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A B S T R A C T   

Google Earth Engine (GEE) is an ideal platform for large-scale geospatial agricultural and environmental 
modeling based on its diverse geospatial datasets, easy-to-use application programming interface (API), rich 
reusable library, and high-performance computational capacity. However, using GEE to prepare geospatial data 
requires not only the skills of programming languages like JavaScript and Python, but also the knowledge of GEE 
APIs and data catalog. This paper presents the AgKit4EE toolkit to facilitate the use of the Cropland Data Layer 
(CDL) product over the GEE platform. This toolkit contains a variety of frequently used functions for use of CDL 
including crop sequence modeling, crop frequency modeling, confidence layer modeling, and land use change 
analysis. The experimental results suggest that the proposed software can significantly reduce the workload for 
modelers who conduct geospatial agricultural and environmental modeling with CDL data as well as developers 
who build the GEE-enabled geospatial cyberinfrastructure for agricultural land use modeling of the conterminous 
United States. AgKit4EE is an open source and it is free to use, modify, and distribute. The latest release of 
AgKit4EE can be imported to any modeling workflow developed using GEE Code Editor (https://code.earthen 
gine.google.com/?accept_repo¼users/czhang11/agkit4ee). The source code, examples, documentation, user 
community, and wiki pages are available on GitHub (https://github.com/czhang11/agkit4ee).   

1. Introduction 

The conterminous United States (CONUS), which has the largest 
production areas of corn, soybeans, and sorghum in the world, is an ideal 
study area for scientists to model natural environment and human ac-
tivities in agriculture (Feng and Hu, 2004; McCarty et al., 2009; Li et al., 
2016; Feng et al., 2019; Flynn, 2019). As the only annual crop-specific 
land use and land cover (LULC) data product of the CONUS, the Crop-
land Data Layer (CDL) of the U.S. Department of Agriculture (USDA), 
National Agricultural Statistics Service (NASS) has been widely used by 
farmers, educators, students, researchers, and government officers in 
agricultural business, universities, research institutes, and governments 
worldwide for agricultural production planning and management, ed-
ucation, government policy formulation and decision making, and 
various research activities (Boryan et al., 2011; Stern et al., 2012; 
Mueller and Harris, 2013; Di et al., 2015). The CDL product has been 
disseminated through CropScape since 2011. According to the report 
from Google Analytics, more than 208,000 unique users around the 

world have visited and interacted with CropScape as of May 2019. As an 
one-of-a-kind one-stop platform to visualize, retrieve, and analyze CDL , 
CropScape provides not only various geospatial functionalities such as 
data customization and downloading, crop acreage statistics, charting 
and graphing, and multi-temporal change analysis, but also the highly 
interoperable open standard-based geospatial web services such as Web 
Map Service (WMS), Web Coverage Service (WCS), and Web Processing 
Service (WPS) (Han et al., 2012, Zhang et al., 2019d). These function-
alities and web services of CropScape have been utilized in many geo-
spatial environmental models, frameworks, and software (Han et al., 
2014; Feng et al., 2015; McNider et al., 2015; Groff et al., 2016; Tasdighi 
et al., 2018). However, due to the limited computing resources, it is 
difficult to perform advanced modeling and mathematical operations on 
the multi-year CDL data directly using either the CropScape web portal 
or its web services. To fill the gap and further facilitate the use of CDL 
data, a new web-based tool for the CONUS-scale agricultural land use 
modeling is needed. 

Modeling multi-year CDL data for the entire CONUS requires massive 
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computational capacity. Therefore, the development of the software 
should be based on a high-performance geospatial cyberinfrastructure 
(CI), which supports the collection, management, share, analysis visu-
alization, and dissemination of the geospatial big data over the high- 
speed network (Yang et al., 2010; Yue et al., 2015). During the past 
decade, many geospatial applications and tools have been transformed 
from the traditional geographic information system (GIS) software to the 
geospatial CI with the rapid advancements in web service technologies 
(Castronova et al., 2013; Lin et al., 2017; Zhang et al., 2019c), geospatial 

