
Prober: Practically Defending Overflows with Page Protection

Hongyu Liu∗†
liu2978@purdue.edu
Purdue University

USA

Ruiqin Tian∗
rtian@email.wm.edu
William & Mary

USA

Bin Ren
bren@cs.wm.edu
William & Mary

USA

Tongping Liu†
tongping@umass.edu

University of Massachusetts Amherst
USA

ABSTRACT
Heap-based overflows are still not completely solved even after
decades of research. This paper proposes Prober, a novel system
aiming to detect and prevent heap overflows in the production
environment. Prober leverages a key observation based on the
analysis of dozens of real bugs: all heap overflows are related to
arrays. Based on this observation, Prober only focuses on array-
related heap objects, instead of all heap objects. Prober utilizes static
analysis to label all susceptible call-stacks during the compilation,
and then employs the page protection to detect any invalid accesses
during the runtime. In addition to this, Prober integrates multiple
existing methods together to ensure the efficiency of its detection.
Overall, Prober introduces almost negligible performance overhead,
with 1.5% on average. Prober not only stops possible attacks on
time, but also reports the faulty instructions that could guide bug
fixes. Prober is ready for deployment due to its effectiveness and
low overhead.

CCS CONCEPTS
• Software and its engineering→ Automated static analysis;
Software testing and debugging.

KEYWORDS
Buffer overflow, Program analysis, Page protection

ACM Reference Format:
Hongyu Liu, Ruiqin Tian, Bin Ren, and Tongping Liu. 2020. Prober: Practi-
cally Defending Overflows with Page Protection. In 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE ’20), September
21–25, 2020, Virtual Event, Australia. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3324884.3416533

∗Both authors contributed equally to this work.
†This work was initiated and partially conducted while Hongyu Liu and Tongping
Liu were at the University of Texas at San Antonio.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416533

1 INTRODUCTION
C/C++ applications are prone to memory errors, such as buffer
overflows (including over-reads/over-writes). Buffer overflows will
not only cause a program to crash, but also can be exploited to issue
security attacks or cause information leakage [44]. Since it is not
able to expunge all buffer overflows during development phases,
highly depending on program inputs, significant research has been
focused on detecting and preventing buffer overflows dynamically.
Among them, stack-based overflows can be detected with very low
overhead (less than 6.5%) via the shadow stack technique [44]. But
heap-based overflows are still not solved yet, since they were still
ranked as Top 2 vulnerabilities (as shown in Table 1).

Table 1: Top five vulnerabilities reported in 2018 [10].

Vulnerabilities DoS Code Execution Overflow XSS Gain Information
16555 1852 3035 2492 2004 1426

Dynamic detection tools can be further divided into multiple
types. The most common approach is to check the overflow before
every memory access, which could stop the overflow immediately if
a memory access is found to access red zones that are not supposed
to be read or written. Existing work, such as Valgrind [30], Dr.
Memory [5], and AddressSanitizer [40], employs this approach,
but with static or dynamic instrumentation method, and different
organization of red zones. However, even the state-of-the-art of
this type, e.g. AddressSanitizer, still imposes over 40% performance
overhead, in addition to its significant memory overhead. Therefore,
this type of approach is only applicable for development phases,
but not for the production environment.

Efficient approaches exist, such as Cruiser [48], DoubleTake [26],
HeapTherapy [49], or iReplayer [24]. They detect buffer overflows
after the effect, typically by checking the evidence of corrupted
canaries. Although they impose very low overhead, generally less
than 5%, they cannot detect read-based overflows because reads
do not leave any evidence behind. Also, they cannot stop security
attacks timely, since the detection may occur after exploits. Sampler
also imposes little overhead by only checking sampled references
via hardware performance counters [43]. However, Sampler can-
not detect all overflows within one execution due to its sampling
property, and shares the same issue that may only detect overflows
after exploits.

We propose a novel system, called Prober, to overcome these
issues. Prober has the following goals. First, Prober aims for in-
production systems, which should impose low performance and

https://doi.org/10.1145/3324884.3416533
https://doi.org/10.1145/3324884.3416533

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hongyu Liu, Ruiqin Tian, Bin Ren, and Tongping Liu

memory overhead. Second, Prober should detect both read-based
and write-based overflows. Third, Prober will stop overflows im-
mediately, eliminating any possibility of memory exploits. Last but
not least, Prober is able to report detailed information to assist bug
fixes, e.g., allocation sites and faulty instructions.

To achieve these goals, Prober is based on a key observation
that separates it from all existing work: overflowing objects are typi-
cally related to arrays. This observation is based on our analysis on
dozens of bugs collected by existing work [47] (as further discussed
in Section 2.1). We further confirmed that this observation holds
for all overflows reported in a randomly-selected period in the CVE
database. This observation is also aligned with the intuition: for
an object not related to an array, there is no need of operating it
with error-prone operations, such as pointer arithmetic instruc-
tions, string APIs, or loop operations, thus with a low possibility of
overflows.

This key observation identifies the type of objects that may have
buffer overflows, called as array-related objects or susceptible objects.
Both terms will be utilized interchangeably in the remainder of
this paper. To take advantage of this observation, Prober proposes
to separate array-related objects from normal objects, by placing
them into a separate space. Then Prober employs the page protec-
tion to detect overflows, an idea that was initially proposed by
Electric Fence [37] but can be seamlessly integrated with this key
observation that reduces the scope of detection. Prober allocates
array-related objects from a heap that every object is separated
from each other by protected pages. More specifically, Prober places
every array-related object at the end of corresponding pages, while
the next page will be set to be non-readable and non-writable (or
protected). Therefore, any overflowing reference (either read or
write) on the protected page will trigger a violation. By intercepting
such violations, Prober will immediately stop the execution and any
subsequent exploits, and report the faulty instructions precisely.
Comparing to the mechanisms of using explicit checks [30, 40],
page protection checks buffer overflows without actually checking
every access, thus imposing no additional checking overhead other
than the initial protection overhead. Prober is able to track all in-
valid accesses in the protected page, caused by either continuous
or non-continuous overflows, which could potentially detect more
issues than existing work using one word [24, 26, 43, 48, 49] or
multiple words [40] as the canary.

However, the key challenge is to correctly identify all array-
related heap objects. On the one hand, missing array-related ob-
jects will lead to no detection/protection of overflows caused by
them, reducing the safety guarantee. On the other hand, if some
unnecessary objects were included, it may impose some overhead
unnecessarily. To this end, Prober proposes a hybrid approach
to identify array-related objects. Some objects can be identified as
array-related (or not) statically by analyzing the source code as
described in Section 3.1, while the remaining ones will be identified
in a hybrid way: Prober’s static component (Prober-Static) identifies
the basic type of such allocations (easier to do), instruments the
size of such allocations with the compiler, and its runtime system
(Prober-Dynamic) is responsible for determining whether it is an
array-related object by the real allocation size. That is, if the size
of an allocation is multiple times of the basic type, then this allo-
cation site is identified as susceptible allocation site. Consequently,

all future allocations from such sites will be allocated from the
protected heap so that all overflowing references can be detected
and prevented immediately.

In its implementation, Prober-Static relies on the LLVM compiler
to perform the analysis and instrumentation at the Intermediate
Representation (IR) level. Prober proposes to identify array-related
allocations based on the allocation function, the definition of the
size parameter, and the operations of the corresponding object.
After that, Prober-Static further labels array-related allocation sites
with simple instrumentation, so that Prober-Dynamic will place
the corresponding objects in the protected heap. For objects that
cannot be identified as array-related ones statically, Prober-Static
simply labels the unit size so that Prober-Dynamic can determine
its type dynamically. Overall, Prober is over-estimated so that it
will not miss any array-related allocations.

Prober-Dynamic intercepts all memory allocations and dealloca-
tions so that it can determine array-related allocations and manage
array-related allocations correspondingly. Prober’s key observation
restricts its protection scope to a small portion of objects, instead of
monitoring all heap objects, which is one major reason why Prober
runs much more efficiently than Electric Fence [37]. Further, Prober
also implements carefully to reduce the overhead as follows: (1) It
employs per-thread heaps to cache available/freed objects locally in
order to reduce the contention among different threads, an idea bor-
rowed fromHoard [3]; (2) It employs an information-computable de-
sign to reduce the checking overhead upon deallocations; (3) Freed
objects are organized by the size of power-of-two pages in order
to encourage the re-utilization of objects, without coalescence and
splitting, which is different from Electric Fence [37].

We have performed extensive experiments to evaluate the per-
formance overhead, memory overhead, and effectiveness. Based on
the evaluation of 18 applications, Prober imposes only 1.5% perfor-
mance overhead on average and around 25.9% memory overhead,
making it applicable for in-production systems. To ensure that
Prober does not miss any necessary instrumentation, we have con-
firmed that Prober instruments correctly for all known overflows
collected by existing work [47]. Also, we further confirmed that
Prober correctly detects and prevents 10 known overflows within
real applications. Prober is ready for in-production systems due to
its low overhead, timely prevention, and effectiveness.

