
Clustering Data in Secured,

Distributed Datasets⋆

Sayantan Dey, Lee A. Carraher, Anindya Moitra, and
Philip A. Wilsey[0000−0002−6562−8646]

Dept of EECS, University of Cincinnati, Cincinnati OH 45221, USA
deysn@mail.uc.edu, leecarraher@gmail.com, wilseypa@gmail.com

Abstract. The massive growth in data generation and collection has
brought to the forefront the necessity to develop mechanized methods to
analyze and extract information from them. Data clustering is one of the
fundamental modes to discover new insights from data. However, high
dimensional data has its own challenges where many conventional clus-
tering algorithms fails either in accuracy or scalability. To further compli-
cate the issue, distinct subsets of sensitive data may reside in geographi-
cally separated locations with the sensitive nature of the data preventing
(or inhibiting) its access for mechanized analysis. Thus, methods to dis-
cover information from the collective whole of these secured, distributed
data sets that also preserves the integrity of the data must be found. In
this paper we develop and assess a distributed algorithm that can clus-
ter geographically separated data while simultaneously preserving the
strict privacy requirements of non sharing of protected high dimensional
data. We implement our algorithm on the distributed map-reduce based
platform Spark and demonstrate its performance by comparing it to the
standard data clustering algorithms.

Keywords: Data Clustering · Data mining · Privacy preserving · Spark
· Distributed · Map-reduce.

1 Introduction

Many traditional data mining algorithms do not scale well with increases in the
sample size or high dimensionality of modern data collection activities. Further-
more, the extreme scaling sizes of the expanding collections of data aggravates
an issue in clustering known as the curse of dimensionality (or COD) [9]. The
COD hinders clustering as the traditional distance matrices that are used for
similarity measures can end up rendered meaningless. Another phenomenon in
high dimensional big data is that they are sometimes distributed across multiple
locations. When these large datasets are geographically distributed they cannot
always be easily moved to a central location. Furthermore, in the cases of se-
cure data stored in multiple locations (such as patient medical data), the ability

⋆ Support for this work was provided in part by the National Science Foundation
under grant ACI–1440420.

S. Dey et al.

to exchange or share the data for analysis may be impossible; even if its com-
mon analysis would be significantly beneficial to understanding and identifying
important membership classes (clusters) distributed collectively throughout the
data sets. This has now become a well known research area by itself and is called
Privacy Preserving Data Mining [2].

This paper presents a scalable distributed data clustering algorithm that
can process very large high-dimensional distributed datasets without sharing
the collective data stored in the secured location. The algorithm, called RPHash,
combines random projection with locality sensitive hashing (LSH) to provide
a scalable solution for clustering high-dimensional distributed datasets. The
RPHash algorithm can be embedded in a map-reduce style distributed comput-
ing framework and operates without sharing or exchanging the data stored in
the distributed locations. Essentially, RPHash distributes common seeds for the
algorithms deployed to the remote sites. The local node algorithm uses random
projection and LSH to compute candidate centroids and frequency counts for
the candidate centroids. The candidate centroids and frequency counts are then
combined and reduced at a central site to select specific global candidate cen-
troids as the cluster centers. These selected cluster centers are then retransmitted
back to the remote locations where the final steps of the algorithm can associate
each local record to its centroid. This algorithm utilizes random projection as a
destructive operation and exchanges only probable approximate centroids in the
projected dimensional vector space. Thus, information on the specific nature of
the original data is obfuscated such that its un-retrievable [11].

This work extends earlier designs of RPHash [12, 17] to deliver higher per-
formance, more accurate distributed clustering performance. We apply the con-
cepts of dimensionality reduction, locality sensitive hashing, discrete subspace
quantizer lattices and tree based clustering to achieve this capability. Our re-
sults demonstrate that our algorithms is fast, accurate and stable. Its accuracy
is comparable to other well known standard clustering algorithms such as k-
means [18], Kmeans++ [8], SOTA [19], and Ward’s Hierarchical agglomerative
[27], while being much faster in general. The RPHash software is released un-
der an open source license and is publicically available from git repositories at
github.com:/wilseypa/rphash-java.

