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ABSTRACT
Large-batch training approaches have enabled researchers to utilize
distributed processing and greatly accelerate deep neural networks
training. However, there are three problems in current large-batch
research: (1) Although RNN approaches like LSTMhave beenwidely
used in many applications, current large-batch research is princi-
pally focused on CNNs. (2) Even for CNNs, there is no automated
technique for extending the batch size beyond 8K. (3) To keep the
variance in the gradient expectation constant, theory suggests that
a Sqrt Scaling scheme should be used in large-batch training. Unfor-
tunately, there are not many successful applications. In this paper,
we propose Dynamic Adaptive-Tuning Engine (DATE) for better
large-batch training. DATE achieves a 5.3x average speedup over the
baselines for four LSTM-based applications on the same hardware.
We finish the ImageNet training with ResNet-50 in two minutes on
1024 v3 TPUs (76.7% top-1 accuracy), which is the fastest version
as of June of 2019.
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1 INTRODUCTION
Speeding up Deep Neural Network (DNN) training is important
because it can improve the productivity of machine learning re-
searchers and developers. Since the acceleration of training through
exploiting model parallelism is limited, current research principally
focuses on data parallelism. Specifically, a large-batch training ap-
proach has enabled us to successfully exploit large-scale distributed
processing [1, 13, 20, 27, 35, 47, 49]. For example, by scaling the
batch size from 256 to 32K [48], researchers are able to reduce
the training time of ResNet50/ImageNet from 29 hours [14] to 2.2
minutes [47]. However, there are three problems with current large-
batch approaches:
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Figure 1: DATE achieves the constant accuracy when we
scale up the batch size without tuning the parameters (learn-
ing rate, weight decay, and momentum). DATE works better
than previous large-batch techniques [13].

• Although RNN techniques like LSTM [15] have been widely
used, the current large-batch study is mostly focused on CNN
applications. On the other hand, adaptive solvers like Adam
[23] do not beat well-tuned Momentum SGD for ImageNet
training. We want to evaluate Adam for large-batch LSTM
training.
• Even for CNN applications, significant hyper-parameter tun-
ing is required to increase the batch size beyond 8K with no
loss in accuracy. For batch sizes lower than 8K, linear scaling
usually works well for most applications. However, for batch
sizes beyond 8K, even solvers like LARS [48] require users
to manually tune the hyper-parameters (including learning
rate, warmup, weight decay, and momentum).
• Prior successful large-batch training relies on a linear scaling
scheme [13]. However, to keep the variance in the gradient
expectation constant, theory [24] suggests a Sqrt Scaling
scheme should be used. Currently there are not many suc-
cessful large-batch applications using Sqrt Scaling. Our goal
is to show how to make Sqrt Scaling effective in practice.

To solve these problems, we propose a new approach called Dy-
namic Adaptive-Tuning Engine (DATE). DATE enables Sqrt Scaling
to perform well in practice and as a result we achieve a much better
performance than the previous Linear Scaling learning rate scheme.
DATE also includes other techniques like efficient warming-up, auto
LR (learning rate) decay, and runtime LR adaptive updating. For the
GNMT application (Seq2Seq) with LSTM, we are able to scale the
batch size by a factor of 16 without losing accuracy and without
tuning the hyper-parameters mentioned above. For the PTB dataset
with LSTM, we are able to scale the batch size by a factor of 32
without losing accuracy and without tuning the hyper-parameters.
Beyond RNN applications, we also successfully applied DATE in
ImageNet training with ResNet-50. DATE is able to achieve a con-
stant accuracy when we scale the batch size to 32K. DATE works
better than previous large-batch tuning techniques (Figure 1). We
also provide some theoretical explanations for the key techniques
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of DATE. DATE achieves a 5.3× average speedup over the baselines
for 4 LSTM-based applications on the same hardware (Figure 2).
DATE achieves 119% weak scaling efficiency (super-linear speedup)
as we increase the number of TPUv2 chips from 8 to 512. DATE
also achieves a good scaling efficiency for several state-of-the-art
deep learning models on latest TPUv3 chips (Figure 4 - Figure 9).
We finish the ImageNet training with ResNet-50 in two minutes on
1024 v3 TPUs (76.7% top-1 accuracy), which is the fastest version
with 76.5+% accuracy as of June of 2019. We also did not tune the
hyper-parameters.

2.1

2.2

2.3

2.4

Figure 2: The speedups over the baseline, which are achieved
by DATE with different batch sizes on the same hardware.
The leftmost bar is the baseline.

2 BACKGROUND AND RELATEDWORK
2.1 Data-Parallelism Mini-Batch SGD
Let us refer to𝑤 as the DNN weights, 𝑋 as the training data, 𝑛 as
the number of samples in 𝑋 , and 𝑌 as the labels of 𝑋 . Let us also
denote 𝑥𝑖 as a sample of 𝑋 and 𝑙 (𝑥𝑖 , 𝑦𝑖 ,𝑤) as the loss computed

3.1 Tensor Core (figure credit: Jeff Dean’s NIPS’17 talk)

3.2 TPU v2 Pod (figure credit: Jeff Dean’s NIPS’17 talk)

Figure 3: Tensor Core is the most basic building block of the
TPU system. A TPU-v2 Chip has two tensor cores. 16-by-16
TPU-v2 chips connected via 2D torus is a TPU-v2 Pod.

Figure 4: 76.66% weak scaling efficiency.

Figure 5: 84.76% weak scaling efficiency.

by 𝑥𝑖 and its label 𝑦𝑖 (𝑖 ∈ {1, 2, ..., 𝑛}). A typical loss function is
cross-entropy [12]. The goal of DNN training is to minimize the
loss defined in Equation (1).

𝐿(𝑤) = 1
𝑛

∑𝑛

𝑖=1𝑙 (𝑥𝑖 , 𝑦𝑖 ,𝑤) (1)
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Figure 6: 100.05% percent weak scaling efficiency.

Figure 7: 92.82% percent weak scaling efficiency.

Figure 8: 100.08% weak scaling efficiency.

Figure 9: 81.89% weak scaling efficiency.

At the 𝑡-th iteration, we use forward and backward propagation
to get the gradients of weights based on the loss. Then we use the
gradients to update the weights, which is shown in Equation (2):

𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑙 (𝑥𝑖 , 𝑦𝑖 ,𝑤) (2)
where 𝜂 is the learning rate (LR). This method is called as Stochastic
Gradient Descent (SGD). Usually, people do not use a single sample
to compute the loss and the gradients. Instead, they use a batch
of samples at each iteration. Let us refer to the batch of sample at

𝑡-th iteration as 𝐵𝑡 . The size of 𝐵𝑡 is 𝑏. Then we update the weights
based on Equation (3).

