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Abstract—Clustering streaming data has gained importance
in recent years due to an expanding opportunity to discover
knowledge in widely available data streams. As streams are
potentially evolving and unbounded sequence of data objects,
clustering algorithms capable of performing fast and incremen-
tal processing of data points are necessary. This paper presents
a method of clustering high-dimensional data streams using ap-
proximate methods called streamingRPHash. streamingR-
PHash combines random projections with locality-sensitivity
hashing to construct a high-performance clustering method.
streamingRPHash is amenable to distributed processing
frameworks such as Map-Reduce, and also has the benefits of
constrained overall complexity growth. This paper describes
streamingRPHash algorithm and its various configurations.
The clustering performance of streamingRPHash is com-
pared to several alternatives. Experimental results show that
streamingRPHash has comparable clustering accuracy and
substantially lower runtime and memory usage.
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I. INTRODUCTION

The recent expansion in data acquisition has provided
nearly endless streams of high-dimensional data. Data
streams often undergo rapid changes throughout their life-
time, requiring fast temporally aware tools for data analysis.
Data clustering is the principal workhorse of many forms
of pilot data analysis, data retrieval and machine learning
techniques. In this paper we present an algorithm, named
Streaming Random Projection Hash (streamingRPHash),
to solve the k-means clustering problem on streaming
data. Our solution offers comparable clustering accuracy to
other stream clustering algorithms and has a better overall
complexity bound which makes it considerably faster on
high-dimensional data streams than conventional methods.
Further, our algorithm provides a linear bounded memory
solution to the streaming k-means problem of [1].

Many data streams are inherently high-dimensional [2].
streamingRPHash is created to provide algorithmic scal-
ability while operating on large, high-dimensional data
streams. Existing stream clustering algorithms often have
issues regarding asymptotic scalability [3], dimensionality
limits [4] and robustness to noise. A recent set of algorithms
have been proposed to address (with varying degrees of
success) many of these problems [1], [5]-[7]. streamingR-
PHash combines random projection and locality-sensitive
hashing in a new way to solve issues of scalability and data

security for real-world high-dimensional streaming data.

The remainder of this paper is organized as follows. Sec-
tion II provides some background information. Section III
reviews the recent work with methods for data stream clus-
tering. Section IV describes streamingRPHash algorithm.
Section V contains experimental results. Finally, Section VI
concludes the paper.

II. BACKGROUND

The k-means clustering problem can be defined as a parti-
tioning of vectors 2 € X among k clusters {C1, Cs, ..., Ci}
such that the within-cluster sum of squared error (WCSSE)
is minimized over all possible partitions. More formally,

k
this can be stated as argmin. > ||z — pu|?,
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is the centroid of cluster C;. For points in 1-dimension,

k-means can be solved in polynomial time with dynamic
programming methods, unfortunately this is a special case
that does not apply to a general R? space.

Random projection is a method for dimensionality reduc-
tion, in which d-dimensional data vectors are projected down
to an m-dimensional subspace (m < d). This is done by
multiplying the original d-dimensional data by a random
m x d matrix R which is composed of orthogonal vectors
sampled from a random or quasi-random distribution. Ran-
dom projection can achieve a bounded error distortion factor
very close to the optimal Ly norm subspace embedding that
usually results from the principal component decomposition
[8]. Computationally, random projection is very simple.
Forming the random matrix R and projecting the d/N data
matrix D into m dimensions have the complexity O(dmN),
where the data set D has N records in d dimensions [9].

Switching from the continuous spaces of random projec-
tions, we now consider the discrete space partitions induced
by LSH functions. Optimal implementations of grid based
clustering algorithms such as DBSCAN [10] and DStream,
require that the data space be partitioned as evenly as
possible. For known datasets, a perfect partition of the data
space can be produced by the Voronoi diagram [11]. In 2-
dimensional space, Voronoi Diagrams can be generated in
©(nlog(n))-time. However, higher dimensional algorithms
for Voronoi partitioning have far less favorable runtime
complexities making them inefficient for partitioning arbi-
trarily high dimensions. To overcome this issue, streamin-
gRPHash borrows heavily from the LSH community which
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has derived a variety of partitioning methods. We discuss one
such method below, chosen from a set of candidate LSH
methods, that proved to be the best among a large scale
analysis for a variety of data sets.

