
Cluster-based Data Reduction for Persistent Homology

Anindya Moitra, Nicholas O. Malott and Philip A. Wilsey

Dept. of EECS, University of Cincinnati, Cincinnati, OH 45221, USA

Email: moitraaa@mail.uc.edu, malottno@mail.uc.edu, philip.wilsey@uc.edu

Abstract—Persistent homology is used for computing topo-
logical features of a space at different spatial resolutions. It
is one of the main tools from computational topology that
is applied to the problems of data analysis. Despite several
attempts to reduce its complexity, persistent homology remains
expensive in both time and space. These limits are such that
the largest data sets to which the method can be applied have
the number of points of the order of thousands in R

3. This
paper explores a technique intended to reduce the number of
data points while preserving the salient topological features of
the data. The proposed technique enables the computation of
persistent homology on a reduced version of the original input
data without affecting significant components of the output.
Since the run time of persistent homology is exponential in the
number of data points, the proposed data reduction method
facilitates the computation in a fraction of the time required
for the original data. Moreover, the data reduction method
can be combined with any existing technique that simplifies
the computation of persistent homology. The data reduction
is performed by creating small groups of similar data points,
called nano-clusters, and then replacing the points within each
nano-cluster with its cluster center. The persistence homology
of the reduced data differs from that of the original data by
an amount bounded by the radius of the nano-clusters. The
theoretical analysis is backed by experimental results showing
that persistent homology is preserved by the proposed data
reduction technique.

Keywords-topological data analysis; persistent homology;
data reduction; k-means++; data mining

I. INTRODUCTION

Topological Data Analysis (TDA) is an approach that

focuses on studying the ‘shape’ or topological structures of

data in order to extract meaningful information. The ability

of TDA to identify shapes despite certain deformations in the

space renders it immune to noise and leads to discovering

properties of data that are not discernible by conventional

methods of data analysis [1], [2].

One of the principal methods for performing Topologi-

cal Data Analysis is called persistent homology. Persistent

homology can be informally defined as a process for com-

puting topological features of data with increasing spatial

resolutions. The input data for the computation of persistent

homology is represented as a point cloud1. The output is a

set of real number pairs, where each pair represents birth and

death times of a topological feature. The pairs are usually

1A point cloud (P, dist) is a finite set P of N points, equipped with
a distance function dist. P is assumed to be sampled from an underlying
space S.

plotted either as a set of lines, called barcodes, or as a set

of points in the plane, called a persistence diagram.

The computation of persistent homology begins by associ-

ating a certain type of complex (simplicial, cubical, and CW

complexes are some of the commonly used ones) to the point

cloud. Unfortunately, even for data sets of moderate size,

the size2 of the complex becomes prohibitively large. For

example, 3000 points sampled from the three-dimensional

Stanford Dragon model [3] yields a filtered Vietoris–Rips

complex (defined in Section II-C) of size 1.3 × 109 at

a scale equal to the maximum distance between any two

points in the data set [4]. This is because in the worst

case, the Vietoris–Rips complex includes N !/p!(N − p)!
simplices of dimension p, where N is the number of points

in the point cloud. This means that the number of simplices

that constitute the complex can grow exponentially with the

number of input data points.

The worst case time and space complexities of the com-

putation of persistent homology are O(N3

K) and O(N2

K)
respectively, where NK is the total number of simplices in

the filtration. In terms of the number of points N in the

point cloud, the time complexity is O(exp(N)). Although

many optimizations of the algorithm have been proposed, the

fastest one of them still has a run time of O(N2.376
K). There

is no known implementation to further improve the worst

case time complexity [5]. For large data sets, this creates a

major limitation in the computation of persistent homology.

A. Contribution

In this paper, we employ a data reduction technique that

preserves the salient topological features of the data. The

proposed technique enables the computation of persistent

homology on a reduced version of the original input data

without affecting significant components of the output. Since

the run time of persistent homology is exponential in the

number of data points, the proposed data reduction method

facilitates the computation in a fraction of the time required

for the original data. In other words, the method enables the

computation of persistent homology on dramatically larger

data sets than otherwise possible.