This paper is organized as follows. Section 2 summarizes some of the related
work done in the area of privacy preserving data mining. Section 3 presents some
background information. Section 4 introduces the RPHash algorithm. Section 5
explains the datasets used, experiments performed and comparison of results to
standard algorithms. Finally, Section 6 contains some concluding remarks.

2 Related Work

The need for distributed Privacy Preserving Data Mining is surveyed in [2]. Most
work in this area is based on the application of cryptographic encryption that
are basically secure sub-protocols through which the data is exchanged. Two
algorithms described in [23] and [22] address distributed clustering. In [23] the

Clustering Data in Secured, Distributed Datasets

authors approximate each feature vector so as to minimize data transmission
between nodes and thereby compromising on the accuracy of the result. There
is a trade-off between the accuracy and percentage of approximation as seen
from their results. They rely on transmitting only the approximation vectors.
Geeta et al [22] develop an algorithm called K-clustering which is based on the
K-Means algorithm. Their algorithm preserves privacy as they do not reveal the
intermediate candidate cluster centers.

3 Background

The RPHash algorithms uses random projection and locality sensitive hashing to
improve performance and obfuscate secured data to facilitate privacy preserving
data mining. The projection step relies on the bounded error results from the
Johnson-Lindenstrauss Lemma (JL-Lemma) [34] and the DB-Friendly projec-
tion studies [1] (both projection methods are implemented in the system, but
only one is used for any given run). Locality Sensitivity Hashing (LSH) is a
family of hashing methods that tend to hash higher-dimensional data to buckets
with the goal of mostly placing similar items into the same bucket. For RPHash,
the (LSH) function is employed, as a probabilistic representation of vector local-
ity to improve the prohibitive limits of the subspace embedding dimensionality
requirements of the JL-Lemma. Stated more formally, an LSH function is any
hash function with the property that hashed records with more similar compo-
nents are more likely to be hashed to the same bucket than records with fewer
similarities. That is:

Definition 1 (Locality Sensitive Hash Function[13]). A hash function
h ∈ H = {h : S → U} is (r1, r2, p1, p2)− sensitive if for any u, v ∈ S

if d(u, v) ≤ r1 then PrH[h(u) = h(v)] ≥ p1
if d(u, v) > r2 then PrH[h(u) = h(v)] ≤ p2

Informally, this states that exists a family of hash functions(LSH functions) H.
When a vector is hashed by a hash function selected uniformly at random from
H, it will hash vectors u and v into the same bucket with a high probability p1
if their distance is bounded by r1 and with low probability p2 if the distance
exceeds r2. While considerable work has gone into finding better and near opti-
mal [6] functions for optimizing the signal to noise ratio for LSH functions, the
best solutions often require multiple passes over the data to build data aware
functions.

Map-Reduce [15] is a paradigm where an algorithm is written so that it can
be efficiently deployed for distributed execution. The distributed computing ma-
chines may be locally connected or geographically distributed to form a cluster.
The map-reduce framework helps enable the processing of very large datasets in
reasonable time. This is achieved by decomposing an algorithm into a map func-
tion and a reduce function. The input data is converted into tuples of key-value
pairs and segmented into parts. The map function operates on these segmented

S. Dey et al.

files of tuples on compute nodes where each segment is assigned. The result of
key-value pairs are stored and sorted by the keys. The reducers task takes in all
the results from the mappers in parallel sorting them and producing a new com-
bined key,value pair grouped by the same key. The reduce function then applies
a user defined function to process this to produce the final results.

Hadoop [36] and Spark [37] are two frameworks or engines for implementing
the distributed processing of MapReduce. Spark which was released later than
Hadoop also has its streaming API which allows for processing data streams.
Spark has more functionalities than Hadoop and is a hundred times faster than
Hadoop when computation is in memory and ten times when done on disk.

4 The RPHash Algorithms

RPHash [11] is a data clustering algorithm. It can be used for dense region and
microcluster identification. This algorithm requires two map-reduce phases for
its distributed version implementation. RPHash-TWRP is a version of RPHash

that varies its LSH function with the usage and construction of a tree to identify
clusters while requiring only one map and reduce phase.

