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Google Earth Engine (GEE) is an ideal platform for large-scale geospatial agricultural and environmental
modeling based on its diverse geospatial datasets, easy-to-use application programming interface (API), rich
reusable library, and high-performance computational capacity. However, using GEE to prepare geospatial data
requires not only the skills of programming languages like JavaScript and Python, but also the knowledge of GEE
APIs and data catalog. This paper presents the AgKit4EE toolkit to facilitate the use of the Cropland Data Layer
(CDL) product over the GEE platform. This toolkit contains a variety of frequently used functions for use of CDL
including crop sequence modeling, crop frequency modeling, confidence layer modeling, and land use change
analysis. The experimental results suggest that the proposed software can significantly reduce the workload for
modelers who conduct geospatial agricultural and environmental modeling with CDL data as well as developers
who build the GEE-enabled geospatial cyberinfrastructure for agricultural land use modeling of the conterminous
United States. AgKit4EE is an open source and it is free to use, modify, and distribute. The latest release of
AgKit4EE can be imported to any modeling workflow developed using GEE Code Editor (https://code.earthen
gine.google.com/?accept_repo=users/czhangl1/agkit4ee). The source code, examples, documentation, user

community, and wiki pages are available on GitHub (https://github.com/czhang11/agkit4ee).

1. Introduction

The conterminous United States (CONUS), which has the largest
production areas of corn, soybeans, and sorghum in the world, is an ideal
study area for scientists to model natural environment and human ac-
tivities in agriculture (Feng and Hu, 2004; McCarty et al., 2009; Li et al.,
2016; Feng et al., 2019; Flynn, 2019). As the only annual crop-specific
land use and land cover (LULC) data product of the CONUS, the Crop-
land Data Layer (CDL) of the U.S. Department of Agriculture (USDA),
National Agricultural Statistics Service (NASS) has been widely used by
farmers, educators, students, researchers, and government officers in
agricultural business, universities, research institutes, and governments
worldwide for agricultural production planning and management, ed-
ucation, government policy formulation and decision making, and
various research activities (Boryan et al., 2011; Stern et al., 2012;
Mueller and Harris, 2013; Di et al., 2015). The CDL product has been
disseminated through CropScape since 2011. According to the report
from Google Analytics, more than 208,000 unique users around the

world have visited and interacted with CropScape as of May 2019. As an
one-of-a-kind one-stop platform to visualize, retrieve, and analyze CDL,
CropScape provides not only various geospatial functionalities such as
data customization and downloading, crop acreage statistics, charting
and graphing, and multi-temporal change analysis, but also the highly
interoperable open standard-based geospatial web services such as Web
Map Service (WMS), Web Coverage Service (WCS), and Web Processing
Service (WPS) (Han et al., 2012, Zhang et al., 2019d). These function-
alities and web services of CropScape have been utilized in many geo-
spatial environmental models, frameworks, and software (Han et al.,
2014; Feng et al., 2015; McNider et al., 2015; Groff et al., 2016; Tasdighi
et al., 2018). However, due to the limited computing resources, it is
difficult to perform advanced modeling and mathematical operations on
the multi-year CDL data directly using either the CropScape web portal
or its web services. To fill the gap and further facilitate the use of CDL
data, a new web-based tool for the CONUS-scale agricultural land use
modeling is needed.

Modeling multi-year CDL data for the entire CONUS requires massive
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Fig. 1. Architectural context of the proposed GEE-enabled toolkit for agricultural land use modeling.

Table 1
Summary of CDL products in the public data catalog of Google Earth Engine.
Cropland Layer Confidence Cultivated
Layer Layer
Availability 1997-2018 2008-2018 2013-2018
Coverage CONUS (2008-2018) CONUS CONUS
Some states
(1997-2008)
Spatial 30m 30m 30m
resolution
Pixel value 0-254 0-100 0-2

Table 2
Data structures defined in the AgKit4EE toolkit.

