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Abstract—This paper presents a solution to the approximate
k-means clustering problem for very large distributed datasets.
Distributed data models have gained popularity in recent years
following the efforts of commercial, academic and government
organizations, to make data more widely accessible. Due to the
sheer volume of available data, in-memory single-core compu-
tation quickly becomes infeasible, requiring distributed multi-
processing. Our solution achieves comparable clustering perfor-
mance to other popular clustering algorithms, with improved
overall complexity growth while being amenable to distributed
processing frameworks such as Map-Reduce. Our solution also
maintains certain guarantees regarding data privacy deanoni-
mization.

I. INTRODUCTION

Data clustering is an inherent problem in data analysis. It is
the principle workhorse of many types of pilot data analysis and
various data retrieval methods. Due to its importance in machine
learning, data clustering is studied extensively in computing and
mathematics [1]-[7]. Recent advances in data aggregation of
online and distributed source provide nearly limitless sources of
data to be clustered. For this reason we developed an algorithm
to solve the popular version of clustering called the k-means
clustering problem for distributed datasets. While providing
certain data security assurances for data in transit and at rest,
our solution offers comparable clustering performance to offline
solutions on a variety of synthetic and real world datasets.

Clustering has long been the standard method used for
the analysis of labeled and unlabeled data. The effect of
clustering data allows for identifying dissimilar and similar
objects in a dataset, that are often unattainable through standard
single pass statistical methods. Single pass, data intensive,
statistical methods are often the primary workhorses for
database processing of business logic and scientific domains,
while clustering is often overlooked due to issues with
scalability [3]. A multitude of surveys [3] have been made
available comparing different aspects of clustering algorithms,
in regard to accuracy, complexity, and application domain.
Of the multitude of fields that benefit from data clustering,
medical data analysis is one that would benefit most from
a secure scalable clustering platform. Such fields as Micro
Array clustering, Protein-Protein interaction clustering, medical
resource decision making, medical image processing, and
clustering of epidemiological events all serve to benefit from
larger dataset sizes.
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Our algorithm, called Random Projection Hash (RPHash),
was expressly created to provide algorithmic scalability by
operating on distributed datasets. Many clustering algorithms
have been converted to function efficiently on distributed data,
however they often have potential issues regarding asymptotic
scalability [8], dimensionality in which they are effective [9],
and robustness to noise. Although many algorithms have been
proposed for parallel clustering, many issues are still present
when applied to very large, high dimensional, datasets [8]-[12].

The RPHash algorithm combines approximate and random-
ized methods in a new way to solve issues of scalability and
data security for real world distributed data analysis. The focus
on a randomized, and thus non-deterministic, algorithms is
somewhat uncommon in computing, but is quite common for
ill-posed, or combinatorially restrictive problems such as data
clustering. This assertion is complemented by a similar inver-
sion regarding algorithms in computing, in which data from
real world datasets tends to converge much faster than synthetic
datasets. Naturally adversarially crafted worse-case scenarios
[13] can approach exponential time requirements. Our principle
assumption with RPHash is that approximate clustering is
qualitatively similar to exact clustering methods, due to noise,
redundancy, data loss, and the curse of dimensionality [14].

The remainder of this article is organized as follows. Section
II provides some background information on material necessary
for covering various preliminaries important to the description
of our RPHash algorithm. Section III reviews some of the
recent work with similar methods for scalable data clustering.
Section IV provides a detailed description of the RPHash
algorithm. Section V describes how RPHash can cluster data
across a collection of distributed databases while maintaining
the security of the data therein. Section VI contains some
experimental results and a brief summary of findings. Finally,
Section VII contains some concluding remarks.

II. BACKGROUND

Data clustering is a useful tool in pilot data and knowledge
engineering. It is used in a range of problems from practical data
localization and search, to helping augment the understanding
of complex biological, social, and physical structures. The
k-means clustering problem is often defined by the following



optimization over the set of & cluster centroids y € C' on
vectors x € X.
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k-means clustering has been shown to be NP-Hard for dimen-
sions > 2 [13], [15]. However much faster runtime algorithms
exist achieving sub-optimal solutions to the k-means clustering
problem for real world datasets, famously the classic Lloyd’s
algorithm.