The data reduction is performed in two steps:

1) Create small groups of spatially similar data points,

called nano-clusters. The similarity of the data points

2The size of a complex is represented in terms of its number of simplices.

is measured in terms of some, often Euclidean, dis-

tance function. The name “nano-clusters” is used

due to their small sizes and large numbers (in most

scenarios). The name also reflects the fact that nano-

clusters are not intended to discover partitions in the

data, which is the task in conventional data clustering

problems.

2) Replace the points in a nano-cluster by their cor-

responding cluster center or centroid which is the

arithmetic mean of the coordinates of the points in

the nano-cluster.

Since the points in a nano-cluster are spatially local, re-

placing them by their centroid has little effect on the

‘shape’ of the data. While this reduction removes points

and consequently some of the simplices, the topological

features lost from these removals are primarily those with

short lifespans that are mostly insignificant to the broader

goal of identifying significant features in the point cloud.

Compared to the cost of computing persistent homology, the

creation of nano-clusters and their replacement by respective

cluster centers is computationally very simple, and can be

done in a single scan over the data. For the experiments

described in this paper, the nano-clusters are created using

the k-means++ clustering algorithm [6].

The data reduction technique using nano-clusters can be

considered a preprocessing step where the data is reduced

before feeding it to the persistent homology algorithm. Thus

the technique can be combined with other methods that

attempts to simplify the computation of persistent homology.

The data reduction method can also be viewed as a sampling

technique where the set of centriods represents the data

points sampled from the original point cloud.

In this paper, an upper bound on the error introduced by

the data reduction method is established. The analysis is

backed by experimental results on real-world data sets.

B. Related Work

Our approach is closely related to the subsampling method

developed by Chazal et al [7] that proposes to take n inde-

pendent samples of size k from the initial point cloud. Either

the average persistence landscape [8] from the n samples or

the landscape of the closest sample to the original point

cloud (according to Hausdorff distance) is computed. The

method requires one to either compute persistent homology

n times or select the closest sample on which persistent

homology is to be computed. Accordingly, computing the

average landscape is O(n exp(k)) and persistent homology

of the closest sample is O(nkN + exp(k)).
In contrast, our approach consists in taking only one

sample from the original data, thereby saving (n − 1)
computations of persistent homology and the generation of

multiple samples. The data reduction by k-means++ and the

subsequent computation of persistent homology is O(kN +
exp(k)). In spite of being computationally inexpensive, our

method produces similar output to that of [7] (as shown in

Section IV) and preserves all significant topological features.

Indeed, the effectiveness of k-means as a data reduction

method has been emphasized in [9] in the context of k-

Nearest Neighbor classification. An additional advantage of

the k-means++ reduction is that it permits us to partition

the data and restore interesting subregions of the original

point cloud for recomputing persistent homology only on

the subregions that define topologically significant features.

This subregion restoration is being called upscaling. While

not explored fully in this paper, the upscaling method

will ultimately permit one to iteratively refine the barcode

birth/death times when the data sizes prevent computing

persistent homology on the entire point cloud.

The remainder of this paper is organized as follows.

Section II presents some of the background on persistent

homology. Section III explores the data reduction technique

using nano-clusters and establishes an upper bound on

the error introduced by its use. Section IV presents the

experimental results on several different data sets. Section

V discusses about the method of upscaling. Finally, we

conclude the paper with some remarks in Section VI.

II. BACKGROUND

The purpose of this section is to briefly introduce the basic

ideas of persistent homology. For a visual representation, the

reader may watch an introductory video [10] by Matthew

Wright. More technical details are available in [11], [12],

[13], [14].

Homology can be thought of as a way of counting prop-

erties such as the number of connected components [13],

holes or loops, and voids of a topological space. Persistent

homology is a process of computing the lifespans those

topological properties through increasing spatial resolutions.