Data Structure in
AgKit4EE

Corresponding GEE
Data Structure

Description

Single-band CDL ee.Image() A single-band image for the
Image specific year

Single-band CDL ee.ImageCollection() A collection of single-band CDL
ImageCollection images

Stacked CDL Image ee.Image() A multi-bands image for the
specific CDL product, each band
refers to a layer of the specific
year

Multi-bands CDL ee.Image() A multi-bands image for the

Image specific year, each band refers to
the specific crop type
A collection of multi-bands CDL

images

Multi-bands CDL
ImageCollection

ee.ImageCollection()

computational capacity. Therefore, the development of the software
should be based on a high-performance geospatial cyberinfrastructure
(CID), which supports the collection, management, share, analysis visu-
alization, and dissemination of the geospatial big data over the high-
speed network (Yang et al., 2010; Yue et al., 2015). During the past
decade, many geospatial applications and tools have been transformed
from the traditional geographic information system (GIS) software to the
geospatial CI with the rapid advancements in web service technologies
(Castronova et al., 2013; Lin et al., 2017; Zhang et al., 2019c¢), geospatial

information interoperability (Zhao and Di, 2010; Goodall et al., 2013;
Nativi et al., 2013; Sun et al., 2017), geospatial cloud computing (Yang
and Huang, 2013; Zhang et al., 2017), high-performance computing
(Lee et al., 2011), and geospatial big data analytics (Deng and Di, 2014;
Vitolo et al., 2015; Di, 2016). Among those geospatial applications,
there are many geospatial CIs serving for the environmental modeling
community. The Self-adaptive Earth Predictive Systems (SEPS) adopts
the service-oriented architecture (SOA) to bridge Earth observation (EO)
data and Earth system models using OGC/ISO Sensor Web standards and
geospatial interoperability protocols (Di, 2007). CyberGIS (Wang,
2010), a GIS framework based on the advanced CI, has been integrated
into many GIS applications and software (Wang et al., 2013; Padma-
nabhan et al., 2014; Lin et al., 2015). Global Earth Observation System
of Systems (GEOSS) platform links a set of EO systems around the world
to facilitate the monitoring of the state of the Earth and the sharing of
environmental data (Nativi et al., 2013; Santoro et al., 2016). As a
collaboration between the Division of Advanced Cyberinfrastructure
and the Geosciences Directorate of National Science Foundation (NSF),
EarthCube, a community-driven organization for geoscience CI, has
funded many projects to improve data access, sharing, visualization, and
analysis across geoscience disciplines (Katz, 2015). These projects
include GeoLink (Krisnadhi et al., 2015), Cloud Hosted Real-time Data
Services for the Geosciences (CHORDS) (Kerkez et al., 2016), Brokering
Building Block (BCube) (Khalsa, 2017), CyberConnector (Di et al., 2017;
Sun et al., 2017), CyberWay (Di et al., 2019), HydroShare and GeoTrust
(Essawy et al., 2018; Xue et al., 2019).

As one of the major players in the cloud computing business, Google
unveiled Google Earth Engine (GEE) in 2010. GEE is a cloud-based
platform for planetary-scale geospatial data analysis with diverse geo-
spatial datasets and a variety of ready-to-use application programming
interface (API) (Gorelick et al., 2017). It has been used as the major
computing platform in many Earth system science studies including
LULC change detection (Hansen et al., 2013; Huang et al., 2017; Mid-
ekisa et al., 2017; Yu et al., 2018), crop mapping (Shelestov et al., 2017;
Teluguntla et al., 2018), digital soil mapping (Padarian et al., 2015),
forest mapping (Chen et al., 2017; Koskinen et al., 2019), and wetland
mapping (Hird et al., 2017). However, prototyping a complicated
modeling algorithm with GEE involves the cost of learning JavaScript
and GEE APIs, which is a time-consuming job for modelers, especially



C. Zhang et al.

Environmental Modelling and Software 129 (2020) 104694

CDL Image
Time Series
1997 1998 1999 2016 2017 2018
remapping constructing modeling

Multi-bands CDL Image Cropland Image by

Crop Sgeuence

E modeling

constructing extracting

Cropland Image by
Crop Rotation

Multi-bands CDL Image
Collection

CDL Image Collection

CDL Image Stack

Cropland Image by
Crop Frequency

A8

modeling

High-confidence Pixel
Image (Single Year)

N

stacking

Confidence Image Stack High-confidence Pixel

Image (Multiple Year)

getCdl module

croplandModeling module

N

single-band image single-band image collection

multi-bands image

confidenceModeling module
multi-bands image collection

Fig. 2. Development flow of core modules in the AgKit4EE toolkit.