A. Random Projection Methods

Random projection is a method where vectors are projected
from their original embedding to a lower dimensional subspace
by applying a projection matrix transform (where the projection
matrix is composed of orthogonal vectors from some random
distribution). Random projection embeddings of data can
achieve bounded error distortion very near the Lo norm
optimal subspace embedding that would otherwise result from
the far more computationally intensive principal component
decomposition [16]. The resurgence of the random projection
method of Johnson and Lindenstrauss was reinvigorated with
the work of Achlioptas on Database Friendly Projection
that provided good subspace embeddings requiring minimal
computation costs [17]. The formal definition of a projection
f(-) that preserves discrepancy between any two vectors « and
u’ with probability € is given below.

Theorem 2.1 (JL - Lemma [18]):

(L= oflu—u'* < [[f(w) = f)]* < A+ ) fu—u|?

Under the optimal e-preserving mapping f(-), the Johnson-
Lindenstrauss lemma results in a tight bound for w, v’ C U and
n=|U|, of d ~ @(%). The bound was later applied
to random orthogonal projections in Frankl and Maehara, and
found to have a similar order on the bound for the projected
subspace dimensionality [19]. Vempala gives a relaxation of
the JL-bound for random orthogonal projections, arriving at
d ~ Q(log(n)) [18], with a scaling factor of —= to preserve
approximate distances between projected vectors. An additional
benefit of using Random Projection for mean clustering is that
randomly projected asymmetric clusters tend to become more
spherical in lower dimensional subspace representations [20].
Mean and medoid clustering algorithms, such as RPHash, are
predisposed to spherical clusters.

B. Discrete Subspace Quantizers

Switching from the continuous spaces of random projections,
a discussion on discrete space partitioning lattices is pursued.
For optimal implementations of the clustering problem, the data
space must be partitioned as evenly as possible. Furthermore
to avoid costly interprocess communication overhead, a univer-
sally generative naming scheme must be established. For known
datasets, the perfect partition of the data space is produced
by the Voronoi partitioning [21]. In 2-dimensional space the
Voronoi Diagram can be generated in ©(nlog(n))-time [22].
However higher dimensional algorithms have less favorable run

time complexities [23], making them inefficient for partitioning
arbitrarily high dimensions. Instead, a finite lattice structure
is considered, with rotation and shifting transformations to
compensate for gaps in the covering radius of the lattice. A
formal definition of a lattice constructed from a linear code is:

Definition 2.2 (Lattice in R™ [24]): let vy, ..., v, be n linear
independent vectors where v; = v; 1, V; 2, ..., Vi .n. The lattice
A with basis {v1,...,v,} is the set of all integer combinations
of v1,...,v, the integer combinations of the basis vectors are
the points of the lattice.

A={z1v1 + 2000 + ... + z,Up|2; €Z,1 < i < n}

Regular lattices formed from binary codes (such as the the
E8 Lattice) have natural enumerations that can be used
as labels for the partitioned regions. The mapping from a
continuous space region to discrete binary sequence is a
hash function. Furthermore, a hash functions with collision
probability dependent on a distance function is called a Locality
Sensitive Hash (LSH) function.

Definition 2.3 (Locality Sensitive Hash Function [25]): let
H={h:S — U} is (r1,re,p1,p2)—sensitive if for any
u,v €S

1) if d(u,v) < ry then Pryglh(u) = h(v)] > p1

2) if d(u,v) > ro then Pryg[h(u) = h

C. Leech Lattice Decoder

The Leech Lattice is a unique 24 dimensional lattice with
many exceptional properties [26], [27]. Of particular interest
to this work is the Leech Lattice’s packing efficiency. The
Leech Lattice defines an optimal regular sphere packing of
24 dimensional space [28] and will serve nicely as a space
quantizer for RPHash. Furthermore, an efficient decoders for
the Leech Lattice developed by Amrani and Be’ery’s [29] has
a worse-case decoding of only 519 floating point operations.
Although higher dimensional lattices with comparable packing
efficiency exist, in general the decoding complexity scales expo-
nentially with dimension [30], [31]. An alternate decoders are
also shown in the results section and in general originate from
LSH and nearest neighbor algorithm research communities.