information interoperability (Zhao and Di, 2010; Goodall et al., 2013; 
Nativi et al., 2013; Sun et al., 2017), geospatial cloud computing (Yang 
and Huang, 2013; Zhang et al., 2017), high-performance computing 
(Lee et al., 2011), and geospatial big data analytics (Deng and Di, 2014; 
Vitolo et al., 2015; Di, 2016). Among those geospatial applications, 
there are many geospatial CIs serving for the environmental modeling 
community. The Self-adaptive Earth Predictive Systems (SEPS) adopts 
the service-oriented architecture (SOA) to bridge Earth observation (EO) 
data and Earth system models using OGC/ISO Sensor Web standards and 
geospatial interoperability protocols (Di, 2007). CyberGIS (Wang, 
2010), a GIS framework based on the advanced CI, has been integrated 
into many GIS applications and software (Wang et al., 2013; Padma-
nabhan et al., 2014; Lin et al., 2015). Global Earth Observation System 
of Systems (GEOSS) platform links a set of EO systems around the world 
to facilitate the monitoring of the state of the Earth and the sharing of 
environmental data (Nativi et al., 2013; Santoro et al., 2016). As a 
collaboration between the Division of Advanced Cyberinfrastructure 
and the Geosciences Directorate of National Science Foundation (NSF), 
EarthCube, a community-driven organization for geoscience CI, has 
funded many projects to improve data access, sharing, visualization, and 
analysis across geoscience disciplines (Katz, 2015). These projects 
include GeoLink (Krisnadhi et al., 2015), Cloud Hosted Real-time Data 
Services for the Geosciences (CHORDS) (Kerkez et al., 2016), Brokering 
Building Block (BCube) (Khalsa, 2017), CyberConnector (Di et al., 2017; 
Sun et al., 2017), CyberWay (Di et al., 2019), HydroShare and GeoTrust 
(Essawy et al., 2018; Xue et al., 2019). 

As one of the major players in the cloud computing business, Google 
unveiled Google Earth Engine (GEE) in 2010. GEE is a cloud-based 
platform for planetary-scale geospatial data analysis with diverse geo-
spatial datasets and a variety of ready-to-use application programming 
interface (API) (Gorelick et al., 2017). It has been used as the major 
computing platform in many Earth system science studies including 
LULC change detection (Hansen et al., 2013; Huang et al., 2017; Mid-
ekisa et al., 2017; Yu et al., 2018), crop mapping (Shelestov et al., 2017; 
Teluguntla et al., 2018), digital soil mapping (Padarian et al., 2015), 
forest mapping (Chen et al., 2017; Koskinen et al., 2019), and wetland 
mapping (Hird et al., 2017). However, prototyping a complicated 
modeling algorithm with GEE involves the cost of learning JavaScript 
and GEE APIs, which is a time-consuming job for modelers, especially 

Fig. 1. Architectural context of the proposed GEE-enabled toolkit for agricultural land use modeling.  

Table 1 
Summary of CDL products in the public data catalog of Google Earth Engine.   

Cropland Layer Confidence 
Layer 

Cultivated 
Layer 

Availability 1997–2018 2008–2018 2013–2018 
Coverage CONUS (2008–2018) 

Some states 
(1997–2008) 

CONUS CONUS 

Spatial 
resolution 

30 m 30 m 30 m 

Pixel value 0–254 0–100 0–2  

Table 2 
Data structures defined in the AgKit4EE toolkit.  

Data Structure in 
AgKit4EE 

Corresponding GEE 
Data Structure 

Description 

Single-band CDL 
Image 

ee.Image() A single-band image for the 
specific year 

Single-band CDL 
ImageCollection 

ee.ImageCollection() A collection of single-band CDL 
images 

Stacked CDL Image ee.Image() A multi-bands image for the 
specific CDL product, each band 
refers to a layer of the specific 
year 

Multi-bands CDL 
Image 

ee.Image() A multi-bands image for the 
specific year, each band refers to 
the specific crop type 