Overall, this paper makes the following contributions.

• It makes a novel key observation that only array-related objects
are prone to overflows based on our analysis of massive bugs.
We further empirically confirm that this observation holds for
randomly-chosen real bugs in the CWE database.

• It proposes a hybrid mechanism that ensures to identify all array-
related allocations. Such a mechanism is based on the allocation
function, the definition of size parameter and the operations on
the corresponding object, or the combination of the unit size and
the requested size.

• It designs and implements a new allocator to manage the pro-
tected heap efficiently, by borrowing multiple mechanisms origi-
nated from different memory allocators.

• The paper performs extensive evaluation on the performance and
effectiveness of Prober, showing that Prober has the potential to
be actually employed in the deployment environment.

Prober: Practically Defending Overflows with Page Protection ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 2: Analysis on 48 heap overflows collected by [47].

Type Overflow Reason Num(#)

Sub-structure
overflows

Pointer arithmetic 0
Loop operation 4
System call 0

String API
memcpy 2
strncpy 3
strcpy 1

Whole-structure
Overflows

Pointer arithmetic 3
Loop operation 20
System call 2

String API

memcpy 6
strncpy 1
strncmp 1
memset 3
sprintf 1
memmove 1

The remainder of this paper is organized as follows. Section 2
first describes the key observation, the basic idea of Prober, and then
describes the attack model of Prober. The detailed implementation
is further described in Section 3, and the evaluation is presented in
Section 4. After that, we discuss Prober’s weaknesses in Section 5. In
the end, Section 6 discusses related work, and Section 7 concludes.

2 OVERVIEW
This section first analyzes overflow bugs collected by an existing
study [47], and derives our key observation: overflowing objects
are all related to arrays. Based on this key observation, it further
discusses the basic design and key challenges of Prober.

2.1 Observations on Heap Overflows
One recent work studies 100 “randomly selected bugs within the
buffer overflow category from the CVE website” [47]. Based on
their description, the study is objective due to random selection,
representing the real situation of buffer overflows. Therefore, our
analysis was based on these bugs to avoid any bias. Based on our
analysis, these 100 overflow bugs include 48 heap overflows, and
52 stack or global buffer overflows. This section focuses on 48 heap
overflows, as shown in Table 2. We have the following observations.

The first observation is that all of the heap overflows are involved
with arrays, either sub-structure orwhole-structure overflows. Here,
a whole-structure overflow is an overflow that its allocation is an
array of structures or basic units (e.g., characters, integers, or words).
A sub-structure overflow is that the object (or allocation) itself is not
an array, but the corresponding structure includes one or multiple
arrays internally. It is intuitive that array-related objects are prone
to overflows. If an allocation is just a structure, every field can
be manipulated with a member access operator (e.g., “->” or “.”),
which should not cause the overflow. On the other hand, if an object
is related to an array, then it is very likely to employ error-prone
operations, such as pointer arithmetic instructions, string APIs, or
loop operations.

The second observation is that whole-structure overflows are
much more common than sub-structure overflows, consisting of
around 79.2% of these bugs (with 38 bugs in total).

The third observation is that overflow bugs can be caused by
multiple operations, such as pointer arithmetic instructions, string
APIs, loop operations, or system calls, as further shown in Table 2.
More specifically, 24 out of 48 overflows are related to loops dur-
ing the iterations, and 19 overflows are related to string APIs. For
instance, the memcpy function copies more memory than it should.
These two categories actually consist of more than 89.5% of these
bugs. In addition to these two categories, three overflows are related
to pointer arithmetic, and two overflows occur when the read sys-
tem call does not check the boundary of the buffer. Thus, overflow
occurs if programs utilize the pointers to access the entry of an
array, but without correctly checking its size.

Table 3: Heap overflows between 11/01/2018 and 02/15/2019.

Type Overflow Reason Num(#)
Sub-structure
overflows

Loop operation 4
String API sprintf 1

Whole-structure
Overflows

Pointer arithmetic 5
Loop operation 15
System call 1

String API

memcpy 4
strncat 1
strncpy 1
memset 2
snprintf 1
memmove 2

Confirming Key Observation: In order to further confirm our
key observation, we further examined 65 heap overflow bugs re-
ported in the National Vulnerability Database, with the published
date between 11/01/2018 to 02/15/2019. Since only 37 bugs out of
65 bugs have a detailed description or have the source code infor-
mation, we focused on these 37 bugs. Based on our analysis, all of
these 37 bugs are array-related, where whole-structure overflows
are still the most common types of overflows, with the percentage
of 86.4% and a total of 32 bugs.

2.2 Basic Idea of Prober

Code	Analysis	
and	Transformation Executable	

Protected	Heap	
Management

Prober-Static

Prober-Dynamic
Exception	Handler

Program

Compile

Malloc/Free	
Monitor

Link

Figure 1: Overview of Prober.

Based on the key observation, Prober focuses only on array-
related whole-structure overflows, where around 80% reported heap

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hongyu Liu, Ruiqin Tian, Bin Ren, and Tongping Liu

overflows to belong to. Since array-related objects are only a small
percentage of all heap objects, the detection overhead can be dra-
matically reduced as further evaluated in Section 4 when using the
page-protection mechanism. Prober does not handle sub-structure
overflows in this paper, which will be the future work.

The design of Prober is illustrated as Figure 1. Basically, Prober in-
cludes two components, Prober-Static and Prober-Dynamic. Prober-
Static is a static compile-time based tool that identifies and labels
susceptible memory allocation sites, while Prober-Dynamic per-
forms overflow detection/prevention and determines some array-
related allocations on top of the static instrumentation.

2.2.1 Prober-Static. Prober-Static performs analysis and instru-
mentation at the Intermediate Representation (IR) level because of
multiple benefits. First, LLVM IR offers multiple built-in functions
that can facilitate the analysis and instrumentation. For example,
define-use and use-define chains that track the definition and us-
age of memory allocation, can help determine an array-related
allocation. Second, the analysis and instrumentation algorithm on
LLVM IR is more robust, because many complicated cases (e.g.,
various macros) at the source code are simplified or merged at the
IR level. Third, instrumenting at IR level provides the flexibility
of registering the new code transformation pass in an appropriate
position of the compilation chain, thus avoiding the possible side-
effects to the subsequent analysis and code optimizations (e.g., loop
optimizations) that are crucial to the code performance. Prober-
Static analyzes the IR to determine array-related allocations, and
marks susceptible allocation sites via the explicit instrumentation.
Currently, Prober-Static is registered as a Link Time Optimization
(LTO) pass so that it can handle definitions and usages located in
multiple C/C++ files.

Research Challenges: The aim of Prober-Static is to design a ro-
bust compile-time analysis, which further includes two challenges.
First, how to identify memory allocations, given that memory al-
locations have various forms, e.g., wrapper functions, or function
pointers? Second, how to identify array-related memory alloca-
tions? Basically, Prober designs a hybrid mechanism to ensure
correctness and completeness. If an allocation site can be identified
statically, as described in Section 3.1, then it will be labeled explic-
itly. Otherwise, Prober-Static labels the size of its basic unit, and
then relies on its dynamic component to determine array-related
allocations.

2.2.2 Prober-Dynamic. Prober-Dynamic is a dynamic library that
applications should be linked with. It intercepts all heap allocations
and deallocations via its “Alloc/Free Monitor” module, and handles
the allocation and detection for array-related objects. For objects
allocated from array-related allocation sites, if Prober-static could
identify them statically, Prober-Dynamic allocates these objects
from a separate heap via its “Protected Heap Management” module.
Basically, these susceptible objects will be separated by protected
pages. In particular, they will be placed to the end of correspond-
ing pages, with the next page as protected pages. Therefore, any
overflow will be forced to land on protected pages, triggering the
protection violation consequently. Prober-Dynamic has another
component—“Exception Handler”–to deal with protection viola-
tions. Inside the exception handler, Prober precisely pinpoints the

faulty instruction that causes the overflow by simply analyzing
its calling context of exception. Then Prober stops the execution
immediately, preventing any further exploits of overflows. Prober
can be configured to detect out-of-one-page overflows easily. Note
that Prober cannot detect overflows that do not access protected
pages. This indicates that Prober cannot detect less-than-one-word
overflows. However, this is not a real issue, since most heap alloca-
tors will return a word-aligned address. Less-than-one-word heap
overflows practically will not cause any issue. Prober cannot detect
underflows landing on the same page as the starting address of
special objects, but will tolerate them instead.