The Spherical LSH technique of Terasawa [12] is a space
partitioning method applicable to data where the vector lies
on or near the surface of a hypersphere. Spherical LSH
uses an inscribed regular polytope to partition the surface
of the sphere where vertexes of the polytope correspond to
partition regions. Although other regular d-polytopes such
as the d-simplex and d-hypercube exist, we focus on the d-
orthoplex, following the favorable collision probability per
distance, which results in Table 1 of [12]. The d-orthoplex
is a regular d-polytope with 2d vertexes corresponding to
the positive and negative axis per dimension of a 0 centered
unit hypersphere embedding. The nearest vertexes can be
searched among the 2d vertexes following the max dot
product method given in [12], resulting in a search time
complexity of 6(2xd?). The d-orthoplex has the benefit over
Lattice based decoders that allows for an arbitrary projection
dimension, while having the disadvantage that it is only
applicable to vectors lying on the surface of a hypersphere.
To overcome this, we use a variant of SLSH similar to [13]
to translate the vector such that it lies very near the surface
of a hypersphere.

III. RELATED WORK

Despite an exponential worst-case complexity for k-
means, many real-world problems tend to fair much better
under Lloyd’s type of solutions to k-means optimization than
theoretically optimal solutions. For this reason, clustering
massive datasets with k-means, although suffering from
unbounded complexity guarantees, often yields qualitatively
good results close to the optimal k-means solution. Due
to the approximate solution’s real-world proclivity towards
revealing useful results, randomized methods such as sam-
pling and random dimensional reduction are often utilized in
overcoming complexity growth. The use of these methods
in clustering began with density and grid based scanning
algorithms. DBSCAN proceeds in a conceptually similar
manner to streamingRPHash in regard to partitioning the
data space and counting the number of data vectors within
a partitioned region. These methods tend to work well on
spatially separated datasets with relatively low dimensions.
A common clustering problem for these types of algorithms
would be on geo-spatial data, in geographic data systems
(GIS), and image segmentation. The algorithms DBSCAN
[10], Clique [14], and CLARANS [4], respectively, represent
a successful progression of density scanning techniques.
Although density scan algorithms are an example of stream
clustering algorithms such as streamingRPHash, they of-
ten show weakness in accuracy while scaling the number of
dimensions.

More recently streaming algorithms for data clustering
are also considered [1], [6]. The general setup of these
algorithms consists of a diminishing objective bound that
tightens as the stream is processed. The processor up-
dates the core-sets of pseudo-centroids when data falls
within the objective bound and disregards data outside that
bound. Streaming k-means algorithms perform well on data
streams but has the drawback of requiring that data be
‘well-clusterable’. streamingRPHash uses a similar core-
set approach but, instead of choosing core-sets based on
computed distances from current centroids, it maintains a
count structure similar to CSketch [6] of dense regions.
This maintaining of all data replaces the hard margin of
windowed data with a slight increase in error due to incorrect
hash collisions.

CSketch is a streaming algorithm for generating clusters
over massive-domain datasets [6]. It shares much in common
with streamingRPHash. In particular, CSketch applies the
count-min sketch data structure to update candidate centroids
by updating the centroid location and not just a count.
Incoming centroids choose the centroid which maximizes
the dot-product between the vectors. streamingRPHash
uses the LSH decoding of projected points to immediately
find the nearest candidate cluster in the count-min sketch
data structure. This hashing is intrinsic to the decoding step
and does not require a supplementary hashing scheme. In
addition, a k-heavy-hitters priority queue is employed to
further reduce the memory overhead by storing only likely
centroids and removing unlikely ones with error £ L Fres(k)
where F¢*(¥) js the sum of squares of frequencies not in
the top k [15].