those who do not have a strong technical background. To address this
issue, GEE provides the JavaScript/Python client library allowing users
to develop GEE-enabled applications and tools as needed. For example,
AgriSuit provides a Web-based framework for supporting land-use
suitability analysis, which integrating spatial datasets, algorithms, and
computing capabilities of GEE platform (Yalew et al., 2016). Collect
Earth Online (CEO) offers an open source tool for systematic reference
data collection in land cover and use applications (Bey et al., 2016).
Flood Prevention and Emergency Response System, a GEE-powered
Web-based platform for supporting flood event prevention and emer-
gency response, has been applied in 19 typhoons and torrential rain
events from 2013 to 2016 in Taiwan (Liu et al., 2018). The Biomass
Estimation platform is a cloud-based application for aboveground
biomass mapping and estimation which integrated GEE (Yang et al.,
2018). CoastSat is a GEE toolkit to extract shorelines from satellite im-
agery in large scale (Vos et al., 2019). Li et al.,, 2019 presents a
GEE-enabled toolbox of generating high-quality user-ready Landsat
mosaic images.

In this paper, we present the AgKit4EE toolkit to (a) simplify the the
CONUS-scale agricultural land use modeling on GEE; (b) derive CDL-
based land use data products on-the-fly with GEE; and (c) boost the
development of GEE-enabled web applications for agricultural land use
modeling. The rest of the paper is organized as follow. Section 2 in-
troduces the architectural context, data, development flow, and core
functions. Section 3 presents examples to demonstrate features and ca-
pabilities of the toolkit. Section 4 discusses the application scenario, the
advantages, and the limitations of the current implementation. The
conclusion and future works are given in Section 5.

2. Software design
2.1. Architectural context
Fig. 1 illustrates the architectural context of the proposed software.

The development of the AgKit4EE toolkit is fully based on GEE client
library and GEE data catalog, which are powered by the high-

performance computation and data stores of Google’s cloud infrastruc-
ture. The AgKit4EE library contains a suite of modules such as modeling
modules, statistics modules, and data processing modules. The library is
developed using JavaScript, which is consistent with GEE Code Editor.
Users can directly import the library to any project in GEE Code Editor
and GEE-enabled web applications. Currently, we have enabled
AgKit4EE in two web application prototypes, the Cropland Explorer and
the Crop Frequency Explorer, which are published over the Earth Engine
Apps platform.

As the core component in the architectural context, the AgKit4EE
library includes a variety of frequently used functions for the retrieval,
process, modeling, and statistics of CDL data. All functions are devel-
oped based on the native GEE APIs and wrapped as the ready-to-use APIs
with required and optional arguments. The code example of retrieving a
CDL image collection of corn and soybeans for selected years using the
getCdICollection function as well as the equivalent code using native GEE
APIs are compared in Appendix A, Fig. Al. This example presents a
workflow of CDL data retrieval with the readable input arguments in one
line of code, where the product option refers to the band name of the
original CDL data in GEE data catalog, the remap option includes a list of
the value for the desired crop type codes (“1” and “5” refer to corn and
soybeans respectively), the years option specifies the years of interest. As
a control, the same functionality is equivalent to a series of native GEE
APIs including image blending, band selection, value remapping, and
mapping over images. It is obvious that such a simplification would
significantly reduce the burdens of GEE coding for modelers who are not
familiar with GEE APIs and CDL products.

2.2. Data

The objective of the AgKit4EE toolkit is to facilitate the use of CDL
data on GEE. The complete collection of historical CDL data has been
archived in the GEE data catalog (https://developers.google.com/earth
-engine/datasets/catalog/USDA_NASS_CDL). Table 1 summarizes the
information of three CDL products, including the cropland layer, the
confidence layer, and the cultivated layer. The cropland layer covers the
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Table 3
Summary of functions and capabilities offered by the AgKit4EE toolkit.
Module Function Output Type Description
getCdl getCdllmageByYear (year, options) Single-band image Get the CDL image for selected year
getCdlCollection (options) Single-band image Get the CDL image collection for selected year range
collection
getCdlImageStack (options) Multi-bands image Get the stacked multi-bands CDL image by stacking multiple single-band
CDL images
getCdlBandsByYear (year, options) Multi-bands image Get the multi-bands CDL image of specific crop types for the selected
year
getCdlBandsCollection (options) Multi-bands image Get the image collection of multi-bands CDL images
collection
getCdlPalette (options) List Get the list of CDL color scheme
confidenceModeling  getConfidencelmageByYear (year, threshold, options)  Single-band image Get the map of binarized confidence layer for the selected year with
assigned threshold value
getConfidencelmageStack (threshold, options) Multi-bands image Get the image stack of binarized confidence layers with assigned
threshold value
getConfidencelmageCollection (threshold, options) Single-band image Get the image collection of binarized confidence layer with assigned
collection threshold value
getTrustedConfidence (threshold, options) Single-band image Get the map of trusted pixels through multi-year confidence layers with
assigned threshold value
croplandModeling modelingByCropSqeuence (cropSequence, Single-band image Get the map of cropland layer that following the given crop sequence
targetCrop, options)
modelingByPattern (pattern, targetCrop, options) Single-band image Get the map of cropland layer that following the common crop rotation
pattern
modelingFrequencyByCrop (targetCrop, options) Single-band image Get the frequency map of selected crop type based on the historical
cropland layers
getFrequencyPalette (options) List Get the list of crop frequency color scheme
getRoi getRoiByFips (fips, options) Feature Collection Get the region of interest for state, county, or ASD by FIPS code
getRoiByWrs2 (wrs2Scene, options) Feature Get the region of interest for assigned footprint (path/row) of Landsat
WRS-2
getRoiBySen2Tile (tile, options) Feature Get the region of interest for assigned tile of Sentinel-2 image
export exportCdIByRoi (roi, options) GeoTIFF image Batch export the historical CDL image of the region of interest to local

