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Abstract—Persistent homology is used for computing topo-
logical features of a space at different spatial resolutions. It
is one of the main tools from computational topology that
is applied to the problems of data analysis. Despite several
attempts to reduce its complexity, persistent homology remains
expensive in both time and space. These limits are such that
the largest data sets to which the method can be applied have
the number of points of the order of thousands in R3. This
paper explores a technique intended to reduce the number of
data points while preserving the salient topological features of
the data. The proposed technique enables the computation of
persistent homology on a reduced version of the original input
data without affecting significant components of the output.
Since the run time of persistent homology is exponential in the
number of data points, the proposed data reduction method
facilitates the computation in a fraction of the time required
for the original data. Moreover, the data reduction method
can be combined with any existing technique that simplifies
the computation of persistent homology. The data reduction
is performed by creating small groups of similar data points,
called nano-clusters, and then replacing the points within each
nano-cluster with its cluster center. The persistence homology
of the reduced data differs from that of the original data by
an amount bounded by the radius of the nano-clusters. The
theoretical analysis is backed by experimental results showing
that persistent homology is preserved by the proposed data
reduction technique.
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I. INTRODUCTION

Topological Data Analysis (TDA) is an approach that
focuses on studying the ‘shape’ or topological structures of
data in order to extract meaningful information. The ability
of TDA to identify shapes despite certain deformations in the
space renders it immune to noise and leads to discovering
properties of data that are not discernible by conventional
methods of data analysis [1], [2].

One of the principal methods for performing Topologi-
cal Data Analysis is called persistent homology. Persistent
homology can be informally defined as a process for com-
puting topological features of data with increasing spatial
resolutions. The input data for the computation of persistent
homology is represented as a point cloud'. The output is a
set of real number pairs, where each pair represents birth and
death times of a topological feature. The pairs are usually

'A point cloud (P,dist) is a finite set P of N points, equipped with
a distance function dist. P is assumed to be sampled from an underlying
space S.

plotted either as a set of lines, called barcodes, or as a set
of points in the plane, called a persistence diagram.

The computation of persistent homology begins by associ-
ating a certain type of complex (simplicial, cubical, and CW
complexes are some of the commonly used ones) to the point
cloud. Unfortunately, even for data sets of moderate size,
the size? of the complex becomes prohibitively large. For
example, 3000 points sampled from the three-dimensional
Stanford Dragon model [3] yields a filtered Vietoris—Rips
complex (defined in Section II-C) of size 1.3 x 10° at
a scale equal to the maximum distance between any two
points in the data set [4]. This is because in the worst
case, the Vietoris—Rips complex includes N!/pl(N — p)!
simplices of dimension p, where IV is the number of points
in the point cloud. This means that the number of simplices
that constitute the complex can grow exponentially with the
number of input data points.

The worst case time and space complexities of the com-
putation of persistent homology are O(N3) and O(N%)
respectively, where N is the total number of simplices in
the filtration. In terms of the number of points N in the
point cloud, the time complexity is O(exp(XN)). Although
many optimizations of the algorithm have been proposed, the
fastest one of them still has a run time of O(N237%). There
is no known implementation to further improve the worst
case time complexity [5]. For large data sets, this creates a
major limitation in the computation of persistent homology.

A. Contribution

In this paper, we employ a data reduction technique that
preserves the salient topological features of the data. The
proposed technique enables the computation of persistent
homology on a reduced version of the original input data
without affecting significant components of the output. Since
the run time of persistent homology is exponential in the
number of data points, the proposed data reduction method
facilitates the computation in a fraction of the time required
for the original data. In other words, the method enables the
computation of persistent homology on dramatically larger
data sets than otherwise possible.

The data reduction is performed in two steps:

1) Create small groups of spatially similar data points,
called nano-clusters. The similarity of the data points

2The size of a complex is represented in terms of its number of simplices.



is measured in terms of some, often Euclidean, dis-
tance function. The name ‘“nano-clusters” is used
due to their small sizes and large numbers (in most
scenarios). The name also reflects the fact that nano-
clusters are not intended to discover partitions in the
data, which is the task in conventional data clustering
problems.