Multi-bands CDL 
ImageCollection 

ee.ImageCollection() A collection of multi-bands CDL 
images  
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those who do not have a strong technical background. To address this 
issue, GEE provides the JavaScript/Python client library allowing users 
to develop GEE-enabled applications and tools as needed. For example, 
AgriSuit provides a Web-based framework for supporting land-use 
suitability analysis, which integrating spatial datasets, algorithms, and 
computing capabilities of GEE platform (Yalew et al., 2016). Collect 
Earth Online (CEO) offers an open source tool for systematic reference 
data collection in land cover and use applications (Bey et al., 2016). 
Flood Prevention and Emergency Response System, a GEE-powered 
Web-based platform for supporting flood event prevention and emer-
gency response, has been applied in 19 typhoons and torrential rain 
events from 2013 to 2016 in Taiwan (Liu et al., 2018). The Biomass 
Estimation platform is a cloud-based application for aboveground 
biomass mapping and estimation which integrated GEE (Yang et al., 
2018). CoastSat is a GEE toolkit to extract shorelines from satellite im-
agery in large scale (Vos et al., 2019). Li et al., 2019 presents a 
GEE-enabled toolbox of generating high-quality user-ready Landsat 
mosaic images. 

In this paper, we present the AgKit4EE toolkit to (a) simplify the the 
CONUS-scale agricultural land use modeling on GEE; (b) derive CDL- 
based land use data products on-the-fly with GEE; and (c) boost the 
development of GEE-enabled web applications for agricultural land use 
modeling. The rest of the paper is organized as follow. Section 2 in-
troduces the architectural context, data, development flow, and core 
functions. Section 3 presents examples to demonstrate features and ca-
pabilities of the toolkit. Section 4 discusses the application scenario, the 
advantages, and the limitations of the current implementation. The 
conclusion and future works are given in Section 5. 

2. Software design 

2.1. Architectural context 

Fig. 1 illustrates the architectural context of the proposed software. 
The development of the AgKit4EE toolkit is fully based on GEE client 
library and GEE data catalog, which are powered by the high- 

performance computation and data stores of Google’s cloud infrastruc-
ture. The AgKit4EE library contains a suite of modules such as modeling 
modules, statistics modules, and data processing modules. The library is 
developed using JavaScript, which is consistent with GEE Code Editor. 
Users can directly import the library to any project in GEE Code Editor 
and GEE-enabled web applications. Currently, we have enabled 
AgKit4EE in two web application prototypes, the Cropland Explorer and 
the Crop Frequency Explorer, which are published over the Earth Engine 
Apps platform. 

As the core component in the architectural context, the AgKit4EE 
library includes a variety of frequently used functions for the retrieval, 
process, modeling, and statistics of CDL data. All functions are devel-
oped based on the native GEE APIs and wrapped as the ready-to-use APIs 
with required and optional arguments. The code example of retrieving a 
CDL image collection of corn and soybeans for selected years using the 
getCdlCollection function as well as the equivalent code using native GEE 
APIs are compared in Appendix A, Fig. A1. This example presents a 
workflow of CDL data retrieval with the readable input arguments in one 
line of code, where the product option refers to the band name of the 
original CDL data in GEE data catalog, the remap option includes a list of 
the value for the desired crop type codes (“1” and “5” refer to corn and 
soybeans respectively), the years option specifies the years of interest. As 
a control, the same functionality is equivalent to a series of native GEE 
APIs including image blending, band selection, value remapping, and 
mapping over images. It is obvious that such a simplification would 
significantly reduce the burdens of GEE coding for modelers who are not 
familiar with GEE APIs and CDL products. 

2.2. Data 

The objective of the AgKit4EE toolkit is to facilitate the use of CDL 
data on GEE. The complete collection of historical CDL data has been 
archived in the GEE data catalog (https://developers.google.com/earth 
-engine/datasets/catalog/USDA_NASS_CDL). Table 1 summarizes the 
information of three CDL products, including the cropland layer, the 
confidence layer, and the cultivated layer. The cropland layer covers the 

Fig. 2. Development flow of core modules in the AgKit4EE toolkit.  
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entire CONUS from 2008 to 2018 and some states from 1997 to 2007, 
which is composed of over 140 land cover classes with 30m spatial 
resolution. The confidence layer covers the entire CONUS from 2008 to 
2018, which reflects the percentage (0–100) of confidence for each 
cropland pixel (Liu et al., 2004). The cultivated layer covers the entire 
CONUS from 2013 to present, which is produced based on the most 
recent five years of cropland layer. The current-year CDL data would be 
first released through CropScape and the USDA NASS website in the 
early next year. For example, the 2019 CDL, which is the latest CDL data 
as of the writing of this article, was published on January 2020. How-
ever, the collection of some datasets on GEE might be delayed. The 2019 
CDL has not been archived in GEE data catalog as of March 2020. 