III. RELATED WORK

Despite theoretical results showing that k-means has an
exponential worse case complexity [32], many real world
problems tend to fair much better under k-means and other
similar algorithms. For this reason, clustering massive datasets
with k-means, although suffering from unbounded complexity
guarantees, often yields qualitatively good results near the
global optimal solution. Due to approximate solution’s real
world proclivity toward revealing useful results, randomized
methods such as sampling and random dimensional reduction
are often utilized in overcoming complexity growth. The
concept of random projection clustering is not new, having
been explored in a variety papers involving high dimensional
data clustering [8], [9], [33], [34].

The first set of clustering algorithms began with density
based scanning methods. These methods tend to work well



on spatially separated datasets with relatively low dimension.
A common clustering problem for these types of algorithms
would be on geo-spatial data, in geographic data systems
(GIS) and image segmentation. The algorithms DBScan [33],
Clique [34], and CLARANS [9], respectively, represent a
successful progression of the density scanning techniques.
Although density scan algorithms are often scalable, they often
show weaknesses in accuracy when scaling the number of
dimensions.

Another important feature of our algorithm (RPHash) is the
use of random projection clustering. A proof of the convergence
of projected k-means clustering is given in Boutsidis [35].
Proclus [8] was an even earlier application that explored random
projection for clustering. The merits of random projection are
discussed in [36] who suggest that random projection not only
compresses sparse datasets making them computationally more
tractable but also may help overall accuracy by alleviated round-
off issues caused by non-homoscedastic variance by generating
more spherical clusters in a more dense subspace.

In addition to Proclus, various other methods and analysis
have been proposed for clustering with random projections
that provide bounds on the convergence and limits of random
projection clustering. Florescu gives bounds on the scaling and
convergence of projected clustering [37]. Their results closely
follow the logic of Urruty [38], and find that the number
of orthogonal projections required, is logarithmic in n, the
number of vectors to be clustered. Following that the probability
of a random projection plane offering a good partitioning
increases exponentially as the number of dimensions in the
projected subspace increases. Bingham et al provide examples
of projected clustering well below the JL. bound [20] and Bartal
et al make these assertions mathematically rigorous showing
that the projected subspace is independent of the data’s original
dimensionality [39].

Other clustering by random projection algorithms have been
explored that are similar to RPHash, but for projections on the
line. These so called cluster ensemble approaches [40]-[42]
use histograms to identify cluster regions of high density much
like RPHash. Although, as suggested in Florescu and Urruty,
the single dimension approach may be plagued by issues of
occultation, and exponential convergence as d increases. Figure
1 shows a brief example of projection occultation for Gaussian
clusters in R3 space, projected to R? space. In Figure 1 it
is clear that even modest reductions of 3 dimensions to 2
dimensions can yield unwanted results.

IV. RPHASH ALGORITHM

RPHash is a distributed algorithm for dense region identi-
fication as a precursor to a more computationally intensive
clustering algorithms (k-Means, LDA, Mean Shift) or as a
standalone approximate clustering algorithm. It is the latter
case is that will be more thoroughly investigated in this
discussion, with a brief discussion on RPHash’s potential as a
density selection pre-conditioner. In the (RPHash) algorithm,
both approximate and randomized techniques are employed to
provide a stochastic element to our clustering algorithm. To
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Fig. 1: Random Projection of Gaussian Clusters in R® — R?

combat the curse of dimensionality (COD), RPHash performs
multi-probe, random projection with Gaussian blurring of high
dimensional vectors to the unique partitions of the Leech Lattice
(A2q) [43].

A. Overview of RPHash

An outline of the steps in the RPHash algorithm (Algorithm
1) is given below. Some of the aspects of its function in regards
to randomness and approximation are highlighted here. One
way that the RPHash algorithm achieves scalability is through
the generative nature of its region assignment. Clustering region
assignments are performed by decoding vector points into
partitions of the Leech Lattice.