Batch export the historical CDL image of selected state/county/ASD to
local

Batch export the historical CDL image of selected WRS-2 footprint to
local

Batch export the historical CDL image of selected Sentinel-2 tile to local

statistics statisticsByRoi (roi, options) Chart
statisticsByCounty (fips, options) Chart
statisticsByPoi (poi, options) Chart

Create a time series chart of crop acreage for the region of interest
Create a time series chart of crop acreage for the selected county
Create a time series chart of crop type for the selected point

entire CONUS from 2008 to 2018 and some states from 1997 to 2007,
which is composed of over 140 land cover classes with 30m spatial
resolution. The confidence layer covers the entire CONUS from 2008 to
2018, which reflects the percentage (0-100) of confidence for each
cropland pixel (Liu et al., 2004). The cultivated layer covers the entire
CONUS from 2013 to present, which is produced based on the most
recent five years of cropland layer. The current-year CDL data would be
first released through CropScape and the USDA NASS website in the
early next year. For example, the 2019 CDL, which is the latest CDL data
as of the writing of this article, was published on January 2020. How-
ever, the collection of some datasets on GEE might be delayed. The 2019
CDL has not been archived in GEE data catalog as of March 2020.

Besides the CDL data, the toolkit integrated a collection of boundary
data that frequently used in agricultural and environmental modeling,
including U.S. county boundary, U.S. state boundary, USDA Agricultural
Statistics District (ASD) boundary, Landsat World Reference System-2
(WRS-2) scene boundary, and Sentinel-2 tile boundary. These bound-
ary data will improve efficiency while preparing data for region of in-
terest. For example, users can export the CDL data of specific U.S. state,
county, or ASD by using the exportCdIByFips function with the specific
Federal Information Processing Standards (FIPS) code.

2.3. Implementation

GEE provides two basic geospatial data structures, Image and
ImageCollection, to manipulate raster data. The Image is a single raster
image data composed by one or multiple bands. The ImageCollection is a
stack of the Image. As of December 2019, the GEE data catalog has
archived all historical CDL data from 1997 to 2018. The CDL product of

each year is saved as an Image. Depending on the data availability
(Table 1), each CDL Image contains either one, two, or three bands.
Based on Image and ImageCollection, we defined and implemented five
extended data structure optionsto manupulate CDL images. They are
Single-band CDL Image, Single-band CDL ImageCollection, Stacked CDL
Image, Multi-bands CDL Image, and Multi-bands CDL ImageCollection.
Table 2 summarizes all data structures defined in AgKit4EE.

Fig. 2 illustrates the architecture and the development flow of the
core modules in AgKit4EE. The development is composed of a suite of
modules, and each module contains a group of functions. The getCdl
module provides the capability of getting original CDL data according to
user requirements, such as the product type, year, or crop type. Mean-
while, all modeling functions are implemented based on the getCdl
module. According to the data product type, the modeling functions are
implemented as croplandModeling module and confidenceModeling mod-
ule respectively. The croplandModeling module consists of functions
related to the cropland layer, such as crop sequence modeling, crop
rotation modeling, and crop frequency modeling. The confidenceModel-
ing module handles the functions of pixel-level confidence percentage
modeling based on the confidence layer. Additionally, there are several
miscellaneous modules offering common geospatial functions. The
getRoi module manages the U.S. boundary files. The export module al-
lows user to batch export of the on-demand CDL data. The statistics
module provides the statistical functions for agricultual land use change
analyisis.