The degenerative cases for LSH k-nearest neighbor search is used for iden-
tifying candidate cluster centers in RPHash. In the (RPHash) algorithm, both
approximate and randomized techniques are employed to provide a stochastic
element to this clustering algorithm. To combat the curse of dimensionality,
RPHash performs multi-probe, random projection of high dimensional vectors to
the unique partitions of the Leech Lattice (Λ24) [5] or hypersphere surface [30].
Then clustering region assignments are performed by decoding vector points into
partitions of the Lattice.

The sequential implementation of the RPHash algorithm relies on the efficient
Leech lattice decoder of Vardy, Sun, Be’ery, and Amrani [33, 29, 3, 4] as a discrete
space quantizer. The 24 dimensional subspace partitioned by the Leech Lattice
is small enough to exhibit the spherical clustering benefit of random projection.
Low distortion random embeddings are also feasible for very large dataset objects
while avoiding the occultation problem [31]. Projected clustering of representa-
tive cluster centroids will not in general be correlated with other projections of
data into projected cluster centroids. To recover data from the projection step,
we must map projected vectors back to their original un-projected data space
counterparts. The original data space vectors is then used to compute centroids
corresponding to the clusters in the projected space.

The Distributed version of the RPHash is shown in Algorithms 1 and 2. We
assume n nodes are there. xk is the data vector of a partial dataset X. P denotes
the set of projection matrices. H is a LSH function. C is the set of set of bucket
collision counts. m and d original and projected dimensions. This approach is
inspired from the works of [32] and[10].

In contrast to the original RPHash method that only updates LSH buckets,
the RPHash-TWRP method combines bucket updation with a counter that in-
crements the counts of all sub-hashes as well. This bares a slight resemblance

Clustering Data in Secured, Distributed Datasets

Algorithm 1: 2-Pass RPHash

Data: n: number of compute nodes used

MapPhase 1

forall nodes n do

forall xk ∈ X do

forall pi ∈ P do

x̃k ←
√

m

d
p⊺
i
xk

t = H(x̃k)
L[k][i] = t
C.add(t)

ReducePhase 1

forall Ci ∈ n do
get Ci from n nodes

C = merge(Ci)

MapPhase 2

forall nodes n do

forall xk ∈ X do

forall ci ∈ C.top(K) do

if L[k] ∩M [i][0] 6= 0 then
∆ = M [k]− xk

M [k] = M [k] +∆/count
L[k].add(M [i][0])

Result: Mi

ReducePhase 2

forall Mi ∈ n do
get Mi from n nodes

M = merge(Mi)
Result: M

to Liu et al [24] while adapting their algorithm to work in distributed setting
and without using any supervised learning. RPHash-TWRP can use a variety of
metrics for the tree splitting condition. Unlike Liu et al RPHash-TWRP does
not concern itself with the more complicated to compute C4.5 entropy method,
or the possibility of splitting clusters with random hyperplanes. RPHash-TWRP,
avoids the latter restriction by virtue of its application to high dimensional data
sets and the probability of splitting a cluster going to zero as the dimensionality
grows. The theorem below is a consequence of the curse of dimensionality.

Theorem 1 (Hyperrectangle Splitting). The probability of splitting a hyper-
rectangular region into two equal mass clusters where subsequent dimensional
cuts contain the smaller of the two induced regions region approaches 0 exponen-
tially in d.

S. Dey et al.

Algorithm 2: Adaptive LSH

i = 1
ct, ct prev = C

(

H
i+1(x)

)

, C
(

H
i(x)

)

while i < n and 2ct > ct prev do
ct prev, i = ct, i+ 1
ct = C

(

H
i(x)

)

Result: Hi(x)

lim
d→∞

V ol(R)− V olremoved(R)

V ol(R)
= 0, R Rectangle ∈ R

d. (1)

Proof.

Let X s.t. xj = [0...c...0] ∈ R
d is orthogonal, c ∈ [0, 1),

n∑

i

xi = P, is a plane in R
d,

R is a unit hyper-rectangle in R
d with V ol(R) = 1.

Let: S1(p) be the volume of the projection of R on xp

If we restrict S1(p) + S̃1(p) = 1, S1(p) ≤ S̃1(p) for all p we obtain a dimension-
wise construction for the volume of the smaller region of a hyhper-rectangle split
by a hyperplane.

