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Abstract—This paper presents a solution to the approximate
k-means clustering problem for very large distributed datasets.
Distributed data models have gained popularity in recent years
following the efforts of commercial, academic and government
organizations, to make data more widely accessible. Due to the
sheer volume of available data, in-memory single-core compu-
tation quickly becomes infeasible, requiring distributed multi-
processing. Our solution achieves comparable clustering perfor-
mance to other popular clustering algorithms, with improved
overall complexity growth while being amenable to distributed
processing frameworks such as Map-Reduce. Our solution also
maintains certain guarantees regarding data privacy deanoni-
mization.

I. INTRODUCTION

Data clustering is an inherent problem in data analysis. It is

the principle workhorse of many types of pilot data analysis and

various data retrieval methods. Due to its importance in machine

learning, data clustering is studied extensively in computing and

mathematics [1]–[7]. Recent advances in data aggregation of

online and distributed source provide nearly limitless sources of

data to be clustered. For this reason we developed an algorithm

to solve the popular version of clustering called the k-means

clustering problem for distributed datasets. While providing

certain data security assurances for data in transit and at rest,

our solution offers comparable clustering performance to offline

solutions on a variety of synthetic and real world datasets.

Clustering has long been the standard method used for

the analysis of labeled and unlabeled data. The effect of

clustering data allows for identifying dissimilar and similar

objects in a dataset, that are often unattainable through standard

single pass statistical methods. Single pass, data intensive,

statistical methods are often the primary workhorses for

database processing of business logic and scientific domains,

while clustering is often overlooked due to issues with

scalability [3]. A multitude of surveys [3] have been made

available comparing different aspects of clustering algorithms,

in regard to accuracy, complexity, and application domain.

Of the multitude of fields that benefit from data clustering,

medical data analysis is one that would benefit most from

a secure scalable clustering platform. Such fields as Micro

Array clustering, Protein-Protein interaction clustering, medical

resource decision making, medical image processing, and

clustering of epidemiological events all serve to benefit from

larger dataset sizes.

Our algorithm, called Random Projection Hash (RPHash),

was expressly created to provide algorithmic scalability by

operating on distributed datasets. Many clustering algorithms

have been converted to function efficiently on distributed data,

however they often have potential issues regarding asymptotic

scalability [8], dimensionality in which they are effective [9],

and robustness to noise. Although many algorithms have been

proposed for parallel clustering, many issues are still present

when applied to very large, high dimensional, datasets [8]–[12].

The RPHash algorithm combines approximate and random-

ized methods in a new way to solve issues of scalability and

data security for real world distributed data analysis. The focus

on a randomized, and thus non-deterministic, algorithms is

somewhat uncommon in computing, but is quite common for

ill-posed, or combinatorially restrictive problems such as data

clustering. This assertion is complemented by a similar inver-

sion regarding algorithms in computing, in which data from

real world datasets tends to converge much faster than synthetic

datasets. Naturally adversarially crafted worse-case scenarios

[13] can approach exponential time requirements. Our principle

assumption with RPHash is that approximate clustering is

qualitatively similar to exact clustering methods, due to noise,

redundancy, data loss, and the curse of dimensionality [14].

The remainder of this article is organized as follows. Section

II provides some background information on material necessary

for covering various preliminaries important to the description

of our RPHash algorithm. Section III reviews some of the

recent work with similar methods for scalable data clustering.

Section IV provides a detailed description of the RPHash

algorithm. Section V describes how RPHash can cluster data

across a collection of distributed databases while maintaining

the security of the data therein. Section VI contains some

experimental results and a brief summary of findings. Finally,

Section VII contains some concluding remarks.

II. BACKGROUND

Data clustering is a useful tool in pilot data and knowledge

engineering. It is used in a range of problems from practical data

localization and search, to helping augment the understanding

of complex biological, social, and physical structures. The

k-means clustering problem is often defined by the following



optimization over the set of k cluster centroids µ ∈ C on

vectors x ∈ X .

argmin
C

k
∑∑

x∈C

||x− µi||
2

k-means clustering has been shown to be NP-Hard for dimen-

sions ≥ 2 [13], [15]. However much faster runtime algorithms

exist achieving sub-optimal solutions to the k-means clustering

problem for real world datasets, famously the classic Lloyd’s

algorithm.