Another task of Prober-Dynamic is to identify array-related
objects, when they cannot be identified statically. It utilizes a simple
mechanism to determine this dynamically: whether the requested
allocation is multiple times of its basic structure. If that is the
case, Prober-Dynamic will treat the allocation site as array-related
objects, and follows the above description.

Research Challenges: Page-based protection guarantees that it
generates no false positives, since memory references on the pro-
tected pages are guaranteed to be real overflows. However, the
challenge is to design a system that could manage protected ob-
jects efficiently, since a naive method as Electric Fence imposes
too much overhead to be employed in the deployment environ-
ment. Section 3.2.2 presents multiple mechanisms to reduce the
contention and possible cache misses.

2.3 Attack Model
Prober targets to detect both read-based andwrite-based heap buffer
overflows, and then stop any possible exploits immediately, based
on explicit instrumentation. It utilizes the page-based protection
to detect invalid accesses, which is available on any hardware that
supports the virtual memory mechanism. Prober does not rely
on a specific Operating System, which will be a general solution,
although the current prototype is only implemented on top of
Linux. Prober does not rely on any randomization mechanism in
user space or kernel space. Prober could still work effectively, even
if the hacker knows the source code of the application and Prober.

3 DESIGN AND IMPLEMENTATION
This section describes the detailed design and implementation of
Prober that consists of two components, static instrumentation
(Section 3.1) and runtime system (Section 3.2).

3.1 Compiler Analysis and Instrumentation
Prober-Static performs its static analysis and instrumentation on
LLVM IR to identify all susceptible allocations, and relies on dy-
namic confirmation to confirm those ones that cannot be deter-
mined statically. Overall, our hybrid approach guarantees a 100%
coverage for array-related allocations, which is over-estimated in
reality. Prober-Static is implemented as one Link Time Optimization
(LTO) pass because of two major considerations. First, the alloca-
tion function may be located inside a wrapper function, but this
wrapper function is invoked in another C file, so an inter-module
analysis (provided by LTO) is required. Second, placing instrumen-
tation at link-time can effectively avoid complicating or interfering
performance-critical compile-time analysis and optimizations (e.g.,

Prober: Practically Defending Overflows with Page Protection ASE ’20, September 21–25, 2020, Virtual Event, Australia

varied loop optimizations). Prober-Static determines array-related
allocations in three steps, as further described in Section 3.1.1.

3.1.1 Identify Susceptible Allocations. Prober-Static analyzes sus-
ceptible (or array-related) allocations in the following steps.
Step-I: Identify memory allocation functions: Based on our
knowledge, memory allocations are invoked by several APIs and op-
erators in C/C++, such as new ,malloc(), calloc(), realloc(), valloc ,
posix_memaliдn(), and memaliдn(). But there are multiple situa-
tions as described in the following.

Basic Case: Some memory allocation invocations can be directly
recognized according to the name in LLVM IR. For example, the
new[] keyword is translated to _Znam in LLVM IR. Similarly, various
macro definitions can also be recognized directly in IR level, because
they have already been replaced by the preprocessor before being
converted to IR.

Special Cases: Prober-Static also handles two more sophisticated
but common cases. First, memory allocation is invoked inside a
wrapper. For this case, Prober-Static recursively treats all functions
in its calling stack as wrappers of memory allocation functions.
Second, memory allocation is defined as a function pointer. Fortu-
nately, LLVM translates function pointer calls to indirect calls in
its IR, and the function invocation is specified by a load instruction.
Listing 1 shows a simple example. The definition of malloc_ptr re-
quires an additional check to determine whether line 2 is a memory
allocation.

Listing 1: Memory alloc is defined and called as a fun ptr.

1 %4 = load i8∗ (i64)∗, i8∗ (i64)∗∗@malloc_ptr, align 8
2 %5 = tail call i8∗ %4(i64 %0)

Step-II: Identify array-related allocations: Prober-Static fur-
ther identifies array-related allocations by the name of functions,
the definition of allocation size, and the operations of the corre-
sponding object. Table 4 lists multiple examples that cover 36 bugs
analyzed in Section 2.1. The details of these examples are discussed
as follows.

Type I can be identified by the name of memory allocation
functions. For example, new[] is known as an operator to allocate
an array, and calloc allocates an array with multiple objects with
the same size. 5 out of 36 cases belong to this simple type.

Type II, III, and IV can be identified by the definition of size
parameter. If its size parameter is defined (or manipulated) by
multiplication, addition, and strlen operations, then the cor-
responding allocation is array-related. We can easily understand
this by checking its contradiction. If an allocation is just for a single
structure, a sizeof operation will be used to compute the size pa-
rameter, without these operations. Prober-Static employs LLVM’s
built-in def-use and use-def chains to assist the analysis on the
definition of size parameter. 24 out of 36 cases can be analyzed
using this method.

Type V can be identified by the operation on corresponding
objects. As we know, some APIs, such as read, fread, pread, readv,
read multiple bytes from the network or a file to the local buffer.
Therefore, whenever one object appears as the destination buffer of
these system calls, it should be tracked. Based on our analysis, 2 out

Table 4: Examples of susceptible allocations.

Type Example Explanation Count
I ... = (int*) new[5];

... = (int*) calloc(5,sizeof(int));
Memory allocation
calls new[] or calloc.

5

II size = num * sizeof(struct S);
... = (struct S*) malloc(size);

size is defined by a
multiply operation.

13

III size = size1 + size2;
... = (struct S*) malloc(size);

size is defined by a
add operation.

10

IV size = strlen(buffer);
... = (int*) malloc(size);

size is a return value
of strlen().

1

V buffer = malloc(size);
read(buffer, 0, size);

Object is operated by
array-related syscalls.

2

VI ... = (int*) malloc(const_value); size is a constant. 3
VII size = (i > 0 ? sizeof(int) : 10 *

sizeof(int));
... = (int*) malloc(size);

size is from a branch
that is potentially
array-related.

2

SUM 36

of 36 cases belong to this type. Similarly, the analysis also requires
the support of LLVM’s built-in def-use and use-def analysis.

Type VI requires further analysis, when the size parameter of
an allocation is a constant integer. For most cases, if the size pa-
rameter is a constant, the corresponding allocation is an array. But
there are some exceptions when analyzing in IR level. For instance,
if a statement is like this, (structS∗)malloc(sizeo f (structS)), the
size parameter is also interpreted as a constant integer in IR level.
But this is not an array. To avoid the misidentification, Prober-Static
further confirms whether the size is equal to the size of the corre-
sponding data type. Although LLVM has some built-in functions to
get the size of the object type, it requires some additional analysis
to determine the object type. The challenge is to determine this
when an allocation returns a void type pointer. Prober-Static adopts
a def-use or use-def analysis to find the definition or the usage
of the return value to figure out the object type.

Type VII is more complicated, since the object can be an ar-
ray in some branches. More specifically, LLVM-IR represents these
branches with a PHINode instruction. Prober-Static tracks all in-
coming values of this PHINode instruction. If at least one value
belongs to Type II, III, or IV, this allocation is treated as array-
related conservatively.

After the above analysis, Prober-Static will determine most allo-
cations array-related or not and selectively protect the arrays and
ignore the ones that are not array-related.
Step-III: Identify the object type (and unit size) for mem-
ory allocations non-determined: If a statement cannot be de-
termined array-related or not in Step-II, Prober-Static labels the al-
located object type (and thus the unit size) so that this allocation can
be determined dynamically by Prober-Dynamic. Prober-Dynamic
collects the size of an allocation size and divides it by the unit size1.
If this result is greater than one, Prober-Dynamic will protect this
memory allocation.

Prober-Static mainly employs LLVM’s built-in def-use chains to
find an object’s type in its usage site. Prober-Static also relies on the
metadata in LLVM IR to find the type information. Listing 2 and 3
show two examples of finding the object type with def-use chains

1A memory allocation might be used in more than one data types

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hongyu Liu, Ruiqin Tian, Bin Ren, and Tongping Liu

Step I
Identify allocation functions

Step II
Identify array-related allocation

Basic allocation operations

Allocation wrappers

Function pointers

Call new[] or calloc

Defined by mul

Defined by add

Special cases

Defined by strlen

Used in array syscall

By use-def

Constant value

Data type

Come from branch

PHINode instruction

Check allocation size

Check fun name/opBasic case

Check object operation

</>

C/C++

LLVM IR

Step III
Identify type

Def-use chain

Metadata

Dynamic
checking

Figure 2: Identify susceptible allocations.

and metadata, respectively. Listing 2 illustrates that an explicit
casting operation reveals the object type.

Listing 2: Identify the object type with a casting

1 %1 = call noalias i8∗@malloc(i64 70) #4
2 %2 = bitcast i8∗ %1 to %struct.s∗

Sometimes, it is difficult to find any obvious usage for a memory
allocation, then the metadata information showed in Listing 3 also
helps to find its object type.