𝑤𝑡+1 = 𝑤𝑡 −
𝜂

𝑏

∑
𝑥 ∈𝐵𝑡

∇𝑙 (𝑥,𝑦,𝑤) (3)

This method is called as Mini-Batch SGD. To simplify the notation,
we define the gradient estimator as ∇𝑤𝑡 := 1

𝑏

∑
𝑥 ∈𝐵𝑡
∇𝑙 (𝑥,𝑦,𝑤) and

the updating rule in Equation (4) can be denoted as

𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑤𝑡 (4)

where we use the gradients ∇𝑤𝑡 to update the weights𝑤𝑡 .

2.2 Model Parallelism
2.2.1 Limitation. Due to the data dependency between different
layers in forward propagation and backward propagation, the de-
velopers can not parallelize across different layers. Thus, model
parallelism requires the developers to parallelize within each layer.
In this way, a wider neural network provides a higher parallelism.
However, modern deep learning researchers prefer deep neural
networks to wide neural networks. The reason is that, given the
fixed number of parameters, the deep model can achieve better
results than the wide model. For example, a typical layer of BERT
(the state-of-the-art NLP model) [8] is a 1024-by-1024 matrix. The
widest layer of BERT is a 1024-by-4096 matrix. If we disable the
data parallelism (i.e. set batch size as one), we can not even make
full use of the computational power of one GPU or CPU chip to
accelerate a 1024x1024x1024 matrix multiply.

2.2.2 Work with Data Parallelism. For applications with an ex-
tremely wide model or a large single sample, model parallelism can
work with data parallelism( e.g. Mesh-tensorflow [38]). Assume we
have 𝑃 nodes in this situation, we partition these 𝑃 nodes into 𝐺
groups (e.g.𝐺=256, 𝑃=1024). We use model-parallelism within each
group and data-parallelism across different groups. In this paper,
𝐺 = 𝑃 works well for all of our applications. Thus, we only enable
model parallelism within a single node. We focus on maximizing
the data parallelism (i.e. maximizing the batch size).

2.3 Large-Batch Training Difficulty
Increasing the batch size allows us to scale to more nodes without
reducing the workload on each node. On a modern architecture
like TPUs, reducing the workload often leads to a lower efficiency.
However, when we increase the batch size after a certain point
(e.g. 1024) without a careful optimization scheme, the algorithm
usually suffers from slow convergence. The test accuracy of the
converged solution becomes significantly lower than the baseline
[13, 16, 22, 28]. Keskar et al [22] suggested that there is a general-
ization problem when training with large-batches. The algorithm
usually converges to sharper local minimums, so the test accuracy
will be much lower even when the training accuracy remains high.
For small batches, the training accuracy and test accuracy are closer
to each other. Hoffer et al [16] and Li et al [28] suggests that training
longer will help the algorithm to generalize better and keep the
accuracy higher. On the other hand, Goyal et al [13] can scale the
batch size to 8K without losing accuracy by using a LR scheduling
technique.
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2.4 Large Batch Training Techniques
Whenwe increase the batch size (𝐵), we need to increase the peak LR
to prevent losing accuracy [13]. There are two rules for increasing
the peak LR:

Sqrt Scaling Rule [24]. When we increase the batch size by 𝑘
times, we should increase the LR by

√
𝑘 times to keep the variance

of the gradient estimator constant.
Linear Scaling Rule [24]: When we increase the batch size

by 𝑘 times, we should increase the LR by 𝑘 times based on the
assumption that ∇𝑙 (𝑥,𝑦,𝑤𝑡 ) ≈ ∇𝑙 (𝑥,𝑦,𝑤𝑡+𝑗 ), where 𝑗 < 𝐵.

Warmup Scheme [13] Usually, under linear scaling rule, 𝑘𝜂
is extremely large, which may make the algorithm diverge at the
beginning. Therefore, people set the initial LR 𝜂 to a small value
and increase it gradually to 𝑘𝜂 in a few epochs (e.g. 5 or 10). This
method is called Gradual Warmup Scheme. There is another
method called as Constant Warmup Scheme, which uses a con-
stant small LR during the first a few epochs. Constant warmup
scheme works efficiently for prototyping object detection and seg-
mentation [10], [29]. Goyal et al. [13] showed that gradual warmup
performs better than constant warmup for ResNet-50 training. Bot-
tou et al. [3] showed that there should be an upper bound of LR
regardless of batch size. Our experimental results are in line with
these findings. Chen et al. [4] also used linear scaling LR scheme in
their experiments when they increase the batch size from 1600 to
6400. However, they did not show the accuracy of the small-batch
baseline.

Krizhevsky [24] reported 1 percent loss in accuracy when he in-
creased the the batch size from 128 to 1024. He achieved 56.7% accu-
racy for using a batch size of 1024 in Imagenet trainingwith AlexNet.
Iandola et al. [19] also scaled the batch size to 1K for AlexNet and
GoogLeNet. Li [27] used a batch size of 5120 for ResNet-101 to train
Imagenet dataset on 160 GPUs. Goyal et al. [13] scaled the batch
size to 8K for ImageNet training with ResNet-50. They used data
parallelism to process ResNet-50 model on 256 NVIDIA P100 GPUs
(equal to 32 NVIDIA DGX-1 stations). The LARS algorithm [48]
was proposed to scale the batch size to 32K for ImageNet training.
The LARS algorithm was implemented on 2048 Intel KNL chips and
finished the ImageNet/ResNet-50 training in 14 minutes [49]. The
LARS algorithm was also implemented on TPU-v3 Pod to finish the
ImageNet/ResNet-50 training in 2.2 minutes [47]. Codreanu et al. [5]
scaled DNN training on 1024 SkyLake CPUs and finished ImageNet
training with ResNet50 in 44 minutes. Akiba et al. [1] scaled the
batch size to 32K and finished the ImageNet training with ResNet50
in 15 minutes. However, their baseline’s accuracy was missing. Jia
et al. [20] combined LARS algorithm with mixed-precision training
[33] and finished the ImageNet training with ResNet50 in 8.6 min-
utes. The other related directions include K-FAC [32] and dynamic
batch size [7, 39]. However, there is no auto-tuning technique for
CNN with a batch size beyond 8K. Moreover, there is no existing
autotuning work for large-batch RNN applications like LSTM. The
hand-tuned process is painful and time-consuming. In this paper,
we study the large-batch algorithms for LSTM applications. We
propose an auto-tuning framework for large batches called DATE
(Dynamic Adaptive-Tuning Engine), which not only performs well
for LSTM applications, but also performs well for CNN applications.

