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Abstract—Clustering streaming data has gained importance
in recent years due to an expanding opportunity to discover
knowledge in widely available data streams. As streams are
potentially evolving and unbounded sequence of data objects,
clustering algorithms capable of performing fast and incremen-
tal processing of data points are necessary. This paper presents
a method of clustering high-dimensional data streams using ap-
proximate methods called streamingRPHash. streamingR-
PHash combines random projections with locality-sensitivity
hashing to construct a high-performance clustering method.
streamingRPHash is amenable to distributed processing
frameworks such as Map-Reduce, and also has the benefits of
constrained overall complexity growth. This paper describes
streamingRPHash algorithm and its various configurations.
The clustering performance of streamingRPHash is com-
pared to several alternatives. Experimental results show that
streamingRPHash has comparable clustering accuracy and
substantially lower runtime and memory usage.

Keywords-streaming algorithms; clustering; LSH; multi-
probe LSH; random projection; min-count sketch

I. INTRODUCTION

The recent expansion in data acquisition has provided

nearly endless streams of high-dimensional data. Data

streams often undergo rapid changes throughout their life-

time, requiring fast temporally aware tools for data analysis.

Data clustering is the principal workhorse of many forms

of pilot data analysis, data retrieval and machine learning

techniques. In this paper we present an algorithm, named

Streaming Random Projection Hash (streamingRPHash),

to solve the k-means clustering problem on streaming

data. Our solution offers comparable clustering accuracy to

other stream clustering algorithms and has a better overall

complexity bound which makes it considerably faster on

high-dimensional data streams than conventional methods.

Further, our algorithm provides a linear bounded memory

solution to the streaming k-means problem of [1].

Many data streams are inherently high-dimensional [2].

streamingRPHash is created to provide algorithmic scal-

ability while operating on large, high-dimensional data

streams. Existing stream clustering algorithms often have

issues regarding asymptotic scalability [3], dimensionality

limits [4] and robustness to noise. A recent set of algorithms

have been proposed to address (with varying degrees of

success) many of these problems [1], [5]–[7]. streamingR-

PHash combines random projection and locality-sensitive

hashing in a new way to solve issues of scalability and data

security for real-world high-dimensional streaming data.

The remainder of this paper is organized as follows. Sec-

tion II provides some background information. Section III

reviews the recent work with methods for data stream clus-

tering. Section IV describes streamingRPHash algorithm.

Section V contains experimental results. Finally, Section VI

concludes the paper.

II. BACKGROUND

The k-means clustering problem can be defined as a parti-

tioning of vectors x ∈ X among k clusters {C1, C2, ..., Ck}
such that the within-cluster sum of squared error (WCSSE)

is minimized over all possible partitions. More formally,

this can be stated as argmin
C

k
∑

i=1

∑

x∈C

||x − µi||
2, where µi

is the centroid of cluster Ci. For points in 1-dimension,

k-means can be solved in polynomial time with dynamic

programming methods, unfortunately this is a special case

that does not apply to a general Rd space.

Random projection is a method for dimensionality reduc-

tion, in which d-dimensional data vectors are projected down

to an m-dimensional subspace (m ≪ d). This is done by

multiplying the original d-dimensional data by a random

m × d matrix R which is composed of orthogonal vectors

sampled from a random or quasi-random distribution. Ran-

dom projection can achieve a bounded error distortion factor

very close to the optimal L2 norm subspace embedding that

usually results from the principal component decomposition

[8]. Computationally, random projection is very simple.

Forming the random matrix R and projecting the dN data

matrix D into m dimensions have the complexity O(dmN),
where the data set D has N records in d dimensions [9].