2.4. Functions and capabilities

All functions in the AgKit4EE toolkit contain one or more arguments.
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Fig. 3. Mapping major crops for the CONUS based on the common crop rotation patterns.

Besides the required arguments that users must assign before use, most
functions also have several optional arguments, which are passed
through the options object. For example, the optional arguments of the
getCdICollection function in the getCdl module consist of product, years,
remap, and defaultValue. The product option is the product name of the
desired CDL layer. The years option is a list of years of interest. The
remap option is a list of the codes of target crops. The defaultValue option
is the code value of no-data pixels. Table 3 summaries all functions
offered by the current release of the toolkit.

3. Examples

This section gives several examples of agricultural land use modeling
and analysis using the AgKit4EE toolkit. First, we demonstrate the
capability of crop mapping for the entire CONUS using the crop
sequence modeling function (Section 3.1). Then we present an example
of crop frequency modeling and compare the result with the official crop

frequency map produced by USDA NASS (Section 3.2). In addition, we
also illustrate how to extract the high-confidence CDL pixels by strati-
fying the historical confidence layers (Section 3.3). Finally, two
AgKit4EE-enabled web applications are prototypically implemented and
published through the Earth Engine Apps platform (Section 3.4).

3.1. Mapping cropland by crop sequence

The cropping sequence can affect crop yield (Edwards et al., 1988;
Crookston et al., 1991; Berzsenyi et al., 2000) as well as soil quality, soil
fertility, and soil physical/chemical properties (Janzen et al., 1992;
Karlen et al., 2006; Van Eerd et al., 2014; Triberti et al., 2016). For
instance, the corn-soybean rotation, a widely adopted common cropping
practice, helps preserve the croplands productivity in the U.S. Corn Belt.
Based on the reliable crop sequence information, the types of crops to be
planted can be predicted before the growing season starts (Zhang et al.,
2019a; Zhang et al., 2019b). These prediction and pre-season crop
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Fig. 4. Comparison of crop planting frequency maps by AgKit4EE with the official Crop Frequency Data Layers by USDA NASS.

planting information are critical to many early-season environmental
modeling and applications. To facilitate the pre-season crop mapping,
AgKit4EE offers an innovative function to extract pixels that following
the specific cropping sequence in the recent years. The code example of
mapping major crops based on the common crop rotation patterns using
the modelingByCropSequence function can be found in Appendix A, Fig.
A2. In this example, the variable corn_mono and corn_rotation refer to the
corn pixels following the monocropping and corn-soybeans rotated
cropping pattern. The variable soybean mono, soybean rotation, and
soybean_rotation_alt refer to the soybeans pixels following the mono-
cropping, corn-soybeans, and rice-soybean rotated cropping pattern.
The variable cotton mono refers to the cotton pixels following the mon-
ocropping pattern. The variable rice.mono and rice rotation refer to the
rice pixels following the monocropping pattern and rice-soybeans
rotated cropping pattern. The variable durumWheat mono, spring-
Wheat mono, and winterWheat mono refer to the wheat pixels following
the monocropping pattern. Fig. 3 shows the spatial distribution of major
crops extracted from the historical CDL data with the above-mentioned
crop sequences.

3.2. Mapping cropland by crop frequency

USDA NASS releases the Crop Frequency Data Layers accompanying
with the release of annual cropland layer. This product identifies the
planting frequency for the specific crop type based on the CDL from
2008 to present (Boryan et al., 2014). The Crop Frequency Data Layers
for four major crops in the U.S., corn, cotton, soybeans, and wheat, are
available to the public. The latest Crop Frequency Data Layer products
are available on CropScape and the USDA NASS website. The AgKit4EE
toolkit provides the capability of modeling crop frequency based on the
historical cropland layers. The code example of mapping the frequency
of major crops (i.e., corn and soybeans) for the state of Nebraska can be
found in Appendix A, Fig A3. The variable freq_corn refers to the planting
frequency map of corn and freq soybean refers to the planting frequency
map of soybeans. Fig. 4 compares the crop planting frequency maps with
the NASS official Crop Frequency Data Layers.