IV. STREAMINGRPHASH ALGORITHM

streamingRPHash is a stream clustering variant of the
original 2-Phase RPHash algorithm of [16] that employs
both approximate and randomized techniques to solve the
approximate k-means clustering problem. Because stream-
ingRPHash is intended to accept unbounded data streams,
it must have quasi-linear complexity growth and a bounded
memory requirement. Like the 2-Phase algorithm, streamin-
gRPHash is meant to be an naively parallelizable algorithm
requiring minimal communication overhead. In this paper,
we will focus on the sequential version of the streaming
algorithm for clarity. A parallel version can be achieved
using a worker model with a low contention shared resource.

The general idea of streamingRPHash is motivated by
a particularly difficult case in LSH based Nearest Neighbor
(LSH-NN) search where a single bucket contains an un-
precedented number of candidate nearest neighbors. This is
a problem in LSH-NN as the bucket then has to be linearly
scanned for the optimal solution. However, these degenerate
buckets can also be viewed as locally dense regions or
density modes in the data. In other words, partitions with
high collision rates are good candidates for cluster centroids.



To follow the conventional k-means model, only the top
k densest regions are tracked while less dense regions are
omitted as noise. streamingRPHash LSH-NN combines
LSH-NN methods: multi-probe random projection and dis-
crete space quantization, with a k-Heavy Hitter Centroid
tracker.

The streamingRPHash algorithm is discussed below and
a pseudo-code outline is presented in Algorithm 1. First,
we discuss the generative nature of its region assignment.
Clustering region assignments are performed by decoding
vectors using our set of LSH functions. In most cases the
problem space will not match our locality sensitive hashing
subspace. The previously described Johnson-Lindenstrauss
(JL) lemma offers a solution to this problem at the cost of
a matrix vector product. Although the JL-lemma requires
an m X d matrix of Gaussian random variables be formed,
[17] suggests an approximate method to form the random
projection matrix whose elements r;; € R have values
from {1,0, —1} with probabilities {#, 2, 1} respectively. A
further computational reduction is then achieved by treating
the matrix-vector product as a linear scan over the non-
zero elements of the projection matrix. This allows us to
effectively skip % of the projection computation with the
remaining % operations consisting only of scalar additions.
Following this computation, a scaling factor of ﬁ is also
needed to preserve approximate distances between projected
vectors. From Panigrahy [18], a requirement of ©(log(n))
random projections is sufficient for c-approximate hash
collisions with its corresponding r-near vectors.

Discrete space quantizers play a central role in the
streamingRPHash algorithm. While the code base for
streamingRPHash contains implementations for several
LSH methods (including FEg, Leech, Pstable Distributions,
and Spherical), our experimental studies show that the best
overall performance is achieved with a Spherical LSH.
Experimentally, the spherical 32-orthoplex decoder of [12]
was found to be optimal on a variety of datasets. The
spherical orthoplex decoding consists of a projection to 32d
space followed by a vector normalization step in order to
have the vector lie on the surface of a hypersphere. Next,
a random rotation is applied to the 64 basis vectors of
the 32-orthoplex. The basis vector nearest to the projected
vector is then used as the vector’s representative and the
corresponding bits resulting from the natural ordering of
basis vectors are used to define a logs(64) partial decoding.

At this point streamingRPHash has identified a set of
possible partitions in which a given vector might reside.
However our goal is to only track the densest candidate
regions, sometimes referred to as the k-Heavy Hitters prob-
lem. Formally, the k-Heavy Hitters (k-HH) problem is the
problem of identifying the k most frequent items in a
dataset. k-HH can trivially be solved for finite datasets
using a hash table and 6(n) space. However data streams
are potentially unbounded, and require a slightly modified

approach using approximate methods. One of the earliest
streaming solutions for the approximate k-HH algorithms
is the count-min sketch data structure [19]. The count-min
sketch can be used to solve the approximate k-HH problem
with only the addition of a priority queue using 6(1log%)
space with error (1—¢) f, where f is the minimum frequency
T to be considered frequent.

streamingRPHash uses a k-HH tracker to track both the
sizes of dense regions as well and accumulates the running
centroid for the vectors added to the region. This completes
the description of the streaming algorithm for RPHash.