A. Random Projection Methods

Random projection is a method where vectors are projected

from their original embedding to a lower dimensional subspace

by applying a projection matrix transform (where the projection

matrix is composed of orthogonal vectors from some random

distribution). Random projection embeddings of data can

achieve bounded error distortion very near the L2 norm

optimal subspace embedding that would otherwise result from

the far more computationally intensive principal component

decomposition [16]. The resurgence of the random projection

method of Johnson and Lindenstrauss was reinvigorated with

the work of Achlioptas on Database Friendly Projection

that provided good subspace embeddings requiring minimal

computation costs [17]. The formal definition of a projection

f(·) that preserves discrepancy between any two vectors u and

u′ with probability ǫ is given below.

Theorem 2.1 (JL - Lemma [18]):

(1− ǫ)‖u− u′‖2 ≤ ‖f(u)− f(u′)‖2 ≤ (1 + ǫ)‖u− u′‖2

Under the optimal ǫ-preserving mapping f(·), the Johnson-

Lindenstrauss lemma results in a tight bound for u, u′ ⊆ U and

n = |U |, of d ∼ Θ( log(n)
ε2log(1/ε) ). The bound was later applied

to random orthogonal projections in Frankl and Maehara, and

found to have a similar order on the bound for the projected

subspace dimensionality [19]. Vempala gives a relaxation of

the JL-bound for random orthogonal projections, arriving at

d ∼ Ω(log(n)) [18], with a scaling factor of 1√
n

to preserve

approximate distances between projected vectors. An additional

benefit of using Random Projection for mean clustering is that

randomly projected asymmetric clusters tend to become more

spherical in lower dimensional subspace representations [20].

Mean and medoid clustering algorithms, such as RPHash, are

predisposed to spherical clusters.

B. Discrete Subspace Quantizers

Switching from the continuous spaces of random projections,

a discussion on discrete space partitioning lattices is pursued.

For optimal implementations of the clustering problem, the data

space must be partitioned as evenly as possible. Furthermore

to avoid costly interprocess communication overhead, a univer-

sally generative naming scheme must be established. For known

datasets, the perfect partition of the data space is produced

by the Voronoi partitioning [21]. In 2-dimensional space the

Voronoi Diagram can be generated in Θ(nlog(n))-time [22].

However higher dimensional algorithms have less favorable run

time complexities [23], making them inefficient for partitioning

arbitrarily high dimensions. Instead, a finite lattice structure

is considered, with rotation and shifting transformations to

compensate for gaps in the covering radius of the lattice. A

formal definition of a lattice constructed from a linear code is:

Definition 2.2 (Lattice in R
n [24]): let v1, ..., vn be n linear

independent vectors where vi = vi,1, vi,2, ..., vi,n. The lattice

Λ with basis {v1, ..., vn} is the set of all integer combinations

of v1, ..., vn the integer combinations of the basis vectors are

the points of the lattice.

Λ = {z1v1 + z2v2 + ...+ znvn|zi ∈ Z, 1 ≤ i ≤ n}

Regular lattices formed from binary codes (such as the the

E8 Lattice) have natural enumerations that can be used

as labels for the partitioned regions. The mapping from a

continuous space region to discrete binary sequence is a

hash function. Furthermore, a hash functions with collision

probability dependent on a distance function is called a Locality

Sensitive Hash (LSH) function.

Definition 2.3 (Locality Sensitive Hash Function [25]): let

H = {h : S → U} is (r1, r2, p1, p2)−sensitive if for any

u, v ∈ S

1) if d(u, v) ≤ r1 then PrH[h(u) = h(v)] ≥ p1
2) if d(u, v) > r2 then PrH[h(u) = h(v)] ≤ p2

C. Leech Lattice Decoder

The Leech Lattice is a unique 24 dimensional lattice with

many exceptional properties [26], [27]. Of particular interest

to this work is the Leech Lattice’s packing efficiency. The

Leech Lattice defines an optimal regular sphere packing of

24 dimensional space [28] and will serve nicely as a space

quantizer for RPHash. Furthermore, an efficient decoders for

the Leech Lattice developed by Amrani and Be’ery’s [29] has

a worse-case decoding of only 519 floating point operations.