Computing the homology of arbitrary topological spaces can

be very difficult. The solution is to approximate the spaces

by combinatorial structures called complexes for which

homology can be computed algorithmically [4]. Simplicial,

cubical, and CW complexes [15], [4] are examples of the

commonly used complexes. Since the simplicial complex

is probably the most widely used with a richer theoretical

foundation than others [4], we examine simplicial complexes

and their use in persistent homology in the following sub-

sections.

A. Simplicial Complex

A simplex is a generalization of the geometric objects

such as a triangle or a tetrahedron. For example, a point is

a 0-dimensional simplex, or simply, a 0-simplex; an edge

between two points is a 1-simplex; a triangular face is

a 2-simplex; a tetrahedron is a 3-simplex, and so on. A

simplicial complex is obtained by combining more than one

simplices together in such a way that their intersection is

also a simplex. Formally, a simplicial complex is a set K of

finite sets such that if σ ∈ K and τ ⊆ σ, then τ ∈ K [16].

If σ ∈ K is constructed of p + 1 points, i.e., |σ| = p + 1,

then σ is called a p-simplex of dimension p. A p-simplex

becomes a vertex, an edge, a triangle, or a tetrahedron for

p = 0, 1, 2, and 3 respectively.

B. Filtration

A subset L ⊆ K is called a subcomplex if L itself is

a simplicial complex. A filtration of a complex K is a

sequence of nested subcomplexes ∅ = K0 ⊆ K1 ⊆ K2 ⊆
... ⊆ Km = K. A complex with a filtration is called a

filtered complex KF .

C. Computation of Persistent Homology

The computation of persistent homology begins with

associating a complex to the point cloud. There are several

ways to associate a simplicial complex to a point cloud

(P, dist). The construction of a Vietoris–Rips complex is

one of the most common ways of achieving this. For a real

number ǫ ≥ 0, the Vietoris–Rips complex V (P, ǫ) at scale

ǫ is defined as:

V (P, ǫ) = {σ ⊂ P | dist (x, y) ≤ ǫ for all x, y ∈ σ }

Thus, in a Vietoris–Rips complex any two points within a

distance ǫ are connected. For ǫ1 ≤ ǫ2, we have V (P, ǫ1) ⊆
V (P, ǫ2). Therefore, if we consider increasing (or decreas-

ing) values of the scale parameter ǫ, we obtain a filtration

KF .

The topological structure of the filtration KF changes

with the scale parameter ǫ. At ǫ = 0, all data points are

disconnected. As ǫ increases, the points become connected

to one another by edges. As more and more points are con-

nected, existing connected components are merged into one

another, holes or voids appear (or, are born) and eventually

get filled (or, die). Persistent homology is a mechanism to

track these changes as ǫ grows from 0 to a user-specified

threshold. More specifically, persistent homology records

the birth and death times of the connected components and

holes as they appear and disappear with increasing ǫ. The

difference between the death and birth times is the lifespan

of a topological feature. The basic intuition of persistence

is that the significant topological features have much longer

lifespans than those of noise [17], [18].

The output of persistent homology is a set of pairs of

real numbers (ǫbirth, ǫdeath). A topological feature is born at

ǫ = ǫbirth, and dies at ǫ = ǫdeath. The pairs (ǫbirth, ǫdeath)
are shown as a set of lines or bars, called barcodes. As

salient features persist longer than noise, long bars represent

important features and short bars represent noise [13].

The set of pairs (ǫbirth, ǫdeath) can also be plotted on a

plane, with the horizontal and vertical axes representing the

birth and death times of topological features respectively.

This plot is called a persistence diagram. As significant

features have longer lifespans, their death times are much

greater than birth times. Therefore, the points that represent

significant features lie far away from the 45◦ line that passes

through the origin of the persistence diagram. Noise points,

on the other hand, reside close to or on the 45◦ line.

III. DATA REDUCTION USING NANO-CLUSTERS

This section provides more details on the proposed data

reduction method and the error introduced by it.