2.5 Distributed TPU Systems (TPU Pod)
TPU (Tensor Processing Unit) [21] is a powerful architecture target-
ing machine learning applications. TPU v1 is focused on inference
tasks like speech and image recognition. TPU v2 and TPU v3 pro-
vide the high floating-point performance for the training process.
TensorCore is the most basic building block of the TPU system. A
TPU-v2 Chip consists of two compute nodes called TensorNodes.
Each TensorNode can be thought of as a core in a CPU. The Ten-
sorNode has a dense compute unit called TensorCore (Figure 3) and
a sparse compute unit. The MXU (Matrix Multiplier Unit) within
each TensorCore features a drastically different architecture than
typical CPUs and GPUs, called a systolic array. In matrix multiply,
a MXU reuses the inputs several times as part of producing the
output. Each value can be inputted once, but used for various op-
erations without being moved back to a register. Arithmetic Logic
Units (ALUs) are energy-efficient because they are only connected
by adjacent wires. The design is simplified because the ALUs per-
form only multiplications and additions in the constant patterns.
The MXU design is called systolic because the data flows in waves
through the chip, which is the same way that the heart pumps blood.
The specific type of systolic array in the MXU is optimized for re-
ducing power and improving area efficiency in matrix multiply (i.e.
the dominate operation in deep learning). It is not optimized for the
general-purpose computing. This brings an engineering trade-off:
the higher operation density and energy efficiency comes from the
reduced control, registers and operational flexibility.

A group of 16-by-16 TPU chips connected via 2D torus is a TPU
Pod (Figure 3). The Cloud TPU-v2 server includes four TPU chips.
Each Cloud TPU-v2 server provides 180 TFLOPS and 64 GB High
Bandwidth Memory (HBM). A TPU-v2 Pod is made up of 64 TPU-
v2 servers. In theory, a TPU-v2 Pod can provide 11.5 petaflops
performance (16/32 bit mixed precision) and 4 terabytes of HBM
memory. TPU’s 16-bit format is called bfloat16, which is different
form IEEE 754 16 bit (IEEE 754 has 1 sign bit, 5 exponent bits, and
10 mantissa bits. When combined with the 1 "hidden bit", there are
effectively 11 mantissa bits. bfloat16 has 1 sign bit, 8 exponent bits,
and 7 mantissa bits).

3 DATE: Dynamic Adaptive-Tuning Engine (for
large-batch training)

In this section, we introduce DATE framework for large-batch
training. We present the main features of DATE one-by-one.

3.1 Linear Epoch Gradual Warmup (LEGW)
The warmup technique has been successfully applied in the CNN
applications [13, 48]. However, before this paper, most of the RNN
implementations did not use warmup techniques. On the other
hand, warmup has become an additional parameter that requires
developers to tune, which further increases the efforts of DNN
system implementation. To make things worse, large-batch training
usually converges to a sharp local minimum, so a tiny change in
the hyper parameters may have a significant influence on the test
accuracy (Table 1). We propose the Linear-Epoch Gradual Warmup
(LEGW or Leg-Warmup) scheme. When we increase the batch size
by 𝑘 times, we also increase the warmup epochs by 𝑘 times. The
intuition is that larger batch size usually needs a large LR. However,
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Table 1: Large-batch training is a sharp minimal prob-
lem. It is easy to miss the global minimum. Tuning the
hyper-parameters requires a lot of efforts. In this exam-
ple (ImageNet/ResNet-50 training by LARS solver), we only
slightly changed the LR, the accuracy dropped below the tar-
get 76.3% accuracy.

Batch Size Init LR Warmup Epochs Top-1 Test Accuracy
2048 9.94 0.6875 epochs 90 76.97%
2048 10.0 0.6875 epochs 90 75.59%

a larger LR may make the training algorithm more easily diverge
because the gradient changes dramatically in the beginning of
neural network training. We use a longer warmup to avoid the
divergence of larger LR. Linear epoch warmup means fixing the
warmup iterations as we increase the batch size, which helps us to
stabilize the chaotic early-learning state. It worth noting the users
do not need to change anything. DATE will work like a black box.

3.2 Explanation of LEGW
In general, it is hard to prove why a specific learning rate schedule
works. However, some experimental findings on the change of local
Lipschitz constant during iterations partially explain why LEGW
works better than previous methods.

Consider the update along the gradient direction 𝑔 = ∇𝑓 (𝑥).
Assume the update is 𝑥 ← 𝑥 − 𝜂𝑔, the question is: how to choose
learning rate 𝜂? One classical idea is to form a second order approx-
imation around current solution 𝑥 . 𝑓 (𝑥 + Δ) ≈

𝑓 (𝑥 + Δ) := 𝑓 (𝑥) + Δ𝑇∇𝑓 (𝑥) + 1
2Δ

𝑇∇2 𝑓 (𝑥)Δ, (5)

and then find Δ to minimize the approximation function. If we
assume Δ is in the form of −𝜂𝑔 and Hessian is positive definite
along the direction of 𝑔 (𝑔𝑇∇2 𝑓 (𝑥)𝑔 > 0), then the optimal 𝜂∗ is

argmin
𝜂

𝑓 (𝑥 − 𝜂𝑔) = 1
𝑔𝑇∇2 𝑓 (𝑥)𝑔/∥𝑔∥2

:= 1
𝐿(𝑥,𝑔) .

Therefore, ideally the learning rate should be inversely proportional
to 𝐿(𝑥,𝑔). Moreover, it is known [11] that the update −𝜂𝑔 will
decrease the objective function in a small compact region 𝑆 if 𝜂 <

min𝑥 ′∈𝑆 1
𝐿 (𝑥 ′,𝑔) . The optimal learning rate is also called the local

Lipchitz constant along the gradient direction, and 𝐿(𝑥,𝑔) can be
viewed as its approximation. In Figure 11, we plot the values of
𝐿(𝑥,𝑔) for all the iterations in MNIST training with LSTM. It is hard
to compute 𝐿(𝑥, 𝑔) exactly since ∇2 𝑓 (𝑥) involves all the training
samples. So we approximate it using a small batch and compute the
Hessian-vector product by finite difference. For the same reason
it is hard to apply a second order method exactly, but the plots in
the figures show an interesting phenomenon that explains why
linear warmup works. We observe that the value of 𝐿(𝑥, 𝑔) usually
has a peak in the early iterations, implying a smaller step size
should be used in the beginning (which implies warmup is needed).
Furthermore, the peak tends to shift toward right (almost linearly)
as batch size grows. This intuitively explains our linear warm-up
strategy: when batch size increases, the warm up should be longer
to cover the “peak region”.