Next consider the volume of such a hyper-rectangular region V (Rs(X))

V (Rs(X)) =
n∏

p

S1(p) where S1(p) ∈ U [0, 1
2).

V (Rs(X)) ≤ 2−n for all n

lim
n→∞

2−n = 0

⇒ V (RS(X)) + V (R̃S(X)) = V (s)

V (R̃S(X)) = V (s) as d → ∞ �

Algorithm 3 and Algorithm 4 together constitutes the RPHash-TWRP algo-
rithm, where x denotes a single vector belonging to the dataset X, n is the
number of compute nodes, m and d are the projected and original number of
feature dimensions, p ∈ P is the projection matrix, h is the hashed vector ob-
tained by hashing with the hash function H, and C is the set of centroids and
hash ids. In the off-line Algorithm 4 we output a overestimate of our centroids
denoted by L. We can then use any algorithms such as k-means or Hierarchical
Agglomerative to reduce the centroids to the desired number. The algorithm is
linear in the input vector size X. For each vector RPHash-TWRP must compute
the projection, and update the counter (Algorithm 3). This algorithm introduces
two new operations the + to mean population weighted addition, and ≫ for the

Clustering Data in Secured, Distributed Datasets

Algorithm 3: Tree Generation

MapPhase
forall nodes n do

forall x ∈ X do

x̃ =
√

m

d
p⊺x // Projection

h := H(x̃) // LSH Hashing

while h > 0 do
h = h≫ 1
x′ = C[h] + x
C.add(h, x′)

ReducePhase
forall Ci ∈ n do

get Ci from n nodes

C = merge(Ci)
Result: C

bit shift operation. Projection using the db friendly approach of Achlioptas [1]
can be performed in dm/3 operations where d is the original dimensionality,
m is the projection sub-dimension. The off-line step consists of exploring and
updating the count records (as shown in Algorithm 4). In general it follows a
depth first search traversal for candidate clusters with a worse case complexity
of exploring all non-leaf nodes, θ(2m−1).

Algorithm 4: Off-line Tree Search

forall H ∈ sort(C.ids) do
if 2C[H] < C[H ≫ 1] then

C[H ≫ 1] = 0

L = []
forall h ∈ sort(C.counts) do

L← medoid(C[H])

return L

4.1 Distributed RPHash-TWRP on Spark

The RPHash-TWRP algorithm was implemented on Apache Spark as shown in
Figure 1. It is important to note that the Spark framework was used to suit
our need of a framework on which the distributed version can be run. Generally
the dataset is maintained on a shared drive and then Spark distributes it to the
nodes for for use. In our case the data is composed of multiple secured datasets
located at the compute site. Thus to make use of the Spark infrastructure, a
null RDD (Resilient Distributed Dataset) is created and distributed to satisfy

S. Dey et al.

the requirement of Spark. The input to the driver node is the JAVA JAR (Java
ARchive) file containing the code to be run , the file locations, and the number
of cluster centers (K) to find. The code generates a seed which it distributes
to the worker nodes along with the K parameter and the null RDD created.
The JAR is kept at a shared location. The input JAR file had the code that
would perform local computations. The driver node or master node distributed
the JAR file along with the seed, location of the local files, and the number of
clusters. Then the worker nodes run the Map-Phase shown in algorithm 3 to
create the partial tree. These partial trees are then sent back to the driver node.
In the reduce phase the driver node merges the received partial trees to form the
complete tree. After merging, the driver node executes Algorithm 4 to return
the centroids. Thus, for this RPHash-TWRP algorithm only a single Map-Reduce
step is required to locate the cluster centroids.