A. Creation of Nano-clusters

Nano-clusters are created using a standard k-means++

clustering algorithm [6]. The input to k-means++ algorithm

is the original data set having N points. The number of

points in the reduced data set is specified by the parameter

k. The output of k-means++ is a set of k cluster centers that

represent the centroids of the nano-clusters. If one selects

any k < N , one obtains a reduced data set of k points from

the original data set of N points.

Creation of nano-clusters and their substitution by re-

spective centroids, essentially, constitute a ‘knowledgeable’

sampling mechanism. We call it ‘knowledgeable’ because

the sampled centroids follow the ‘shape’ of the original

data and preserve the topological notions of “closeness”

of things in the data set. k-means++ seeks to minimize

the maximum distance to any point from the centroid of

a cluster. Moreover, the algorithm employs an intelligent

mechanism to select initial cluster centers. k-means++ ex-

hibits an improved accuracy in including the closest set of

points in each nano-cluster, generating centroids along the

shape of the data.

B. Error Introduced by Data Reduction

The error introduced in data reduction manifests itself as

changes in the position of points on the persistence diagram

(or equivalently, in the lifespan of bars on the barcodes).

This subsection establishes a bound on the error that is

represented as the bottleneck distance W∞ [13] between the

persistence diagrams of the original data and the reduced

data.

The radius r of a nano-cluster is defined as the maximum

distance to a point in the cluster from its centroid. Let rmax

denote the maximum radius among all nano-clusters. For all

practical purposes, both the original data D and the reduced

data C can be considered as compact subsets of the same

metric space S equipped with a distance function dist. If

DgD and DgC are persistence diagrams resulting from D

and C respectively, then, according to the stability theorem

of persistence diagrams [19], [7]:

W∞(DgD,DgC) ≤ 2H(D,C)

where

H(D,C) = max

{

max
x∈D

min
c∈C

dist(x, c), max
c∈C

min
x∈D

dist(x, c)

}

is the Hausdorff distance between D and C. Here,

max
x∈D

min
c∈C

dist(x, c) is the maximum of the distances from

data points to their nearest centroids. This distance is the

maximum radius rmax among all the nano-clusters. On the

other hand, max
c∈C

min
x∈D

dist(x, c) is the maximum of the

distances from the centroids to their closest data points. Let

us denote this distance by lmax. Clearly, rmax > lmax. It

follows that

H(D,C) = max

{

rmax, lmax

}

= rmax

Hence,

W∞(DgD,DgC) ≤ 2 rmax. (1)

Thus up to certain limits of data reduction, rmax will be

much smaller than the lifespan of any significant feature

of the data and the impact on the birth/death times of the

barcodes of these significant features is bounded by rmax. It

is apparent then that the data reduction has little to no impact

on the goal of finding significant topological features of data

using persistent homology. Of course, minor features of size

less than rmax may be lost. That said, in general, the average

cluster radius (ravg) will be the bound for topological feature

preservation. Thus, most features having lifespans of ravg or

more will be preserved (especially if rmax is an outlier size

among the nano-clusters).

IV. EXPERIMENTAL RESULTS

In this section, we describe and evaluate the data reduc-

tion technique through two sets of experiments. First, we

reduce the instances in the point cloud with k-means++ to

present run time and memory performance improvements

for computing persistent homology. We examine the error

in the reduced point cloud and persistence intervals, com-

plementing the statement that this approach preserves the

salient topological structures within the point cloud without

significant impact on the barcodes of filtered Rips com-

plexes. Second, we show comparisons of multiple triangu-

lated mesh objects with reduced points through k-means++

to analyze the dissimilarity of the shapes with respect to

persistent homology and the output landscapes. Analysis

of the dissimilarity matrix provides experimental results

detailing the topological differences between objects after

significant reduction of the point cloud with k-means++. The

results can provide a basis for more efficient computation of

persistent homology for object recognition and comparison.