3.3 Sqrt Learning Rate Scaling
To keep the variance in the gradient expectation constant, the-
ory [24] suggests that Sqrt Scaling should be used in large-batch
training. In practice, however, researchers observe that Linear Scal-
ing performs much better than Sqrt Scaling [13, 24, 27, 49]. The
constant-epoch warmup scheme was used together with Linear
Scaling in previous applications. For example, Goyal et al. [13] man-
ually set the warmup length as five epochs. The efficiency of Linear
Scaling only works up to 8K batch size, although researchers are
able to scale the batch size to 32K with signifiant hyper-parameter
tuning (tuning learning rate, warmup, weight decay and momen-
tum for different batch sizes). With LEGW, the Sqrt Scaling scheme
can work well in practice, and is able to match the expectations
of the theoretical analysis. The results are shown in Section 4. We
assume that Sqrt Scaling is built on top of LEGW. The reason is
that the constant number of warmup steps performs better with
the constant variance.

3.4 Roller Coaster Schedule
The adaptive solvers like AdaGrad [9] use the sum of all historical
gradients to decay the learning rate (e.g. 𝜂√∑

𝑡 𝑔𝑡 ⊙𝑔𝑡
), which is easily

out of control at runtime because of the vanishing and exploding
gradient problems [2]. Thus, in the real-world systems, the state-
of-the-art approach uses a manual way to reduce the learning rate.
For example, in ResNet-50 training, the authors manually reduce
the learning rate by a factor of 10 at 30th, 60th, and 80th epoch
[13]. In ResNet-101 training, the authors manually reduce the LR
by factor of 10 at 50th epoch and 100th epoch [27]. The way of
manual tuning makes the decay scheme too complicated to be used
by amateurs. In this paper, we use an automatic way to decay the
learning rate. Let us assume 𝑡 is the current number of iterations
we have finished and𝑇 is the total number of iterations we need to
finish. We use a roller-coaster way to decay the learning rate after
the warmup stage:

𝜂 =𝑚𝑎𝑥{ (𝑇 − 𝑡)
(1 −𝑤/𝐸) ×𝑇 ×

√
𝐵

𝐵0
𝜂0, 𝜂}

where 𝜂 is the lower bound of the LR. There is no need to tune
𝜂, we set 10−6 as the default. This way maintains a stable decay
all the way from the post-warmup point to the final stage, which
helps the algorithm converges to the minimum. In our experiments,
this approach is consistently better than the polynomial decay
(power=0.5, 1.0, 2.0) in more than 10 repeated runs.

3.5 Dynamic Per-Layer Stabilized Learning
One successful idea of the LARS solver [48] is to use the ratio be-
tween the L2 norm of the weight and the L2 norm of the gradient at
each iteration to adaptively update the LR. In this way, different lay-
ers will have different speeds of learning. However, one weakness
of LARS is that it requires the users to build on top of a momentum
solver. The users need to manually input the hyper-parameters
like LR and weight decay. If we switch the kernel from momentum
to RMSprop [43], we observe LARS does not converge in some
situations. We use MNIST with LeNet to illustrate the idea here. For
small-batch baseline (batch size = 256), RMSprop achieves 1% test-
ing error rate (i.e. 99% testing accuracy). When we scale the batch
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size to 8K, RMSprop only achieves 2.8% error rate. After adding
LARS correction to RMSprop, the accuracy becomes even worse. It
only achieves a 21.8% error rate. For these adaptive solvers, they
already gave a larger learning rate to the weights with a smaller
historical gradient. LARS gives them an even larger learning rate
(Layer 4 in Figure 12). For the slowly-learning layer (i.e. with a
small learning rate), LARS gives them an even smaller learning rate
(Layer 5 in Figure 12). Thus, we correct LARS by a dynamic upper
limit and a dynamic lower limit for LARS ratio at runtime. We also
removed the weight decay from LARS. In this way, we can reduce
the error rate from 21.8% to 1.0% for the 8K batch size.

3.6 Minimal Tuning Effort
By using DATE, the users do not need to manually tune any hyper-
parameters for scaling batch size. For example, the users only need
to input the hyper parameters of a baseline (e.g. batch size = 256)
to the framework. Then the system can automatically scale to the
batch size the users want. The users can treat DATE as a black-
box large-batch training tool. Here, we use a specific example (i.e.
MNIST training by LeNet) to illustrate the details inside DATE
framework.

First, we explain the way used in state-of-the-art deep learning
system [13], which is amanually-tuned approach. The LeNet/MNIST
training has 30 epochs. The baseline’s batch size, number of iter-
ations, learning rate, and warmup epochs are 𝐵0=1024, 𝐼0=1755,
𝜂0=1.25×10−3, and𝑤0=2, respectively (notations are explained in
Algorithm 1). The baseline works in this way:
• In the initial two epochs (117 iterations), the users gradually
increase LR from 0 to 1.25×10−3 in a linear way.
• In the (2, 10] epochs (469 iterations), the constant learning
rate of 1.25×10−3 will be used.
• In the (10, 20] epochs (586 iterations), the constant learning
rate of 1.25×10−4 will be used.
• In the (20, 27] epochs (410 iterations), the constant learning
rate of 1.25×10−5 will be used.
• In the (27, 30] epochs (176 iterations), the constant learning
rate of 1.25×10−6 will be used.

If the user scales up the batch size by 𝑘 times, they need to increase
the learning rate by 𝑘 times. For example, the 8K batch size uses a
peak learning rate of 0.01. In the same way, the users first warm up
the LR in the first two epochs and then reduce the LR bymultiplying
it by 0.1 at 10th, 20th, and 27th epoch. The idea is illustrated in
Figure 10.1. Some users may feel there are too many parameters to
tune in this scheme. The users may need to decide in which epoch
to decay the learning rate, and how much the learning rate should
be reduced each time.

In DATE, the user only needs to input the baseline information.
DATE automatically do the following for a batch size of 8K (input
of 𝐵 in Algorithm 1):
• In the initial 16 epochs (117 iterations), DATE gradually
increases LR from 0 to 1.25×10−3×

√
8192
1024 (line 6 of Algorithm

1). DATE also uses adaptive method to update LR at the
runtime.
• From 16th epoch to 30th epoch (from 118th to 220th itera-
tion), DATE uses a LR of max{ (220−𝑡 )

(1−2/30)×220 × 1.25 × 10
−3 ×

√
8192
1024 , 10

−6} at 𝑡-th iteration. DATE also uses adaptivemethod
to update LR at the runtime.

The idea is illustrated in Figure 10.5. Figure 10 includes the main
features of DATE framework and a comparison to the state-of-the-
art approach. Algorithm 1 is an overview of DATE framework.