Map Phase Reduce Phase

Seed x ,k ,null rdd Output

Centroids

Input : Jar , file

location & k

Partial tree

Driver Node

Worker Node

Driver NodeWorker Node

Worker Node

Fig. 1. RPHash-TWRP Map-Reduce implementation architecture on Apache Spark

4.2 Data Security

The important aspect of data security was kept in mind while implementing the
algorithms. The algorithms do not transmit any of the original data vectors to
remote sites, thereby nullifying any attempts of the attacker who might steal
information from the communication channel. It can also be observed from [11]
that the probability of getting back the original vector from the projected vector
is insignificant. The transferred centroids are just approximations of several data
vectors and are not accurate sensitive information that are in the actual data

Clustering Data in Secured, Distributed Datasets

files. This is beneficial for different organizations that do not want to share their
own data but get a collective result of the collective data. For example, this
algorithm would preserve the HIPPA [20] privacy rules as no patient information
would need to be shared and yet provide, for example, the ability to locate
common/frequent behaviors/responses to specific trials across multiple hospitals.

5 Experimental Assessment

The experimental assessment of the RPHash-TWRP algorithm consists of both
synthetic (with and without noise) and real world test data. Synthetic test data
of 10,000 vectors from dimensions 100 to 7,000 were generated. Each data set
has 10 Gaussian clusters with labels recorded for all points. We also generated
data sets with varying amount of noise. We chose the dimensionality of 1000
and then injected noise varying from 5 to 40 percent in increments of 5. To
generate them we first generated a dataset with no noise and then we replaced the
specified percentage of vectors with randomly generated vectors but preserving
the original label. Four datasets of 1,000 dimensions having 300,000, 600,000,
900,000 and 1,200,000 vectors with 5 percent noise and 20 clusters each were
also generated.

We also used five real world datasets to test the performance of RPHash-

TWRP. These data sets are all available at the UCI machine learning repository.

1. The Human Activity Recognition Using Smartphones (HAR) dataset taken
from [7] consists of 10,299 vectors containing 561 features comprising of 6
clusters.

2. The Smartphone Dataset for Human Activity Recognition (HAR) in Ambient
Assisted Living (HARAAL) dataset [14] has 5,744 vectors and 561 features.
It has 6 clusters.

3. The gene expression cancer RNA-Seq Data Set (RNASEQ) dataset is taken
from [16]. It has 801 vectors and 20,531 features and 4 clusters.

4. The Smartphone-Based Recognition of Human Activities and Postural Tran-
sitions Data Set (HAPT) dataset taken from [28] has 10,929 vectors and 561
features. This data has 12 clusters.

5. The Gas Sensor Array Drift (GSAD) dataset [35] has 13910 vectors and 128
features. It is composed of 6 clusters.

5.1 Algorithms Used for Comparison

We compared the performance our RPHash-TWRP against seven standard well
known algorithms.

– K-Means: This algorithm of Hartigan and Wong [18] is implemented with
the function k-means in R [25].

– Four methods of Agglomerative Hierarchical clustering, namely: Single Link-
age, Complete Linkage, Average Linkage and Ward’s algorithm of minimum
variance method [27]. We have used the function hclust in R for implement-
ing these algorithms.

S. Dey et al.

– Self-organizing Tree Algorithm (SOTA): This algorithm is based on neural
network. It is implemented using the ‘sota’ (Package ‘clValid’) in R [25].

– The parallel Spark implementation of K-Means++ available in Spark MLlib
for the distributed datasets.

These algorithms are selected due of their importance, popularity and availability
in R statistical computing framework. These algorithms use FORTRAN, C and
C++ subroutines from R to make them run faster. The implementation language
of RPHash is Java.

5.2 Hardware Platforms

We captured the run times (in secs) for the scalability study on the synthetic
and the real world datasets. They were run on a 16 core Intel(R) Xeon(R) E5-
2670 @ 2.6GHz with 64 GB RAM. For the Spark compute platform, we created
the cluster with three machines. Two identical machines composed of an Intel
Core(TM)i7-4770 CPU with 4 cores @ 3.40 GHz and having 32 GB memory.
The third machine composed of an Intel Core(TM)W3550 CPU with 4 cores @
3.07 GHz with 16 GB memory.

5.3 Experiment Methodology

Each of the configurations of RPHash-TWRP is tested on all the synthetically
generated labeled data sets. The combination of parameters that produces the
most consistent and best clustering accuracy on the data set is chosen as the
optimal configuration for them for that synthetic dataset. We then chose the
most common configuration for the noise test, where we ran RPHash-TWRP on
the synthetically generated noise datasets. Finally, We also tested the algorithms
on the real world datasets.