Besides the CDL data, the toolkit integrated a collection of boundary 
data that frequently used in agricultural and environmental modeling, 
including U.S. county boundary, U.S. state boundary, USDA Agricultural 
Statistics District (ASD) boundary, Landsat World Reference System-2 
(WRS-2) scene boundary, and Sentinel-2 tile boundary. These bound-
ary data will improve efficiency while preparing data for region of in-
terest. For example, users can export the CDL data of specific U.S. state, 
county, or ASD by using the exportCdlByFips function with the specific 
Federal Information Processing Standards (FIPS) code. 

2.3. Implementation 

GEE provides two basic geospatial data structures, Image and 
ImageCollection, to manipulate raster data. The Image is a single raster 
image data composed by one or multiple bands. The ImageCollection is a 
stack of the Image. As of December 2019, the GEE data catalog has 
archived all historical CDL data from 1997 to 2018. The CDL product of 

each year is saved as an Image. Depending on the data availability 
(Table 1), each CDL Image contains either one, two, or three bands. 
Based on Image and ImageCollection, we defined and implemented five 
extended data structure optionsto manupulate CDL images. They are 
Single-band CDL Image, Single-band CDL ImageCollection, Stacked CDL 
Image, Multi-bands CDL Image, and Multi-bands CDL ImageCollection. 
Table 2 summarizes all data structures defined in AgKit4EE. 

Fig. 2 illustrates the architecture and the development flow of the 
core modules in AgKit4EE. The development is composed of a suite of 
modules, and each module contains a group of functions. The getCdl 
module provides the capability of getting original CDL data according to 
user requirements, such as the product type, year, or crop type. Mean-
while, all modeling functions are implemented based on the getCdl 
module. According to the data product type, the modeling functions are 
implemented as croplandModeling module and confidenceModeling mod-
ule respectively. The croplandModeling module consists of functions 
related to the cropland layer, such as crop sequence modeling, crop 
rotation modeling, and crop frequency modeling. The confidenceModel-
ing module handles the functions of pixel-level confidence percentage 
modeling based on the confidence layer. Additionally, there are several 
miscellaneous modules offering common geospatial functions. The 
getRoi module manages the U.S. boundary files. The export module al-
lows user to batch export of the on-demand CDL data. The statistics 
module provides the statistical functions for agricultual land use change 
analyisis. 

2.4. Functions and capabilities 

All functions in the AgKit4EE toolkit contain one or more arguments. 

Table 3 
Summary of functions and capabilities offered by the AgKit4EE toolkit.  

Module Function Output Type Description 

getCdl getCdlImageByYear (year, options) Single-band image Get the CDL image for selected year 
getCdlCollection (options) Single-band image 

collection 
Get the CDL image collection for selected year range 

getCdlImageStack (options) Multi-bands image Get the stacked multi-bands CDL image by stacking multiple single-band 
CDL images 

getCdlBandsByYear (year, options) Multi-bands image Get the multi-bands CDL image of specific crop types for the selected 
year 

getCdlBandsCollection (options) Multi-bands image 
collection 

Get the image collection of multi-bands CDL images 

getCdlPalette (options) List Get the list of CDL color scheme 
confidenceModeling getConfidenceImageByYear (year, threshold, options) Single-band image Get the map of binarized confidence layer for the selected year with 

assigned threshold value 
getConfidenceImageStack (threshold, options) Multi-bands image Get the image stack of binarized confidence layers with assigned 

threshold value 
getConfidenceImageCollection (threshold, options) Single-band image 

collection 
Get the image collection of binarized confidence layer with assigned 
threshold value 

getTrustedConfidence (threshold, options) Single-band image Get the map of trusted pixels through multi-year confidence layers with 
assigned threshold value 

croplandModeling modelingByCropSqeuence (cropSequence, 
targetCrop, options) 