Algorithm 1: Framework of DATE
Input:

𝑛 labeled data points (𝑥𝑖 , 𝑦𝑖 ) for training;
Another 𝑘 labeled data points (𝑥 𝑗 , 𝑦̂ 𝑗 ) for testing;
𝑖 ∈ {1, 2, ..., 𝑛}, 𝑗 ∈ {1, 2, ..., 𝑘 };
A baseline with Batch Size 𝐵0 , learning rate 𝜂0 , warmup epochs 𝑤0
and total number of iterations 𝐼0 ;
A target large batch size 𝐵;

Output:
Trained Model of large batch 𝐵;
Test Accuracy of large batch 𝐵

1 The warmup epochs 𝑤 =
𝐵𝑤0
𝐵0

2 The number of iterations 𝐼 = 𝐵0𝐼0
𝐵

3 for 𝑖 ∈ 1 : 𝐼 do
4 𝐸 = 𝑖𝐵

𝑛
(the current epoch)

5 if 𝐸 < 𝑤 then

6 𝜂 = 𝐸
𝑤

√
𝐵
𝐵0

𝜂0 or ( 𝐸𝑤 )
2
√

𝐵
𝐵0

𝜂0

7 else

8 𝜂 =𝑚𝑎𝑥 { (𝐼−𝑖 )
(1−𝑤/𝐸)×𝐼 ×

√
𝐵
𝐵0

𝜂0, 10−6 }

9 𝐿 = {the number of layers}
10 for 𝑗 ∈ 1 : 𝐿 do
11 𝑤 = {the weight of layer-𝑗 }
12 𝑔 = {the gradient of layer-𝑗 }
13 if | |𝑔 | |2 == 0 or | |𝑤 | |2 == 0 then
14 𝑟 = min{max{1.0, lower_limit}, upper_limit}
15 else
16 𝑟 = min{max{ | |𝑤 | |2| |𝑔 | |2

, lower_limit}, upper_limit}

17 𝜂 = 𝑟𝜂 (runtime correction)
18 apply_gradient_update(𝑤, 𝑔, 𝜂) based on the optimizer (SGD,

momentum, AdaGrad, or RMSProp)

4 EXPERIMENTAL RESULTS
In all the comparisons of this paper, different methods will use the
same hardware and run the same number of epochs (i.e. the same
number of floating point operations). We use several real-world
applications to evaluate our approach. The models and datasets are
shown in Table 2. Besides the LSTM applications, we also include
the traditional CNN applications like MNIST/LeNet training and
ImageNet/ResNet-50 training.

Table 2: The applications we used to evaluate our method.

Model Dataset Type Samples Metric & Reference
LeNet MNIST Small 60K/10K 99.2% accuracy1

1-layer LSTM MNIST Small 60K/10K 98.7% accuracy2

PTB-small PTB Medium 930K/82K 116 perplexity3

PTB-large PTB Medium 930K/82K 78 perplexity4

GNMT wmt16 Large 3.5M/3K 21.8 BLEU5

ResNet50 ImageNet Large 1.3M/5K 75.3% accuracy6
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4.1 The LSTM applications
4.1.1 HandwrittenDigitsRecognition forMNIST. Weuse the
MNIST dataset [26] to train a pure-LSTM model. We partition each
image as 28-step input vectors. The dimension of each input vector
is 28-by-1. Then we have a 128-by-28 transform layer before the
LSTM layer, which means the actual LSTM input vector is 128-by-1.
The hidden dimension of LSTM layer is 128. Thus the cell kernel of
LSTM layer is a 256-by-512 matrix. The state-of-the-art single-layer
LSTM achieved 97.27% accuracy for MNIST dataset [34, 44, 50]. Af-
ter a careful model design, we achieved 98.7% accuracy in 25 epochs
training. The baseline uses a momentum solver (momentum=0.9)
and constant learning rate. The baseline’s batch size is 128. Our goal
is to scale the batch size to 8K without losing accuracy. A batch size
over 8K on a V100 GPU or a TPU-v2 server will get no additional
speedup, so we stop at 8K. The effect of DATE is shown in Figures
16, 17 and 18. These figures show that DATE is able to beat the
comprehensive tuning solver and the Adam solver.

4.1.2 Language Modeling for PTB Dataset. The Penn Tree-
bank (PTB) [31] dataset selected 2,499 stories from a three year
Wall Street Journal (WSJ) collection of 98,732 stories for syntactic
annotation. The vocabulary has 10,000 words. After word embed-
ding, the input vector length is 200 and 1500 for PTB-small model
and PTB-large model7, respectively. The sequence length is 20 and
35 for PTB-small and PTB-large. Our LSTM model has two lay-
ers. The hidden dimensions of both these two layers are 200 for
PTB-small and 1500 for PTB-large. For both layers, the LSTM Cell
Kernel is an 400-by-800 matrix for PTB-small and 3000-by-6000
matrix for PTB-large. We use perplexity to evaluate the correctness
of our LSTM model (a lower perplexity means a better result). After
a 13-epoch training, PTB-small can achieve a perplexity8 of 116.
After a 55-epoch training, PTB-large can achieve a perplexity9 of
78. For PTB-small, the baseline uses a momentum optimizer (mo-
mentum=0.9) and exponential learning rate decay. The model uses
constant learning rate in the first seven epochs. Then the learning
rate will be decayed by 0.4 after each epoch. For PTB-large, the
baseline uses the LARS solver [48] and poly decay (power=2.0). The
baseline’s batch size is 20. Our goal is to scale the batch size to
640 without increasing perplexity. The effect of DATE is shown in
Figure 16, which is able to beat the Adam solver. The batch size
over 640 will lead to an out-of-memory error on a V100 GPU, so
we stop at 640.

4.1.3 Google Neural Machine Translation (GNMT). GNMT
or seq2seq [30, 46] is a state-of-the-art machine translation tech-
nique.We useWMT16 English-German translation dataset for train-
ing. The encoder and decoder are using shared embeddings. The
encoder includes 4 LSTM layers. The hidden dimension is 1024. The
first layer is bidirectional, the rest are undirectional. The residual

1https://github.com/tensorflow/models/tree/master/official/mnist
2https://medium.com/machine-learning-algorithms
3https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py
4https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py
5https://github.com/mlperf/training/tree/master/rnn_translator
6https://github.com/KaimingHe/deep-residual-networks
7https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py
8https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py
9https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py

connections start from 3rd layer. The decoder includes 4 unidirec-
tional LSTM layers with hidden size 1024 and a fully-connected
classifier. The residual connections start from 3rd layer. We use
normalized Bahdanau attention (gnmt_v2 attention mechanism).
We use BLEU score on newstest2014 dataset as the quality metric
(higher is better). The BLEU score is reported by sacrebleu package.
The baseline achieves a BLEU score10 of 21.80. The effect of DATE
is shown in Table 3 and Figure 16, which demonstrates that we can
scale the batch size to 4K without losing accuracy. A batch size over
4K will lead to an out-of-memory error on a TPU, so we stop at 4K.