This configuration having projected dimension of 16, and offline cluster of
Agglomerative clustering for RPHash-TWRP was implemented for the distributed
version on spark platform and tested on the same datasets. The datasets were
split into approximately three equal parts and kept in the three machines. These
partial datasets were local to each machines. Spark was setup in the standalone
mode.

5.4 Experimental Results

The clustering accuracy of RPHash is evaluated using 2 external clustering vali-
dation measures: Adjusted Rand Index (ARI) and Cluster Purity. We also use the
internal measure, WCSS for evaluation. ARI [21] measures the extent to which
points from the same ground-truth partition appear in the same cluster, and
the extent to which points from different ground-truth partitions are grouped
in different clusters. Cluster purity [26] measures how many data points were
correctly assigned to its original cluster. WCSS (also called WCSSE or SSE) is

Clustering Data in Secured, Distributed Datasets

Dataset Measures ARI Purity WCSS Time

k-means 0.4610 0.6002 182 169 66.33
SL 0.0000 0.1890 556 519 493.95

HAR CL 0.3270 0.3770 222 044 494.47
AL 0.3321 0.3588 236 143 494.21
Ward’s 0.4909 0.6597 191 441 494.64
SOTA 0.3143 0.3966 210 490 23.63
RPHash-TWRP-Dis 0.4788 0.6407 189 817 7.69

k-means 0.3988 0.6498 2 498 381 182.90
SL 0.0003 0.1821 6 023 519 601.98

HAPT CL 0.0488 0.2505 4 584 352 602.42
AL 0.0055 0.2046 5 491 388 602.04
Ward’s 0.4033 0.6624 2 617 769 602.68
SOTA 0.3026 0.3848 2 990 195 31.13
RPHash-TWRP-Dis 0.3698 0.6119 2 780 331 8.06

k-means 0.2461 0.4240 1 618 089 23.55
SL 0.0000 0.1964 3 166 056 148.43

HARAAL CL 0.0003 0.2002 3 043 579 148.53
AL 0.0001 0.1972 3 097 976 148.45
Ward’s 0.2764 0.3929 1 653 179 148.58
SOTA 0.2370 0.3785 1 814 593 12.30
RPHash-TWRP-Dis 0.2953 0.3887 1 913 092 7.41

k-means 0.1539 0.4427 27 714 236 160 297 9.05
SL 0.0000 0.2165 192 076 751 899 323 42.61

Gas- CL 0.0380 0.3474 47 050 045 285 192 42.57
Sensor AL 0.0037 0.2865 75 622 509 139 114 42.45

Ward’s 0.2007 0.4378 31 162 058 051 998 42.87
SOTA 0.0281 0.3435 46 727 103 818 336 11.93
RPHash-TWRP-Dis 0.1759 0.4426 55 266 567 437 976 6.11

k-means 0.6438 0.8402 12 834 131 180.32
SL 0.0007 0.3783 16 007 266 97.10

RNASEQ CL −0.0124 0.3758 15 692 260 97.10
AL 0.0007 0.3783 16 007 266 97.08
Ward’s 0.5955 0.8202 12 916 461 97.09
SOTA 0.3205 0.6317 13 632 923 87.72
RPHash-TWRP-Dis 0.4770 0.7416 21 363 363 10.7

Fig. 4. Performance for real data sets

S. Dey et al.

Data Size Algorithm ARI Purity Time

300K k-means++parallel spark 0.8134 0.8247 655.0
RPHash-TWRP 0.997 0.999 58.5

600K k-means++parallel spark 0.8533 0.8750 1265
RPHash-TWRP 0.997 0.998 111.0

900K k-means++parallel spark 0.8809 0.9136 1905
RPHash-TWRP 0.998 0.999 162.0

1.2M k-means++parallel spark 0.8496 0.8728 2808
RPHash-TWRP 0.998 0.999 212.0

Fig. 5. Scalability and Measures with respect to size of dataset (seconds)