2) Replace the points in a nano-cluster by their cor-
responding cluster center or centroid which is the
arithmetic mean of the coordinates of the points in
the nano-cluster.

Since the points in a nano-cluster are spatially local, re-
placing them by their centroid has little effect on the
‘shape’ of the data. While this reduction removes points
and consequently some of the simplices, the topological
features lost from these removals are primarily those with
short lifespans that are mostly insignificant to the broader
goal of identifying significant features in the point cloud.
Compared to the cost of computing persistent homology, the
creation of nano-clusters and their replacement by respective
cluster centers is computationally very simple, and can be
done in a single scan over the data. For the experiments
described in this paper, the nano-clusters are created using
the k-means++ clustering algorithm [6].

The data reduction technique using nano-clusters can be
considered a preprocessing step where the data is reduced
before feeding it to the persistent homology algorithm. Thus
the technique can be combined with other methods that
attempts to simplify the computation of persistent homology.
The data reduction method can also be viewed as a sampling
technique where the set of centriods represents the data
points sampled from the original point cloud.

In this paper, an upper bound on the error introduced by
the data reduction method is established. The analysis is
backed by experimental results on real-world data sets.

B. Related Work

Our approach is closely related to the subsampling method
developed by Chazal et al [7] that proposes to take n inde-
pendent samples of size k from the initial point cloud. Either
the average persistence landscape [8] from the n samples or
the landscape of the closest sample to the original point
cloud (according to Hausdorff distance) is computed. The
method requires one to either compute persistent homology
n times or select the closest sample on which persistent
homology is to be computed. Accordingly, computing the
average landscape is O(n exp(k)) and persistent homology
of the closest sample is O(nkN + exp(k)).

In contrast, our approach consists in taking only one
sample from the original data, thereby saving (n — 1)
computations of persistent homology and the generation of
multiple samples. The data reduction by k-means++ and the
subsequent computation of persistent homology is O(kN +
exp(k)). In spite of being computationally inexpensive, our

method produces similar output to that of [7] (as shown in
Section IV) and preserves all significant topological features.
Indeed, the effectiveness of k-means as a data reduction
method has been emphasized in [9] in the context of k-
Nearest Neighbor classification. An additional advantage of
the k-means++ reduction is that it permits us to partition
the data and restore interesting subregions of the original
point cloud for recomputing persistent homology only on
the subregions that define topologically significant features.
This subregion restoration is being called upscaling. While
not explored fully in this paper, the upscaling method
will ultimately permit one to iteratively refine the barcode
birth/death times when the data sizes prevent computing
persistent homology on the entire point cloud.

The remainder of this paper is organized as follows.
Section II presents some of the background on persistent
homology. Section III explores the data reduction technique
using nano-clusters and establishes an upper bound on
the error introduced by its use. Section IV presents the
experimental results on several different data sets. Section
V discusses about the method of upscaling. Finally, we
conclude the paper with some remarks in Section VI.

II. BACKGROUND

The purpose of this section is to briefly introduce the basic
ideas of persistent homology. For a visual representation, the
reader may watch an introductory video [10] by Matthew
Wright. More technical details are available in [11], [12],
[13], [14].

Homology can be thought of as a way of counting prop-
erties such as the number of connected components [13],
holes or loops, and voids of a topological space. Persistent
homology is a process of computing the lifespans those
topological properties through increasing spatial resolutions.
Computing the homology of arbitrary topological spaces can
be very difficult. The solution is to approximate the spaces
by combinatorial structures called complexes for which
homology can be computed algorithmically [4]. Simplicial,
cubical, and CW complexes [15], [4] are examples of the
commonly used complexes. Since the simplicial complex
is probably the most widely used with a richer theoretical
foundation than others [4], we examine simplicial complexes
and their use in persistent homology in the following sub-
sections.

A. Simplicial Complex

A simplex is a generalization of the geometric objects
such as a triangle or a tetrahedron. For example, a point is
a 0-dimensional simplex, or simply, a O-simplex; an edge
between two points is a 1l-simplex; a triangular face is
a 2-simplex; a tetrahedron is a 3-simplex, and so on. A
simplicial complex is obtained by combining more than one
simplices together in such a way that their intersection is
also a simplex. Formally, a simplicial complex is a set K of



finite sets such that if o € K and 7 C o, then 7 € K [16].
If 0 € K is constructed of p + 1 points, ie., |o] = p+ 1,
then o is called a p-simplex of dimension p. A p-simplex
becomes a vertex, an edge, a triangle, or a tetrahedron for
p=0,1,2, and 3 respectively.