Although higher dimensional lattices with comparable packing

efficiency exist, in general the decoding complexity scales expo-

nentially with dimension [30], [31]. An alternate decoders are

also shown in the results section and in general originate from

LSH and nearest neighbor algorithm research communities.

III. RELATED WORK

Despite theoretical results showing that k-means has an

exponential worse case complexity [32], many real world

problems tend to fair much better under k-means and other

similar algorithms. For this reason, clustering massive datasets

with k-means, although suffering from unbounded complexity

guarantees, often yields qualitatively good results near the

global optimal solution. Due to approximate solution’s real

world proclivity toward revealing useful results, randomized

methods such as sampling and random dimensional reduction

are often utilized in overcoming complexity growth. The

concept of random projection clustering is not new, having

been explored in a variety papers involving high dimensional

data clustering [8], [9], [33], [34].

The first set of clustering algorithms began with density

based scanning methods. These methods tend to work well





projection matrix, yields a semi-positive definite projection

matrix, that will likely be useful in proving the convergence

of RPHash.

Data

K - number of clusters

X = {x1, ..., xn}, xk ∈ R
m - data vectors

C- a k-HH counter

H - LSH Function

P = {p1, ...pn} - set of projection matrices

L = {{∅}...}
M = {C, [0, ...0]}

Algorithm 1: RPHash Algorithm

forall xk ∈ X do

forall pi ∈ P do

x̃k ←
√

m
d p

⊺

i xk

t = H(x̃k)
L[k][i] = t
C.add(t)

end

end

forall xk ∈ X do

forall ci ∈ C.top(K) do

if L[k] ∩M [i][0] 6= 0 then
∆ = M [k]− xk

M [k] = M [k] + ∆/count
L[k].add(M [i][0])

end

end

end

Result: M

In addition to Achlioptas efficient random projection method

for databases, a further reduction in the number of operation

required for random subspace projection called the Fast Johnson

Lindenstrauss Transform (FJLT) [44]–[46] is currently an active

area of research. FJLT, and similar nearly optimal projection

methods, utilize the local-global duality (Heisenberg Principle)

of the Discrete Fourier Transform to precondition the projection

matrix resulting in a nearly optimal number of steps to compute

an ǫ-distortion random projection [44]–[46]. A sub-linear

bound on the number of operations required for the dominant

projection operation may further improve RPHash’s overall

runtime complexity.

B. Overview of the RPHash algorithm

The basic intuition of RPHash is to combine multi-probe

random projection with discrete space quantization. Following

this intuition, near-neighbor vectors are often projected to the

same partition of the space quantizer, which is regarded as

a hash collision in LSH parlance. As an extension, multi-

probe projection ensures that regions of high density in the

original vector space are projected probabilistically more often

to the same partitions that correspond to density modes in the

original data. In other words, partitions with high collision rates

are good candidates for cluster centroids. To follow common

parameterized k-means methods, the top k densest regions will

be selected.

According to the JL lemma, the sub-projections will conserve

the pairwise distances in the projected space for points with

ǫ-distortion in which the size of the dataset is proportional to

the logarithm of the number of dimensions in the randomly

projected subspace. In addition to compressing a dataset to a

computationally more feasible subspace for performing space

quantization, random projection can also make eccentric cluster

more spherical [18], [36].

Discrete space quantizers play a central role in the RPHash

algorithm. The sequential implementation of the RPHash

algorithm will rely on the efficient Leech lattice decoder of

Vardy, Sun, Be’ery, and Amrani [29], [47]–[49] used as a

space quantizer. The lattice decoder implementation relies on

the decomposition of the binary (24, 22, 8) extended Golay

Code into 4 partitions of the (6, 3, 4) quaternary hexacode and

its relation to the Leech Lattice as a type B lattice construction.