Listing 3: Identify the object type with metadata

1 %21 = tail call i32 @mbuffer_create(%struct.mbuffer_t∗ nonnull %20,
↪→ i64 %19) #7, !dbg !1409

2 !22 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
3 !1393 = !DILocalVariable(name: "r", scope: !1387, file: !137, line: 312,

↪→ type: !22)

It is worth noticing that Prober-Static sets the type size as “1” by
default, so even it cannot determine the object type statically via
the above analysis, the allocation site will be protected effectively
during the runtime. That is, Prober always ensures over-protection.
Put them together: Figure 2 summarizes Prober-Static’s imple-
mentation. In Step-I, it checks each LLVM IR instruction according
to one basic case and two special cases to identify all invocations of
allocation functions, allocation function wrappers, and allocation
function pointers. In Step-II, only these allocation invocations are
further identified based on the following order. First, it checks the
function name and operator. Second, it checks the allocation size
with use-def, data type, and PHINode instruction information. Fi-
nally, it checks whether the operations of the corresponding objects
is related to some special system calls. If an allocation meets any of
these cases, then it is array-related. For them, Prober-Static label it
explicitly as shown in Section 3.1.2. Otherwise, Prober-Static finds
the object type (and type size) with either def-use chains or meta-
data in LLVM IR, and instruments the size of the allocation before
the allocation so that Prober-Dynamic will confirm it dynamically.

In real-world applications, pointers and alias variables may com-
plicate this analysis in two aspects. First, an alias pointer points
to the protected allocation. However, this will not cause any is-
sue, since Prober detects any access on the protected pages, no
matter whether they are accessed via an alias or not. Second, an
allocation function contains pointers or alias variables as its size
parameter. Prober-Static relies on LLVM’s pointer and alias analysis
functions to associate these pointers or alias variables to the actual
size variable and then performs further analysis. The evaluation in
Section 4 demonstrates that Prober-Static can successfully identify
and instrument array-related allocations for 46 bugs.

Listing 4: A LLVM-IR instrumentation example with new .

1 @specialMalloc = external thread_local global i8, align 1
2 define dso_local i32 @main() #0 {
3 store volatile i8 −1, i8∗@specialMalloc, align 1
4 %6 = call i8∗ @_Znam(i64 20) #2
5 ret i32 0
6 }

Listing 5: Equivalent C instrumentation of the new example.

1 extern __thread volatile bool specialMalloc;
2 int main(){
3 specialMalloc = −1;
4 int∗ b = new int[5];
5 return 0;
6 }

3.1.2 LLVM-IR Instrumentation. After a susceptible allocation site
has been identified, a thread-local variable, e.g., specialMalloc, will
be inserted to mark this site as a susceptible allocation. Here, the
specialMalloc variable is an integer variable, with the value of “0”
by default. This variable is set to “-1” before the allocation site if the
allocation is array-related allocation. For instance, the new example
of Type I in Table 4 is instrumented as Listing 4, where Listing 5
shows its equivalent C code for clarification. If a memory allocation

Prober: Practically Defending Overflows with Page Protection ASE ’20, September 21–25, 2020, Virtual Event, Australia

is non-determinable statically, specialMalloc will be set as the size
of the object type. Prober’s runtime will determine if it should be
protected.

3.2 Runtime System
As described in Section 2, the runtime system intercepts all memory
allocations and deallocations so that all susceptible objects can be
protected correspondingly. Therefore, the runtime system includes
multiple components, such as malloc/free monitor (Section 3.2.1),
protected heap management (Section 3.2.2), and exception handler
(Section 3.2.3), as further shown in Figure 1.

3.2.1 Malloc/Free Monitor. Prober intercepts all memory alloca-
tions and deallocations with the preloading mechanism. Prober
determines whether an object should be allocated from the pro-
tected heap upon memory allocations, and whether to return an
object to the protected heap upon deallocations.

Prober relies on the static instrumentation to determine an array-
related object. As described in Section 3.1.1, a thread-local variable
(specialMalloc) will be labeled by the Prober-Static: If an object
is identified as not-array related statically, with the value 0, the
object will be allocated from the default allocator; If the value
is −1, indicating an array-related object, then the object will be
allocated from the protected heap; Otherwise, this variable is the
basic unit size of an object. Prober further collects the actual size
for the allocation. When the allocation size is multiple times of
the basic structure, then Prober decided that the current allocation
is an array-related object. After that, the object will be allocated
from the protected heap. Note that when there is an extensive
number of array-related allocations, Prober allows users to disable
the protection on some allocation sites explicitly via a blacklist file.
In particular, Prober-Static generates a unique ID for each allocation
site, then users can specify the IDs of allocation sites that should
be excluded for the protection.

For each deallocation, Prober should determine whether this
object is coming from the protected heap. Prober utilizes the address
of the deallocation to determine it, where the address must be
located in a special range. For such objects, Prober returns them to
the protected heap as described in Section 3.2.2. Otherwise, objects
will be passed to the default allocator.

3.2.2 Management of Protected Heap. Prober designs its own heap
to manage array-related objects in order to reduce the performance
overhead. Similar to existing allocators [3, 16, 31], Prober manages
small and large objects separately. The idea behind this is that
large objects are typically much less, and then they do not have a
big chance of being re-utilized. Objects larger than 31 pages are
treated as large objects, which are allocated from or returned to
the OS directly by invoking mmap and munmp system calls. In order
to determine whether an object is a protected big object, Prober
maintains a hash table to track addresses of susceptible large objects,
and confirms it by checking the hash table. The protected big object
will be returned to the OS with the munmap system call.

Objects less than 31 pages will be treated as small objects, which
are managed differently from big objects. Prober overcomes multi-
ple design issues of Electric Fence. First, Electric Fence introduces
high contention for multi-threaded applications with one global ar-
ray to hold all freed objects. For instance, every freed object can be

stored into a global array only after holding the global lock, prevent-
ing concurrent allocations and deallocations from multiple threads.
Second, it uses the best-fit allocation policy. For each allocation, it
searches the whole array to find the best-matched buffer, which is
unnecessarily slow. If it fails to find one, it either divides a bigger
object into two parts, or maps a new one from the OS directly. Third,
it supports the coalescence and splitting of objects, which invokes
unnecessary mprotect system calls to change the attributes of pro-
tection. Instead, Prober takes the opposite approaches of Electric
Fence to improve the performance.

Fixed Size Class: The size of each object is kept the same dur-
ing the whole execution. Therefore, there is no need to invoke
mprotect to change the protection attribute. It is intuitive to main-
tain 31 classes, starting from 1-page to 31-page, but this method
does not encourage memory utilization. Instead, Prober maintains
only five size classes, including 1-page, 3-pages, 7-pages, 15-pages,
and 31-pages. All of these size classes are one page less than power-
of-two pages, since one page is reserved for the protected page.
Given this design, Prober could quickly compute the bag index
using simple bit-shifts operations, which is integrated with its next
information-computable design.

Information-Computable Design: Upon every deallocation, Prober
checks the size of each object in order to return it to the freelist be-
longing to the corresponding size class. One naive design is to main-
tain the size of each object into a hash table, which may invoke ex-
tensive searching and comparing operations. Instead, Prober adopts
the “information-computable design” of existing work [41, 42], as
shown in Figure 3. It takes advantage of the vast virtual address
space of 64-bits machines. Prober maps a large chunk of virtual
memory from the underlying operating systems at first, and then
divides it into multiple regions (called as “bags”) with the same size.
Each bag only holds objects with the same size class. This design
enables the quick computation of the bag index (thus the size of a
given object) by the address, which can be computed by dividing
the offset with the size of each bag.

Per-Thread Heap: In order to reduce lock contention of multi-
threaded applications, Prober adopts the per-thread heap idea of
Hoard [3]: allocations and deallocations of different threads will
occur only in their own per-thread heaps, without the acquisition
of a global lock. Only when freed objects of a per-thread heap are
larger than a predefined threshold, then these freed objects will
be returned to the global buffer and then be shared by all other
threads. In order to quickly locate the index of a thread, Prober
intercepts the creation of threads in order to assign a thread index
for every thread, which will be stored in its Thread Local Storage
(TLS). Therefore, upon each allocation and deallocation, Prober
could quickly locate its per-thread heap using its thread index, and
then direct it to its per-thread heap.