B. Filtration

A subset L C K is called a subcomplex if L itself is
a simplicial complex. A filtration of a complex K is a
sequence of nested subcomplexes ) = Ko C K; C Ky C
.. € K,, = K. A complex with a filtration is called a
filtered complex K r.

C. Computation of Persistent Homology

The computation of persistent homology begins with
associating a complex to the point cloud. There are several
ways to associate a simplicial complex to a point cloud
(P, dist). The construction of a Vietoris—Rips complex is
one of the most common ways of achieving this. For a real
number € > 0, the Vietoris—Rips complex V (P, ¢) at scale
€ is defined as:

V(Pe)={o C P|dist(z,y) <eforal z,y€co}

Thus, in a Vietoris—Rips complex any two points within a
distance € are connected. For €; < €9, we have V(P,e;1) C
V (P, e2). Therefore, if we consider increasing (or decreas-
ing) values of the scale parameter €, we obtain a filtration
Kr.

The topological structure of the filtration K changes
with the scale parameter €. At € = 0, all data points are
disconnected. As e increases, the points become connected
to one another by edges. As more and more points are con-
nected, existing connected components are merged into one
another, holes or voids appear (or, are born) and eventually
get filled (or, die). Persistent homology is a mechanism to
track these changes as e grows from O to a user-specified
threshold. More specifically, persistent homology records
the birth and death times of the connected components and
holes as they appear and disappear with increasing €. The
difference between the death and birth times is the lifespan
of a topological feature. The basic intuition of persistence
is that the significant topological features have much longer
lifespans than those of noise [17], [18].

The output of persistent homology is a set of pairs of
real numbers (€pirth, €deatr ) A topological feature is born at
€ = €pirth, and dies at € = €geqtn. The pairs (€piren, €death)
are shown as a set of lines or bars, called barcodes. As
salient features persist longer than noise, long bars represent
important features and short bars represent noise [13].

The set of pairs (€pirth, €deatr) can also be plotted on a
plane, with the horizontal and vertical axes representing the
birth and death times of topological features respectively.
This plot is called a persistence diagram. As significant
features have longer lifespans, their death times are much

greater than birth times. Therefore, the points that represent
significant features lie far away from the 45° line that passes
through the origin of the persistence diagram. Noise points,
on the other hand, reside close to or on the 45° line.

III. DATA REDUCTION USING NANO-CLUSTERS

This section provides more details on the proposed data
reduction method and the error introduced by it.

A. Creation of Nano-clusters

Nano-clusters are created using a standard k-means++
clustering algorithm [6]. The input to k-means++ algorithm
is the original data set having N points. The number of
points in the reduced data set is specified by the parameter
k. The output of k-means++ is a set of k cluster centers that
represent the centroids of the nano-clusters. If one selects
any k < N, one obtains a reduced data set of k points from
the original data set of IV points.

Creation of nano-clusters and their substitution by re-
spective centroids, essentially, constitute a ‘knowledgeable’
sampling mechanism. We call it ‘knowledgeable’ because
the sampled centroids follow the ‘shape’ of the original
data and preserve the topological notions of “closeness”
of things in the data set. k-means++ seeks to minimize
the maximum distance to any point from the centroid of
a cluster. Moreover, the algorithm employs an intelligent
mechanism to select initial cluster centers. k-means++ ex-
hibits an improved accuracy in including the closest set of
points in each nano-cluster, generating centroids along the
shape of the data.

B. Error Introduced by Data Reduction

The error introduced in data reduction manifests itself as
changes in the position of points on the persistence diagram
(or equivalently, in the lifespan of bars on the barcodes).
This subsection establishes a bound on the error that is
represented as the bottleneck distance W, [13] between the
persistence diagrams of the original data and the reduced
data.