Single-band image Get the map of cropland layer that following the given crop sequence 

modelingByPattern (pattern, targetCrop, options) Single-band image Get the map of cropland layer that following the common crop rotation 
pattern 

modelingFrequencyByCrop (targetCrop, options) Single-band image Get the frequency map of selected crop type based on the historical 
cropland layers 

getFrequencyPalette (options) List Get the list of crop frequency color scheme 
getRoi getRoiByFips (fips, options) Feature Collection Get the region of interest for state, county, or ASD by FIPS code 

getRoiByWrs2 (wrs2Scene, options) Feature Get the region of interest for assigned footprint (path/row) of Landsat 
WRS-2 

getRoiBySen2Tile (tile, options) Feature Get the region of interest for assigned tile of Sentinel-2 image 
export exportCdlByRoi (roi, options) GeoTIFF image Batch export the historical CDL image of the region of interest to local 

exportCdlByFips (fips, options) GeoTIFF image Batch export the historical CDL image of selected state/county/ASD to 
local 

exportCdlByWrs (footprint, options) GeoTIFF image Batch export the historical CDL image of selected WRS-2 footprint to 
local 

exportCdlBySen2Tile (tile, options) GeoTIFF image Batch export the historical CDL image of selected Sentinel-2 tile to local 
statistics statisticsByRoi (roi, options) Chart Create a time series chart of crop acreage for the region of interest 

statisticsByCounty (fips, options) Chart Create a time series chart of crop acreage for the selected county 
statisticsByPoi (poi, options) Chart Create a time series chart of crop type for the selected point  
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Besides the required arguments that users must assign before use, most 
functions also have several optional arguments, which are passed 
through the options object. For example, the optional arguments of the 
getCdlCollection function in the getCdl module consist of product, years, 
remap, and defaultValue. The product option is the product name of the 
desired CDL layer. The years option is a list of years of interest. The 
remap option is a list of the codes of target crops. The defaultValue option 
is the code value of no-data pixels. Table 3 summaries all functions 
offered by the current release of the toolkit. 

3. Examples 

This section gives several examples of agricultural land use modeling 
and analysis using the AgKit4EE toolkit. First, we demonstrate the 
capability of crop mapping for the entire CONUS using the crop 
sequence modeling function (Section 3.1). Then we present an example 
of crop frequency modeling and compare the result with the official crop 

frequency map produced by USDA NASS (Section 3.2). In addition, we 
also illustrate how to extract the high-confidence CDL pixels by strati-
fying the historical confidence layers (Section 3.3). Finally, two 
AgKit4EE-enabled web applications are prototypically implemented and 
published through the Earth Engine Apps platform (Section 3.4). 

3.1. Mapping cropland by crop sequence 

The cropping sequence can affect crop yield (Edwards et al., 1988; 
Crookston et al., 1991; Berzsenyi et al., 2000) as well as soil quality, soil 
fertility, and soil physical/chemical properties (Janzen et al., 1992; 
Karlen et al., 2006; Van Eerd et al., 2014; Triberti et al., 2016). For 
instance, the corn-soybean rotation, a widely adopted common cropping 
practice, helps preserve the croplands productivity in the U.S. Corn Belt. 
Based on the reliable crop sequence information, the types of crops to be 
planted can be predicted before the growing season starts (Zhang et al., 
2019a; Zhang et al., 2019b). These prediction and pre-season crop 

