Science of the Total Environment 733 (2020) 138869

journal homepage: www.elsevier.com/locate/scitotenv

Science of the Total Environment

Contents lists available at ScienceDirect

Ce orne

Scien
Total Environment

Transfer Learning for Crop classification with Cropland Data Layer data L)

(CDL) as training samples

Check for
updates

Pengyu Hao, Liping Di *, Chen Zhang, Liying Guo

Center for Spatial Information Science and Systems, George Mason University, Fairfax, Virginia, USA

HIGHLIGHTS

TL workflow showed good potential to
identify crops without local training
samples.

TL need longer time series than LO to
generate proper classification accuracy.
Operational mapping of TL depends on
crop variations between training and
test region.

ARTICLE INFO

Article history:

Received 14 January 2020

Received in revised form 28 March 2020
Accepted 19 April 2020

Available online 28 April 2020

Editor: Christian Herrera

Keywords:

Transfer learning

Random Forest

Cropland Data Layer (CDL)
USA

Cotton

Corn

GRAPHICAL ABSTRACT

TUTOATA

15-day composited 15-day composited Landsat-§
Landsat-8 and Sentinel-2 CDL data ‘and Sentinel2 time series of Local Samples
time series of 2017 in USA or2017 2017 in NE, AB and HS collected in 2018,
= ; =
High confidence. v v 1
panei Different time. Local Training Local validation
1 series length
Extracting High -

NDVI time confidence
series CDL samples

Different time
seres lengih

Random Forest

sed.
Training. classfication result

P
Validation and
L -

‘comparision
Local sample based Random Local taining E—
» Forest Classificaion model - sample bases

ABSTRACT

Training samples is fundamental for crop mapping from remotely sensed images, but difficult to acquire in many
regions through ground survey, causing significant challenge for crop mapping in these regions. In this paper, a
transfer learning (TL) workflow is proposed to use the classification model trained in contiguous U.S.A. (CONUS)
to identify crop types in other regions. The workflow is based on fact that same crop growing in different regions
of world has similar temporal growth pattern. This study selected high confidence pixels across CONUS in the
Cropland Data Layer (CDL) and corresponding 30-m 15-day composited NDVI time series generated from harmo-
nized Landat-8 and Sentinel-2 (HLS) data as training samples, trained the Random Forest (RF) classification
models and then applied the models to identify crop types in three test regions, namely Hengshui in China
(HS), Alberta in Canada (AB), and Nebraska in USA (NE). NDVI time series with different length were used to
identify crops, the effect of time-series length on classification accuracies were then evaluated. Furthermore,
local training samples in the three test regions were collected and used to identify crops (LO) for comparison. Re-
sults showed that overall classification accuracies in HS, AB and NE were 97.79%, 86.45% and 94.86%, respectively,
when using TL with NDVI time series of the entire growing season for classification. However, LO could achieve
higher classification accuracies earlier than TL. Because the training samples were collected across USA contain-
ing multiple growth conditions, it increased the potential that the crop growth environment in test regions could
be similar to those of the training samples; but also led to situation that different crops had similar NDVI time se-
ries, which caused lower TL classification accuracy in HS at early-season. Generally, this study provides new op-
tions for crop classification in regions of training samples shortage.
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1. Introduction

The fast growing population and climate change put great pressure
on global food security (Bajzelj et al., 2014; Tilman et al., 2011), and
there is an urgent need for timely and accurately mapping crop-type
distribution around the world to support the crop growth monitor,
yield prediction, and global food-security decision making (Gallego
et al., 2008; Lobell, 2013). In recent years, satellite observations have
been widely used for land cover mapping globally due to its advantage
of low cost complete spatial coverage, and relatively fine spatial resolu-
tion (Chen et al., 2015; Gonget al., 2013; Gumma et al., 2017; Teluguntla
etal,, 2017; Xiong et al., 2017; Yu et al., 2013; Yu et al., 2014). Particu-
larly, because each crop has its unique phenology (Wardlow and
Egbert, 2008) and the phenological differences among the crops could
be described by time series of remotely sensed images (Zhang et al.,
2014a), the satellite time-series images have been widely used for an-
nual crop classification (Bargiel, 2017; Skakun et al., 2017; Zhong
etal., 2019).

Most existing annual crop classifications use the image time series of
the entire growing season to identify crop (Loosvelt et al., 2012; Low
et al.,, 2013; Wardlow et al., 2007; Zhong et al., 2019). This approach
produces the crop distribution map after a growing season finishes
(called after-season crop map hereafter). Although they have many us-
ages in agricultural and socioeconomic decision making, the after-
season crop maps cannot contribute to many agricultural and socio-
economic activities and decision making, such as crop yield forecasting
(Franch et al., 2015; Lopez-Lozano et al., 2015). To test the potential of
crop mapping with remote sensing early in a growing season (called
early-season here for the simplicity), several studies have been con-
ducted in different regions by evaluating the effect of time-series length
on crop classification performance (Song et al., 2017; Villa et al., 2015).
For example, Skakun et al. (2017) have used MODIS NDVI time-series
and growing degree days (GDD) information to separate winter wheat
from spring and summer crops 6-8 weeks before the winter wheat har-
vest. For the corn and soybean which are more confusing phenologically
than winter wheat and summer crops, Cai et al. (2018) have found that
these two crops could be accurately discriminated in late July at field
scale. Furthermore, Hao et al. (2015) have used MODIS data to select
the optimal features for in-season crop classification in Kansas, USA,
and concluded that the major crop could be accurately identified in Au-
gust and longer image time series cannot further improve the classifica-
tion accuracy and certainty. A similar in-season crop classification study
conducted in Hebei, China has showed similar result as the major crops
of the study region could be accurately identified 4-8 weeks before the
their harvest (Hao et al., 2018a). These two studies indicate that the
summer crops could be separated before harvest at regional scale.