The radius r of a nano-cluster is defined as the maximum
distance to a point in the cluster from its centroid. Let 7,4,
denote the maximum radius among all nano-clusters. For all
practical purposes, both the original data D and the reduced
data C can be considered as compact subsets of the same
metric space S equipped with a distance function dist. If
Dgp and Dgc are persistence diagrams resulting from D
and C respectively, then, according to the stability theorem
of persistence diagrams [19], [7]:

where

H(D,C) = max{ max min dist(x,c), max min dist(z, c)
zeD ceC ceCzeD

|



is the Hausdorff distance between D and C. Here,

max mig dist(x, c) is the maximum of the distances from
x € ce
data points to their nearest centroids. This distance is the

maximum radius 7,4, among all the nano-clusters. On the
other hand, max min dist(x,c) is the maximum of the

. ceCzeD . .
distances from the centroids to their closest data points. Let
us denote this distance by l,,4,. Clearly, mmar > lnaz- It
follows that

H(D7 C) = max {Tma::."7 lmaz} = Tmaz

Hence,
Woo(DgDaDgC) S 27’maw- (l)

Thus up to certain limits of data reduction, 7,4, Will be
much smaller than the lifespan of any significant feature
of the data and the impact on the birth/death times of the
barcodes of these significant features is bounded by 7,4, It
is apparent then that the data reduction has little to no impact
on the goal of finding significant topological features of data
using persistent homology. Of course, minor features of size
less than r,,,, may be lost. That said, in general, the average
cluster radius (74.4) Will be the bound for topological feature
preservation. Thus, most features having lifespans of 74,4 or
more will be preserved (especially if r,,4, is an outlier size
among the nano-clusters).

IV. EXPERIMENTAL RESULTS

In this section, we describe and evaluate the data reduc-
tion technique through two sets of experiments. First, we
reduce the instances in the point cloud with k-means++ to
present run time and memory performance improvements
for computing persistent homology. We examine the error
in the reduced point cloud and persistence intervals, com-
plementing the statement that this approach preserves the
salient topological structures within the point cloud without
significant impact on the barcodes of filtered Rips com-
plexes. Second, we show comparisons of multiple triangu-
lated mesh objects with reduced points through k-means++
to analyze the dissimilarity of the shapes with respect to
persistent homology and the output landscapes. Analysis
of the dissimilarity matrix provides experimental results
detailing the topological differences between objects after
significant reduction of the point cloud with k-means++. The
results can provide a basis for more efficient computation of
persistent homology for object recognition and comparison.

The first set of experiments were carried out on two
selected data sets and the second set of experiments were
evaluated on four triangulated mesh data sets. Programs
were executed on an Intel(R) Xeon(TM) E5-2670 CPU @
2.60GHz with 64GB of RAM. For each data set, we reduced
the original data with k-means++. GUDHI library [20] was
used to compute persistent homology of the resultant data
sets. However, any other persistent homology library could

be used. To reduce computation time, persistence barcodes
were computed for topological features of dimensions 0, 1,
and 2 only. See Section III for explanation of the general-
ization of shifts in persistence intervals in dimension n. The
output lifespans were plotted as barcodes and persistence
diagrams. Several levels of data reductions were compared
for each data set.

A. Performance and Error Characterization

For the first set of experiments, run time data were col-
lected for k-means++ and the GUDHI persistent homology
algorithm. In the case of no data reduction, only the run
time for persistent homology was recorded.

Characterization data were collected from the nano-
clusters to relate the error introduced by the data reduction to
the maximum and average radius of nano-clusters, denoted
as T'mqe and 74,4 respectively. These calculations give us
the worst-case and average-case estimates for the error
introduced by data reduction.

Two error index measures, the Wasserstein and Bottleneck
distances, were evaluated for each output. The Wasserstein
distance represents the total difference in paired mappings
between two sets of intervals for each set of dimensional
intervals. The Bottleneck distance is a variation of the
Wasserstein distance that measures the length of the maxi-
mum difference in mappings between two intervals for each
dimensional set. Both measures give a quantitative degree
of change between the original and reduced barcodes.