Switching from the continuous spaces of random projec-

tions, we now consider the discrete space partitions induced

by LSH functions. Optimal implementations of grid based

clustering algorithms such as DBSCAN [10] and DStream,

require that the data space be partitioned as evenly as

possible. For known datasets, a perfect partition of the data

space can be produced by the Voronoi diagram [11]. In 2-

dimensional space, Voronoi Diagrams can be generated in

Θ(nlog(n))-time. However, higher dimensional algorithms

for Voronoi partitioning have far less favorable runtime

complexities making them inefficient for partitioning arbi-

trarily high dimensions. To overcome this issue, streamin-

gRPHash borrows heavily from the LSH community which



has derived a variety of partitioning methods. We discuss one

such method below, chosen from a set of candidate LSH

methods, that proved to be the best among a large scale

analysis for a variety of data sets.

The Spherical LSH technique of Terasawa [12] is a space

partitioning method applicable to data where the vector lies

on or near the surface of a hypersphere. Spherical LSH

uses an inscribed regular polytope to partition the surface

of the sphere where vertexes of the polytope correspond to

partition regions. Although other regular d-polytopes such

as the d-simplex and d-hypercube exist, we focus on the d-

orthoplex, following the favorable collision probability per

distance, which results in Table 1 of [12]. The d-orthoplex

is a regular d-polytope with 2d vertexes corresponding to

the positive and negative axis per dimension of a 0 centered

unit hypersphere embedding. The nearest vertexes can be

searched among the 2d vertexes following the max dot

product method given in [12], resulting in a search time

complexity of θ(2∗d2). The d-orthoplex has the benefit over

Lattice based decoders that allows for an arbitrary projection

dimension, while having the disadvantage that it is only

applicable to vectors lying on the surface of a hypersphere.

To overcome this, we use a variant of SLSH similar to [13]

to translate the vector such that it lies very near the surface

of a hypersphere.

III. RELATED WORK

Despite an exponential worst-case complexity for k-

means, many real-world problems tend to fair much better

under Lloyd’s type of solutions to k-means optimization than

theoretically optimal solutions. For this reason, clustering

massive datasets with k-means, although suffering from

unbounded complexity guarantees, often yields qualitatively

good results close to the optimal k-means solution. Due

to the approximate solution’s real-world proclivity towards

revealing useful results, randomized methods such as sam-

pling and random dimensional reduction are often utilized in

overcoming complexity growth. The use of these methods

in clustering began with density and grid based scanning

algorithms. DBSCAN proceeds in a conceptually similar

manner to streamingRPHash in regard to partitioning the

data space and counting the number of data vectors within

a partitioned region. These methods tend to work well on

spatially separated datasets with relatively low dimensions.

A common clustering problem for these types of algorithms

would be on geo-spatial data, in geographic data systems

(GIS), and image segmentation. The algorithms DBSCAN

[10], Clique [14], and CLARANS [4], respectively, represent

a successful progression of density scanning techniques.

Although density scan algorithms are an example of stream

clustering algorithms such as streamingRPHash, they of-

ten show weakness in accuracy while scaling the number of

dimensions.

More recently streaming algorithms for data clustering

are also considered [1], [6]. The general setup of these

algorithms consists of a diminishing objective bound that

tightens as the stream is processed. The processor up-

dates the core-sets of pseudo-centroids when data falls

within the objective bound and disregards data outside that

bound. Streaming k-means algorithms perform well on data

streams but has the drawback of requiring that data be

‘well-clusterable’. streamingRPHash uses a similar core-

set approach but, instead of choosing core-sets based on

computed distances from current centroids, it maintains a

count structure similar to CSketch [6] of dense regions.

This maintaining of all data replaces the hard margin of

windowed data with a slight increase in error due to incorrect

hash collisions.

CSketch is a streaming algorithm for generating clusters

over massive-domain datasets [6]. It shares much in common

with streamingRPHash. In particular, CSketch applies the

count-min sketch data structure to update candidate centroids

by updating the centroid location and not just a count.