This decomposition and relation to the Golay Code provides a

real worse case decoding complexity well below the asymptoti-

cally exponential bound for trellis decoders as the dimension d
increases [30], [50]. The Leech lattice is a unique lattice in 24

dimensions that is the densest lattice packing of hyperspheres

in 24 dimensional space [27], [28]. The Leech lattice is a

unique lattice in 24 dimensional space with many exceptional

properties, however, of importance to RPHash is that it is the

densest regular lattice possible in 24 dimensions and nearly

optimal among theoretical non-regular packings [51]. The 24

dimensional subspace partitioned by the Leech Lattice is small

enough to exhibit the spherical clustering benefit of random

projection. Low distortion random embeddings are also feasible

for very large dataset (n = Ω(c24)) objects while avoiding the

occultation problem [38]. Furthermore, the decoding of the

Leech lattice is a well studied subject, with a constant worse

case decoding complexity of 331 operations [47].

Space quantizers have hard margin boundaries and will only

correctly decode points that are within the error correcting

radius of its partitions. This is an an issue found in approximate

nearest neighbor search [43], [52] and is overcome in a manner

similar to Panigrahy [52] — by performing multiple random

projections of a vector and then applying the appropriate

locality sensitive to provide a set of hash IDs. Using multiple

random projections of a vector allows the high dimensional

vector to be represented as ‘fuzzy’ regions that are proba-

bilistically dependent on the higher dimensional counterpart.

From Panigrahy [52], the requirement of (Θ(log(n))) random

projection probes is given to achieve c-approximate hash

collisions for the bounded radius, r-near vectors. Random

projection probing adds a Θ(log(n))-complexity coefficient to

the clustering algorithm. The top k cardinality set of lattice

hash ID vector subsets represent regions of high density.

Projected clustering of representative cluster centroids will

not in general be correlated with other projections of data into

projected cluster centroids. To recover data from the projection



Fig. 2: Multiple projections R
3
→ R

2
→ R

3

step, we must map projected vectors back to their original

un-projected data space counterparts. The original data space

vectors can then used to compute centroids corresponding to

the clusters in the projected space. Figure 2 shows an example

of this process for 3 projection probes of R
3 → R

2 → R
3.

standard Lloyd’s algorithm is performed to resolve the overes-

timate of k the number of desired clusters, effectively merging

the k × number of projections representations of centroids in

the original data space.

V. DATA SECURITY: AT NO ADDED COST

Recent United States government initiatives pushing for

the large scale availability of data resources have made vast

quantities of de-identified health information available to the

public. These resources however have prompted advances

in attacks on de-identification of whole genome sequence

data. Such attacks have been used to associate, thought to

be, anonymous medical records with specific individuals [53].

Similar de-anonymization attacks [54], [55] along with a

presidential commission (privacy and progress in WGS) have

prompted a need for better data security of medical records

data. The RPHash algorithm provides an intrinsic solution to

this problem in both the distribution of data among servers

as well as during the communication steps required by the

algorithm.

While attempting to mitigate communication restrictions,

RPHash intrinsically provides some security in the data it

exchanges. Previous attempts at securing data in distributed

systems required additional cryptographic steps [56]. Namely,

the randomly projected centroid IDs, and the aggregation of

only the k-largest cardinality vector sets. Non-distributed data

clustering requires the entire dataset to reside on the processing

system and distributed methods often require communication

of full data records between nodes.

In the subspace projection step of RPHash, nearly-orthogonal

random projection is utilized as a destructive operation,

providing vector anonymity. As a consequence of projecting

the real data vectors to a random subspace via a near, but

not completely orthogonal matrix, destructive data loss occurs

providing a cryptographic “trapdoor” function. The data loss

is an intrinsic part of the RPHash clustering algorithm that has

little adverse effect on its model generation and subsequent

recall accuracy. Given the likelihood that RPHash is applied

to a dataset where the number of vectors n is much greater

than the desired k centroids, recovering an individual’s private

information would require knowledge of n
k (on average) records

in the representative centroid.

