = 1

r2 sin θ

∂ψB

∂θ
, vB = − 1

r sin θ

∂ψB

∂r
· (12)

The stream function ψB can be obtained via separation of
variables as [77,82,83]

ψB = sin θ

∞∑
n=0

Fn(r)P
1
n (cos θ ), (13)

where

Fn(r) = Tnr
−n +Vnr

n+1

+ r1/2

δ2
[ZnIn+1/2(δr) +WnKn+1/2(δr)], (14)

and In+1/2(δr) and Kn+1/2(δr) are, respectively, the modified
Bessel functions of the first and second kinds. The flow in
the far field decays to zero in the laboratory frame (7), which
demands the growing terms in Eq. (14) to vanish, i.e., Vn =
Zn = 0 for n � 1. The remaining coefficients, Tn and Wn,
combined withOn,Qn, Rn, and Sn from the Stokes solutions in
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FIG. 2. (a) Swimming speed of a squirmerU with tangential surface velocities, normalized by its speed in the Stokes limitUS , as a function
of the size of the degelled region λ at different values of resistance δ. Inset: for a given resistance (shown results for δ = 4), the swimming
speed displays a local minimum at the critical size of the degelled region λC . The swimmer needs to liquify a minimum threshold size λT in
order to gain any enhancement in speed. (b) The value of the critical size of the degelled region λC (red dotted line, right axis) and the threshold
size λT (blue line, left axis) as a function of resistance δ.

Eqs. (10) and (11) to form a total of six unknowns, which can
be obtained by solving a system of six equations given by the
boundary conditions at the surface of the squirmer [Eq. (8)]
and at the interface between the Stokes and Brinkman do-
mains [Eq. (9)].

Upon applying the boundary conditions, we obtain the
velocity and pressure fields for a two-mode squirmer, usq =
[sin θ + (β2/2) sin 2θ ]eθ , in the Stokes domain (degelled re-
gion, 1 < r < λ) as

uS =
(
O1r

2 + Q1 + R1

r
+ S1

r3
+U

)
cos θ

+ β2

4

(
O2r

3 + Q2r + R2

r2
+ S2

r4

)
(1 + 3 cos 2θ ), (15)

vS =
(

−2O1r
2 − Q1 − R1

2r
+ S1

2r3
−U

)
sin θ

+ β2

2

(
−5

2
O2r

3 − 3

2
Q2r + S2

r4

)
sin 2θ, (16)

pS =
(
10O1r + R1

r2

)
cos θ

+ β2

(
7

4
O2r

2 + R2

2r3

)
(1 + 3 cos 2θ ), (17)

where the expressions for coefficients On, Qn, Rn, and Sn for
n = 1, 2 are given in Appendix B. The corresponding velocity
and pressure fields in the Brinkman domain (mucus gel, r >

λ) are given by

uB =
[
2T1
r3

+
√
2πW1e−rδ (1 + rδ)

r3δ7/2

]
cos θ

+ β2

[
T2
2r4

+
√
2πW2e−rδ (3 + 3rδ + r2δ2)

4r4δ9/2

]

× (1 + 3 cos 2θ ), (18)

vB =
[
T1
r3

+
√
2πW1e−rδ (1 + rδ + r2δ2)

2r3δ7/2

]
sin θ

+ β2

[
T2
r4

+
√
2πW2e−rδ (6 + 6rδ + 3r2δ2 + r3δ3)

4r4δ9/2

]

× sin 2θ, (19)

pB = T1δ2

r2
cos θ + β2

T2δ2

6r3
(1 + 3 cos 2θ ), (20)

where the expressions for coefficients Tn andWn for n = 1, 2
are given in Appendix B. The above flow fields are determined
up to the unknown swimming speed U along the axis of
symmetry.

III. RESULTS AND DISCUSSION

In this section, we employ the solutions obtained in the
Stokes [Eqs. (15)–(17)] and Brinkman [Eqs. (18)–(20)] do-
mains to calculate the unknown swimming speed of the
squirmer U in Sec. III A and its surrounding flow field u
and power dissipation P in Sec. III B. We will contrast our
findings with results from previous studies [29,30] and discuss
their implications in terms of cell motility and design of
artificial microswimmers.