4.2 Compared to Adaptive Solvers
Our goal is to minimize the tuning effort for large-batch training.
To evaluate this we need to pick an adaptive solver as a baseline for
comparison. We fully evaluate a total of seven solvers: SGD [37],
Momentum [36], Nesterov [40], Adagrad [9], RMSprop [12], Adam
[23], Adadelta [51]. We pick Adam and Adadelta as the baseline
for adaptive solvers because they do not require the users to input
hyper-parameters. For MNIST and PTB datasets, we observe Adam
performs much better than Adadelta (Figure 13). Moreover, Adam
is able to beat the existing tuning techniques (Figure 15). Thus, we
use Adam as the adaptive solver baseline for comparison.

The comparison between Adam and DATE is shown in Figure
16. We observe DATE performs better than Adam for PTB and
GNMT applications in the same number of epochs. DATE’s accuracy
changes less than Adam when we scale up the batch size. It is
worth noting that we carefully tuned the learning rate of Adam
solver and made sure it gets the best performance. For MNIST
application, the tuning space is {0.0001, 0.0002, 0.0003, ..., 0.0010}.
For PTB application, the tuning space is {0.001, 0.002, 0.003, ..., 0.020}
and {0.0001, 0.0002, 0.0003, ..., 0.0020}. For GNMT application, the
tuning space is {0.001, 0.002, 0.003, ..., 0.020} and {0.0001, 0.0002,
0.0003, ..., 0.0020}. Figure 14 also shows that DATE performs better
than the tuned Adam solver for PTB-large and GNMT applications.
Therefore, we conclude that DATE is a better auto-tuning scheme
compared to state-of-the-art approaches.

4.3 Comparison to Comprehensive Tuning
To prove the effectiveness of DATE, wemake a comparison between
DATE and the comprehensive tuning baseline for the largest batch
size. For theMNIST dataset, since themodel uses a constant learning
rate for momentum solver. We comprehensively tune the learning
rate and find only the range of [0.01, 0.16] is effective. After tuning
the learning rate from 0.01 to 0.16, we observe that DATE’s accuracy
is higher than the best tuned version (Figure 17.1). For PTB dataset,
the baseline uses the SGD optimizer. We comprehensively tune the
initial learning rate for baseline and we find only the range from
0.1 to 1.6 is effective. Then we tune the learning rate within the
effective range, the baseline’s highest accuracy is still lower than
DATE’s accuracy (Figure 17.2). We also run the training algorithms
long enough to make sure all of them are converged. For MNIST
dataset, we increase the number of epochs from 25 to 100. For PTB
dataset, we increase the number epochs from 13 to 50. Even when
comprehensive turning versions are allowed to run longer, DATE

10https://github.com/mlperf/training/tree/master/rnn_translator



SC’19, Nov 17–22, 2019, Denver, CO Yang You, Jonathan Hseu, Chris Ying, James Demmel, Kurt Keutzer, Cho-Jui Hsieh

Table 3: By using DATE, we can scale the batch size of
GNMT training from 256 to 4K without influencing the
BLEU score. The baseline’s BLEU score is 21.8. Since linear
warmup epochs means fixed the warmup iterations, DATE
sets the warmup iterations as 200.

Batch Size Init LR Warmup Epochs BLEU
256 2−0.5/103 0.0145 epochs 2 22.7
512 20.0/103 0.0290 epochs 2 22.9
1024 20.5/103 0.0580 epochs 2 22.6
2048 21.0/103 0.1160 epochs 2 22.5
4096 21.5/103 0.2320 epochs 2 22.2

Table 4: DATE scales the batch size for ImageNet training
by ResNet-50 without tuning hype-parameters. According
to Stanford DAWN benchmark, 93% top-5 accuracy for Ima-
geNet is the metric of a correct ResNet50 model.

Batch Size Init LR Warmup Epochs Top-5 Accuracy
1024 22.5 10/25 epochs 90 0.9336
2048 23.0 10/24 epochs 90 0.9325
4096 23.5 10/23 epochs 90 0.9334
8192 24.0 10/22 epochs 90 0.9355
16384 24.5 10/21 epochs 90 0.9343
32768 25.0 10 epochs 90 0.9318

is still able to beat them in accuracy (Figure 18). To repeat, DATE
does not require hyper-parameter tuning.

4.4 ImageNet Training with ResNet-50
To show its robustness, we also apply DATE to the large-scale
image classifications. We use DATE in ImageNet training with
ResNet50. According to Stanford DAWN benchmark11, 93% top-5
accuracy is the metric of a correct ResNet50 implementation.We are
able to scale the batch size to 32K and achieve the target accuracy
without tuning hype-parameters (Table 4). We achieved a constant
performance and a higher accuracy compared to existing tuning
schemes (Figure 1).

4.5 Energy-Efficient Communication
The communication is becoming a major cost for the energy con-
sumption [6]. In our profiling result, the cost of a single floating
point operation is around 100 pJ. However, the cost to move a word
off-chip to a neighboring node is around 2500 pJ. In addition to
the speed improvement, we want to reduce the energy cost of the
communication over the network. Our results shown that DATE
can significantly reduce the communication energy cost (Figure
19).

5 SPEEDUP AND SCALING
For ImageNet training with ResNet50, our auto-tuning approach
is able to scale the batch size to 32K without losing accuracy. On
a TPU-v2 Pod, we are able to finish the training in 7 minutes. The
baseline [13] can only scale the batch size to 8K, which takes 16
minutes on the same TPU-v2 Pod. Ying et al. [47] are able to finish
the ImageNet training with ResNet-50 in 2.2 minutes by LARS

11https://dawn.cs.stanford.edu/benchmark/

solver [48]; however, they use a better hardware (i.e. TPU-v3 Pod).
If we port their code to TPU-v2 Pod, they achieve the same speed
as us. The difference between our results and theirs is that they
need to tune the hyper-parameters manually while we design an
auto-tuning technique. This paper does not claim the contribution
of implementing LARS on TPUs. We claim the contribution of the
design of DATE and implementing DATE on TPUs, which does not
decrease the system speed. We got 119% weak scaling efficiency
whenwe scale from one cloud TPU server to one TPU Pod (equals to
64 cloud TPU severs). The training on one cloud TPU server requires
8 hours and 52.5 minutes (76.1× speedup). The reason behind the
superlinear speedup is that we reduce the number of iterations
linearly as we increase the batch size (line 2 of Algorithm 1). The
number of communication messages is linear with the number
of iterations. For the other four LSTM-based applications, DATE
can also help the system utilize a much larger batch size without
sacrificing accuracy. This leads to significant speedups on all the
four datasets (Figure 2). For example, our GNMT baseline with a
batch size of 256 needs more than 2 hours to finish the training on
a cloud TPU-v2. With DATE, the GNMT with a batch size of 4096
can finish the training in 33 minutes on the same cloud TPU-v2. In
summary, DATE achieves a 5.3× average speedup over the baselines
for 4 LSTM-based applications on the same hardware.