In most cases the problem space will not be exactly 24
dimensional. The Johnson-Lindenstrauss (JL) lemma and
subsequently, random projection provides a solution to this
problem and provides additional benefits II-A. JL states that for
an arbitrary set of n points in m dimensional space, a projection
exists onto a d-dimensional subspace such that all points are
linearly separable with e-distortion following d oc Q(Eé?gg}e)
Although many options for projections exists, a simple and
sufficient method for high dimensions is to form the projection
matrix 7;; € Ris m x d as follows:

+1, with probability %

r;j = 40,  with probability % [17]
1
6

—1, with probability

Although the Leech lattices partitions provide optimal sphere
packing in 24 dimensions for regular lattices, (an unrelated
version of the curse of dimensionality) the overall density of
the lattice is sparse at 0.001930. To overcome this, RPHash
“blurs” the projected data by apply shifts to projected vectors
to more fully cover the R?* subspace and performing multiple
probes of the Leech Lattice partitions in addition to the vector
V24 : VUgqg = {1)24, Voq + N(O, 1)24} .

The approximation of a random projection is computationally
efficient for large datasets, and unlike a truly Gaussian



projection matrix, yields a semi-positive definite projection
matrix, that will likely be useful in proving the convergence
of RPHash.

Data

K - number of clusters

X ={x1,...,xn}, v € R™ - data vectors
C- a k-HH counter

H - LSH Function

P = {p1,...pn} - set of projection matrices
L={{o}..}

M ={C,|0,...0}

Algorithm 1: RPHash Algorithm

forall z;, € X do

forall p; € P do
Ty \/?p;rl'k
t = H(z%)
Lik)li] =t
Cl.add(t)

end

end
orall x;, € X do
forall c; € C.top(K) do
if L[k] N M[i][0] # O then
A= M[k] — T
M{[k] = M[k] + A/count
L[k].add(M i][0])
end
end

)

end
Result: M

In addition to Achlioptas efficient random projection method
for databases, a further reduction in the number of operation
required for random subspace projection called the Fast Johnson
Lindenstrauss Transform (FJLT) [44]-[46] is currently an active
area of research. FJLT, and similar nearly optimal projection
methods, utilize the local-global duality (Heisenberg Principle)
of the Discrete Fourier Transform to precondition the projection
matrix resulting in a nearly optimal number of steps to compute
an e-distortion random projection [44]-[46]. A sub-linear
bound on the number of operations required for the dominant
projection operation may further improve RPHash’s overall
runtime complexity.

B. Overview of the RPHash algorithm

The basic intuition of RPHash is to combine multi-probe
random projection with discrete space quantization. Following
this intuition, near-neighbor vectors are often projected to the
same partition of the space quantizer, which is regarded as
a hash collision in LSH parlance. As an extension, multi-
probe projection ensures that regions of high density in the
original vector space are projected probabilistically more often
to the same partitions that correspond to density modes in the

original data. In other words, partitions with high collision rates
are good candidates for cluster centroids. To follow common
parameterized k-means methods, the top k densest regions will
be selected.

According to the JL lemma, the sub-projections will conserve
the pairwise distances in the projected space for points with
e-distortion in which the size of the dataset is proportional to
the logarithm of the number of dimensions in the randomly
projected subspace. In addition to compressing a dataset to a
computationally more feasible subspace for performing space
quantization, random projection can also make eccentric cluster
more spherical [18], [36].

Discrete space quantizers play a central role in the RPHash
algorithm. The sequential implementation of the RPHash
algorithm will rely on the efficient Leech lattice decoder of
Vardy, Sun, Be’ery, and Amrani [29], [47]-[49] used as a
space quantizer. The lattice decoder implementation relies on
the decomposition of the binary (24,22, 8) extended Golay
Code into 4 partitions of the (6,3,4) quaternary hexacode and
its relation to the Leech Lattice as a type B lattice construction.
This decomposition and relation to the Golay Code provides a
real worse case decoding complexity well below the asymptoti-
cally exponential bound for trellis decoders as the dimension d
increases [30], [S0]. The Leech lattice is a unique lattice in 24
dimensions that is the densest lattice packing of hyperspheres
in 24 dimensional space [27], [28]. The Leech lattice is a
unique lattice in 24 dimensional space with many exceptional
properties, however, of importance to RPHash is that it is the
densest regular lattice possible in 24 dimensions and nearly
optimal among theoretical non-regular packings [51]. The 24
dimensional subspace partitioned by the Leech Lattice is small
enough to exhibit the spherical clustering benefit of random
projection. Low distortion random embeddings are also feasible
for very large dataset (n = €2(c?*)) objects while avoiding the
occultation problem [38]. Furthermore, the decoding of the
Leech lattice is a well studied subject, with a constant worse
case decoding complexity of 331 operations [47].