A. Propulsion speed

To calculate the unknown swimming speed U , we enforce
the force-free condition on the squirmer,∫

S
TS · n dS = 0, (21)

where the stress on the squirmer surface TS are determined
by the velocity and pressure fields in Eqs. (15)–(20). The
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swimming speed is obtained as

U = US − 2δ2

B − δ2(λ2 − 1)(3 + λδ)

B , (22)

where

B = 3

[
(9 + 9λδ + λ2δ2)λ3 + δ2

5
(λ5 − 1)(1 + λδ)

]
. (23)

We first reduce our results to previously known limits. In the
limit of δ = 0 (or λ → ∞), the outer region becomes a purely
viscous fluid, and hence the swimming speed reduces to that
in Stokes flow [9,10], i.e., US = 2/3. In the limit λ = 1, the
third term on the right-hand side of Eq. (22) vanishes, and the
expression reduces to the swimming speed of a squirmer in
a Brinkman medium [73,77],U = US[1 − δ2/(9 + 9δ + δ2)].
Finally, we consider the high resistance limit δ → ∞, where
the expression reduces to U = (2λ5 − 5λ2 + 3)/3(λ5 − 1),
agreeing with recent results obtained for a rigidly bounded
flow [30].

It is clear from Eq. (22) that, for any finite size of the
degelled region (λ > 1), the swimming speed of a squirmer
with tangential surface velocities is always smaller than the
speed in a purely viscous fluid (U/US < 1). Owning to the
third term in the right-hand side of Eq. (22), the swimming
speed varies nonmonotonically with the size of the degelled
region [Fig. 2(a)]. As the degelled region expands (increasing
λ), the swimming speed initially decreases for small λ, attain-
ing a minimum speed at a critical size of the degelled region
λC [see Fig. 2(a) inset for schematic illustration and Fig. 2(b)
for the value]. As the size of the degelled region continues to
expand, the speed of the swimmer increases and attains values
higher than the speed when there is no degelation (λ = 1)
when λ > λT [see Fig. 2(a) inset]. This nonmonotonic behav-
ior implies that as a biological or artificial swimmer attempts
to degel the mucus layer to enhance its locomotion, there
exists a minimum threshold of the size of the degelled region,
λT , that the swimmer needs to surpass in order to achieve any
enhancement in swimming speed. Below this threshold, the
degelation could indeed hinder the swimmer’s locomotion.
In Fig. 2(b), we plot the magnitude of this threshold λT at
varying values of δ; for δ = 4, a swimmer needs to liquify as
much as approximately 30% of its swimmer size to gain any
enhancement in speed by degelation.

We contrast the above results with those by previous mod-
els [29,30]. While nonmonotonic variations of the propulsion
speed were observed in previous models, they occur in quali-
tatively different manners. According to the results of a two-
dimensional swimming sheet [29], the model predicts that
(1) any size of confinement by the Brinkman medium leads
to higher swimming speeds compared with that in a purely
viscous fluid (U/US > 1), (2) local maxima instead of local
minima in propulsion speed occur as the size of the degelled
region varies, and (3) as the size of the degelled region
increases beyond a threshold, the swimmer will have a lower
speed compared with the case without any degelation (λ =
1). We argue that these qualitatively different characteristics
between the waving sheet and the spherical squirmer models
do not stem from the difference in spatial dimensionality
of the setups. Instead, we attribute the difference to details
of the swimming gaits. As a demonstration, we show that

FIG. 3. Swimming speed U of a squirmer with radial surface
velocities, normalized by its speed in the Stokes limit US , as a
function of the size of of the degelled region λwith different values of
resistance δ. The swimming speed displays local maxima as the size
of the degelled region varies. In contrast to the case of a squirmer
with tangential surface velocities (Fig. 2), as the size of the degelled
region increases beyond certain thresholds, the swimmer experiences
speed reduction compared with the case without any degelation
(λ = 1).

when radial surface velocities are prescribed on the spherical
squirmer surface (see Appendix A), we obtain swimming
characteristics similar to those of the waving sheet model
described above (Fig. 3).

