streamingRPHash: Random Projection Clustering of High-Dimensional
Data in a MapReduce Framework

Jacob Franklin*, Samuel Wenke*, Sadiq Quasem®, Lee A. Carraher* and Philip A. Wilsey*
* Dept of EECS, Univ. of Cincinnati, Cincinnati, OH 45221-0030 Email: wilseypa@ gmail.com

The expanding needs for analysis on large datasets has
increased as the amount and availability of data continues to
grow. The size and format of this data makes manual analysis
infeasible and has motivated the drive for automated methods
such as data clustering. Among the most commonly used
clustering algorithms, K-means has been proven as one of
the most popular choice that delivers acceptable results in
reasonable time. For many years, K-means has proven to be
statistically efficient and easy to implement. While K-means is
widely used for clustering streaming data, it has performance
issues when it comes to robustness with noise, parallelism and
working with very large, high data sets. In particular, K-Means
(and other conventional techniques) for data clustering do not
parallelize or scale well with the increasing dimensionality of
data.

Due to the limited performance and scalability issues of
conventional techniques, an algorithm is proposed, called
streamingRPHash, that combines approximate and random-
ized methods from Random Projections [1] and Locality
Sensitive Hashing (LSH) [2] to implement a high-performance,
scalable parallel and distributed method to cluster high-
dimensional streaming data. streamingRPHash can run in
parallel on a single node as well as operate as a distributed
algorithm in a MapReduce framework. It achieves this by
distributing the seeds used to generate the random variables
in the approximate methods so that all processing nodes use
the same random projection and LSH maps to partition the
data. Each source data vector is processed independently into
a counted partition (counted using a count-min sketch [3])
that records a vector average for that partition. In the reduce
step, the count-min sketches are combined and vector averages
combined in a log(n) step reduction. The top K counts and
vector averages are then reported as the principle clustering
centroids of the data streamed to that time.

The streamingRPHash algorithm is composed of four
components, namely: (i) a random projection step, (ii) a
spherical decoder LSH step, (iii) a count min sketch, and
(iv) a candidate centroid association and clustering step. This
allows the algorithm to be used for dense region identification
and can be a precursor to optimization based algorithm or can
be used as a stand alone clustering algorithm. The random
projection step translates high-dimensional vectors to lower
dimensions with minimal error [4]. The first and second step,
random projection and Locality Sensitive Hash (LSH), is an
method for solving approximate or exact near neighbor search
in high dimensional spaces. It takes an input data point, which
is a vector with many values, and converts it to a single number.

The location of the hash still represents its location in relation
to the other data points making use of Euclidean geometry. It
differs from conventional and cryptographic hash functions in
that it maximizes probability of combining similar items.

The third component of the streamingRPHash formula is
a Count-Min sketch [3]. In computing, a Count-Min sketch is
a probabilistic data structure that serves as a frequency table
of the events when data is streamed. It uses hashing to map
events to frequencies, but unlike a hash table uses only a sub-
linear space, at the expense of over counting some events due
to collisions. In a basic version of the Count-Min sketch, it
consumes a stream of events one at a time, and counts the
frequency of the different types of occurrences. The sketch can
be queried at any time for the frequency of a particular event
type i(0 < i < n for some n).

The final step of the streamingRPHash algorithm is to
cluster on the reconstructed candidate centroids. For this step
we use simple serial version of K-Means clustering. This may
seem to go against to the goal of the algorithm, but K-Means
has very quick run time on small data sets. Since the algorithm
already has vastly reduced our data set to a small number of
candidate centroids, the K-Means execution time is insignificant
when compared to the overall run time of algorithm. This final
K-Means step allows us to reduce from the number of candidate
centroids down to the desired number of final centroids. Having
more candidate centroids than final centroids increases the
accuracy of our results. The number of candidate centroid’s
chosen is a trade off between accuracy and speed.

The architecture of the streamingRPHash algorithm also
lends itself to distribution using a map reduce framework.
Incomming data is sent from a head node to multiple slave
nodes. On each of these slave nodes the locality sensitive hash
step is executed on these slave nodes and the result is sent back
to the head node. A count min sketch and centroid priority
queue are maintained on the head node. These objects are
maintained in the same way on the head node as they as in the
non distributed algorithm. This works well for the same reason
the algorithm parallelizes well on a single node, the locality
sensitive hash step requires no intra process communication and
is the most expensive part of the algorithm computationally.