The first set of experiments were carried out on two

selected data sets and the second set of experiments were

evaluated on four triangulated mesh data sets. Programs

were executed on an Intel(R) Xeon(TM) E5-2670 CPU @

2.60GHz with 64GB of RAM. For each data set, we reduced

the original data with k-means++. GUDHI library [20] was

used to compute persistent homology of the resultant data

sets. However, any other persistent homology library could

be used. To reduce computation time, persistence barcodes

were computed for topological features of dimensions 0, 1,

and 2 only. See Section III for explanation of the general-

ization of shifts in persistence intervals in dimension n. The

output lifespans were plotted as barcodes and persistence

diagrams. Several levels of data reductions were compared

for each data set.

A. Performance and Error Characterization

For the first set of experiments, run time data were col-

lected for k-means++ and the GUDHI persistent homology

algorithm. In the case of no data reduction, only the run

time for persistent homology was recorded.

Characterization data were collected from the nano-

clusters to relate the error introduced by the data reduction to

the maximum and average radius of nano-clusters, denoted

as rmax and ravg respectively. These calculations give us

the worst-case and average-case estimates for the error

introduced by data reduction.

Two error index measures, the Wasserstein and Bottleneck

distances, were evaluated for each output. The Wasserstein

distance represents the total difference in paired mappings

between two sets of intervals for each set of dimensional

intervals. The Bottleneck distance is a variation of the

Wasserstein distance that measures the length of the maxi-

mum difference in mappings between two intervals for each

dimensional set. Both measures give a quantitative degree

of change between the original and reduced barcodes.

The total run time on a data set is the sum of run times

for k-means++ and persistent homology. The accuracy trade

off of k-means++ as a pre-processing technique benefits the

total run time as the reduction percentage is increased. Sig-

nificant run time improvements can be attained from the pre-

processing method even for small reduction percentages. The

worst case time and space complexities of the computation

are O(n3

K) and O(n2

K), respectively, showing the benefit of

the data reduction method for large data sets.

Real-world data were used to demonstrate the technique

on topological features where persistent homology is com-

putationally complex. The first example is from the Gesture

Phase Segmentation data available in the UCI machine

learning repository. The data set describes a post-processed

gesture research video recorded on a Microsoft Kinect

sensor consisting of 1,743 instances with 32 attributes. The

processed attributes measure vectorial and scalar velocities

of the hands and wrists of the user. This data source has been

previously used in SimBa [21] for topological data analysis

along with several other machine learning and segmentation

experiments. Run time performance and characterization

data can be found in Table I. Results show a slight increase

in the Wasserstein and Bottleneck distances with increased

reduction amounts, however this value is larger relative to

the scale of the original data set. No major collapsing of the

point cloud occurs from the reductions performed.

Gesture

Reduction % rmax ravg Wasserstein Bottleneck Runtime (s)

0 0.0 0.0 0.0 0.0 1483.43

10 0.0017 0.0002 0.0035 0.0024 1399.64

25 0.0045 0.0005 0.0034 0.0030 462.60

50 0.0106 0.0106 0.0017 0.0033 149.19

75 0.0193 0.0193 0.0051 0.0038 13.67

90 0.0461 0.0461 0.0145 0.0056 1.73

Camel

Reduction % rmax ravg Wasserstein Bottleneck Runtime (s)

0 0.0 0.0 0.0 0.0 213.14

10 0.0137 0.0013 0.0014 0.0040 157.11

25 0.0193 0.0040 0.0060 0.0087 85.86

50 0.0270 0.0100 0.0186 0.0092 20.61

75 0.0440 0.0187 0.3820 0.3477 14.02

90 0.0866 0.0310 0.4180 0.3616 8.65

Table I
DIFFERENCES IN THE PERSISTENT DIAGRAMS AT PERCENTAGES OF NANO-CLUSTER REDUCTION.

The second set of results in Table I are from Camel

data, a subsampling from the publicly available triangulated

shapes database [22], consisting of 21,877 instances with

3 attributes describing a geometric camel shape in R
3.

Data sets from the triangulated shapes database have been

previously used in [7] for subsampling methods to reduce

data instances.