As shown in Fig. 4a and c, the AgKit4EE derived crop planting

frequency maps contain more information than the NASS Crop Fre-
quency Data Layers as shown in Fig. 4b and d. More importantly, the
toolkit provides the capability of modeling the frequency of any crop
type from CDL within any available year range. For example, users can
model the frequency of major crops for the state of Arkansas in the
recent five years (2014-2018) by assigning the years option of the
modelingFrequencyByCrop function (see Appendix A, Figure, A4). Fig. 5
shows the mapping results of corn (Fig. 5a), cotton (Fig. 5b), rice
(Fig. 5¢), soybeans (Fig. 5d), winter wheat (Fig. 5e), and double crop-
ping of winter wheat and soybeans (Fig. 5f).

3.3. Mapping confidence layer by threshold

The CDL data are produced using C5.0/See5 decision tree algorithm.
For every classified CDL pixel, there is an associated classification con-
fidence measure, which measures the confidence percentage of the
corresponding CDL pixel. A map of the CDL pixels that are higher or
lower than a specific confidence level threshold can produced by
binarizing the confidence layer with the specific threshold. Further-
more, by modeling the multi-years of confidence layers, we can observe
the spatial distribution of the trusted cropland pixels maintaining high
confidence for identifying the crop type of the corresponding pixel. The
code example of modeling confidence layers with the mod-
elingConfidenceByThreshold function can be found in Appendix A, Fig.
A5. The variable conf 70, conf 80, conf 90, and conf 100 represent the
maps of cropland pixels which the confidence value is consistently
greater than 70%, 80%, 90%, and 100%, respectively, for the given time
period. Fig. 6 shows the binarized maps of the modeling result, in which
the bright pixels represent the pixels higher than the threshold value.

3.4. Enabling AgKit4EE in web applications

In this study, we enabled AgKit4EE in two web application pro-
totypes, the Cropland Explorer (https://czhangll.users.earthengine.
app/view/agkit4ee-cdl-explorer) and the Crop Frequency Explorer
(https://czhangl1.users.earthengine.app/view/agkit4ee-crop
-frequency-explorer). These prototypes are published as the GEE app
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Fig. 6. Mapping high confidence pixels from 2014 to 2018.

over the Earth Engine Apps platform (https://www.earthengine.app/).
As shown in Fig. 7, the graphic user interface includes a configuration
panel and a map explorer. The app calls the specific modeling functions
of the toolkit based on the user’s choice and dynamically reload the on-
demand results on the map explorer. With the Cropland Explorer
(Fig. 7a), users can select the product layer, year, crop types, and
boundary layer on the configuration panel. The prototype currently
provides the crop area statistics and crop sequence statistics, which are
created using statisticsByRoi and statisticsByPoi functions of the statistics
module. For a selected region (county, ASD, state) of interest and point
of interest on the map explorer, the time series chart of changes of crop
area for the selected region of interest and crop sequence for the point of
interest will be plotted on the panel. Similarly, the Crop Frequency
Explorer (Fig. 7b) will produce the crop frequency map according to the
crop type and years of interest.

4. Discussion
4.1. Contribution of the study

The AgKit4EE toolkit makes the CONUS-scale agricultural land use
modeling more effectively and efficiently. First of all, it remedies the
limitation of CropScape and provides various ready-to-use modeling
functions, such as crop sequence modeling, crop frequency modeling,
and confidence layer modeling. These functions can be coupled with
many modeling workflows. For example, the pixels derived from the
common crop sequence can be potentially used as training samples to
train the classification model, which would be a low-cost but reliable
way to produce reference data for the early-season crop mapping over a
large geographic area. The crop frequency map can provide information
regarding the potential geospatial distribution of crop planting in the
future. By modeling the confidence layer, the current CDL users can
easily find out the trusted CDL pixels over time thus better assessing the
modeling result.

Computing resource is critical to the performance of geospatial
environmental modeling. Because of the limited computing capacity,
the CONUS-scale modeling might take a few hours or days to run on a
single server or personal computer. By taking advantage of GEE’s
powerful cloud computing environment, it takes only a few seconds to

process the CDL data for the entire CONUS. This will save a considerable
amount of time for modelers. We believe that the environmental
modeling community, LULC community, and agricultural sectors will be
benefited from using GEE along with AgKit4EE.

4.2. Application scenarios

The AgKit4EE toolkit is designed for users who deal with CDL data on
the GEE platform and GEE-enabled web applications. Here are some
common application scenarios. First, all functions can be directly
requested to visualize, explore, and export the on-demand CDL products
through GEE Code Editor. Another application scenario is integrating
the toolkit with other modeling workflow while CDL is one of the data
sources. Moreover, the AgKit4EE library can be imported as JavaScript
module into the web frameworks. In this way, the implementation of
GEE-based web applications and geospatial CI can be significantly
accelerated. Developers can just focus on the implementation of the
high-level architecture without figuring out the deatils of GEE APIs and
CDL data.

