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The expanding needs for analysis on large datasets has

increased as the amount and availability of data continues to

grow. The size and format of this data makes manual analysis

infeasible and has motivated the drive for automated methods

such as data clustering. Among the most commonly used

clustering algorithms, K-means has been proven as one of

the most popular choice that delivers acceptable results in

reasonable time. For many years, K-means has proven to be

statistically efficient and easy to implement. While K-means is

widely used for clustering streaming data, it has performance

issues when it comes to robustness with noise, parallelism and

working with very large, high data sets. In particular, K-Means

(and other conventional techniques) for data clustering do not

parallelize or scale well with the increasing dimensionality of

data.

Due to the limited performance and scalability issues of

conventional techniques, an algorithm is proposed, called

streamingRPHash, that combines approximate and random-

ized methods from Random Projections [1] and Locality

Sensitive Hashing (LSH) [2] to implement a high-performance,

scalable parallel and distributed method to cluster high-

dimensional streaming data. streamingRPHash can run in

parallel on a single node as well as operate as a distributed

algorithm in a MapReduce framework. It achieves this by

distributing the seeds used to generate the random variables

in the approximate methods so that all processing nodes use

the same random projection and LSH maps to partition the

data. Each source data vector is processed independently into

a counted partition (counted using a count-min sketch [3])

that records a vector average for that partition. In the reduce

step, the count-min sketches are combined and vector averages

combined in a log(n) step reduction. The top K counts and

vector averages are then reported as the principle clustering

centroids of the data streamed to that time.

The streamingRPHash algorithm is composed of four

components, namely: (i) a random projection step, (ii) a

spherical decoder LSH step, (iii) a count min sketch, and

(iv) a candidate centroid association and clustering step. This

allows the algorithm to be used for dense region identification

and can be a precursor to optimization based algorithm or can

be used as a stand alone clustering algorithm. The random

projection step translates high-dimensional vectors to lower

dimensions with minimal error [4]. The first and second step,

random projection and Locality Sensitive Hash (LSH), is an

method for solving approximate or exact near neighbor search

in high dimensional spaces. It takes an input data point, which

is a vector with many values, and converts it to a single number.

The location of the hash still represents its location in relation

to the other data points making use of Euclidean geometry. It

differs from conventional and cryptographic hash functions in

that it maximizes probability of combining similar items.

The third component of the streamingRPHash formula is

a Count-Min sketch [3]. In computing, a Count-Min sketch is

a probabilistic data structure that serves as a frequency table

of the events when data is streamed. It uses hashing to map

events to frequencies, but unlike a hash table uses only a sub-

linear space, at the expense of over counting some events due

to collisions. In a basic version of the Count-Min sketch, it

consumes a stream of events one at a time, and counts the

frequency of the different types of occurrences. The sketch can

be queried at any time for the frequency of a particular event

type i(0 ≤ i ≤ n for some n).
The final step of the streamingRPHash algorithm is to

cluster on the reconstructed candidate centroids. For this step

we use simple serial version of K-Means clustering. This may

seem to go against to the goal of the algorithm, but K-Means

has very quick run time on small data sets. Since the algorithm

already has vastly reduced our data set to a small number of

candidate centroids, the K-Means execution time is insignificant

when compared to the overall run time of algorithm. This final

K-Means step allows us to reduce from the number of candidate

centroids down to the desired number of final centroids. Having

more candidate centroids than final centroids increases the

accuracy of our results. The number of candidate centroid’s

chosen is a trade off between accuracy and speed.

The architecture of the streamingRPHash algorithm also

lends itself to distribution using a map reduce framework.

Incomming data is sent from a head node to multiple slave

nodes. On each of these slave nodes the locality sensitive hash

step is executed on these slave nodes and the result is sent back

to the head node. A count min sketch and centroid priority

queue are maintained on the head node. These objects are

maintained in the same way on the head node as they as in the

non distributed algorithm. This works well for the same reason

the algorithm parallelizes well on a single node, the locality

sensitive hash step requires no intra process communication and

is the most expensive part of the algorithm computationally.

Experimental assessment is performed comparing the im-

plementation of streamingRPHash to an implementation

of StreamingKMeans as described in [5]. Experiments were

performed using both a labeled data and randomly generated

data sets. Both data sets were written to text files and read

into the tests before running in order to have consistent data

between multiple tests. However, the time used to read the file



Fig. 1: Runtime comparison of streamingKMeans and streamingR-
PHash.

into memory was not accounted for in the execution time of any

experiments. Runtime and the within-cluster sum of squared

errors (WCSSE) metric is captured for both streamingRPHash

and StreamingKMeans.

Using the randomly generated data, streamingRPHash’s

performance in relation to data set size was tested and compared

to streamingKMeans (Figure 1). The graphs show that stream-

ingRPHash’s run time scales linearly when compared to the

size of the dataset being clustered. StreamingKMean’s run time

also scales linearly in relation to the size of the test data set.

Both streamingKMeans and streamingRPHash had a constant

average squared distance accuracy measurement between 41

and 42 for all tests. This indicates that streamingRPHash

created clusters that were similarly accurate to the results

produced by streamingKMeans. Other than varying the test

data set size 100 and 1,000,000, all other variables were held

constant during these tests, the dimensionality of the data set

was 500, 10 clusters were requested and the tests were run on

a single 4 core computer. If the tests were run on data sets

of a larger sizes, the execution time continue to increase in a

linear fashion.

streamingRPHash’s and streamingKMean’s performance

in relation to the number of dimensions being clustered was

also tested. As with the previous test everything other than

the variable being tested was held constant. There data set

size was 10,000, the number of clusters requested was 10,

and the number of dimensions was varied between 100 and

10,000. The results are show in Figure 2. As the number of

dimensions increased streamingRPHash saw an increasingly

large ratio in terms of execution speed when comparing it

to streamingKmeans. For example at the first measurement,

100 dimensions streamingRPHash was 1.3 times faster than

streamingKMeans. By the time the last reading was taken

at 10000 dimensions, streamingRPHash was 8.75 times

faster. Part of the speed increase can be attributed to the

parallel nature of streamingRPHash which allowed it to

take advantage of the 4 cores on the testing computer. But,

the increasing gains demonstrated by this test indicated that

Fig. 2: Runtime Comparison based on Dimensionality.

streamingRPHash is well suited to high dimensionality data

even outside of its parallel nature. streamingRPHash’s and

streamingKMeans saw similar WCSSE accuracy measurements

at all dimensionality sizes. The memory usage during these tests

was asymptotic maxing out at about 1GB of local memory

for the streamingRPHash test and about 200MB for the

streaming K-Means test

The streamingRPHash algorithm uses qualities of past

algorithms which have seen wide success in various fields.

It allows us to combine approximate and random projection

methods in a unique but effective way to solve scalability issues

encountered by other popular solutions. Due to its random

nature, it also has the innate ability to provide greater security

for clustering of distributed data. Speed ups were observed

using streamingRPHash when compared to Streaming k−

Means as the data’s dimensionality increases. Streaming

k − Means starts to get exponentially slower with higher

dimensionality data, whereas streamingRPHash has linear

increase in speed, which is constant and makes it a great

candidate for high dimensionality live streams of data. The

streamingRPHash golang implementation is open source and

can be found at https://github.com/wilseypa/rphash-golang.
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