Fig. 3. Mapping major crops for the CONUS based on the common crop rotation patterns.  
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planting information are critical to many early-season environmental 
modeling and applications. To facilitate the pre-season crop mapping, 
AgKit4EE offers an innovative function to extract pixels that following 
the specific cropping sequence in the recent years. The code example of 
mapping major crops based on the common crop rotation patterns using 
the modelingByCropSequence function can be found in Appendix A, Fig. 
A2. In this example, the variable corn_mono and corn_rotation refer to the 
corn pixels following the monocropping and corn-soybeans rotated 
cropping pattern. The variable soybean_mono, soybean_rotation, and 
soybean_rotation_alt refer to the soybeans pixels following the mono-
cropping, corn-soybeans, and rice-soybean rotated cropping pattern. 
The variable cotton_mono refers to the cotton pixels following the mon-
ocropping pattern. The variable rice_mono and rice_rotation refer to the 
rice pixels following the monocropping pattern and rice-soybeans 
rotated cropping pattern. The variable durumWheat_mono, spring-
Wheat_mono, and winterWheat_mono refer to the wheat pixels following 
the monocropping pattern. Fig. 3 shows the spatial distribution of major 
crops extracted from the historical CDL data with the above-mentioned 
crop sequences. 

3.2. Mapping cropland by crop frequency 

USDA NASS releases the Crop Frequency Data Layers accompanying 
with the release of annual cropland layer. This product identifies the 
planting frequency for the specific crop type based on the CDL from 
2008 to present (Boryan et al., 2014). The Crop Frequency Data Layers 
for four major crops in the U.S., corn, cotton, soybeans, and wheat, are 
available to the public. The latest Crop Frequency Data Layer products 
are available on CropScape and the USDA NASS website. The AgKit4EE 
toolkit provides the capability of modeling crop frequency based on the 
historical cropland layers. The code example of mapping the frequency 
of major crops (i.e., corn and soybeans) for the state of Nebraska can be 
found in Appendix A, Fig A3. The variable freq_corn refers to the planting 
frequency map of corn and freq_soybean refers to the planting frequency 
map of soybeans. Fig. 4 compares the crop planting frequency maps with 
the NASS official Crop Frequency Data Layers. 

As shown in Fig. 4a and c, the AgKit4EE derived crop planting 

frequency maps contain more information than the NASS Crop Fre-
quency Data Layers as shown in Fig. 4b and d. More importantly, the 
toolkit provides the capability of modeling the frequency of any crop 
type from CDL within any available year range. For example, users can 
model the frequency of major crops for the state of Arkansas in the 
recent five years (2014-2018) by assigning the years option of the 
modelingFrequencyByCrop function (see Appendix A, Figure, A4). Fig. 5 
shows the mapping results of corn (Fig. 5a), cotton (Fig. 5b), rice 
(Fig. 5c), soybeans (Fig. 5d), winter wheat (Fig. 5e), and double crop-
ping of winter wheat and soybeans (Fig. 5f). 

3.3. Mapping confidence layer by threshold 

The CDL data are produced using C5.0/See5 decision tree algorithm. 
For every classified CDL pixel, there is an associated classification con-
fidence measure, which measures the confidence percentage of the 
corresponding CDL pixel. A map of the CDL pixels that are higher or 
lower than a specific confidence level threshold can produced by 
binarizing the confidence layer with the specific threshold. Further-
more, by modeling the multi-years of confidence layers, we can observe 
the spatial distribution of the trusted cropland pixels maintaining high 
confidence for identifying the crop type of the corresponding pixel. The 
code example of modeling confidence layers with the mod-
elingConfidenceByThreshold function can be found in Appendix A, Fig. 
A5. The variable conf_70, conf_80, conf_90, and conf_100 represent the 
maps of cropland pixels which the confidence value is consistently 
greater than 70%, 80%, 90%, and 100%, respectively, for the given time 
period. Fig. 6 shows the binarized maps of the modeling result, in which 
the bright pixels represent the pixels higher than the threshold value. 