4.3. Data derived from CDL

The AgKit4EE toolkit is more than a GEE extension for CDL data
visualization. It is characterized by many modeling functions and op-
tions. The original CDL data can be fully utilized and various agricultural
land use products can be derived using the toolkit. Table 4 compares the
data offered by CropScape, GEE data catalog, and AgKit4EE. The orig-
inal CDL products (cropland layer, confidence layer, and cultivated
layer) can be directly exported using the export module. For example,
user can start a job to batch download the cropland layer maps from
2010 to 2018 of corn and soybeans for lowa by calling the exportCdl-
ByFips function in the export module. All other products that derived
from the CDL data (e.g., crop frequency map and crop sequence map)
can be retrieved through the modeling functions summarized in Table 3
then exported to the local path with the GEE’s built-in export functions.
AgKit4EE is an open source software with a fully extensible structure. It
is easy and free to extend the modules and develop more CDL-based
agricultural land use products as needed.
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Fig. 7. The graphic user interface of the AgKit4EE-enabled web application prototypes.
4.4. Limitations
Table 4

Comparison of CDL-based agricultural land use data from three sources.

The current release of AgKit4EE still has some limitations. On the one
hand, computing capacity of some geospatial functions are restricted by

Data CropScape gfilgata AgKIt4EE GEE. For examlpe, we currently only support the county-level statistics
- - 8 - due to the limited number of pixels per each process (10 million pixels)

g;ilﬁ:’;:::i':;er ﬁ‘;;‘lable izzgzgi: izzgzgz allowed by GEE. When scaling up Fo the state level or larg('er geograPhic
Cultivated layer Available Available Available area, the process will be stopped with the “too many pixels in the region”
Cropland map by N/A N/A Available error. A solution to bypass the limitation is to increase the scale for the
crop sequence reducer operation. However, this tweak would affect the accuracy of the
Crop frequency Available for major crop N/A Available for statistics result. A better solution is to sum up the county-level results to
map 3}1::;(6;::003;3;? ™ all crop types ASD or state level, but it would take more processing time. Moreover,
Confidence pixel N/A ’ N/A Available the Earth Engine Apps platform does not support the data export func-

map by
threshold

tion in the current phase. To export the modeling result, the user must
run the toolkit through the GEE Code Editor. On the other hand, there

were many misclassified pixels in the early-year CDL data because of
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cloud cover and lack of satellite images. Also, the coverage of the early-
year CDL was incomplete. Only a few states were fully covered before
2008. These quality and coverage issue of the early-year CDL data can
potentially affect the follow-on studies (Zhang et al., 2020).

5. Conclusion and future works

This paper presents the design, implementation, and use examples of
AgKit4EE. As a GEE-enabled toolkit for the CONUS-scale agricultural
land use modeling, AgKit4EE contains a variety of frequently used
functions for retrieving, visualizing, modeling, and analyzing CDL data.
The major functions and capabilities of the proposed software, including
crop sequence modeling, crop frequency modeling, confidence layer
modeling, and geospatial statistics were demonstrated. Additionally,
two AgKit4EE-enabled web applications, the Cropland Explorer and the
Crop Frequency Explorer, were prototyped and published over the Earth
Engine Apps platform. The result suggests this toolkit would greatly
reduce the workload of modelers and developers who deal with CDL
data.

In the next phase of development, we will enhance and extend the
AgKit4EE toolkit, integrate more modeling functions, develop the ma-
chine learning module, and support more LULC data products such as
the National Land Cover Database (NLCD) of U.S. Geological Survey
(USGS). A geospatial CI with all features of the AgKit4EE toolkit is under
development. Currently, the toolkit is implemented in JavaScript only.
We will implement the core modules in Python to support more third-
party applications developed with GEE Python APIL.

Software availability

Software Name: AgKit4EE.

Appendix A. Code Examples

Environmental Modelling and Software 129 (2020) 104694

Developer: Center for Spatial Information Science and Systems,
George Mason University.

Technical support: Chen Zhang (czhangl1@gmu.edu).

Programming language: JavaScript.

License: MIT.

Software required: Google Earth Engine.

Project:  https://code.earthengine.google.com/?accept_repo=user
s/czhangl1/agkit4ee.
Earth Engine repository:  https://earthengine.googlesource.

com/users/czhangl1/agkit4ee.