Pre-allocated FreeArray: Prober utilizes a pre-allocated circular
array to track available/freed objects. Two continuous deallocations
will be stored next to each other (except the last one in the array). For
allocations from the FreeArray, Prober utilizes the Last-In-First-Out
(LIFO) algorithm, since the most-recently-freed object have a larger
chance of being in the cache, which improves the cache efficiency.
Comparing to the normal freelist that each entry will be getting

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hongyu Liu, Ruiqin Tian, Bin Ren, and Tongping Liu

from a new allocation, the array-based design improves the cache
efficiency, since multiple continuous allocations and deallocations
can be satisfied from objects stored in the same cache line. Its pre-
allocated array further avoids the overhead of allocations of free
lists.

Overall, Prober manages memory as follows. Upon each mem-
ory allocation, Prober determines the size class by rounding the
allocation size up to its next size class. After that, the FreeArray
of its specific size class will be checked first. If a freed object is
available, the request will be satisfied with the FreeArray. When
there is no freed objects, Prober fetches multiple objects together
from the never-allocated ones to the FreeArray, and then allocates
one from it. During each deallocation, Prober first checks whether
the deallocation is allocated from the protected heap or not. If an
object is not from the protected heap, Prober invokes the default
allocator to deal with that. Otherwise, the current freed object will
be added into the per-thread FreeArray with the corresponding size
class. Note that the allocator only saves the starting address of the
freed block to the FreeArray. If the FreeArray is full, half of the
freed objects will be donated to the global buffer. That is, Prober
only involves with lock operations when there are no freed objects
in the per-thread FreeArray, or when the per-thread FreeArray is
full. Therefore, Prober’s design minimizes the lock contention.

1-page Class
……4GB 4GB 4GB

31-pages Class
Protected Heap (Small Objects)

……

T1: 1-page
FreeArray

Tx: 1-page
FreeArray

…
…

Tx: 31-pages
FreeArray

…
…

……

Figure 3: Basic idea of heap design.

3.2.3 Exception Handler. Since both overflows and program fail-
ures could trigger segmentation faults, Prober should determine
whether a fault is caused by an overflow or not, and only report the
faulty instruction to users for heap overflows. To achieve this target,
Prober registers its segmentation fault handler in order to capture
every SIGSEGV signal. Inside the signal handler, Prober first checks
whether the current object is one of the protected objects, either
the small or the big one. If the access does not belong to the pro-
tected object, the exception will be passed to the default handler
of applications. Otherwise, the current fault is an overflow. Prober
reports the faulty instruction differently, depending on whether the
binary includes the symbol information. If the symbol information
is included, Prober reports the detailed line number information
with the addr2line command. Otherwise, Prober only reports bi-
nary addresses of the corresponding call stacks. For each overflow,
Prober also reports the callstack of its corresponding memory al-
location site, where the information will be stored in the shadow
memory for small objects and in the hash table for big objects.

4 EXPERIMENTAL EVALUATION
We performed the experiments on a two-socket quiescent machine,
where each socket is an Intel(R) Xeon(R) Gold 6138 processor with
20 cores. It has 200GB main memory, and 32KB L1, 1024 KB L2 and
28160 KB L3 cache. The experiments were performed on Ubuntu
18.04, installed with Linux-4.15.0 kernel. All applications were com-
piled with LLVM-8.0, by adding an analysis/instrumentation pass
of Prober-Static.

4.1 Effectiveness
The effectiveness evaluation includes two parts, 38 bugs included
in the existing study [47] and other overflow bugs included in other
existing work, such as Bugbench [28], CVE database, or HeapTher-
apy [49].

4.1.1 38 Bugs from the Existing Study. For 38 bugs listed in the
existing study, we confirm that Prober correctly instrumented 36
bugs out of them. The remaining two bugs cannot be instrumented
due to the invocation of external standard library calls (e.g., lib-
stdc++), which are not analyzed (shared by instrumentation-based
approaches). Therefore, Prober’s evaluation presents high confi-
dence on the actual overhead, since it could instrument all bugs
correctly.

Note that we did not run these buggy applications directly, due to
the following reasons. First, these bugs may not include erroneous
inputs that are required to exercise them. Second, many of them are
not compatible with modern libraries, which requires a significant
amount of manual efforts for the compilation. Therefore, we only
verify whether the corresponding bugs have been instrumented
correctly.

4.1.2 Other Real-world Bugs. We performed the effectiveness eval-
uation on the other real-world 10 bugs that are not listed in the
existing study [47]. These applications and their specific bug trig-
ger inputs are obtained from Bugbench [28] , CVE database, or
HeapTherapy [49]. Among these 10 vulnerable applications, the
heartbleed and libtiff-4.0.7 vulnerabilities are caused by buffer over-
reads, while others are caused by buffer over-writes. The details
of these applications are shown in Table 5, where all of these bugs
can be detected by AddressSanitizer. Table 5 also listed the number
of allocation sites that can be identified statically (“Static” column)
and dynamically (“Dynamic”). Overall, Prober detects all known
overflows without false positives. Upon detection, Prober stops the
execution immediately (before the crashes), and reports the type of
an overflow (over-read or over-write), the call path of triggering the
overflow, and the allocation site of the corresponding buffer. The
evaluation confirms that Prober is able to detect real heap overflows
with its proposed instrumentation and runtime system.

4.1.3 Case Study. Figure 4 shows the bug report for the heartbleed
vulnerability. Prober identifies that this bug is a buffer over-read
problem. The bug report also includes the call stack of the faulty
instruction (where the overflow occurs), and the call stack of this
object’s allocation site.

According to the bug report, the overflow occurs in thememcpy()
function, which is invoked by the tls1_process_heartbeat function
at line 2586 of ./ssl/t1_lib.c file. By checking the source code,
the corresponding statement ismemcpy(bp,pl ,payload). According

Prober: Practically Defending Overflows with Page Protection ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 5: Statically and dynamically identified callsites in
buggy applications

Application Reference Static
(#)

Dynamic
(#)

bc-1.06 BugBench [28] 43 5
gzip-1.2.4 BugBench [28] 3 1
Heartbleed CVE-2014-0160 [13] 9314 3941
LibHX-3.4 CVE-2010-2947 [6] 23 15
Libtiff-4.0.1 CVE-2013-4243 [7] 406 75
Libtiff-4.0.7 CVE-2016-10269 [9] 421 104
Memcached-1.4.25 CVE-2016-8706 [45] 80 19
openjpeg-1.3 CVE-2012-3535 [39] 756 201
polymorph-0.4.0 BugBench [28] 1 0
squid-2.3 BugBench [28] 83 175

A buffer over−read problem is detected at:
../glibc/../multiarch/memcpy−avx−unaligned.S:237
../x86_64−linux−gnu/bits/string3.h:53
../openssl−OpenSSL_1_0_1f/ssl/t1_lib.c:2586
../openssl−OpenSSL_1_0_1f/ssl/s3_pkt.c:1092
../openssl−OpenSSL_1_0_1f/ssl/s3_both.c:457
...
../nginx−1.3.9/src/event/ngx_event.c:247
../nginx−1.3.9/src/os/unix/ngx_process_cycle.c:807
...
This object is allocated at:
../openssl−OpenSSL_1_0_1f/ssl/s3_both.c:770
../openssl−OpenSSL_1_0_1f/ssl/s3_pkt.c:949
../openssl−OpenSSL_1_0_1f/ssl/s3_both.c:457

Figure 4: Bug report for the Heartbleed Problem.

to the attribute of this problem–a buffer over-read problem, it is easy
to know that the over-read issue is related to the source of memcpy,
that is, either pl or payload. Since pl is the starting address of a
normal heap object that is allocated at line 770 of ./ssl/s3_both.c
file, then the failure must be caused by payload. By examining the
source code, we could easily find out that payload is computed from
the length of the data that the server receives from the network.
Therefore, via the bug report, programmers can easily reason the
root cause of overflow, and fix the problem correspondingly.

4.2 Performance Overhead
To evaluate the performance overhead, Prober is evaluated on a
popular benchmark suite–PARSEC [4], and multiple widely-utilized
real applications, such as sqlite, memcached, aget, pbzip2, and pfs-
can, with 18 multithreaded applications in total. For PARSEC bench-
marks, we used the native inputs and 40 threads. For applications
that can only use power-of-2 threads, e.g., facesim, then they will
use 32 threads [4].

We compare Prober with Prober-All, Electric Fence [37] ,and
AddressSanitizer [40]. Prober-All protects all heap objects through
the page protection despite they are array-related or not. Electric
Fence also utilizes the page protection to protect all heap objects,
which is very similar to Prober-All, but with different implementa-
tion. AddressSanitizer is an instrumentation-based approach that

checks every memory access, representing one important tech-
nique that is widely employed in development phases. For both
AddressSanitizer and Prober, we did not instrument any external
and standard libraries that are required by these applications, which
could impose more overhead if they are included. For the fair com-
parison, we disable the checks of global and stack overflows for
AddressSanitizer.