The total run time on a data set is the sum of run times
for k-means++ and persistent homology. The accuracy trade
off of k-means++ as a pre-processing technique benefits the
total run time as the reduction percentage is increased. Sig-
nificant run time improvements can be attained from the pre-
processing method even for small reduction percentages. The
worst case time and space complexities of the computation
are O(n3.) and O(n% ), respectively, showing the benefit of
the data reduction method for large data sets.

Real-world data were used to demonstrate the technique
on topological features where persistent homology is com-
putationally complex. The first example is from the Gesture
Phase Segmentation data available in the UCI machine
learning repository. The data set describes a post-processed
gesture research video recorded on a Microsoft Kinect
sensor consisting of 1,743 instances with 32 attributes. The
processed attributes measure vectorial and scalar velocities
of the hands and wrists of the user. This data source has been
previously used in SimBa [21] for topological data analysis
along with several other machine learning and segmentation
experiments. Run time performance and characterization
data can be found in Table I. Results show a slight increase
in the Wasserstein and Bottleneck distances with increased
reduction amounts, however this value is larger relative to
the scale of the original data set. No major collapsing of the
point cloud occurs from the reductions performed.



Gesture

Reduction % Tmazx Tavg Wasserstein ~ Bottleneck ~ Runtime (s)
0 0.0 0.0 0.0 0.0 1483.43
10 0.0017  0.0002 0.0035 0.0024 1399.64
25 0.0045  0.0005 0.0034 0.0030 462.60
50 0.0106  0.0106 0.0017 0.0033 149.19
75 0.0193  0.0193 0.0051 0.0038 13.67
90 0.0461  0.0461 0.0145 0.0056 1.73

Camel

Reduction % Tmazx Tavg Wasserstein ~ Bottleneck ~ Runtime (s)
0 0.0 0.0 0.0 0.0 213.14
10 0.0137  0.0013 0.0014 0.0040 157.11
25 0.0193  0.0040 0.0060 0.0087 85.86
50 0.0270  0.0100 0.0186 0.0092 20.61
75 0.0440  0.0187 0.3820 0.3477 14.02
90 0.0866  0.0310 0.4180 0.3616 8.65

Table T

DIFFERENCES IN THE PERSISTENT DIAGRAMS AT PERCENTAGES OF NANO-CLUSTER REDUCTION.

The second set of results in Table I are from Camel
data, a subsampling from the publicly available triangulated
shapes database [22], consisting of 21,877 instances with
3 attributes describing a geometric camel shape in R3.
Data sets from the triangulated shapes database have been
previously used in [7] for subsampling methods to reduce
data instances.

The original Camel point cloud was extracted from the
camel-reference object file, saving only the vertices for
the triangulated mesh. Subsampling of the original camel
point cloud was performed with k-means++ to preserve the
model’s geometry. In the same method as the nano-cluster
reduction technique described above, the data was clustered
into 1,000 centroids prior to experimentation. Again, as
shown by the small Wasserstein and Bottleneck distances,
the results have nominal impact on the barcode computation.

The data reduction technique provides significant perfor-
mance benefits while preserving the relevant topological
features of the point cloud. This fact is evident from the
run times shown in Table I. A speed up of 157 times
is achieved with the Gesture data set at 90% reduction
without introducing significant error as demonstrated by the
Wasserstein and Bottleneck distances.

As noted in Section III-B, r,,4, can play a role in deter-
mining the error induced into the barcodes and persistence
diagram from the data reduction. For noisy data sets, 7,44
can be skewed when outliers are assigned to clusters. The
value contains information on the worst-case error that can
result from the data reduction with k-means++ as a pre-
processing technique, but does not quantify the additional
error in the Wasserstein and Bottleneck distances attributed
to the reduction of points, loss of connected components,
and removal of short persistence intervals.

Reduction of the number of instances in the point cloud
will remove short persistence intervals, as described in
Section III. Nano-clustering will also alter the distance

between points in the point cloud by no more than 27,4,
Using 7444 to estimate the overall change in shape of the
cluster provides a closer approximation of quantitative error
introduced through k-means++ nano-clustering.