Algorithm 1: Streaming Algorithm
Data
k - number of clusters
x € R™ - data vector from stream
H(-) - LSH Function radius=r, dim=d
P = {p1,...pn} - set of n,m x d matrices w/ JL
property
B = {b1,...,b1og, d}, b; € R? - N(0,r) blurring vectors
M- 1sh_key — centroid map
C- cm-sketch data structure
T- CM-Sketch based ek bounded priority queue

forall the p € P do
I=./Tpx
forall the b € B do
t:=H(z +b) C.add(t)
if £ € M.keys then
| M[t].wadd(x)
else
MT[t] =new centroid(z,C.count(t))
L T .insert(Mt])
| M.remove(T.pop())

Although a set of dense regions and the corresponding
centroids has been identified, there is no direct way of
resolving vectors from different projection transformations
with one another. A simple solution found in [1] and in other
streaming algorithms, often referred to as an offline step,
is to merge the so-called micro-clusters using a standard
clustering algorithm in the high dimensional space.

From the above steps we get the following complexity for
streamingRPHash © (N P(224 + log(d)(log(k) +d+2d?))),
using P database friendly projections from M to d, SLSH
decoding complexity (2d?), a balanced priority tree (with
6(log(k)) insertion and constant time removal), and blurring
factor log(d). The projection step % tends to dominate
when M >> d. If we remove the constant factor, and have
a small constant number of projection P (< 3) and subspace
d (< 24), we get a complexity dependent only on the input

O(NM).



V. EXPERIMENTAL STUDIES

In this section, we evaluate the performance of stream-
ingRPHash and compare it against several other stream
clustering algorithms, namely: Streaming k-means [1] im-
plementation from S-Space [20], Damped Sliding Window
[21], DStream [22] and Biased Reservoir Sampling [23].
These algorithms are chosen because of their importance
and availability (except for streaming k-means) in the R
statistical computing framework. The implementation of
streamingRPHash and streaming k-means are done in
Java. All of these algorithms follow the conventional two-
stage (online-offline) approach for data stream clustering.
The weighted k-means implementation of Hartigan and
Wong (with nstart = 25 for algorithms implemented in
R) is used in the offline stage. The size of grid cells is
set at 0.8 for DStream. Values of the window length in
Sliding Window and the number of points to be sampled
from the stream in Reservoir Sampling are both set to 100.
In streamingRPHash, two random projections are applied
to data points with four Gaussian blurring shifts.

We apply the stream clustering algorithms on both real-
world and synthetic data streams and evaluate their cluster-
ing results based on various external, internal and entropy
based clustering validation measures. Runtime and memory
usage of all algorithms are also captured on a computer
having Intel Xeon X5675 CPU with 6 cores @ 3.07GHz
supporting 12 hardware threads. The operating system is
Debian ‘stretch’ (x86_64), running on 28 GB memory.

A. Real-World Datasets

Two real-world labeled datasets are chosen from UCI
Machine Learning Repository. We report the values of two
external measures: Adjusted Rand Index (ARI) and Cluster
Purity, three internal measures: Dunn Index, Silhouette Coef-
ficient and Within-Cluster Sum of Squared Errors (WCSSE),
and one entropy based measure: Variation of Information
(VD). The algorithms are set up to report clustering results
in batches of 500 points.

The first dataset is on ‘Human Activity Recognition
Using Smartphones’ (https://archive.ics.uci.edu/ml/datasets/
Human+Activity+Recognition+Using+Smartphones). It has
10,299 records (the first 10,000 are used in this study),
and 561 attributes representing time and frequency domain
variables. The dataset contains six clusters which denote the
six movement activities performed by each person.

Performance results with this dataset are shown in Figure
1. The plots are organized into two side-by-side graphs.
The left graph shows the computed values at each 500
points interval and the right graph is a box and whisker
plot that shows the median and quartiles of all of the
sample points for each algorithm. The results show that
streamingRPHash performs on par with other algorithms.
The runtime performance is better than most and on par with
streaming k-means. The memory usage is slightly worse

than streaming k-means, but both are significantly better
(less than half) than the other algorithms studied.

The second dataset is ‘UJIIndoorLoc Data Set’ (https:
//archive.ics.uci.edu/ml/datasets/UJIIndoorLoc). It is a multi-
building multi-floor indoor localization database to test
Indoor Positioning System that rely on WLAN/WiFi finger-
print. The dataset has a total of 21,048 vectors. This study
uses first 21,000 vectors each having 520 attributes which
represent WiFi fingerprints composed of 520 intensity values
detected by Wireless Access Points. Building ID is used as
the target variable which has three possible values.