Incoming centroids choose the centroid which maximizes

the dot-product between the vectors. streamingRPHash

uses the LSH decoding of projected points to immediately

find the nearest candidate cluster in the count-min sketch

data structure. This hashing is intrinsic to the decoding step

and does not require a supplementary hashing scheme. In

addition, a k-heavy-hitters priority queue is employed to

further reduce the memory overhead by storing only likely

centroids and removing unlikely ones with error ǫ
k
·F res(k),

where F res(k) is the sum of squares of frequencies not in

the top k [15].

IV. STREAMINGRPHASH ALGORITHM

streamingRPHash is a stream clustering variant of the

original 2-Phase RPHash algorithm of [16] that employs

both approximate and randomized techniques to solve the

approximate k-means clustering problem. Because stream-

ingRPHash is intended to accept unbounded data streams,

it must have quasi-linear complexity growth and a bounded

memory requirement. Like the 2-Phase algorithm, streamin-

gRPHash is meant to be an naively parallelizable algorithm

requiring minimal communication overhead. In this paper,

we will focus on the sequential version of the streaming

algorithm for clarity. A parallel version can be achieved

using a worker model with a low contention shared resource.

The general idea of streamingRPHash is motivated by

a particularly difficult case in LSH based Nearest Neighbor

(LSH-NN) search where a single bucket contains an un-

precedented number of candidate nearest neighbors. This is

a problem in LSH-NN as the bucket then has to be linearly

scanned for the optimal solution. However, these degenerate

buckets can also be viewed as locally dense regions or

density modes in the data. In other words, partitions with

high collision rates are good candidates for cluster centroids.



To follow the conventional k-means model, only the top

k densest regions are tracked while less dense regions are

omitted as noise. streamingRPHash LSH-NN combines

LSH-NN methods: multi-probe random projection and dis-

crete space quantization, with a k-Heavy Hitter Centroid

tracker.

The streamingRPHash algorithm is discussed below and

a pseudo-code outline is presented in Algorithm 1. First,

we discuss the generative nature of its region assignment.

Clustering region assignments are performed by decoding

vectors using our set of LSH functions. In most cases the

problem space will not match our locality sensitive hashing

subspace. The previously described Johnson-Lindenstrauss

(JL) lemma offers a solution to this problem at the cost of

a matrix vector product. Although the JL-lemma requires

an m × d matrix of Gaussian random variables be formed,

[17] suggests an approximate method to form the random

projection matrix whose elements rij ∈ R have values

from {1, 0,−1} with probabilities { 1
6 ,

2
3 ,

1
6} respectively. A

further computational reduction is then achieved by treating

the matrix-vector product as a linear scan over the non-

zero elements of the projection matrix. This allows us to

effectively skip 2
3 of the projection computation with the

remaining 1
3 operations consisting only of scalar additions.

Following this computation, a scaling factor of 1√
n

is also

needed to preserve approximate distances between projected

vectors. From Panigrahy [18], a requirement of Θ(log(n))
random projections is sufficient for c-approximate hash

collisions with its corresponding r-near vectors.

Discrete space quantizers play a central role in the

streamingRPHash algorithm. While the code base for

streamingRPHash contains implementations for several

LSH methods (including E8, Leech, Pstable Distributions,

and Spherical), our experimental studies show that the best

overall performance is achieved with a Spherical LSH.

Experimentally, the spherical 32-orthoplex decoder of [12]

was found to be optimal on a variety of datasets. The

spherical orthoplex decoding consists of a projection to 32d

space followed by a vector normalization step in order to

have the vector lie on the surface of a hypersphere. Next,

a random rotation is applied to the 64 basis vectors of

the 32-orthoplex. The basis vector nearest to the projected

vector is then used as the vector’s representative and the

corresponding bits resulting from the natural ordering of

basis vectors are used to define a log2(64) partial decoding.

At this point streamingRPHash has identified a set of

possible partitions in which a given vector might reside.