The aforementioned results suggest that the details of
swimming gaits could lead to different biological implications
and design principles for artificial swimmers in terms of
the benefits of degelation. While a squirmer with tangential
surface velocities should strive to degel as much as possi-
ble (at least surpass the minimum threshold) to enhance its
propulsion speed, a squirmer with radial surface velocities
should only degel within a certain range beyond which a speed
reduction occurs (Fig. 3). Reigh and Lauga [30] considered a
spherical squirmer model as well but they modeled the outer
mucus gel as a fluid with a higher viscosity, instead of a porous
medium with additional resistance. While nonmonotonic vari-
ations in swimming also occur, their model predicts that the
swimmer does not gain any speed enhancement from degela-
tion, regardless of the size of the degelled region. Therefore,
by modeling the mucus gel with additional resistance in a
Brinkman medium, predictions from our model provide a
plausible physical picture consistent with the strategy em-
ployed by H. pylori to enhance locomotion by liquifying its
surrounding mucus gel.

B. Flow decay and power dissipation

The flow surrounding the swimmer is obtained by substi-
tuting the resultant propulsion speed, Eq. (22), into the solu-
tion in the Stokes [Eqs. (15)–(17)] and Brinkman [Eqs. (18)–
(20)] domains. We examine the characteristics of flow de-
cay in this Stokes-Brinkman system for a neutral squirmer
[β2 = 0, Fig. 4(a)] and a pusher-puller [β2 = ±1, Fig. 4(b)].
As a comparison, we display a homogenous case where the
resistance in the Brinkman medium vanishes (δ = 0, dashed
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FIG. 4. The decay of the magnitude of flow velocity |u| around a (a) neutral squirmer (β2 = 0) and (b) a pusher-puller (β2 = ±1) as a
function of distance from the origin r along θ = π/2, with various values of resistance δ. The Brinkman medium (r > λ) is shaded in gray;
here λ = 3. The dash-dotted lines representing different algebraic decay scalings are shown for comparison.

line). In such a purely viscous medium, the flow around a
neutral squirmer decays as 1/r3 (potential dipole), whereas
the flow around a pusher-puller decays as 1/r2 (Stokes force
dipole). The presence of a Brinkman medium surrounding the
viscous region alters the rate of flow decay differently for a
neutral squirmer than a pusher-puller. For a neutral squirmer,
while the presence of additional resistance in the Brinkman
medium further reduces the magnitude of flow in the far field,
the decay rate remains the same in the Brinkman medium as
1/r3 in the Stokes case. In contrast, the flow around a pusher-
puller decays much more rapidly as 1/r4 in the Brinkman
medium than in the Stokes case (1/r2). In the limit λ = 1,
the swimmers are immersed in a Brinkman medium without
the presence of a purely viscous regime and the rates of flow
decay remain the same as 1/r3 for a neutral squirmer and 1/r4

for a pusher-puller [77].
Next we consider the energetic cost of swimming. Since

the work done by the surface squirming motion is equal to the
power dissipation in the fluid, we calculate the power P as

P = −
∫

TN · n · u dS. (24)

Upon calculating the surface integral using the flow field given
by Eqs. (15)–(17), the power dissipation for a neutral squirmer
is given by

P = 16π

3

[
1 + δ2(1 + λδ)

2B

]
, (25)

where B is given by Eq. (23). The expression for a two-mode
squirmer can be obtained in the same manner. We reduce the
above result to previously known limits. In the limit δ = 0
(or λ → ∞), we recover the power dissipation in a purely
viscous medium [9,10],PS = 16π/3. In the other limit λ = 1,
we obtain the power dissipation in a Brinkman medium [77],
PB = 8π (18 + 18δ + 3δ2 + δ3)/3(9 + 9δ + δ2).

As a remark, the power dissipation of a swimmer in the
degelled region falls betweenPS < P < PB for any resistance
δ > 0 and size of the degelled region λ > 1. It is straight-
forward to show that ∂P/∂λ < 0, so the power dissipation
monotonically decreases from the Brinkman limit PB to the

Stokes limit PS as the size of the degelled region λ increases
from unity towards infinity.