Figure 5 shows the normalized runtime of these four systems,
which are normalized to the runtime of the default Linux libraries.
Overall, the average overhead of Prober, Prober-All, Electric Fence,
and AddressSanitizer are 1.5%, 2.4×, > 7×, 42.9%, respectively. The
largest overhead of Prober is only 9.3% for ferret.

For bothAddressSanitizer and Electric Fence, freqmine is crashed
due to an unknown problem in our evaluation environment. aget
is crashedwith Electric Fence as well. For Electric fence, five applica-
tions, including canneal, dedup, facesim, raytrace and swaptions,
cannot finish the execution within 1 hour (marked as “T”). For
Prober, dedup runs over 2× slower initially, if all identified call-
sites are protected. Based on our analysis, one callsite has over
50% of allocations, which is excluded manually (as described in
Section 3.2.1).

Multiple reasons contribute to the big performance difference
of these systems. AddressSanitizer’s performance overhead mainly
comes from its checking overhead for every memory access, which
also explains its little overhead for IO-bound applications, such as
aget or pfscan. Comparing to AddressSanitizer, Prober does not
check on accesses, with its page protection mechanism. Compar-
ing to Prober-All and Electric Fence, Prober only protects array-
related objects, instead of all heap objects. Therefore, the overhead
of Prober-All and Electric Fence is much higher than that of Prober.
Electric Fence imposes the highest overhead due to its implementa-
tion issues as discussed in Section 3.2.2.

Comparing to Electric Fence, Prober-All (and Prober) is more
efficient due to multiple reasons. First, Electric Fence utilizes the
global lock to protect all allocations and deallocations, which unfor-
tunately serializes all allocations and deallocations. Second, Elec-
tric Fence may coalesce continuous objects upon deallocations,
and split a larger object to smaller ones upon allocations. Third,
Electric Fence cannot quickly locate the metadata information. In-
stead, Prober and Prober-All designs per-thread heap, pre-allocated
freeArray, and information-computable design as further discussed
in Section 3.2.2.

We further collected the characteristics of these applications
dynamically, as shown in Table 6. In this table, the “Total Objects”
column shows the total number of allocations for each application,
including allocations from the application and all libraries. The
“Protected Objects” column shows the number of allocations
that are protected in total. Here, “Static” and “Dynamic” represent
whether such objects can be identified statically or dynamically
(requiring the determination of its runtime). Among these protected
objects, “Live” column shows the maximum number of objects
that are protected at the same time. The “Unprotected Objects”
column indicates the number of heap objects that are not protected
by Prober. We have the following observations.

First, most applications have a larger portion of objects that
are not array-related, such as canneal, raytrace, and vips. This

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hongyu Liu, Ruiqin Tian, Bin Ren, and Tongping Liu

0

0.5

1

1.5

2

2.5

N
o
rm

a
li

ze
d
 R

u
n
ti

m
e

Prober Prober-All Electric Fence ASan

3.9 4.8 T 6.2T T 16.8 5.6 T T 38.9 5.0 7.03.1 13.9

Figure 5: Performance overhead of Prober, Prober-All, Electric Fence and AddressSanitizer, where they are all normalized to
the runtime of the default Linux libraries. Applications with the bar marked as “T” (indicating the timeout) cannot finish the
execution in one hour.

Table 6: Characteristics of applications.

Application Total Objects Protected Objects Unprotected
ObjectsStatic Dynamic Live

blackscholes 208 5 0 5 203
bodytrack 452,084 2,349 0 70 449,735
canneal 21,141,661 0 0 0 21,141,661
dedup 1,887,373 734 336,747 140,630 1,549,892
facesim 4,908,999 2,302,579 432 440,944 2,605,988
ferret 549,109 380,546 3,496 81,736 165,067
fluidanimate 230,105 24 0 24 230,081
freqmine 8,699 7,555 0 944 1,144
raytrace 20,000,619 12 1 12 20,000,606
streamcluster 9,241 8,854 6 15 381
swaptions 48,001,995 48,001,796 0 1,826 199
vips 1,430,261 0 1,312 1,312 1,428,949
x264 37,332 46 37,121 2,355 165
aget 319 38 0 29 281
memcached 848 276 33 309 539
pbzip2 23,851 0 0 0 23,851
pfscan 238 3 1 3 234
sqlite 2,889,043 2,888,868 0 5,826 175

indicates that our key insight is effective in reducing the scope of
protection.

Second, in Prober, the number of objects that are protected at the
same time (in “Live” column) will affect the performance overhead,
but not the number of protected objects, since freed objects are
re-used in Prober. The overhead of each protected object comes
from two aspects. First, it comes from the mprotect system call
to insert the protected page. After that, page protection imposes
no additional overhead for checking the overflow. Second, a large
number of protected objects (in different pages) may increase page
faults. This explains why dedup, ferret, and sqlite impose higher
performance overhead than others. However, facesim imposes a
low overhead, although with the largest number of live objects.
This is due to the fact that facesim runs much longer than other
applications, where the averaged number of protection is still small.
In addition to that, facesim has found to have serious memory
leaks [20], indicating that the number of live objects is smaller than
that in Table 6. This indicates that facesim may not increase the
number of page faults.

Third, Table 6 explains that some applications require a long exe-
cution with Prober-All, Electric Fence, such as canneal, raytrace,
and swaptions, since there are a large number of objects inside.
Prober avoids this issue by protecting only array-related objects,
instead of all objects. Table 6 also explains why Prober-All and
Electric Fence performs well in blackscholes, streamcluster,
memcached, pbzip2, and pfscan, since only a few allocations exist
in these applications. Prober’s unique observation and its efficient
heap design (as discussed in Section 3.2.2) make it efficient enough
for the deployment environment, but without compromising its
effectiveness.

4.3 Memory Overhead
We also evaluated the memory overhead of Prober using the same
applications that are used in the performance evaluation. To collect
memory consumption of server applications, such as memcached,
a script is designed to periodically collect the /proc/PID/status
file. Then the maximum value of the VmHWM field is utilized as the
maximum memory consumption. For other applications, memory
consumption is collected from the output of the time utility, where
the maxresident field reports the maximum memory consumption
of an application [2].

The real memory data is omitted due to space limitations. In total,
Prober utilizes 25.9% more memory when compared to the default
library. In contrast, Electric Fence utilizes around 3.9× memory,
and AddressSanitizer’s memory overhead is around 69.7%. That is,
Prober utilizes significantly less memory than Electric Fence and
AddressSanitizer. We also observed that applications with a small
footprint have a higher memory overhead, coming from the storing
of thread information, heap information, and other metadata that
are not proportional to their memory usage.

5 LIMITATIONS
Prober focuses on array-related heap overflows, representing over
86% of heap overflows based on our observations (Section 2). It
cannot detect array-related internal-structure overflows, which is
its biggest limitation. However, there is no fundamental reason why

Prober: Practically Defending Overflows with Page Protection ASE ’20, September 21–25, 2020, Virtual Event, Australia

this cannot be done. It is possible to arrange the fields of the struc-
ture so that array(s) can be placed at the end of the corresponding
structure. Adding the support for internal-structure overflows will
be our future work.

Prober can only detect overflows landing on the protection
page(s). Prober can be configured to change the pages for the pro-
tection if necessary. In theory, it is able to detect more errors than
existing approaches with redzones, such as AddressSanitizer [40].
It currently cannot detect heap underflows. However, heap under-
flows cannot do any harm, since they can only land on the non-used
area.

Prober only detects overflows when the source code is analyzed
and instrumented by Prober-Static. This limitation is also shared
by all instrumentation-based tools, e.g., EffectiveSan [11] or Ad-
dressSanitizer [40]. When an overflowing object is allocated in a
library that is not instrumented, Prober cannot detect it. However,
different from existing work that detects overflows by checking
memory accesses, Prober can detect overflows caused by APIs of a
non-instrumented library. This is a significant difference.

6 RELATED WORK
We classify existing tools of detecting heap buffer overflow based
on the type of approaches.

Static Detection: Many tools utilize static analysis to detect
buffer overflow bugs [14, 22, 23, 27]. They only analyze software
source code in order to reason which statements could potentially
cause buffer overflows. However, some variables (e.g., indirect
branches) could not be determined without the execution. Thus,
they may generate many false positives or false negatives, which
requires further manual efforts to confirm the reported bugs. In
contrast, Prober never generates any false positives.

Dynamic detection: Several tools place an inaccessible mem-
ory page around every heap object [32, 33, 37, 49], which is similar
to Prober. Memory accesses to the protected pages will generate a
SIGSEGV signal. However, these existing work suffer from a prohib-
itively high performance overhead by protecting all pages or even
probabilistically. Although Prober employs the same mechanism
to detect heap buffer overflow, it narrows down heap objects that
can potentially result in buffer overflows, which drastically reduces
its performance overhead. Also, Prober designs its runtime system
carefully to reduce its overhead.