3.4. Enabling AgKit4EE in web applications 

In this study, we enabled AgKit4EE in two web application pro-
totypes, the Cropland Explorer (https://czhang11.users.earthengine. 
app/view/agkit4ee-cdl-explorer) and the Crop Frequency Explorer 
(https://czhang11.users.earthengine.app/view/agkit4ee-crop 
-frequency-explorer). These prototypes are published as the GEE app 

Fig. 4. Comparison of crop planting frequency maps by AgKit4EE with the official Crop Frequency Data Layers by USDA NASS.  
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Fig. 5. Mapping crop frequency for the state of Arkansas from 2014 to 2018.  
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over the Earth Engine Apps platform (https://www.earthengine.app/). 
As shown in Fig. 7, the graphic user interface includes a configuration 
panel and a map explorer. The app calls the specific modeling functions 
of the toolkit based on the user’s choice and dynamically reload the on- 
demand results on the map explorer. With the Cropland Explorer 
(Fig. 7a), users can select the product layer, year, crop types, and 
boundary layer on the configuration panel. The prototype currently 
provides the crop area statistics and crop sequence statistics, which are 
created using statisticsByRoi and statisticsByPoi functions of the statistics 
module. For a selected region (county, ASD, state) of interest and point 
of interest on the map explorer, the time series chart of changes of crop 
area for the selected region of interest and crop sequence for the point of 
interest will be plotted on the panel. Similarly, the Crop Frequency 
Explorer (Fig. 7b) will produce the crop frequency map according to the 
crop type and years of interest. 

4. Discussion 

4.1. Contribution of the study 

The AgKit4EE toolkit makes the CONUS-scale agricultural land use 
modeling more effectively and efficiently. First of all, it remedies the 
limitation of CropScape and provides various ready-to-use modeling 
functions, such as crop sequence modeling, crop frequency modeling, 
and confidence layer modeling. These functions can be coupled with 
many modeling workflows. For example, the pixels derived from the 
common crop sequence can be potentially used as training samples to 
train the classification model, which would be a low-cost but reliable 
way to produce reference data for the early-season crop mapping over a 
large geographic area. The crop frequency map can provide information 
regarding the potential geospatial distribution of crop planting in the 
future. By modeling the confidence layer, the current CDL users can 
easily find out the trusted CDL pixels over time thus better assessing the 
modeling result. 

Computing resource is critical to the performance of geospatial 
environmental modeling. Because of the limited computing capacity, 
the CONUS-scale modeling might take a few hours or days to run on a 
single server or personal computer. By taking advantage of GEE’s 
powerful cloud computing environment, it takes only a few seconds to 

process the CDL data for the entire CONUS. This will save a considerable 
amount of time for modelers. We believe that the environmental 
modeling community, LULC community, and agricultural sectors will be 
benefited from using GEE along with AgKit4EE. 

4.2. Application scenarios 

The AgKit4EE toolkit is designed for users who deal with CDL data on 
the GEE platform and GEE-enabled web applications. Here are some 
common application scenarios. First, all functions can be directly 
requested to visualize, explore, and export the on-demand CDL products 
through GEE Code Editor. Another application scenario is integrating 
the toolkit with other modeling workflow while CDL is one of the data 
sources. Moreover, the AgKit4EE library can be imported as JavaScript 
module into the web frameworks. In this way, the implementation of 
GEE-based web applications and geospatial CI can be significantly 
accelerated. Developers can just focus on the implementation of the 
high-level architecture without figuring out the deatils of GEE APIs and 
CDL data. 

4.3. Data derived from CDL 

The AgKit4EE toolkit is more than a GEE extension for CDL data 
visualization. It is characterized by many modeling functions and op-
tions. The original CDL data can be fully utilized and various agricultural 
land use products can be derived using the toolkit. Table 4 compares the 
data offered by CropScape, GEE data catalog, and AgKit4EE. The orig-
inal CDL products (cropland layer, confidence layer, and cultivated 
layer) can be directly exported using the export module. For example, 
user can start a job to batch download the cropland layer maps from 
2010 to 2018 of corn and soybeans for Iowa by calling the exportCdl-
ByFips function in the export module. All other products that derived 
from the CDL data (e.g., crop frequency map and crop sequence map) 
can be retrieved through the modeling functions summarized in Table 3 
then exported to the local path with the GEE’s built-in export functions. 
AgKit4EE is an open source software with a fully extensible structure. It 
is easy and free to extend the modules and develop more CDL-based 
agricultural land use products as needed. 