IV. CONCLUDING REMARKS

In this work, we use a spherical squirmer as a generic loco-
motion model to investigate its swimming characteristics in a
viscous fluid surrounded by a Brinkman medium. The setup
represents a minimal model for the hypothesized strategy
employed by bacteria H. pylori or artificial microswimmers
to enhance locomotion by liquifying their surrounding mucus
gel. By modeling the liquefied region as a viscous fluid and
the mucus gel as a Brinkman medium, the current model
possesses swimming characteristics consistent with the hy-
pothesis. In particular, for a squirmer with tangential surface
velocities, we have revealed the existence of a minimum
threshold size of mucus gel that a swimmer needs to liquify
in order to gain any enhancement in propulsion speed. We
have also demonstrated that these characteristics can vary
significantly depending on the details of surface velocities; a
squirmer with radial surface velocities displays qualitatively
different characteristics. These different characteristics lead to
interesting implications in terms of understanding the strategy
bacteria H. pylori employe to invade biological barriers and
the design of artificial microswimmers to perform the same
function for more effective drug delivery.

We remark on the limitations and future direction of the
current work. As a model for the enhanced locomotion by
degelation, we assume the presence of the degelled region a
priori and consider only the hydrodynamic problem in this
work; namely, we investigate how the swimming performance
depends on the size of the degelled region and fluid properties.
For a more complete model, as sketched out by Mirbagheri
and Fu [29], the hydrodynamic problem should be coupled
to the mass transport problem of ammonia generated by the
swimmer. The coupling between the two problems allows the
determination of self-consistent values of swimming speed
and size of the degelled region. Building on the pioneering
work by Mirbagheri and Fu [29], the analytical solution
based on a spherical squirmer in this work can be utilized in
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conjunction with the advection-diffusion problem by Acrivos
and Taylor [84] to construct a more geometrically consistent
model for the degelation process. Analysis along this direc-
tion is currently under way and will be reported in a future
work.
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APPENDIX A: SQUIRMING WITH RADIAL
SURFACE VELOCITIES

Although squirmers with tangential surface velocities are
more commonly studied in the literature [11], we present
results on squirming with radial surface velocities in this
Appendix for completeness. Following the formulation by
Lighthill and Blake [9,10], the radial surface velocities
on a squirmer (r = a) can be expressed in dimensional

form as

usq =
∞∑
n=1

AnPn(cos θ )er, (A1)

where An and Pn(cos θ ) represent, respectively, a radial mode
of surface velocity and a Legendre polynomial. Following the
same solution method outlined previously but with the bound-
ary condition for radial surface velocity given in Eq. (A1), we
obtain the propulsion speed

U = −
[
1

3
+ 2δ2

B + δ2(λ2 − 1)(3 + λδ)

B

]
A1, (A2)

where B is given by Eq. (23). In the limit of δ = 0 (or λ →
∞), we recover the results in Stokes flow [9,10], i.e., U =
−A1/3. In the limit λ = 1, we recover the results in Brinkman
flow [73],U = −(3 + 3δ + δ2)A1/(9 + 9δ + δ2).

Our results on propulsion speed for λ > 1 and δ > 0 are
shown in Fig. 3. In contrast to the case with tangential surface
velocities [Fig. 2(a)], local maxima in propulsion speed occurs
as the size of the degelled region increases, leading to different
biological implications, as discussed in Sec. III A.