However our goal is to only track the densest candidate

regions, sometimes referred to as the k-Heavy Hitters prob-

lem. Formally, the k-Heavy Hitters (k-HH) problem is the

problem of identifying the k most frequent items in a

dataset. k-HH can trivially be solved for finite datasets

using a hash table and θ(n) space. However data streams

are potentially unbounded, and require a slightly modified

approach using approximate methods. One of the earliest

streaming solutions for the approximate k-HH algorithms

is the count-min sketch data structure [19]. The count-min

sketch can be used to solve the approximate k-HH problem

with only the addition of a priority queue using θ( 1
ǫ
log 1

δ
)

space with error (1−ǫ)f , where f is the minimum frequency
m
k

to be considered frequent.

streamingRPHash uses a k-HH tracker to track both the

sizes of dense regions as well and accumulates the running

centroid for the vectors added to the region. This completes

the description of the streaming algorithm for RPHash.

Algorithm 1: Streaming Algorithm

Data

k - number of clusters

x ∈ R
m - data vector from stream

H(·) - LSH Function radius=r, dim=d

P = {p1, ...pn} - set of n,m× d matrices w/ JL

property

B = {b1, ..., blog
2
d}, bi ∈ R

d - N(0, r) blurring vectors

M - lsh key → centroid map

C- cm-sketch data structure

T - CM-Sketch based ǫk bounded priority queue

forall the p ∈ P do

x̃ :=
√

m
d
p⊺x

forall the b ∈ B do
t := H(x̃+ b) C.add(t)
if t ∈ M .keys then

M [t].wadd(x)
else

M [t] =new centroid(x,C.count(t))

T .insert(M [t])

M.remove(T.pop())

Although a set of dense regions and the corresponding

centroids has been identified, there is no direct way of

resolving vectors from different projection transformations

with one another. A simple solution found in [1] and in other

streaming algorithms, often referred to as an offline step,

is to merge the so-called micro-clusters using a standard

clustering algorithm in the high dimensional space.

From the above steps we get the following complexity for

streamingRPHash Θ(NP (Md
3 + log(d)(log(k)+d+2d2))),

using P database friendly projections from M to d, SLSH

decoding complexity (2d2), a balanced priority tree (with

θ(log(k)) insertion and constant time removal), and blurring

factor log(d). The projection step Md
3 tends to dominate

when M >> d. If we remove the constant factor, and have

a small constant number of projection P (< 3) and subspace

d (< 24), we get a complexity dependent only on the input

Θ(NM).



V. EXPERIMENTAL STUDIES

In this section, we evaluate the performance of stream-

ingRPHash and compare it against several other stream

clustering algorithms, namely: Streaming k-means [1] im-

plementation from S-Space [20], Damped Sliding Window

[21], DStream [22] and Biased Reservoir Sampling [23].

These algorithms are chosen because of their importance

and availability (except for streaming k-means) in the R

statistical computing framework. The implementation of

streamingRPHash and streaming k-means are done in

Java. All of these algorithms follow the conventional two-

stage (online-offline) approach for data stream clustering.

The weighted k-means implementation of Hartigan and

Wong (with nstart = 25 for algorithms implemented in

R) is used in the offline stage. The size of grid cells is

set at 0.8 for DStream. Values of the window length in

Sliding Window and the number of points to be sampled

from the stream in Reservoir Sampling are both set to 100.

In streamingRPHash, two random projections are applied

to data points with four Gaussian blurring shifts.

We apply the stream clustering algorithms on both real-

world and synthetic data streams and evaluate their cluster-

ing results based on various external, internal and entropy

based clustering validation measures. Runtime and memory

usage of all algorithms are also captured on a computer

having Intel Xeon X5675 CPU with 6 cores @ 3.07GHz

supporting 12 hardware threads. The operating system is

Debian ‘stretch’ (x86 64), running on 28 GB memory.

A. Real-World Datasets

Two real-world labeled datasets are chosen from UCI

Machine Learning Repository. We report the values of two

external measures: Adjusted Rand Index (ARI) and Cluster

Purity, three internal measures: Dunn Index, Silhouette Coef-

ficient and Within-Cluster Sum of Squared Errors (WCSSE),

and one entropy based measure: Variation of Information

(VI). The algorithms are set up to report clustering results

in batches of 500 points.