A. Finding good random subspaces

For a fixed number of random projections the probability

of finding a good projections converges exponentially to zero

as the number of dimensions d increases [37]. In this work,

the probability of finding ’good’ (or low distortion) versus

unfavorable (high distortion) subspace projections is improved

by both random probing and the use of a high dimensional

projection subspace (following the results of Urruty [38]).

B. Constellation Shaping

One issue encountered with the uniform distribution decoding

lattice was a misappropriation of decoding symbols in the QAM

lattice. Commonly in communication theory, a shaping code

would be applied to data in order to redistribute symbols in

order to minimize the signal energy needed to encode symbols

in regard to the AWGN perturbed communication channel. In

RPHash a similar circumstance is encountered resulting in data

that doesn’t fully utilize the QAM quantization step of the

Leech decoder. To overcome this issue, we employ a quasi-

inverse Gaussian transformation subject the data’s sampled

variance. To save redundant calculation, the inversion is applied

to the QAM constellation points.

VI. EXPERIMENTAL APPROACH

To assure RPHash’s accuracy and performance, tests for

similarity to the standard k-means algorithm, on various real

and synthetic datasets. The experimental approach for testing

RPHash will address several major areas of RPHash’s utility,

namely: Synthetic Algorithm Accuracy, Real World Data Set

Accuracy, and Overall Scalability.

A required analysis of any k-means algorithm is in its ability

to correctly categorize unseen data. Therefore it is imperative

that RPHash perform comparable to the standard k-means

algorithm in regard to precision recall. In order to evaluate

RPHash over a continuously changing dataset we first consider

the clustering of synthetic Gaussian clusters. Using synthetic

data we can arbitrarily scale the dataset variance, number of

clusters, and dimensionality and measure overall clustering and

timing performance.

In addition, we include a more thorough analysis of RPHash

metrics in regard to various real world datasets, against a

collection of standard clustering algorithms. To evaluate the real

world performance of RPHash, we applied it to five different

datasets and compared the results of RPHash to those produced

by six other well established clustering algorithms, each of

which is known to produce fairly accurate results on different

types of data distributions. The R implementations used for

the six other clustering algorithms are listed below:

• K-Means:It is implemented with ’kmeans’ in R [57].

• Four methods of Agglomerative Hierarchical clustering:

Single Linkage, Complete Linkage, Average Linkage







Algorithm Runtime ARI Accuracy Kappa

k-means 3 2 2 2
Single 4 6 7 6
Complete 5 6 7 6
Average 6 6 7 6
Ward’s 7 1 4 7
SOTA 2 3 1 1
RPHash 1 7 3 3

TABLE IV: Internet Advertisement Dataset

Algorithm Runtime ARI Accuracy Kappa

k-means 2 2 2 2
Single 6 7 5 5
Complete 4 5 3 3
Average 3 7 5 5
Ward’s 5 1 7 7
SOTA 7 4 1 1
RPHash 1 3 6 6

TABLE V: CNAE-9 Dataset

B. Security Performance

Due to the inability to anticipate all possible cryptographic

attacks on deanonimization, a qualitative measure of data

obfuscation is developed for comparing a fully qualified vector

v ∈ V
d with its corresponding projected vectors v′ ∈ V

d.

Where v′ is the inverse projection of u ∈ V
s that results

from the random projection of v. Destructive data obfuscation

occurs if the distance between v′ and v is greater than the

distance between v and some other vector v̂ ∈ V
d. The

inverse projection matrix R−1
d→s will be used to map u back to

v’s original subspace. The two equations below describe the

projection of v to u and the theoretical inverse of the projection

from u to v′ under the matrix transform Rd→s where d > s.

u =

√

n

k
RT

d→sv, v
′ =

√

k

n
uTR−1

d→s

The above inversion is theoretical however due to the orthogonal

projection Rd→s being non-square and not invertible. Therefore,

for a projection matrix Rd→s the least squares solution R̂−1
d→s

will serves as the optimal inverse of the projection. Even in the

not strictly orthogonal random projection case (as in Achlioptas

[17] and RPHash) the least-squares solution will result in an

over-determined system of equations. Which implies that any

pseudo-inverse projection of a vector in V s to V d will result in

unrecoverable data loss for non-trivial (i.e., <0>,<1>) cases.