Static instrumentation-assisted detection: Numerous tools
analyze source code to identify necessary instrumentation, which
favors sanity checks at runtime [1, 8, 12, 15, 17, 21, 29, 36, 38, 40].
They instrument all memory accesses at compilation phases, and
check the validity of accesses at runtime. AddressSantizer [40] is
the state-of-art of this type of approaches, which further employs
the static analysis to prune out certain unnecessary checks. How-
ever, AddressSanitizer still imposes non-negligible performance
overhead, as further evaluated in Section 4.2. Different from these
tools, Prober does not check every memory access, but relying on
the page protection to detect overflows without checking overhead,
if there is no overflow.

Dynamic instrumentation-assisted detection: A lot of dy-
namic analysis tools detect memory errors based on the checking

of memory accesses during runtime, such as Valgrind’s Memcheck
tool [30], Dr. Memory [5], Purify [18], Intel Inspector [19], and Sun
Discover [35]. Due to the expensive instrumentation and inspec-
tion, they typically impose too high-performance overhead to be
employed in the production environment.

Hardware-assisted detection: A few tools rely on new hard-
ware to detect buffer overflows. Intel MPX tries to reduce the over-
head of pointer checks by embedding checks into a new hard-
ware [34]. BOGO relies on Intel MPX to provide both spatial and
temporal safety [50]. However, the overhead of validating every
memory access is too high to be adopted in practice. Sampling-based
techniques, such as CSOD [25] and Sampler [43], utilize hardware
watchpoints or Performance Monitor Unit (PMU) hardware to mon-
itor a few heap objects at one time or validate a subset of memory
accesses. Although they impose low runtime overhead similarly
as Prober, they cannot guarantee the same effectiveness as Prober,
especially when there are a lot of heap objects. CHERI requires
the cooperation of architecture, compiler, and operating system
together to enforce memory safety [46], which inevitably increases
developers’ effort. Prober, which is a dynamically linked library,
imposes little manual effort, without changing the underlying OS
and requiring new hardware.

Postmortemdetection: Some evidence-based tools detect buffer
over-writes by appending canaries after each heap object and
checks if canaries are corrupted at memory deallocations or epoch
ends [24, 26, 48, 49]. Since read operations do not leave evidence,
they cannot detect read-based buffer overflow, while Prober can
detect both buffer over-reads and buffer over-writes. Also, evidence-
based approaches cannot be applied in the security environment,
since the attacks may already be issued successfully before per-
forming the detection.

7 CONCLUSION
This paper presents a novel system to defend heap overflows. It is
based on a key observation that is obtained from the analysis of
48 real overflow bugs: overflowing objects are typically involved
with arrays. Based on this observation, Prober takes a two-phase
approach to detect heap overflows: its static component identifies
all possible array-related allocations before the compilation, and
then instruments the code correspondingly; Its dynamic component
further intercepts the allocations, and redirects the allocations from
susceptible allocation sites to the protected heap in order to detect
the overflows with the page protection mechanism. Overall, Prober
only imposes around 1.5% performance overhead on average, but
without compromising its effectiveness. The low overhead and the
high effectiveness makes Prober an always-on approach for the
production environment.

8 ACKNOWLEDGEMENTS
We would like to thank all anonymous reviewers for their construc-
tive suggestions and feedback. This paper is partially supported by
the National Science Foundation under Award CCF-2024253, UMass
Amherst startup package, and William & Mary startup package.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hongyu Liu, Ruiqin Tian, Bin Ren, and Tongping Liu

REFERENCES
[1] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy

bounds checking: an efficient and backwards-compatible defense against out-of-
bounds errors. In Proceedings of the 18th conference on USENIX security symposium
(Montreal, Canada) (SSYM’09). USENIX Association, Berkeley, CA, USA, 51–66.
http://dl.acm.org/citation.cfm?id=1855768.1855772

[2] Andries Brouwer. 2015. time - time a simple command or give resource usage.
Linux Comunity.

[3] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wil-
son. 2000. Hoard: A Scalable Memory Allocator for Multithreaded Applica-
tions. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-IX). Association for
Computing Machinery, New York, NY, United States, Cambridge, MA, 117–128.
citeseer.ist.psu.edu/berger00hoard.html

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques. Association for Computing Machinery, New York, NY,
United States, 1–10.

[5] Derek Bruening andQin Zhao. 2011. Practical memory checkingwith Dr.Memory.
In Proceedings of the 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO ’11). IEEE Computer Society, Washington,
DC, USA, 213–223. http://dl.acm.org/citation.cfm?id=2190025.2190067

[6] Bugzilla. 2010. "libHX: buffer overrun in HX_split()".
https://bugzilla.redhat.com/show_bug.cgi?id=625866.

[7] Bugzilla. 2013. "libtiff (gif2tiff): possible heapbased buffer overflow in readgifim-
age()". http://bugzilla.maptools.org/show_bug.cgi?id=2451.

[8] Zhe Chen, Junqi Yan, Shuanglong Kan, Ju Qian, and Jingling Xue. 2019. Detecting
Memory Errors at Runtime with Source-level Instrumentation. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis
(Beijing, China) (ISSTA 2019). ACM, New York, NY, USA, 341–351. https://doi.
org/10.1145/3293882.3330581

[9] The MITRE Corporation. 2016. CVE-2016-10269. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-10269.

[10] CVEdetails. 2019. Vulnerabilities By Type.
https://www.cvedetails.com/vulnerabilities-by-types.php.

[11] Gregory J. Duck and Roland H. C. Yap. 2018. EffectiveSan: Type and Memory
Error Detection Using Dynamically Typed C/C++. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Philadelphia, PA, USA) (PLDI 2018). ACM, New York, NY, USA, 181–195. https:
//doi.org/10.1145/3192366.3192388

[12] Gregory J. Duck and Roland H. C. Yap. 2018. EffectiveSan: Type and Memory
Error Detection Using Dynamically Typed C/C++. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Philadelphia, PA, USA) (PLDI 2018). ACM, New York, NY, USA, 181–195. https:
//doi.org/10.1145/3192366.3192388

[13] Exploit. 2014. "Openssl heartbeat poc with starttls support".
https://gist.github.com/takeshixx/10107280.

[14] Micro Focus. 2019. Fortify Static Code Analyzer. https://www.ndm.net/sast/hp-
fortify. last visited: 02/08/2019.

[15] Frank Ch. Eigler. 2003. Mudflap: pointer use checking for C/C++. Red Hat Inc.
[16] Sanjay Ghemawat and Paul Menage. 2005. TCMalloc : Thread-Caching Malloc.

http://goog-perftools.sourceforge.net/doc/tcmalloc.html.
[17] Niranjan Hasabnis, Ashish Misra, and R. Sekar. 2012. Light-weight bounds

checking. In Proceedings of the Tenth International Symposium on Code Generation
and Optimization (San Jose, California) (CGO ’12). ACM, New York, NY, USA,
135–144. https://doi.org/10.1145/2259016.2259034

[18] Reed Hastings and Bob Joyce. 1992. Purify: Fast detection of memory leaks
and access errors. In In Proc. of the Winter 1992 USENIX Conference. USENIX
Association, Berkeley, Califonia, USA, 125–138.

[19] Intel Corporation. 2012. Intel Inspector XE 2013. http://software.intel.com/en-
us/intel-inspector-xe.

[20] Changhee Jung, Sangho Lee, Easwaran Raman, and Santosh Pande. 2014. Au-
tomated Memory Leak Detection for Production Use. In Proceedings of the
36th International Conference on Software Engineering (Hyderabad, India) (ICSE
2014). Association for Computing Machinery, New York, NY, USA, 825âĂŞ836.
https://doi.org/10.1145/2568225.2568311

[21] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos, and Cristiano
Giuffrida. 2018. Delta Pointers: Buffer Overflow Checks Without the Checks. In
Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys ’18).
ACM, New York, NY, USA, Article 22, 14 pages. https://doi.org/10.1145/3190508.
3190553

[22] David Larochelle and David Evans. 2001. Statically Detecting Likely Buffer
Overflow Vulnerabilities. In Proceedings of the 10th Conference on USENIX Security
Symposium - Volume 10 (Washington, D.C.) (SSYM’01). USENIX Association,
Berkeley, CA, USA, Article 14, 177âĂŞ190 pages. http://dl.acm.org/citation.cfm?
id=1251327.1251341

[23] Wei Le and Mary Lou Soffa. 2008. Marple: A Demand-driven Path-sensitive
Buffer Overflow Detector. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Atlanta, Georgia) (SIGSOFT
’08/FSE-16). ACM, New York, NY, USA, 272–282. https://doi.org/10.1145/1453101.
1453137

[24] Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping Liu. 2018.
iReplayer: In-situ and Identical Record-and-replay forMultithreaded Applications.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). ACM, New York,
NY, USA, 344–358. https://doi.org/10.1145/3192366.3192380

[25] Hongyu Liu, Sam Silvestro, Xiaoyin Wang, Lide Duan, and Tongping Liu.
2019. CSOD: Context-Sensitive Overflow Detection. In Proceedings of the 2019
IEEE/ACM International Symposium on Code Generation and Optimization (Wash-
ington, DC, USA) (CGO 2019). IEEE Press, 50âĂŞ60.