Experimental assessment is performed comparing the im-
plementation of streamingRPHash to an implementation
of StreamingKMeans as described in [5]. Experiments were
performed using both a labeled data and randomly generated
data sets. Both data sets were written to text files and read
into the tests before running in order to have consistent data
between multiple tests. However, the time used to read the file



Speed Comparison in Seconds

2
—— Streaming KMeans —— Streaming RPHash

Seconds
S

200000 400000 600000 800000 1000000

Number of Data Points

Fig. 1: Runtime comparison of streamingKMeans and streamingR-
PHash.

into memory was not accounted for in the execution time of any
experiments. Runtime and the within-cluster sum of squared
errors (WCSSE) metric is captured for both streamingRPHash
and StreamingKMeans.

Using the randomly generated data, streamingRPHash’s
performance in relation to data set size was tested and compared
to streamingKMeans (Figure 1). The graphs show that stream-
ingRPHash’s run time scales linearly when compared to the
size of the dataset being clustered. StreamingKMean’s run time
also scales linearly in relation to the size of the test data set.
Both streamingKMeans and streamingRPHash had a constant
average squared distance accuracy measurement between 41
and 42 for all tests. This indicates that streamingRPHash
created clusters that were similarly accurate to the results
produced by streamingKMeans. Other than varying the test
data set size 100 and 1,000,000, all other variables were held
constant during these tests, the dimensionality of the data set
was 500, 10 clusters were requested and the tests were run on
a single 4 core computer. If the tests were run on data sets
of a larger sizes, the execution time continue to increase in a
linear fashion.

streamingRPHash’s and streamingKMean’s performance
in relation to the number of dimensions being clustered was
also tested. As with the previous test everything other than
the variable being tested was held constant. There data set
size was 10,000, the number of clusters requested was 10,
and the number of dimensions was varied between 100 and
10,000. The results are show in Figure 2. As the number of
dimensions increased streamingRPHash saw an increasingly
large ratio in terms of execution speed when comparing it
to streamingKmeans. For example at the first measurement,
100 dimensions streamingRPHash was 1.3 times faster than
streamingKMeans. By the time the last reading was taken
at 10000 dimensions, streamingRPHash was 8.75 times
faster. Part of the speed increase can be attributed to the
parallel nature of streamingRPHash which allowed it to
take advantage of the 4 cores on the testing computer. But,
the increasing gains demonstrated by this test indicated that

Speed Comparison in Seconds
|
100

500

oo [

5000

Number of Dimensions

10000

Time(seconds)

I streaming KMeans Ml Streaming RPHash

Fig. 2: Runtime Comparison based on Dimensionality.

streamingRPHash is well suited to high dimensionality data
even outside of its parallel nature. streamingRPHash’s and
streamingKMeans saw similar WCSSE accuracy measurements
at all dimensionality sizes. The memory usage during these tests
was asymptotic maxing out at about 1GB of local memory
for the streamingRPHash test and about 200MB for the
streaming K-Means test

The streamingRPHash algorithm uses qualities of past
algorithms which have seen wide success in various fields.
It allows us to combine approximate and random projection
methods in a unique but effective way to solve scalability issues
encountered by other popular solutions. Due to its random
nature, it also has the innate ability to provide greater security
for clustering of distributed data. Speed ups were observed
using streamingRPHash when compared to Streaming k —
Means as the data’s dimensionality increases. Streaming
k — Means starts to get exponentially slower with higher
dimensionality data, whereas streamingRPHash has linear
increase in speed, which is constant and makes it a great
candidate for high dimensionality live streams of data. The
streamingRPHash golang implementation is open source and
can be found at https://github.com/wilseypa/rphash-golang.

Acknowledgments: Support for this work was provided in
part by the National Science Foundation under grant ACI-
1440420.

[1] D. Achlioptas, “Database-friendly random projections,” in Proceedings of
the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, 2001, pp. 274-281.

P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, ser. STOC 98.
New York, NY, USA: ACM, 1998, pp. 604-613. [Online]. Available:
http://doi.acm.org/10.1145/276698.276876

[3] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” Journal of Algorithms, vol. 55,
no. 1, pp. 58-75, 2005.

Y. Bartal, B. Recht, and L. J. Schulman, “Dimensionality reduction:
Beyond the johnson-lindenstrauss bound,” in Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms, 2011, pp.
868-887.

M. Shindler, A. Wong, and A. W. Meyerson, “Fast and accurate k-means
for large datasets,” in Advances in Neural Information Processing Systems,
2011, pp. 2375-2383.

[2

—

[4

=

[5

—_