5.1 Scaling on Various Models
In this section, we present more scaling results. We also want to
study the impact of DATE on different architectures that achieve
the same goal on the same dataset. We pick the ImageNet dataset
as it has driven the deep learning and HPC communities in recent
years. We pick several state-of-the-art models that were proposed
in recent years: AlexNet [25], Inception-v4 [41], MnasNet [42],
MobileNet [17], ResNet-50 [14], and SqueezeNet [18]. As mentioned
in previous sections, DATE can achieve the consistent accuracy
without hyper-parameter tuning when we scale the batch size to
extremely large cases. In this section, we focus on the system scaling
abilities of DATE. We focus on weak scaling study in this section
because we want to make sure each node is fully utilized as we
scale the number of nodes. We use 128 v3 TPU chips (latest TPUs)
in the section. The data in previous sections are measured by v2
TPU chips. The baseline uses four TPU chips and a batch size of
256 (i.e. 64 per chip). We keeps workload per chip constant and
increases the number of chips from 4 to 16, 32, 64, and 128. Figure
4 - Figure 9 show the scaling results. From these figures we can see
that DATE can achieve good scaling results for all the models. The
best scaling efficiency (100.08%) is achieved on ResNet-50 while
the worst scaling efficiency is achieved on AlexNet (76.66%). The
scaling efficiency of ResNet-50 in this section is different from the
efficiency in Section 4.4. The reason is that they use the different
hardware (chips and network).

To explain the difference in scaling efficiency for different mod-
els, let us define the computational intensity here, which is a similar
concept in the Roofline study [45]. We define the computational
intensity as the ratio between the computation volume and the
communication volume. Here, the computation volume means the
number of floating-point operations required to process each image.
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The communication volume means the number of parameters trans-
ferred in each message. For deep learning applications, the number
of parameters transferred in each message is equal to the number
of parameters in the gradients (i.e. the number of parameters in the
model). For AlexNet, the model has 61 million parameters and it
requires 1.5 billion operations to process each image. Thus, AlexNet
has a computational intensity of 24.6. For ResNet-50, the model
has 25 million parameters and it requires 7.7 billion operations to
process each image. Thus, ResNet-50 has a computational intensity
of 308. That is the reason why ResNet-50 has a much higher than
scaling efficiency than AlexNet (100.08% vs 76.66%). DATE is well
optimized as it can achieve a good scaling efficiency even the model
has a low computational intensity. The same analysis works for
other models.

6 CONCLUSION
DATE is an auto-tuningmethod equippedwith auto-tuningwarmup,
LR Scaling, LR decay and adaptive LR updating techniques. In prac-
tice, DATE performs well on both RNN applications and CNN ap-
plications. For LSTM applications, we are able to scale the batch
size by a factor of 64× without losing accuracy and without tun-
ing the hyper-parameters. For CNN applications, DATE is able to
keep accuracy constant even as we scale the batch size to 32K, and
we have demonstrated that DATE works uniformly better than
previous large-batch auto-tuning techniques (Figure 1). For four
LSTM applications, while running on the same hardware, DATE
achieves a 5.3× average speedup. We also provide some theoretical
explanations for the key techniques of DATE.
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10.5

Figure 10: This figure illustrates the main features of DATE
framework (LEGW, Decay, and Dynamic). This figure is also
a summary of differences among the baseline, state-of-the-
art approach, and the DATE framework. The application is
LeNet/MNIST training, which totally needs 30 epochs.
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11.1 SGD with batch size 512.

11.2 SGD with batch size 1K.

11.3 SGD with batch size 2K.

11.4 SGD with batch size 4K.

Figure 11: The approximation of Lipchitz constant for dif-
ferent batch sizes.

Figure 12: The LARS correction ratio based on RMSprop
solver. It gives the fast learner a even larger learning rate.

13.1

13.2

Figure 13: By just using the default hyper parameters, we
find Adamworksmuch better than Adadelta for MNIST and
PTB datasets. Perplexity and Error Rate: lower is better.

14.1

14.2

Figure 14: For Perplexity, lower is better. For BLEU score,
higher is better. From these figures, we can observe that
DATE performs better than the tuned Adam solver for PTB-
large and GNMT applications.
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15.1

15.2

15.3

15.4

Figure 15: Adam can beat existing tuning techniques. We
tune the learning rate for batch size = 128 and refer to it
as 𝜂0. Let us also refer to batch size as 𝐵. In Figure 15.1, all
the tuning versions use 𝜂0. In Figure 15.2, all the tuning ver-
sions use the linear scaling scheme (i.e. 𝜂0×𝐵/128). In Figure
15.3, all the tuning versions use the linear scaling scheme
(i.e. 𝜂0 × 𝐵/128) and poly decay with power = 2. In Figure
15.4, all the tuning versions use the linear scaling scheme (i.e.
𝜂0×𝐵/128), poly decay with power = 2, and 5-epoch warmup.

16.1

16.2

16.3

16.4

Figure 16: For the perplexity, lower is better. For BLEU score,
higher is better. DATE performs much better than Adam
solver for PTB and GNMT applications (running the same
number of epochs). Even we comprehensively tuned the
learning rate of Adam, it still can not beat DATE.
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17.1

17.2

Figure 17: The data in this figure is collected from 8K batch
size. Even when we comprehensively tune the learning rate
of the baseline, it still is not able to beat DATE. For other
hyper-parameters, DATE uses the same setting with the
baseline.

18.1

18.2

Figure 18: The data in this figure is collected from 640 batch
size. Even we comprehensively tune the initial learning rate
of the baseline, it still is not able to beat DATE. For other hy-
per parameters, DATE uses the same setting with the base-
line. Furthermore, we run the training long enough tomake
sure all of them are converged. DATE is still better.

Figure 19: Let us use 𝐸𝑟 to denote the network communi-
cation energy cost in pJ. In our experiments, the baseline
uses a batch size of 256. Large-batch approach increases the
batch size to 32K and reduces the communication energy

cost from 𝐸𝑟 to
√
(32768/256)
(32768/256) 𝐸𝑟 . The baseline conducts the

hyper-parameter tuning 100 times. LEGW reduces the the
communication energy cost from 𝐸𝑟 to 𝐸𝑟/100 by enabling
auto-tuning. DATE combines them together and reduces the

communication energy cost from 𝐸𝑟 to
√
(32768/256)

(100×32768/256) 𝐸𝑟 .



Large-Batch Training for LSTM and Beyond SC’19, Nov 17–22, 2019, Denver, CO

REFERENCES
[1] TakuyaAkiba, Shuji Suzuki, and Keisuke Fukuda. 2017. Extremely largeminibatch

sgd: Training resnet-50 on imagenet in 15minutes. arXiv preprint arXiv:1711.04325
(2017).

[2] Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. 1994. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural
networks 5, 2 (1994), 157–166.