The original Camel point cloud was extracted from the

camel-reference object file, saving only the vertices for

the triangulated mesh. Subsampling of the original camel

point cloud was performed with k-means++ to preserve the

model’s geometry. In the same method as the nano-cluster

reduction technique described above, the data was clustered

into 1,000 centroids prior to experimentation. Again, as

shown by the small Wasserstein and Bottleneck distances,

the results have nominal impact on the barcode computation.

The data reduction technique provides significant perfor-

mance benefits while preserving the relevant topological

features of the point cloud. This fact is evident from the

run times shown in Table I. A speed up of 157 times

is achieved with the Gesture data set at 90% reduction

without introducing significant error as demonstrated by the

Wasserstein and Bottleneck distances.

As noted in Section III-B, rmax can play a role in deter-

mining the error induced into the barcodes and persistence

diagram from the data reduction. For noisy data sets, rmax

can be skewed when outliers are assigned to clusters. The

value contains information on the worst-case error that can

result from the data reduction with k-means++ as a pre-

processing technique, but does not quantify the additional

error in the Wasserstein and Bottleneck distances attributed

to the reduction of points, loss of connected components,

and removal of short persistence intervals.

Reduction of the number of instances in the point cloud

will remove short persistence intervals, as described in

Section III. Nano-clustering will also alter the distance

between points in the point cloud by no more than 2 rmax.

Using ravg to estimate the overall change in shape of the

cluster provides a closer approximation of quantitative error

introduced through k-means++ nano-clustering.

B. Dissimilarity Analysis of Persistence Landscapes

The data reduction technique provides performance ben-

efits while preserving the significant topological features of

the point cloud. This technique can be useful for faster

classification of multidimensional objects and comparing the

topological features between different point clouds. As the

percentage of reduction continues to increase, an eventual

loss of distinguishing features will occur. These features

may be significant in classifying the differences between bar-

codes of different multidimensional objects. The increased

performance for point cloud reduction provides considerable

reason to explore at what levels of reduction objects become

indistinguishable.

To analyze the effect of the reduction on classification

of multidimensional objects, experiments were performed

and analyzed through comparison of persistence landscapes.

Landscapes are defined to characterize the relative locations

and lengths of different barcodes discovered through persis-

tent homology. Landscapes correspond directly to the output

of persistent homology and give an alternative graphical

representation of the topological features present in the point

cloud.

Four data sets were chosen to demonstrate the reduction

and dissimilarity of topological features: Camel, Flamingo,

Lion, and Elephant. Each model represents a triangulated

point cloud representation of an animal, from the publicly

available triangulated shapes database [22]. Data sets from

the triangulated shapes database have been previously used

in [7] for validation of the subsampling method to simplify

the computation of persistent homology. For each data set, k-

means++ was used to reduce the total number of data points

cloud the persistent homology can be computed on with

available system resources. A system with limited resources

can continuously iterate through the data to extrapolate the

actual barcodes without requiring large amounts of memory

to store the entire simplicial complex. This method can lead

to development of an algorithm that scales with resources of

the computer and would be more useful for the computation

of persistent homology on large data sets.

VI. CONCLUSIONS

The performance of the computation of persistent ho-

mology can be substantially improved by the use of nano-

clusters to reduce the size of the input data set. This can

be achieved with little to no impact on the significant

topological features of a point cloud. Since the data re-

duction technique allows efficient and sufficiently accurate

computation of persistent homology on much larger data sets

than otherwise possible, the proposed method facilitates the

application of persistent homology to solve the conventional

problems of data mining or machine learning, such as clas-

sification and clustering. We have demonstrated the benefits

of our approach in detecting dissimilarities of features in

greatly reduced point clouds. Furthermore, the possibility of

upscaling the data around discovered features should permit

the recomputation of more accurate barcodes on subsets of

the original data, should that be desirable.

ACKNOWLEDGMENT

Support for this work was provided in part by the National

Science Foundation under grant ACI–1440420.

REFERENCES

[1] P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-
Johansson, M. Alagappan, J. Carlsson, and G. Carlsson,
“Extracting insights from the shape of complex data using
topology,” Scientific Reports, vol. 3, Feb. 2013.