The goal in testing the security of RPHash is to show that the

data loss is sufficient to make it impossible for an attacker to

re-associate the projected vectors. A formal definition of the

requirement for destructive data obfuscation follows:

s(v, v′) = ||v, v′||2,

Algorithm Runtime ARI Accuracy Kappa

k-means 3 2 6 6
Single 4 5 4 5
Complete 6 7 2 2
Average 5 6 3 4
Ward’s 7 3 1 1
SOTA 2 1 7 7
RPHash 1 4 5 3

TABLE VI: CiteSeer Dataset
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Fig. 5: Probability of Vector Re-association for MIMIC II BioMetric
Signatures

∀{v, v′} ∈ V, ∃v̂ ∈ V : s(v, v′) > s(v̂, v) where v̂ 6= v or

Pr(NN((v ·R) · R̂−1, V ) = v) .
1

||V ||

In Figure 5 a subset of the publicly available MIMIC II

biometric data [63] was used to generate patient signatures.

The top 64 most prevalent frequencies as identified via power

spectral density estimation were take from the signals “RESP”,

“ABP”, “ECG II” and “PLETH” of 38 patients were taken

and composited into a 38 × 256 data matrix, on which

clustering was performed. The overall bi-clustering in full

and reduced dimensions showed little to no degradation over

full and reduced subspaces down to 10 dimensions. This

is further corroborated on additional data in Bingham [20].

Following the above definition of destructive data obfuscation,

we constructed a test on the MIMIC II data. The Moore-Penrose

inverse generated from the reciprocal of the singular value

decomposition diagonal matrix is generated from the projection

matrix and used as the least squares inverse projection to remap

the projected vectors to their original subspace. The nearest

neighbor method was then used to query the original set of

vectors to see if a vector can be re-associated with itself. In

the results it is clear that as dimensionality increases, the

probability of re-association converges to random coincidence

of a Bernoulli trial ((1 − (1/n))n) ≈ .363. The successful

re-associate rate follows an inverse power-law like distribution.

In regard to security performance, It is fairly clear that

data becomes unrecoverable when the difference between the

original data embedding and the projected space exceeds 75

dimensions. Given that RPHash’s native clustering space is

24 dimensions, this case occurs for a wide variety of high

dimensional datasets, namely those that exceed 99 dimensions.

VII. CONCLUSION

The RPHash algorithm combines approximate and random-

ized methods in a new way to solve issues of scalability and data

security for cluster analysis on distributed data. The runtime



and Precision-Recall performance of RPHash is similar to that

of the standard k-means clustering algorithm, with the added

benefit of being scalable to very large datasets. This randomized,

clustering algorithm is well suited for ill-posed, combinatorially

restrictive problems such as clustering and partitioning. This

assertion is complemented by a similar inversion regarding

clustering and computing, in which real world problems tend

to converge much faster than adversarially crafted worse-case

problems.

The principle assumption in this work is that approximate and

exact clustering, are qualitatively similar due to noise, redun-

dancy, data loss, and the curse of dimensionality. Furthermore,

the addition of random noise to the clustering dataset resulting

from the random subspace projection requirement, provides

some degree of non-deterministic process, so subsequent

iterations of the algorithm could potentially find better results.

Making the process of finding better clustering results, a matter

of available processing time and resources. Furthermore, the

destructive projection process affords us a certain degree of

data privacy while requiring no additional processing.

Clustering has long been the standard method used for the

analysis of labeled and unlabeled data. Clusterings effects

intrinsically identify dissimilar and similar objects in a dataset,

often unattainable through standard statistical methods. Single

pass, data intensive statistical methods are often the primary

workhorses for database processing of business logic and other

domains, while clustering is often overlooked due to issue in

its scalability.

Applications such as Micro Array clustering, Protein-Protein

interaction clustering, medical resource decision making, medi-

cal image processing, and clustering of epidemiological events

all serve to benefit from larger dataset sizes that RPHash

enables.
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