B. Dissimilarity Analysis of Persistence Landscapes

The data reduction technique provides performance ben-
efits while preserving the significant topological features of
the point cloud. This technique can be useful for faster
classification of multidimensional objects and comparing the
topological features between different point clouds. As the
percentage of reduction continues to increase, an eventual
loss of distinguishing features will occur. These features
may be significant in classifying the differences between bar-
codes of different multidimensional objects. The increased
performance for point cloud reduction provides considerable
reason to explore at what levels of reduction objects become
indistinguishable.

To analyze the effect of the reduction on classification
of multidimensional objects, experiments were performed
and analyzed through comparison of persistence landscapes.
Landscapes are defined to characterize the relative locations
and lengths of different barcodes discovered through persis-
tent homology. Landscapes correspond directly to the output
of persistent homology and give an alternative graphical
representation of the topological features present in the point
cloud.

Four data sets were chosen to demonstrate the reduction
and dissimilarity of topological features: Camel, Flamingo,
Lion, and Elephant. Each model represents a triangulated
point cloud representation of an animal, from the publicly
available triangulated shapes database [22]. Data sets from
the triangulated shapes database have been previously used
in [7] for validation of the subsampling method to simplify
the computation of persistent homology. For each data set, k-
means++ was used to reduce the total number of data points



between 500 points to 100 points. GUDHI library was used
to compute the persistent homology at each reduction level.

The original Camel model consists of 21,877 points;
Flamingo consists of 26,906 points, Lion consists of 4,999
points, and Elephant consists of 42,320. All of these tri-
angulated mesh models are represented in R*. Due to the
sizes of the larger point clouds (Flamingo and Elephant),
the associated simplicial complexes cannot fit in the system
memory. This constraint prohibits the computation of per-
sistent homology on the original point clouds and requires
an approximate or reduced analysis to be performed.

Visual inspection of the result of data reduction gives an
immediate perspective of the method’s benefit in preserving
topological features. Figure 2 shows the original Flamingo
point cloud with 26,906 points in R3. Reduction of the
point cloud to 300 points is shown in Figure 3, showing
the preservation of the general shape of the Flamingo
triangulated mesh. Persistent homology on the reduced point
clouds is feasible to generate barcodes with minimal error
introduced into the output.

After generation of barcodes for each reduced point cloud,
landscapes were calculated to compare and measure the
dissimilarity of the objects with respect to the reduction
levels and with respect to other models at the same reduction
percentage. The dissimilarity is computed as L., distance
between pairs of persistence landscapes. A dissimilarity
matrix was plotted to provide a visual representation of each
comparison and analyzed for patterns within the reduction
levels and the different objects being evaluated.

The Camel data set provides significant insight into the
effects of data reduction. The Camel dissimilarity matrix is
shown in Figure 1. The dissimilarity matrix shows a slight
reduction in similarity as the number of points is reduced.
For the Camel model, the value gradually increases as the
number of points decreases, due to reduction through k-
means++. This increase in the dissimilarity value signifies
a larger change in the resultant barcodes at the 100 point
reduction due to loss of significant features from reduction.

Comparing all of the models at different reduction levels
shows how the objects can be distinguished from one another
through persistent homology. In Figure 4, the objects show
significant dissimilarity, enough to match and distinguish
the different models used. The reduction method introduces
some bounded error into the models as reductions increase
while preserving the discrimination of features at greater
reduction levels.

Previous studies on the subsampling method for persistent
homology from [7] have examined the camel, elephant,
flamingo, and lion model landscapes to generate a dissim-
ilarity matrix at a single reduction level through subsam-
pling. The method presented in this paper is similar to
the subsampling technique described and the dissimilarity
matrix over all models is qualitatively similar. However,
since the dissimilarity matrix presented in [7] does not

500 0.0000 0.0080 0.0158 0.0172

400 0.0080 0.0000 0.0110 0.0159

300 0.0158 0.0110 0.0000 0.0117 0.0182

200 0.0172 0.0159 0.0117 0.0000 0.0136

100 0.0182 0.0136 0.0000

500 400 300 200 100
Figure 1. Dissimilarity matrix of the camel model at different reduction
levels.
-0.4
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Figure 2. Plot of original Flamingo point cloud of 26,906 points.

include quantitative values for each comparison, the method
presented cannot be directly compared. Figure 4 can be
utilized to qualitatively evaluate the previous subsampling
method for dissimilarity of the triangulated mesh datasets.