Github repository: https://github.com/czhangl1/agkit4ee.

Cropland Explorer: https://czhangl1.users.earthengine.
app/view/agkit4ee-cdl-explorer.

Crop Frequency Explorer: https://czhangl1.users.earthengine.app/
view/agkit4ee-crop-frequency-explorer.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This research is supported by a grant from National Science Foun-
dation INFEWS Program (Grant #: CNS-1739705, PI: Dr. Liping Di). The
authors would like to thank two anonymous reviewers for their valuable
comments.

// getCdlCollection function of AgKit4EE

// Equivalent code using native GEE APIs
cd11997 = ee.Image('USDA/NASS/CDL/1997');
€d12007 =
¢d12017 = ee.Image('USDA/NASS/CDL/2017');
conditional = function(item) {

10 var cdlImage = ee.Image(item);

getCdlCollection({product: 'cropland', remap:[1,5], years:['1997','2007','2017'1});

ee.Image ('USDA/NASS/CDL/2007a') .blend(ee.Image('USDA/NASS/CDL/2007b'));

cdlCollection = ee.ImageCollection([cd11997, cd12007, cd12017]);

1 var cdlImage_cropland = cdlImage.select('cropland');

12 return cdlImage_cropland.remap([1,5],[1,5]);
13}

14 cdlCollection.map(conditional);

Fig. Al. Example of retrieving CDL image collection using AgKit4EE.

soybean_rotation = cropl

corn_mono = croplandModeling.modelingByCropSqeuence([1,1,1,1],1);
corn_rotation = croplandModeling.modelingByCropSqeuence([1,5,1,5],1);
soybean_mono = croplandModeling.modelingByCropSqeuence([5,5,5,5],5);

(ls,1,5,11,5);

springWheat_mono =
winterWheat_mono =

1ling.modelingByCropSq

soybean_rotation_alt = croplandModeling.modelingByCropSqeuence([5,3,5,3],5);
cotton_mono = croplandModeling.modelingByCropSqeuence([2,2,2,2],2);

rice_mono = croplandModeling.modelingByCropSqeuence([3,3,3,3],3);
rice_rotation = croplandModeling.modelingByCropSqeuence([3,5,3,5],3);
durumWheat_mono = croplandModeling.modelingByCropSqeuence([22,22,22,22],22);
croplandModeling.modelingByCropSqeuence([23,23,23,23],23);
croplandModeling.modelingByCropSqeuence( [24,24,24,24],24) ;

Fig. A2. Mapping major crops based on common crop rotation patterns for the entire CONUS.

10
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freq_corn =
freq_soybean =

croplandModeling.modelingFrequencyByCrop(1).clip(getRoi.getRoiByFips('38'))
croplandModeling.modelingFrequencyByCrop(5) .clip(getRoi.getRoiByFips('38'))

Fig. A3. Mapping frequency of corn and soybeans for the state of Nebraska.

_years = ['2014','2015','2016','2017"','2018'];

var ar_corn = croplandModeling.modelingFrequencyByCrop(1, {years:_years}).clip(getRoi.getRoiByFips('05'));
var ar_cotton = croplandModeling.modelingFrequencyByCrop(2, {years:_years}).clip(getRoi.getRoiByFips('05'));

ar_rice =

EEFSE
<
P
R

croplandModeling.modelingFrequencyByCrop(3, {years:_years}).clip(getRoi.getRoiByFips('05'));

var ar_soy = croplandModeling.modelingFrequencyByCrop(5, {years:_years}).clip(getRoi.getRoiByFips('05'));

ar_wht =

3
<
8
H

croplandModeling.modelingFrequencyByCrop(24, {years:_years}).clip(getRoi.getRoiByFips('05'));

7 var ar_dblWhtSoy = croplandModeling.modelingFrequencyByCrop(26, {years:_years}).clip(getRoi.getRoiByFips('05'));

Fig. A4. Mapping crop frequency for the state of Arkansas in the recent five years.

1 var _years = ['2014','2015','2016','2017"','2018'];

2 var conf_70 = confidenceModeling.modelingConfidenceByThreshold(70, {years: _years});
3 var conf_80 = confidenceModeling.modelingConfidenceByThreshold(80, {years: _years});
4 var conf_90 = confidenceModeling.modelingConfidenceByThreshold(90, {years: _years});
5 var

conf_100 = confidenceModeling.modelingConfidenceByThreshold(100, {years: _years});

Fig. A4. Modeling confidence layer for the entire CONUS.
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