Fig. 6. Mapping high confidence pixels from 2014 to 2018.  
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4.4. Limitations 

The current release of AgKit4EE still has some limitations. On the one 
hand, computing capacity of some geospatial functions are restricted by 
GEE. For examlpe, we currently only support the county-level statistics 
due to the limited number of pixels per each process (10 million pixels) 
allowed by GEE. When scaling up to the state level or larger geographic 
area, the process will be stopped with the “too many pixels in the region” 
error. A solution to bypass the limitation is to increase the scale for the 
reducer operation. However, this tweak would affect the accuracy of the 
statistics result. A better solution is to sum up the county-level results to 
ASD or state level, but it would take more processing time. Moreover, 
the Earth Engine Apps platform does not support the data export func-
tion in the current phase. To export the modeling result, the user must 
run the toolkit through the GEE Code Editor. On the other hand, there 
were many misclassified pixels in the early-year CDL data because of 

Fig. 7. The graphic user interface of the AgKit4EE-enabled web application prototypes.  

Table 4 
Comparison of CDL-based agricultural land use data from three sources.  

Data CropScape GEE Data 
Catalog 

AgKit4EE 

Cropland layer Available Available Available 
Confidence layer N/A Available Available 
Cultivated layer Available Available Available 
Cropland map by 

crop sequence 
N/A N/A Available 

Crop frequency 
map 

Available for major crop 
types (corn, soybean, 
wheat, and cotton) 

N/A Available for 
all crop types 

Confidence pixel 
map by 
threshold 

N/A N/A Available  
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cloud cover and lack of satellite images. Also, the coverage of the early- 
year CDL was incomplete. Only a few states were fully covered before 
2008. These quality and coverage issue of the early-year CDL data can 
potentially affect the follow-on studies (Zhang et al., 2020). 

5. Conclusion and future works 

This paper presents the design, implementation, and use examples of 
AgKit4EE. As a GEE-enabled toolkit for the CONUS-scale agricultural 
land use modeling, AgKit4EE contains a variety of frequently used 
functions for retrieving, visualizing, modeling, and analyzing CDL data. 
The major functions and capabilities of the proposed software, including 
crop sequence modeling, crop frequency modeling, confidence layer 
modeling, and geospatial statistics were demonstrated. Additionally, 
two AgKit4EE-enabled web applications, the Cropland Explorer and the 
Crop Frequency Explorer, were prototyped and published over the Earth 
Engine Apps platform. The result suggests this toolkit would greatly 
reduce the workload of modelers and developers who deal with CDL 
data. 

In the next phase of development, we will enhance and extend the 
AgKit4EE toolkit, integrate more modeling functions, develop the ma-
chine learning module, and support more LULC data products such as 
the National Land Cover Database (NLCD) of U.S. Geological Survey 
(USGS). A geospatial CI with all features of the AgKit4EE toolkit is under 
development. Currently, the toolkit is implemented in JavaScript only. 
We will implement the core modules in Python to support more third- 
party applications developed with GEE Python API. 

Software availability 

Software Name: AgKit4EE. 

Developer: Center for Spatial Information Science and Systems, 
George Mason University. 

Technical support: Chen Zhang (czhang11@gmu.edu). 
Programming language: JavaScript. 
License: MIT. 
Software required: Google Earth Engine. 
Project: https://code.earthengine.google.com/?accept_repo¼user 

s/czhang11/agkit4ee. 
Earth Engine repository: https://earthengine.googlesource. 

com/users/czhang11/agkit4ee. 
Github repository: https://github.com/czhang11/agkit4ee. 
Cropland Explorer: https://czhang11.users.earthengine. 

app/view/agkit4ee-cdl-explorer. 
Crop Frequency Explorer: https://czhang11.users.earthengine.app/ 

view/agkit4ee-crop-frequency-explorer. 
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Appendix A. Code Examples

Fig. A1. Example of retrieving CDL image collection using AgKit4EE.  

Fig. A2. Mapping major crops based on common crop rotation patterns for the entire CONUS.   
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Fig. A3. Mapping frequency of corn and soybeans for the state of Nebraska.  

Fig. A4. Mapping crop frequency for the state of Arkansas in the recent five years.  

Fig. A4. Modeling confidence layer for the entire CONUS.  
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