Space quantizers have hard margin boundaries and will only
correctly decode points that are within the error correcting
radius of its partitions. This is an an issue found in approximate
nearest neighbor search [43], [52] and is overcome in a manner
similar to Panigrahy [52] — by performing multiple random
projections of a vector and then applying the appropriate
locality sensitive to provide a set of hash IDs. Using multiple
random projections of a vector allows the high dimensional
vector to be represented as ‘fuzzy’ regions that are proba-
bilistically dependent on the higher dimensional counterpart.
From Panigrahy [52], the requirement of (©(log(n))) random
projection probes is given to achieve c-approximate hash
collisions for the bounded radius, r-near vectors. Random
projection probing adds a ©(log(n))-complexity coefficient to
the clustering algorithm. The top k cardinality set of lattice
hash ID vector subsets represent regions of high density.

Projected clustering of representative cluster centroids will
not in general be correlated with other projections of data into
projected cluster centroids. To recover data from the projection
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Fig. 2: Multiple projections R® — R? — R?

step, we must map projected vectors back to their original
un-projected data space counterparts. The original data space
vectors can then used to compute centroids corresponding to
the clusters in the projected space. Figure 2 shows an example
of this process for 3 projection probes of R? — R? — R3,
standard Lloyd’s algorithm is performed to resolve the overes-
timate of k the number of desired clusters, effectively merging
the k£ x number of projections representations of centroids in
the original data space.

V. DATA SECURITY: AT NO ADDED COST

Recent United States government initiatives pushing for
the large scale availability of data resources have made vast
quantities of de-identified health information available to the
public. These resources however have prompted advances
in attacks on de-identification of whole genome sequence
data. Such attacks have been used to associate, thought to
be, anonymous medical records with specific individuals [53].
Similar de-anonymization attacks [54], [55] along with a
presidential commission (privacy and progress in WGS) have
prompted a need for better data security of medical records
data. The RPHash algorithm provides an intrinsic solution to
this problem in both the distribution of data among servers
as well as during the communication steps required by the
algorithm.

While attempting to mitigate communication restrictions,
RPHash intrinsically provides some security in the data it
exchanges. Previous attempts at securing data in distributed
systems required additional cryptographic steps [56]. Namely,
the randomly projected centroid IDs, and the aggregation of
only the k-largest cardinality vector sets. Non-distributed data
clustering requires the entire dataset to reside on the processing
system and distributed methods often require communication
of full data records between nodes.

In the subspace projection step of RPHash, nearly-orthogonal
random projection is utilized as a destructive operation,
providing vector anonymity. As a consequence of projecting
the real data vectors to a random subspace via a near, but
not completely orthogonal matrix, destructive data loss occurs
providing a cryptographic “trapdoor” function. The data loss
is an intrinsic part of the RPHash clustering algorithm that has
little adverse effect on its model generation and subsequent
recall accuracy. Given the likelihood that RPHash is applied

to a dataset where the number of vectors n is much greater
than the desired k centroids, recovering an individual’s private
information would require knowledge of 7* (on average) records
in the representative centroid.

A. Finding good random subspaces

For a fixed number of random projections the probability
of finding a good projections converges exponentially to zero
as the number of dimensions d increases [37]. In this work,
the probability of finding ’good’ (or low distortion) versus
unfavorable (high distortion) subspace projections is improved
by both random probing and the use of a high dimensional
projection subspace (following the results of Urruty [38]).

B. Constellation Shaping

One issue encountered with the uniform distribution decoding
lattice was a misappropriation of decoding symbols in the QAM
lattice. Commonly in communication theory, a shaping code
would be applied to data in order to redistribute symbols in
order to minimize the signal energy needed to encode symbols
in regard to the AWGN perturbed communication channel. In
RPHash a similar circumstance is encountered resulting in data
that doesn’t fully utilize the QAM quantization step of the
Leech decoder. To overcome this issue, we employ a quasi-
inverse Gaussian transformation subject the data’s sampled
variance. To save redundant calculation, the inversion is applied
to the QAM constellation points.