6 Conclusions

In this work we introduced the distributed version of the Tree-Walk addition to
the RPHash algorithm (RPHash-TWRP) for clustering large datasets with log-
linear processing complexity. We implemented RPHash-TWRP on the distributed
platform Spark using Map-Reduce framework and evaluated it using real world
datasets , synthetic data, and synthetic data with variable noise percentage. The
results show that RPHash-TWRP performs comparable to various other common
standard clustering methods. In tests with synthetic data with noise, we find
that our method outperforms other standard implementation of K-Means++
from the spark library MLlib in both run time and accuracy . RPHash-TWRP

exhibited more stability when compared to k-Means.
The complexity measures of our method shows that it scales well both in

time and space complexity, with very little loss in clustering performance ac-
curacy. The overall scalability is predictable and does not hide large constants.
RPHash-TWRP is designed to process very large high dimensional distributed
clustering problems while preserving privacy. The results shows that RPHash-

TWRP achieves this goal by means of its running time, scalability and accuracy.

References

1. Achlioptas, D.: Database-friendly random projections. In: Proc of the 20th Symp
on Principles of Database Systems. pp. 274–281 (2001)

2. Aggarwal, C.C., Yu, P.S. (eds.): Privacy-Preserving Data Mining: Models and Al-
gorithms. Springer (2008)

3. Amrani, O., Beery, Y.: Efficient bounded-distance decoding of the hexacode and
associated decoders for the leech lattice and the golay code. Communications, IEEE
Trans. on 44(5), 534–537 (May 1996)

4. Amrani, O., Be’ery, Y., Vardy, A., Sun, F.W., van Tilborg, H.C.A.: The leech
lattice and the golay code: bounded-distance decoding and multilevel constructions.
Information Theory, IEEE Trans. on 40(4), 1030–1043 (Jul 1994)

5. Andoni, A.: Nearest Neighbor Search: the Old, the New, and the Impossible. Ph.D.
thesis, Massachusetts Institute of Technology (Sep 2009)

Clustering Data in Secured, Distributed Datasets

6. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In: 47th Annual IEEE Symposium on Foundations
of Computer Science. pp. 459–468. FOCS ’06 (2006)

7. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: UCI machine
learning repository (2012), https://archive.ics.uci.edu/ml/datasets/Human+
Activity+Recognition+Using+Smartphones

8. Arthur, D., Vassilvitskii, S.: K-means++: The advantages of careful seeding.
In: Proc. of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms. pp. 1027–1035. SODA ’07, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA (2007), http://dl.acm.org/citation.cfm?id=1283383.
1283494

9. Bellman, R.E. (ed.): Adaptive Control Processes: A Guided Tour. Princeton Uni-
versity Press (1961)

10. Cafaro, M., Tempesta, P.: Finding frequent items in parallel. Concurr. Comput.
: Pract. Exper. 23(15), 1774–1788 (Oct 2011). https://doi.org/10.1002/cpe.1761,
http://dx.doi.org/10.1002/cpe.1761

11. Carraher, L.A., Wilsey, P.A., Moitra, A., , Dey, S.: Multi-probe random projection
clustering to secure very large distributed datasets. In: 2nd International Workshop
on Privacy and Security of Big Data (Oct 2015)

12. Carraher, L.A., Wilsey, P.A., Moitra, A., , Dey, S.: Random projection cluster-
ing on streaming data. In: IEEE 16th International Conference on Data Mining
Workshops (ICDMW). pp. 708–715 (Dec 2016)

13. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the twentieth annual
symposium on Computational geometry. pp. 253–262. SCG ’04, ACM, New York,
NY, USA (2004). https://doi.org/10.1145/997817.997857

14. Davis, K.A., Owusu, E.B.: UCI machine learning repository (2016),
https://archive.ics.uci.edu/ml/datasets/Smartphone+Dataset+for+Human+

Activity+Recognition+%28HAR%29+in+Ambient+Assisted+Living+%28AAL%29
15. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.