Results from this dataset are shown in Figure 2. The plots
have the same format as with the previous study. Again, the
clustering accuracy of streamingRPHash is on par with
the other algorithms while streaming k-means is the fastest
and has a considerably smaller memory footprint.

B. Scalability Study

We study the dimensional scalability of stream cluster-
ing algorithms by evaluating their clustering results as the
dimensionality of data streams increases. The purpose of
this study is to assess and compare the accuracy, runtime,
and memory usage of streamingRPHash to those of other
stream clustering algorithms with increasing dimensional-
ity. Labeled data streams of 20,000 points and 10 ran-
domly placed clusters with random multivariate Gaussian
distributions are generated using a program written in R,
which is similar to DSD_Gaussians function from the
‘stream’ package. The dimensionality of data streams, which
increases in a sequence from 100 to 5767, follows two
polynomial sequences of the form d,, = 1.5d,,_;. The first
sequence starts from dyp = 100 and the second one from
do = 125. We do not inject noise points or outliers in these
data streams.

The values of two external (ARI and Cluster Purity) and
two internal (Silhouette Coefficient and WCSSE) measures
are reported for all algorithms along with the average
runtime and memory usage per batch of points. We also
compute baseline values of internal measures using the
ground-truth partitions of input data streams to provide a
reference or best possible values for internal measures. The
clustering validation measures are computed in batches of
1000 points and are plotted against dimensions of data
streams. For ease and clarity of viewing the WCSSE plot,
its values are scaled by diving by the number of dimensions.

Figures 3 and 4 show the performance results from this
scalability study. The colored lines in each of these plots
represent the mean value and shaded regions around the lines
represent the variance of a measure over all the batches of
data points. The shaded regions on the plots for DStream are
wide and clearly visible as its measures have significantly
higher variances than those of other algorithms.

From these results we observe that streamingRPHash
produces perfect or near-perfect clustering results for most of
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the data streams and thus exceeds the clustering accuracy of
other algorithms. Its ARI and Cluster Purity values steadily
remain at 1 and Silhouette Coefficient and WCSSE exactly
match the baseline values over all the batches of data points
for all data streams. The only exceptions are the slight
deviations from perfect clustering at dimensions 100 and
633, which can be attributed to the stochastic nature of
our algorithm. One of the biggest advantages of streamin-
gRPHash is that it achieves such clustering accuracy with
minimal costs of runtime and memory usage. As with real-
world data streams, runtime and memory requirement of
streamingRPHash and streaming k-means remain substan-
tially lower than those of other algorithms. This advantage
becomes increasingly significant as the dimensionality of the
input vectors grows. At dimensions 759 and beyond, the
runtime of streamingRPHash becomes even less than that
of streaming k-means.

As the runtime and memory usage of streamingRPHash
at a certain dimension depend only on the number of points
in a batch and remain static for a fixed batch size irrespective
of the total number of points in the stream, testing the scal-
ability of streamingRPHash with increasing stream size is
not needed. To summarize our findings from the scalability
study: we discover a major strength of streamingRPHash
and conclude that the algorithm is capable of producing
perfect clustering when the data stream consists of a mixture

of Gaussians without any noise.
VI. CONCLUSION

Our experiments show that streamingRPHash leads to
fast, accurate and memory efficient clustering of high dimen-
sional streaming data. The initial assumption in this work is
that approximate and exact clustering are qualitatively simi-
lar due to the effects of noise, redundancy, and the curse of
dimensionality. streamingRPHash uses these assumptions
to reduce the computational complexity of clustering while
still being competitive to many other clustering algorithms.

streamingRPHash combines approximate and random-
ized methods in a new way to achieve fast, single pass
clustering on high dimensional data streams. The growing
number of massive, high dimensional streaming data sources
would reap the benefits of quick, accurate, scalable and
distributed processing of streamingRPHash.

The streamingRPHash Java source code is released
under an open source license and is freely available at
github.com/wilseypa/rphash-java.
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