VI. EXPERIMENTAL APPROACH

To assure RPHash’s accuracy and performance, tests for
similarity to the standard k-means algorithm, on various real
and synthetic datasets. The experimental approach for testing
RPHash will address several major areas of RPHash’s utility,
namely: Synthetic Algorithm Accuracy, Real World Data Set
Accuracy, and Overall Scalability.

A required analysis of any k-means algorithm is in its ability
to correctly categorize unseen data. Therefore it is imperative
that RPHash perform comparable to the standard k-means
algorithm in regard to precision recall. In order to evaluate
RPHash over a continuously changing dataset we first consider
the clustering of synthetic Gaussian clusters. Using synthetic
data we can arbitrarily scale the dataset variance, number of
clusters, and dimensionality and measure overall clustering and
timing performance.

In addition, we include a more thorough analysis of RPHash
metrics in regard to various real world datasets, against a
collection of standard clustering algorithms. To evaluate the real
world performance of RPHash, we applied it to five different
datasets and compared the results of RPHash to those produced
by six other well established clustering algorithms, each of
which is known to produce fairly accurate results on different
types of data distributions. The R implementations used for
the six other clustering algorithms are listed below:

o K-Means:It is implemented with ’kmeans’ in R [57].

o Four methods of Agglomerative Hierarchical clustering:

Single Linkage, Complete Linkage, Average Linkage



and Ward’s minimum variance method. At each stage
distances between clusters are recomputed by the Lance-
Williams dissimilarity update formula according to the
particular clustering method being used. Ward’s (1963)
clustering criterion, where the dissimilarities are squared
before cluster updating, is used in the implementation
of Ward’s method (Murtagh and Legendre 2014). All of
these agglomerative clustering methods are implemented
with “hclust’ in R.

o Self-organizing Tree Algorithm (SOTA): It is implemented
with ’sota’ (Package ’clValid’) in R [58].

For each of the five datasets, ground-truth partitions are
known a priori. The ground-truth labels are compared with
labels produced by each clustering algorithm to compute
the values of three different external measures of clustering
validation, viz., Adjusted Rand Index, Accuracy and the Kappa
Statistic. We have run each of K-Means and RPHash 20 times
on each dataset and have constructed 95% confidence intervals
for the obtained results. The other clustering algorithms have
been run only once as their outputs do not change from one
run to another.

Along with external measures, we have captured average
runtimes for each algorithm (‘user time’ in R) on a computer
having Intel(R) Core(TM) i7-4770 CPU with 4 cores @
3.40GHz supporting 8 hardware threads with 32 GB memory.

A. Datasets and Results

RPHash and Projected k-means to 24 dimension was
performed on real and synthetic datasets. The limit to 24
dimensions is equal to the dimensionality of the Leech lattice
decoder used in RPHash and was chosen for two reasons. First,
k-means on very large datasets requires excessive amounts
of time and space to complete. Second, the performance on
non-projected data becomes nonequivalent, as the k-means
algorithm would in effect be processing a different dataset. In
order to mimic, multi-projection RPHash, k-means was given
an equivalent multi-projection ratio and allowed to over-sample
the k£ parametric k- clusters, similar to [59].

The synthetic datasets consists of £ homoscedastic Gaussian
clusters in R? with centroids chosen from a uniform [—1, 1]
random distribution. For each cluster center an n/k set of
vectors will be generated by an additive Gaussian noise
permutation of variance (var) added to the centroid. This results
in n vectors partitioned into k£ Gaussian clusters. From this half
of the vectors will be reserved for training, and the other half
for testing accuracy. The synthetic dataset compares precision
recall performance and processing time on variable variance,
number of clusters and number of vectors. With exception of
the varying parameter, the dataset was generated from R0V,
variance = 1.0 , and number of vectors = 100000, and £ = 30.
k-means was tested against 2 variants of RPHash. The first
variant(rep) selects a single representative vector from the set
of vectors within a high density partition while the second(avg)
averages all vectors within the partition.