[2] R. Ghrist, “Barcodes: The persistent topology of data,” Bul-
letin of the American Mathematical Society, vol. 45, no. 1,
pp. 61–75, 2008.

[3] S. U. C. G. Laboratory, “The stanford 3d scanning repository,”
2014. [Online]. Available: https://graphics.stanford.edu/data/
3Dscanrep

[4] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A.
Harrington, “A roadmap for the computation of persistent
homology,” EPJ Data Science, vol. 6, no. 1, Aug. 2017.

[5] K. Mischaikow and V. Nanda, “Morse theory for filtrations
and efficient computation of persistent homology,” Discrete &
Computational Geometry, vol. 50, no. 2, pp. 330–353, 2013.

[6] D. Arthur and S. Vassilvitskii, “k-means++: The advantages
of careful seeding,” in Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, ser. SODA
’07. New Orleans, Louisiana: Society for Industrial and
Applied Mathematics, 2007, pp. 1027–1035.

[7] F. Chazal, B. T. Fasy, F. Lecci, B. Michel, A. Rinaldo,
and L. Wasserman, “Subsampling methods for persistent
homology,” in International Conference on Machine Learning
(ICML 2015), Lille, France, Jul. 2015. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01073073

[8] P. Bubenik, “Statistical topological data analysis using per-
sistence landscapes,” The Journal of Machine Learning Re-
search, vol. 16, no. 1, pp. 77–102, Jan. 2015.

[9] S. Ougiaroglou and G. Evangelidis, “A simple noise-tolerant
abstraction algorithm for fast k-nn classification,” in Hybrid
Artificial Intelligent Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 210–221.

[10] M. Wright, “Introduction to persistent homology,” (last
viewed Jan 2018). [Online]. Available: https://www.youtube.
com/watch?v=2PSqWBIrn90

[11] F. Chazal and B. Michel, “An introduction to topological
data analysis: fundamental and practical aspects for data
scientists,” ArXiv e-prints, Oct. 2017.

[12] H. Edelsbrunner and J. Harer, “Persistent homology – a
survey,” Surveys on Discrete and Computational Geometry,
vol. 453, pp. 257–282, 2008.

[13] ——, Computational Topology, An Introduction. American
Mathematical Society, 2010.

[14] R. Ghrist, Elementary Applied Topology. Createspace, 2014.

[15] R. Forman, “Morse theory for cell complexes,” Advances in
Mathematics, vol. 134, no. 1, pp. 90–145, 1998.

[16] A. Zomorodian, “Fast construction of the vietoris–rips com-
plex,” Computer and Graphics, pp. 263–271, 2010.

[17] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topolog-
ical persistence and simplification,” in Proceedings of the 41st
Annual Symposium on Foundations of Computer Science, ser.
FOCS ’00. Washington, DC, USA: IEEE Computer Society,
2000.

[18] A. Zomorodian and G. Carlsson, “Computing persistent ho-
mology,” Discrete & Computational Geometry, vol. 33, no. 2,
pp. 249–274, Feb. 2005.

[19] F. Chazal, V. de Silva, M. Glisse, and S. Oudot, “The
structure and stability of persistence modules,” arXiv preprint
arXiv:1207.3674, 2012.

[20] C. Maria, J.-D. Boissonnat, M. Glisse, and M. Yvinec,
“The gudhi library: Simplicial complexes and persistent
homology,” INRA, Tech. Rep. RR-8548, 2014. [Online].
Available: https://hal.inria.fr/hal-01005601v2

[21] T. K. Dey, D. Shi, and Y. Wang, “Simba: An efficient tool for
approximating rips-filtration persistence via simplicial batch-
collapse,” 24th Annual European Symposium on Algorithms
(ESA 2016), 2016.

[22] R. W. Sumner and J. Popovic, “Mesh data from deformation
transfer for triangle meshes,” 2004. [Online]. Available: https:
//people.csail.mit.edu/sumner/research/deftransfer/data.html