The first dataset is on ‘Human Activity Recognition

Using Smartphones’ (https://archive.ics.uci.edu/ml/datasets/

Human+Activity+Recognition+Using+Smartphones). It has

10,299 records (the first 10,000 are used in this study),

and 561 attributes representing time and frequency domain

variables. The dataset contains six clusters which denote the

six movement activities performed by each person.

Performance results with this dataset are shown in Figure

1. The plots are organized into two side-by-side graphs.

The left graph shows the computed values at each 500

points interval and the right graph is a box and whisker

plot that shows the median and quartiles of all of the

sample points for each algorithm. The results show that

streamingRPHash performs on par with other algorithms.

The runtime performance is better than most and on par with

streaming k-means. The memory usage is slightly worse

than streaming k-means, but both are significantly better

(less than half) than the other algorithms studied.

The second dataset is ‘UJIIndoorLoc Data Set’ (https:

//archive.ics.uci.edu/ml/datasets/UJIIndoorLoc). It is a multi-

building multi-floor indoor localization database to test

Indoor Positioning System that rely on WLAN/WiFi finger-

print. The dataset has a total of 21,048 vectors. This study

uses first 21,000 vectors each having 520 attributes which

represent WiFi fingerprints composed of 520 intensity values

detected by Wireless Access Points. Building ID is used as

the target variable which has three possible values.

Results from this dataset are shown in Figure 2. The plots

have the same format as with the previous study. Again, the

clustering accuracy of streamingRPHash is on par with

the other algorithms while streaming k-means is the fastest

and has a considerably smaller memory footprint.

B. Scalability Study

We study the dimensional scalability of stream cluster-

ing algorithms by evaluating their clustering results as the

dimensionality of data streams increases. The purpose of

this study is to assess and compare the accuracy, runtime,

and memory usage of streamingRPHash to those of other

stream clustering algorithms with increasing dimensional-

ity. Labeled data streams of 20,000 points and 10 ran-

domly placed clusters with random multivariate Gaussian

distributions are generated using a program written in R,

which is similar to DSD Gaussians function from the

‘stream’ package. The dimensionality of data streams, which

increases in a sequence from 100 to 5767, follows two

polynomial sequences of the form dn = 1.5dn−1. The first

sequence starts from d0 = 100 and the second one from

d0 = 125. We do not inject noise points or outliers in these

data streams.

The values of two external (ARI and Cluster Purity) and

two internal (Silhouette Coefficient and WCSSE) measures

are reported for all algorithms along with the average

runtime and memory usage per batch of points. We also

compute baseline values of internal measures using the

ground-truth partitions of input data streams to provide a

reference or best possible values for internal measures. The

clustering validation measures are computed in batches of

1000 points and are plotted against dimensions of data

streams. For ease and clarity of viewing the WCSSE plot,

its values are scaled by diving by the number of dimensions.

Figures 3 and 4 show the performance results from this

scalability study. The colored lines in each of these plots

represent the mean value and shaded regions around the lines

represent the variance of a measure over all the batches of

data points. The shaded regions on the plots for DStream are

wide and clearly visible as its measures have significantly

higher variances than those of other algorithms.

From these results we observe that streamingRPHash

produces perfect or near-perfect clustering results for most of
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Figure 1. Clustering Results from Smartphone Sensor Data (abbreviations: RPH → streamingRPHash, K-M → Streaming k-means, S-W → Damped
Sliding Window, DSt → DStream, R-S → Biased Reservoir Sampling, and Base → Base Value
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Figure 2. Clustering Results from WiFi Location Data (abbreviations: RPH → streamingRPHash, K-M → Streaming k-means, S-W → Damped Sliding
Window, DSt → DStream, R-S → Biased Reservoir Sampling, and Base → Base Value
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