Results on synthetic data in Figure 3 shows projected k-
means (red x), single projection RPHash (blue o), multiple
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Fig. 3: Precision Recall Performance for Various Synthetic Data Sets

projection RPHash with a single representative centroid (green
), and multiple projection RPHash with mean representa-
tives(purple A) performed on k clusters n Gaussian distributed
vectors in d dimensions. Logistic regression (solid lines) with
error bounds (shaded area) is given for all simulations.
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Fig. 4: Computation Time for Various Synthetic Data Sets

In Figure 4 an analysis of the time complexity for projected
k-means (red x), single projection RPHash (blue o), multiple
projection RPHash with a single representative centroid (green
0), and multiple projection RPHash with mean representa-
tives(purple A) on k clusters with n Gaussian distributed

Dataset Vectors | Attributes | Clusters
WebKB 256 1703 5
Cora 2708 1443 7
Internet Ad | 3279 1558 2
CNAE-9 1080 856 9
CiteSeer 3312 3703 6

TABLE I. Real-World Datasets

Algorithm | Runtime | ARI | Accuracy | Kappa
k-means 6 1 6 3
Single 3 6 4 6
Complete 5 7 5 7
Average 3 6 4 6
Ward’s 4 3 2 2
SOTA 7 2 1 1
RPHash 1 4 7 4

TABLE II: WebKB Wisconsin Dataset

vectors in d dimensions. Logistic regression (solid lines) with
error bounds (shaded area) is given for all simulations.

For both RPHash variants, processing time is slightly longer,
but the Precision Recall performance is better than k-means.
The success of the RPHash algorithms in comparison suggests
that it is within a constant factor processing time, and would
surpass it for distributed architectures.

The real world datasets consist of 5 high dimensional datasets
from various technical fields. Parameters for the datasets are
given in Table I, and consist of WebKB (Wisconsin) Dataset
[60], Cora Dataset [60], CiteSeer Dataset [60] and CNAE-9
Dataset [61] of natural language data. In addition, we tested
our algorithm against the Internet Advertisements Datasets [62]
containing mixed natural language and image data.

We applied k-means, Hierarchical Agglomerative (single,
complete, average, Ward’s), SOTA and RPHash to our real
world clustering tasks. Results are given in Tables II, III, IV,
V, and VI with runtime, ARI, Accuracy and Kappa statistic
ranked for the clustering techniques. Gold entries represent top
performance while blue represents worst performance for each
dataset and metric.

Our results show that RPhash performs equivalently to the
test clustering techniques with ranking results being mixed
among the datasets and for all categories except Runtime. Our
goal of RPHash was to create a fast distributed algorithm, which
is evidenced in its dominance of this category. Ranking also
reinforces the continued effectiveness of the standard k-means
clustering algorithm, as both a fast and accurate algorithm.
Furthermore SOTA is also shown to be a good alternative but
a bit less stable than k-means.

Algorithm | Runtime | ARI | Accuracy | Kappa
k-means 3 1 2 4
Single 4 7 3 2
Complete 5 4 7 6
Average 6 7 6 3
Ward’s 7 2 6 7
SOTA 2 3 6 5
RPHash 1 5 2 1

TABLE III: Cora Dataset



Algorithm | Runtime | ARI | Accuracy | Kappa
k-means 3 2 2
Single 4 6 7 6
Complete 5 6 7 6
Average 6 6 7 6
Ward’s 7 1 4 7
SOTA 2 3 1 1
RPHash 1 7 3 3

TABLE 1V: Internet Advertisement Dataset

Algorithm | Runtime | ARI | Accuracy | Kappa
k-means 2 2 2 2
Single 6 7 5 5
Complete 4 5 3 3
Average 3 7 5 5
Ward’s 5 1 7 7
SOTA 7 4 1 1
RPHash 1 3 6 6

TABLE V: CNAE-9 Dataset

B. Security Performance

Due to the inability to anticipate all possible cryptographic
attacks on deanonimization, a qualitative measure of data
obfuscation is developed for comparing a fully qualified vector
v € V? with its corresponding projected vectors v’ € V9.
Where ¢’ is the inverse projection of u € V* that results
from the random projection of v. Destructive data obfuscation
occurs if the distance between v’ and v is greater than the
distance between v and some other vector © € V<. The
inverse projection matrix Rgis will be used to map u back to
v’s original subspace. The two equations below describe the
projection of v to u and the theoretical inverse of the projection
from u to v’ under the matrix transform R4_., where d > s.