[26] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2016. DoubleTake: Fast
and Precise Error Detection via Evidence-based Dynamic Analysis. In Proceedings
of the 38th International Conference on Software Engineering (Austin, Texas) (ICSE
’16). ACM, New York, NY, USA, 911–922. https://doi.org/10.1145/2884781.2884784

[27] Checkmarx Ltd. 2019. Checkmarx. https://www.checkmarx.com. last visited:
02/08/2019.

[28] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. 2005.
Bugbench: Benchmarks for evaluating bug detection tools. In In Workshop on the
Evaluation of Software Defect Detection Tools. Chicago, IL, USA.

[29] George C. Necula Necula,McPeak Scott, andWeimerWestley. 2002. CCured: Type-
Safe Retrofitting of Legacy Code. In Proceedings of the Principles of Programming
Languages. Association for Computing Machinery, New York, NY, United States,
128–139.

[30] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In Proceedings of the 2007 ACM SIG-
PLAN conference on Programming language design and implementation (San
Diego, California, USA) (PLDI ’07). ACM, New York, NY, USA, 89–100. https:
//doi.org/10.1145/1250734.1250746

[31] Gene Novark and Emery D. Berger. 2010. DieHarder: securing the heap. In
Proceedings of the 17th ACM conference on Computer and communications security
(Chicago, Illinois, USA) (CCS ’10). ACM, New York, NY, USA, 573–584. https:
//doi.org/10.1145/1866307.1866371

[32] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. 2007. Exterminator:
automatically correcting memory errors with high probability. In Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2007) (San Diego, California, USA). ACM Press, New York,
NY, USA, 1–11. https://doi.org/10.1145/1250734.1250736

[33] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. 2009. Efficiently and
precisely locating memory leaks and bloat. In Proceedings of the 2009 ACM SIG-
PLAN conference on Programming language design and implementation (PLDI
2009) (Dublin, Ireland). ACM, New York, NY, USA, 397–407. https://doi.org/10.
1145/1542476.1542521

[34] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. 2018. Intel MPX Explained: A Cross-layer Analysis of the Intel MPX
System Stack. Proc. ACM Meas. Anal. Comput. Syst. 2, 2, Article 28 (June 2018),
30 pages. https://doi.org/10.1145/3224423

[35] Oracle Corporation. 2011. Sun Memory Error Discovery Tool (Discover).
http://docs.oracle.com/cd/E18659_01/html/821-1784/gentextid-302.html.

[36] parasoft Company. 2013. C and C++ Memory Debugging.
[37] Bruce Perens. 2005. Electric Fence. https://linux.softpedia.com/get/Programming/

Debuggers/Electric-Fence-3305.shtml.
[38] Olatunji Ruwase and Monica S. Lam. 2004. A Practical Dynamic Buffer Overflow

Detector. In In Proceedings of the 11th Annual Network and Distributed System
Security Symposium. The Internet Society, San Diego, California, USA, 159–169.

[39] Kurt Seifried. 2012. "CVE Request: Heap-based buffer overflow in openjpeg".
https://seclists.org/oss-sec/2012/q3/300.

[40] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: a fast address sanity checker. In Proceed-
ings of the 2012 USENIX conference on Annual Technical Conference (Boston,
MA) (USENIX ATC’12). USENIX Association, Berkeley, CA, USA, 28–28. http:
//dl.acm.org/citation.cfm?id=2342821.2342849

[41] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin, and Tongping Liu.
2017. FreeGuard: A Faster Secure Heap Allocator. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (Dallas, Texas,
USA) (CCS ’17). ACM, New York, NY, USA, 2389–2403. https://doi.org/10.1145/
3133956.3133957

[42] Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhiqiang Lin, and Tongping Liu. 2018.
Guarder: A Tunable Secure Allocator. In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, Baltimore, MD, 117–133. https:
//www.usenix.org/conference/usenixsecurity18/presentation/silvestro

[43] Sam Silvestro, Hongyu Liu, Tong Zhang, Changhee Jung, Dongyoon Lee, and
Tongping Liu. 2018. Sampler: PMU-Based Sampling to Detect Memory Errors

http://dl.acm.org/citation.cfm?id=1855768.1855772
citeseer.ist.psu.edu/berger00hoard.html
http://dl.acm.org/citation.cfm?id=2190025.2190067
https://doi.org/10.1145/3293882.3330581
https://doi.org/10.1145/3293882.3330581
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1145/2259016.2259034
https://doi.org/10.1145/2568225.2568311
https://doi.org/10.1145/3190508.3190553
https://doi.org/10.1145/3190508.3190553
http://dl.acm.org/citation.cfm?id=1251327.1251341
http://dl.acm.org/citation.cfm?id=1251327.1251341
https://doi.org/10.1145/1453101.1453137
https://doi.org/10.1145/1453101.1453137
https://doi.org/10.1145/3192366.3192380
https://doi.org/10.1145/2884781.2884784
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1866307.1866371
https://doi.org/10.1145/1866307.1866371
https://doi.org/10.1145/1250734.1250736
https://doi.org/10.1145/1542476.1542521
https://doi.org/10.1145/1542476.1542521
https://doi.org/10.1145/3224423
https://linux.softpedia.com/get/Programming/Debuggers/Electric-Fence-3305.shtml
https://linux.softpedia.com/get/Programming/Debuggers/Electric-Fence-3305.shtml
http://dl.acm.org/citation.cfm?id=2342821.2342849
http://dl.acm.org/citation.cfm?id=2342821.2342849
https://doi.org/10.1145/3133956.3133957
https://doi.org/10.1145/3133956.3133957
https://www.usenix.org/conference/usenixsecurity18/presentation/silvestro
https://www.usenix.org/conference/usenixsecurity18/presentation/silvestro

Prober: Practically Defending Overflows with Page Protection ASE ’20, September 21–25, 2020, Virtual Event, Australia

Latent in Production Software. In 2018 51st Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). IEEE, 231–244.

[44] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal War
in Memory. In Proceedings of the 2013 IEEE Symposium on Security and Privacy
(SP ’13). IEEE Computer Society, USA, 48–62. https://doi.org/10.1109/SP.2013.13

[45] Talos. 2016. "Memcached Server SASL Autentication Remote Code Execution
Vulnerability". https://www.talosintelligence.com/reports/TALOS-2016-0221/.

[46] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson, D.
Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch, R. Norton, M. Roe,
S. Son, and M. Vadera. 2015. CHERI: A Hybrid Capability-System Architecture
for Scalable Software Compartmentalization. In 2015 IEEE Symposium on Security
and Privacy. 20–37. https://doi.org/10.1109/SP.2015.9

[47] T. Ye, L. Zhang, L. Wang, and X. Li. 2016. An Empirical Study on Detecting and
Fixing Buffer Overflow Bugs. In 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST). 91–101. https://doi.org/10.1109/ICST.
2016.21

[48] Qiang Zeng, Dinghao Wu, and Peng Liu. 2011. Cruiser: concurrent heap buffer
overflow monitoring using lock-free data structures. In Proceedings of the 32nd
ACM SIGPLAN conference on Programming language design and implementation
(San Jose, California, USA) (PLDI ’11). ACM, New York, NY, USA, 367–377. https:
//doi.org/10.1145/1993498.1993541

[49] Qiang Zeng, Mingyi Zhao, and Peng Liu. 2015. HeapTherapy: An Efficient End-
to-End Solution Against Heap Buffer Overflows. In Proceedings of the 2015 45th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN ’15). IEEE Computer Society, Washington, DC, USA, 485–496. https://doi.
org/10.1109/DSN.2015.54

[50] Tong Zhang, Dongyoon Lee, and Changhee Jung. 2019. BOGO: Buy Spatial
Memory Safety, Get Temporal Memory Safety (Almost) Free. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). ACM, New
York, NY, USA, 631–644. https://doi.org/10.1145/3297858.3304017

https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1109/ICST.2016.21
https://doi.org/10.1109/ICST.2016.21
https://doi.org/10.1145/1993498.1993541
https://doi.org/10.1145/1993498.1993541
https://doi.org/10.1109/DSN.2015.54
https://doi.org/10.1109/DSN.2015.54
https://doi.org/10.1145/3297858.3304017