Further analysis of error induced through the reduction
technique with k-means++ nano-clusters on pattern match-
ing and classification of data sets will provide a basis for the
degree to which data can be reduced to preserve the rele-
vant topological features within complex, high-dimensional
point clouds. Recognition at increased performances is an
obvious benefit to computation and feasibility of topological
data analysis as a means to classify and distinguish high-
dimensional patterns not found through traditional data
analysis methods.
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Figure 3. Plot of Flamingo point cloud reduced to 300 points.
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Figure 4. Dissimilarity of all models at 300 point reduction.

V. UPSCALING AND ITERATIVE REFINEMENT

Data reduction by nano-clusters is a highly effective
mechanism to speedup the persistent homology computation
and enable the use of persistent homology for the analysis
of much larger data sets than previously possible. However,
this speedup comes at the cost of small, but not fully
predictable changes in the birth/death times of the barcodes
of significant features. In some cases this may not be an
acceptable trade off, however in other cases, it may be
necessary to produce more accurate barcode birth/death
times. Fortunately one could upscale the data in the region
about the feature for which the “approximate” barcode is
generated and then re-compute the persistent homology for
that subregion of the original point cloud. That is, we can
retrieve the nano-clusters on the boundary of the feature and
reproduce all the points from the nano-clusters (upscale) on
that boundary and recompute from that set of points. Should

1.2
1.01
0.8 1
0.6
0.4 1
02 04 0.6 08 10 12
Figure 5. Boundaries identified at 90% reduction with e=0.07

that upscaling produce too many points, an iterative refine-
ment that reduces the points in that subregion using nano-
clusters followed by upscaling and so on until the problem
converges to increasingly more focused subregions of the
point cloud that can be processed for persistent homology
computations. Each barcode feature can be independently
(and concurrently) upscaled and iterated over to quickly gain
accurate barcode computations.

To gather the boundaries for upscaling, an initial iden-
tification needs to be carried out on the reduced data set.
Data is replaced by an assigned centroid, reducing data by a
significant percentage. Persistent homology can be evaluated
relatively fast on the reduced data set. The boundary matrix
is transformed into reduced row echelon form to determine
constituent centroids of the boundary.

Figure 5 shows an example of the boundary resolution.
The light gray points show the original point cloud of 2000
points. The data was reduced through k-means++ by 90%,
leaving 200 data points shown as black dots. Edges are
shown from simplex construction at € = 0.07. Persistent
homology still distinguishes 4 holes in the reduced data set.

The boundary centroids are examined at a higher resolu-
tion to calculate a more accurate barcode. Each boundary
centroid is upscaled using the k-means++ labels to expand
to a larger point cloud. This can be accomplished in parallel,
focusing on each feature realized by the reduced persistent
homology as an independent point cloud. Ideally the per-
sistent homology for each feature can be computed at full
scale. For higher dimensional features the size of the entire
data set is no longer a constraint. The data is partitioned
into different features and upscaled boundaries that can be
evaluated in parallel to accelerate the process of determining
exact barcodes.

This method can be used in a single pass over the data but
may be utilized to iteratively scale back to the largest point



cloud the persistent homology can be computed on with
available system resources. A system with limited resources
can continuously iterate through the data to extrapolate the
actual barcodes without requiring large amounts of memory
to store the entire simplicial complex. This method can lead
to development of an algorithm that scales with resources of
the computer and would be more useful for the computation
of persistent homology on large data sets.

VI. CONCLUSIONS

The performance of the computation of persistent ho-
mology can be substantially improved by the use of nano-
clusters to reduce the size of the input data set. This can
be achieved with little to no impact on the significant
topological features of a point cloud. Since the data re-
duction technique allows efficient and sufficiently accurate
computation of persistent homology on much larger data sets
than otherwise possible, the proposed method facilitates the
application of persistent homology to solve the conventional
problems of data mining or machine learning, such as clas-
sification and clustering. We have demonstrated the benefits
of our approach in detecting dissimilarities of features in
greatly reduced point clouds. Furthermore, the possibility of
upscaling the data around discovered features should permit
the recomputation of more accurate barcodes on subsets of
the original data, should that be desirable.
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