%Rg—hsv’ v’ = EUTR(;LS
The above inversion is theoretical however due to the orthogonal
projection R, s being non-square and not invertible. Therefore,
for a projection matrix Rg_,, the least squares solution R;is
will serves as the optimal inverse of the projection. Even in the
not strictly orthogonal random projection case (as in Achlioptas
[17] and RPHash) the least-squares solution will result in an
over-determined system of equations. Which implies that any
pseudo-inverse projection of a vector in V* to V¢ will result in

u =

unrecoverable data loss for non-trivial (i.e., <0>,<1>) cases.

The goal in testing the security of RPHash is to show that the
data loss is sufficient to make it impossible for an attacker to
re-associate the projected vectors. A formal definition of the
requirement for destructive data obfuscation follows:

s(v,0') = [[o,0"]]2,
Algorithm | Runtime | ARI | Accuracy | Kappa
k-means 3 2 6 6
Single 4 5 4 5
Complete 6 7 2 2
Average 5 6 3 4
Ward’s 7 3 1 1
SOTA 2 1 7 7
RPHash 1 4 5 3

TABLE VI: CiteSeer Dataset
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Fig. 5: Probability of Vector Re-association for MIMIC II BioMetric
Signatures

V{v,v'} € V,30 € V : s(v,v") > s(0,v) where 0 # v or

Pr(NN((v-R)-R™LV)=uv) < ﬁ
In Figure 5 a subset of the publicly available MIMIC II
biometric data [63] was used to generate patient signatures.
The top 64 most prevalent frequencies as identified via power
spectral density estimation were take from the signals “RESP”,
“ABP”, “ECG II” and “PLETH” of 38 patients were taken
and composited into a 38 x 256 data matrix, on which
clustering was performed. The overall bi-clustering in full
and reduced dimensions showed little to no degradation over
full and reduced subspaces down to 10 dimensions. This
is further corroborated on additional data in Bingham [20].
Following the above definition of destructive data obfuscation,
we constructed a test on the MIMIC II data. The Moore-Penrose
inverse generated from the reciprocal of the singular value
decomposition diagonal matrix is generated from the projection
matrix and used as the least squares inverse projection to remap
the projected vectors to their original subspace. The nearest
neighbor method was then used to query the original set of
vectors to see if a vector can be re-associated with itself. In
the results it is clear that as dimensionality increases, the
probability of re-association converges to random coincidence
of a Bernoulli trial ((1 — (1/n))"™) & .363. The successful
re-associate rate follows an inverse power-law like distribution.
In regard to security performance, It is fairly clear that
data becomes unrecoverable when the difference between the
original data embedding and the projected space exceeds 75
dimensions. Given that RPHash’s native clustering space is
24 dimensions, this case occurs for a wide variety of high
dimensional datasets, namely those that exceed 99 dimensions.

VII. CONCLUSION

The RPHash algorithm combines approximate and random-
ized methods in a new way to solve issues of scalability and data
security for cluster analysis on distributed data. The runtime



and Precision-Recall performance of RPHash is similar to that
of the standard k-means clustering algorithm, with the added
benefit of being scalable to very large datasets. This randomized,
clustering algorithm is well suited for ill-posed, combinatorially
restrictive problems such as clustering and partitioning. This
assertion is complemented by a similar inversion regarding
clustering and computing, in which real world problems tend
to converge much faster than adversarially crafted worse-case
problems.

The principle assumption in this work is that approximate and
exact clustering, are qualitatively similar due to noise, redun-
dancy, data loss, and the curse of dimensionality. Furthermore,
the addition of random noise to the clustering dataset resulting
from the random subspace projection requirement, provides
some degree of non-deterministic process, so subsequent
iterations of the algorithm could potentially find better results.
Making the process of finding better clustering results, a matter
of available processing time and resources. Furthermore, the
destructive projection process affords us a certain degree of
data privacy while requiring no additional processing.

Clustering has long been the standard method used for the
analysis of labeled and unlabeled data. Clusterings effects
intrinsically identify dissimilar and similar objects in a dataset,
often unattainable through standard statistical methods. Single
pass, data intensive statistical methods are often the primary
workhorses for database processing of business logic and other
domains, while clustering is often overlooked due to issue in
its scalability.

Applications such as Micro Array clustering, Protein-Protein
interaction clustering, medical resource decision making, medi-
cal image processing, and clustering of epidemiological events
all serve to benefit from larger dataset sizes that RPHash
enables.
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