APPENDIX B: COEFFICIENTS IN THE FLOW FIELDS

The expressions for coefficients On, Qn, Rn, and Sn for n = 1, 2 in Eqs. (15)–(20) are given in this Appendix.
The coefficients associated with the B1 mode are given by

O1 = 1

C1
[6δ3λ − 2δ3λ3 − 4δ3 − 6δ2λ2 + 6δ2 + (3δ3λ3 − 3δ3λ + 9δ2λ2 − 3δ2)U ], (B1)

Q1 = 1

C1
[6δ3λ5 − 10δ3λ3 + 4δ3 + 30δ2λ4 − 30δ2λ2 + 120δλ3

+ (9δ2 − 4δ3λ6 − 5δ3λ3 + 9δ3λ − 24δ2λ5 − 15δ2λ2 − 180δλ4 − 180λ3)U ], (B2)

R1 = 1

C1
[10δ3λ3 − 4δ3λ6 − 6δ3λ − 24δ2λ5 + 30δ2λ2 − 6δ2 − 180δλ4 − 180λ3

+ (6δ3λ6 − 6δ3λ + 36δ2λ5 − 6δ2 + 270δλ4 + 270λ3)U ], (B3)

S1 = 1

C1
[4δ3λ6 − 6δ3λ5 + 2δ3λ3 + 24δ2λ5 − 30δ2λ4 + 6δ2λ2 + 180δλ4 − 120δλ3 + 180λ3

+ (2δ3λ3 − 2δ3λ6 − 12δ2λ5 + 6δ2λ2 − 90δλ4 − 90λ3)U ], (B4)

T1 = 1

δ2C1
[60δ3λ4 − 24δ3λ6 − 30δ3λ3 − 6δ3λ − 84δ2λ5 + 60δ2λ3 + 30δ2λ2 − 6δ2 − 180δλ4 − 180λ3

+ (36δ3λ6 − 30δ3λ4 − 6δ3λ + 126δ2λ5 − 30δ2λ3 − 6δ2 + 270δλ4 + 270λ3)U ], (B5)

W1 = eδλ

C1

√
2δ

π
[30δ3λ3 − 6δ3λ5 − 30δ3λ2 + 6δ3 + 180δλ3 + (9δ3λ5 − 15δ3λ3 + 6δ3 − 270δλ3)U ], (B6)

C1 = 4δ3λ6 − 9δ3λ5 + 10δ3λ3 − 9δ3λ + 4δ3 + 24δ2λ5 − 45δ2λ4 + 30δ2λ2 − 9δ2 + 180δλ4 − 180δλ3 + 180λ3. (B7)

The coefficients associated with the B2 mode read

O2 = 1

C2
(10δ4λ3 − 6δ4λ5 − 4δ4 − 30δ3λ4 + 30δ3λ2 − 30δ2λ3 + 30δ2λ), (B8)

Q2 = 1

C2
(10δ4λ7 − 14δ4λ5 + 4δ4 + 70δ3λ6 − 70δ3λ4 + 210δ2λ5 − 70δ2λ3), (B9)
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R2 = 1

C2
(14δ4λ5 − 4δ4λ10 − 10δ4λ3 − 40δ3λ9 + 70δ3λ4 − 30δ3λ2 − 390δ2λ8 + 70δ2λ3 − 30δ2λ − 1050δλ7 − 1050λ6),

(B10)

S2 = 1

C2
(4δ4λ10 − 10δ4λ7 + 6δ4λ5 + 40δ3λ9 − 70δ3λ6 + 30δ3λ4 + 390δ2λ8 − 210δ2λ5 + 30δ2λ3 + 1050δλ7 + 1050λ6),

(B11)

T2 = 1

δ2C2
(105δ4λ8 − 75δ4λ10 − 30δ4λ3 − 435δ3λ9 + 315δ3λ7 + 210δ3λ4 − 90δ3λ2 − 1485δ2λ8 + 315δ2λ6

+ 210δ2λ3 − 90δ2λ − 3150δλ7 − 3150λ6), (B12)

W2 = eδλ

C2

√
2δ

π
(70δ4λ6 − 30δ4λ8 − 70δ4λ3 + 30δ4λ + 1050δ2λ6), (B13)

C2 = 4δ4λ10 − 25δ4λ7 + 42δ4λ5 − 25δ4λ3 + 4δ4 + 40δ3λ9 − 175δ3λ6 + 210δ3λ4 − 75δ3λ2 + 390δ2λ8

− 525δ2λ5 + 210δ2λ3 − 75δ2λ + 1050δλ7 + 1050λ6. (B14)
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