[3] Léon Bottou, Frank E Curtis, and Jorge Nocedal. 2016. Optimization methods for
large-scale machine learning. arXiv preprint arXiv:1606.04838 (2016).

[4] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. 2016. Revisiting
distributed synchronous SGD. arXiv preprint arXiv:1604.00981 (2016).

[5] Valeriu Codreanu, Damian Podareanu, and Vikram Saletore. 2017. Scale out for
large minibatch SGD: Residual network training on ImageNet-1K with improved
accuracy and reduced time to train. arXiv preprint arXiv:1711.04291 (2017).

[6] James Demmel. 2013. Communication-Avoiding Algorithms for Linear Algebra
and Beyond.. In IPDPS. 585.

[7] Aditya Devarakonda, Maxim Naumov, and Michael Garland. 2017. AdaBatch:
Adaptive Batch Sizes for Training Deep Neural Networks. arXiv preprint
arXiv:1712.02029 (2017).

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[9] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research 12, Jul (2011), 2121–2159.

[10] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision. 1440–1448.

[11] AA Goldstein. 1977. Optimization of Lipschitz continuous functions. Mathemati-
cal Programming 13, 1 (1977), 14–22.

[12] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1. MIT press Cambridge.

[13] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accu-
rate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint
arXiv:1706.02677 (2017).

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] Elad Hoffer, Itay Hubara, and Daniel Soudry. 2017. Train longer, generalize better:
closing the generalization gap in large batch training of neural networks. arXiv
preprint arXiv:1705.08741 (2017).

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[18] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360 (2016).

[19] Forrest N Iandola, MatthewWMoskewicz, Khalid Ashraf, and Kurt Keutzer. 2016.
Firecaffe: near-linear acceleration of deep neural network training on compute
clusters. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2592–2600.

[20] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou,
Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. 2018. Highly Scalable
Deep Learning Training System with Mixed-Precision: Training ImageNet in
Four Minutes. arXiv preprint arXiv:1807.11205 (2018).

[21] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
2017. In-datacenter performance analysis of a tensor processing unit. In 2017
ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 1–12.

[22] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang. 2016. On large-batch training for deep learning:
Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836 (2016).

[23] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[24] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997 (2014).

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[27] Mu Li. 2017. Scaling Distributed Machine Learning with System and Algorithm
Co-design. Ph.D. Dissertation. Intel.

[28] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. 2014. Efficient mini-
batch training for stochastic optimization. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 661–670.

[29] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. 2016. Feature pyramid networks for object detection. arXiv
preprint arXiv:1612.03144 (2016).

[30] Minh-Thang Luong, Eugene Brevdo, and Rui Zhao. 2017. Neural Machine Trans-
lation (seq2seq) Tutorial. https://github.com/tensorflow/nmt (2017).

[31] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Build-
ing a large annotated corpus of English: The Penn Treebank. Computational
linguistics 19, 2 (1993), 313–330.

[32] James Martens and Roger Grosse. 2015. Optimizing neural networks with
kronecker-factored approximate curvature. In International conference on machine
learning. 2408–2417.

[33] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaev, Ganesh
Venkatesh, et al. 2017. Mixed precision training. arXiv preprint arXiv:1710.03740
(2017).

[34] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. 2016. Phased lstm: Accelerating
recurrent network training for long or event-based sequences. In Advances in
Neural Information Processing Systems. 3882–3890.

[35] Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi
Matsuoka. 2018. Second-order Optimization Method for Large Mini-batch: Train-
ing ResNet-50 on ImageNet in 35 Epochs. arXiv preprint arXiv:1811.12019 (2018).

[36] Ning Qian. 1999. On the momentum term in gradient descent learning algorithms.
Neural networks 12, 1 (1999), 145–151.

[37] Herbert Robbins and Sutton Monro. 1985. A stochastic approximation method.
In Herbert Robbins Selected Papers. Springer, 102–109.

[38] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Pen-
porn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, et al. 2018. Mesh-tensorflow: Deep learning for supercomputers. In
Advances in Neural Information Processing Systems. 10435–10444.

[39] Samuel L Smith, Pieter-Jan Kindermans, and Quoc V Le. 2017. Don’t Decay the
Learning Rate, Increase the Batch Size. arXiv preprint arXiv:1711.00489 (2017).

[40] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. 2013. On the
importance of initialization and momentum in deep learning. In International
conference on machine learning. 1139–1147.

[41] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
2017. Inception-v4, inception-resnet and the impact of residual connections on
learning. In Thirty-First AAAI Conference on Artificial Intelligence.

[42] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. 2018.
Mnasnet: Platform-aware neural architecture search for mobile. arXiv preprint
arXiv:1807.11626 (2018).

[43] Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning 4, 2 (2012), 26–31.

[44] Yiren Wang and Fei Tian. 2016. Recurrent residual learning for sequence classi-
fication. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing. 938–943.

[45] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
insightful visual performance model for floating-point programs and multicore ar-
chitectures. Technical Report. Lawrence Berkeley National Lab.(LBNL), Berkeley,
CA (United States).

[46] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

[47] Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and Youlong Cheng. 2018.
Image Classification at Supercomputer Scale. arXiv preprint arXiv:1811.06992
(2018).

[48] Yang You, Igor Gitman, and Boris Ginsburg. 2017. Scaling sgd batch size to 32k
for imagenet training. arXiv preprint arXiv:1708.03888 (2017).

[49] Yang You, Zhao Zhang, CHsieh, James Demmel, and Kurt Keutzer. 2017. ImageNet
training in minutes. CoRR, abs/1709.05011 (2017).

[50] Fisher Yu and Vladlen Koltun. 2015. Multi-scale context aggregation by dilated
convolutions. arXiv preprint arXiv:1511.07122 (2015).

[51] Matthew D Zeiler. 2012. ADADELTA: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701 (2012).


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Data-Parallelism Mini-Batch SGD
	2.2 Model Parallelism
	2.3 Large-Batch Training Difficulty
	2.4 Large Batch Training Techniques
	2.5 Distributed TPU Systems (TPU Pod)

	3 DATE: Dynamic Adaptive-Tuning Engine (for Large-Batch Training)
	3.1 Linear Epoch Gradual Warmup (LEGW)
	3.2 Explanation of LEGW
	3.3 Sqrt Learning Rate Scaling
	3.4 Roller Coaster Schedule
	3.5 Dynamic Per-Layer Stabilized Learning
	3.6 Minimal Tuning Effort

	4 Experimental Results
	4.1 The LSTM applications
	4.2 Compared to Adaptive Solvers
	4.3 Comparison to Comprehensive Tuning
	4.4 ImageNet Training with ResNet-50
	4.5 Energy-Efficient Communication

	5 Speedup and Scaling
	5.1 Scaling on Various Models

	6 Conclusion
	7 Acknowledge
	References