Commun. ACM 51(1), 107–113 (Jan 2008)
16. Fiorini, S.: UCI machine learning repository (2016), https://archive.ics.uci.

edu/ml/datasets/gene+expression+cancer+RNA-Seq
17. Franklin, J., Wenke, S., Quasem, S., Carraher, L.A., Wilsey, P.A.: streamingR-

PHash: Random projection clustering of high-dimensional data in a mapreduce
framework. In: IEEE Cluster 2016 (Sep 2016), (poster)

18. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. JSTOR: Applied
Statistics 28(1), 100–108 (1979)

19. Herrero, J., Valencia, A., Dopazo, J.: A hierarchical unsupervised growing neural
network for clustering gene expression patterns (2001)

20. Health insurance portability and accountability act. http://www.hhs.gov/ocr/

hipaa/ (2004)
21. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2(1), 193–

218 (1985)
22. Jagannathan, G., Pillaipakkamnatt, K., Wright, R.N.: A new privacy-

preserving distributed k-clustering algorithm. In: Proc. of the 2006
SIAM International Conference on Data Mining. pp. 494–498 (2006).
https://doi.org/10.1137/1.9781611972764.47

23. Kriegel, H.P., Kunath, P., Pfeifle, M., Renz, M.: Approximated clustering of dis-
tributed high-dimensional data. In: Pacific-Asia Conference on Advances in Knowl-
edge Discovery and Data Mining. pp. 432–441. PAKDD, Springer-Verlag, Berlin,

S. Dey et al.

Heidelberg (2005). https://doi.org/10.1007/11430919 51, http://dx.doi.org/10.
1007/11430919_51

24. Liu, B., Xia, Y., Yu, P.S.: Clustering through decision tree construction.
In: Proceedings of the Ninth International Conference on Information and
Knowledge Management. pp. 20–29. CIKM ’00, ACM, New York, NY, USA
(2000). https://doi.org/10.1145/354756.354775, http://doi.acm.org/10.1145/

354756.354775

25. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.: cluster: Cluster
Analysis Basics and Extensions (2013), r package version 1.14.4

26. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press (2008)

27. Murtagh, F., Legendre, P.: Ward’s hierarchical agglomerative clustering method:
Which algorithms implement ward’s criterion? J. Classif. 31(3), 274–295 (Oct
2014). https://doi.org/10.1007/s00357-014-9161-z

28. Reyes-Ortiz, J.L., Oneto, L., Sam, A., Parra, X., Anguita, D.: UCI machine
learning repository (2015), https://archive.ics.uci.edu/ml/datasets/

Smartphone-Based+Recognition+of+Human+Activities+and+Postural+

Transitions

29. Sun, F.W., van Tilborg, H.C.A.: The leech lattice, the octacode, and decoding
algorithms. Information Theory, IEEE Trans. on 41(4), 1097–1106 (Jul 1995)

30. Terasawa, K., Tanaka, Y.: Spherical lsh for approximate nearest neighbor search
on unit hypersphere. In: WADS. pp. 27–38 (2007)

31. Urruty, T., Djeraba, C., Simovici, D.: Clustering by random projections. In:
Perner, P. (ed.) Adv. in Data Mining. Theoretical Aspects and Applications,
vol. 4597, chap. Lecture Notes in Computer Science, pp. 107–119. Springer (2007).
https://doi.org/10.1007/978-3-540-73435-2 9

32. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically
partitioned data. In: Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 639–644. KDD ’02,
ACM, New York, NY, USA (2002). https://doi.org/10.1145/775047.775142, http:
//doi.acm.org/10.1145/775047.775142

33. Vardy, A.: Even more efficient bounded-distance decoding of the hexacode, the
golay code, and the leech lattice. Information Theory, IEEE Trans. on 41(5), 1495–
1499 (1995)

34. Vempala, S.S.: The Random Projection Method. DIMACS Series, American Math-
ematical Society (2004)

35. Vergara, A., Fonollosa, J., Rodriguez-Lujan, I., Huerta, R.: UCI machine learn-
ing repository (2013), https://archive.ics.uci.edu/ml/datasets/Gas+Sensor+
Array+Drift+Dataset+at+Different+Concentrations

36. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc. (2009)
37. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,

Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker,
S., Stoica, I.: Apache spark: A unified engine for big data processing. Commun.
ACM 59(11), 56–65 (Oct 2016). https://doi.org/10.1145/2934664, http://doi.
acm.org/10.1145/2934664