Ground samples of the mapping year are important input for crop
classification; particularly, Hao et al. (2018b) have suggested collecting
training samples in multiple time phases to further improve the classi-
fication accuracies. But acquiring ground samples annually through
field surveys is challenging because field survey is labor intensive and
very expensive (Zhong et al., 2012). In addition, it is impossible for
conducting field surveys in many parts of world due to political, admin-
istrative, financial, or logistic reasons. To identify crops in areas where
the ground samples were not available, Wang et al. (2019) have used
unsupervised learning in conjunction with aggregated crop statistics
to generate 30 m resolution crop types maps in Midwestern United
States. Dong et al. (2016) have proposed a phenological rule-based
method which using the special phenological characters of single-
season rice to identify paddy rice in Northeast Asia, but the rules can
only be used to identify only specific type. Since the phenology of the
same crop is more similar than that of different crops, Zhong et al.
(2014) have proposed a phenology-based method to identify corn and
soybean in Kansas using Landsat image time series. Furthermore, as
NDVI time series can be used to describe the phenological difference
among different crops, Hao et al. (2016a) have proposed a reference

NDVI time series based method (RBM), which generates reference
NDVI time series from adjacent years, the reference NDVI time series
can be used to identify crop types and generate training samples in
the classification year (Hao et al., 2016b). All these methods are de-
signed for applications in specific study region annually and even for a
specific crop type. The spatial extendibility of models, i.e., training a
model in one region and applying the trained model in other regions
for crop mapping, is impossible by the design or has not been evaluated
(Zhang et al., 2019c). Therefore, in region where the ground samples are
not available or in shortage, the in-season crop mapping is still a big
challenge.

It is a well-known fact that phenological and growing patterns of a
crop are the same or very similar in the different regions of the world.
Based on this fact, it is reasonable to hypothesize that a supervised clas-
sification model trained in one region can be applied to other regions to
map the crops common in both the training and applied regions. Since
major types of crops, e.g., corn, soybean, wheat, and rice, are distributed
globally, it will make the global in-season mapping of major crops pos-
sible if the hypothesis of this study is proved to be true. The key is to
generate a classification model which are robust enough to tolerant
the difference in the crop growth environment and a training region
where abundant ground samples are openly available. One of such re-
gions is the USA where the annual crop mapping for the entire contigu-
ous US.A. (CONUS) has been conducted since 2008 by the US
Department of Agriculture (USDA) National Agricultural Statistics Ser-
vice (NASS) (Boryan et al., 2011). The result Cropland Data Layer
(CDL) product is freely available through the CropScape web service
system (Han et al., 2014). Validation of CDL products showed that the
accuracy for the major crops (i.e., Corn, Soybeans, and wheat) is around
~95% (Boryan et al., 2012).

The availability of high-accurate Cropland Data Layer (CDL) data
provides alternative way for obtaining ground truth data. Several stud-
ies have used CDL as training and validation samples for crop classifica-
tion (Hao et al., 2016b; Zhong et al., 2016; Zhong et al., 2014). Because
the current-year CDL is not available to the public until the February/
March of the next year, the in-season crop mapping by directly using
CDL as ground samples is unfeasible. In order to overcome this problem,
Zhang et al. (2019b) have proposed the “trusted pixel” approach, which
identifies pixels with stable multiple-year crop rotation patterns in the
CDL data and use the rotation patterns to predict the crop type for the
pixels in the coming year. Meanwhile, the CDL data also contains quality
layer, which indicates the classification confidence of each CDL pixels.
Therefore, it is possible to use CDL high-confidence pixels as the ground
truth for in-season crop mapping. However, the probability of using CDL
data as the training data source for crop identification in other regions
has not been explored. Thus, the objective of this paper are (1) to pro-
pose a transfer-learning (TL) workflow for crop classification in the
ground sample shortage regions, by training a machine-learning classi-
fier with CDL high-confidence pixels and corresponding remote sensing
images and using this trained classifier to identify crop types in other
study regions, (2) to estimate the effect of time series length on classifi-
cation accuracies, and evaluate the potential of in-season crop identifi-
cation using TL. The performances of the TL are evaluated in three
representative study regions, Alberta Canada, Nebraska USA, and
Hengshui (HS) China.

2. Study region and dataset

Three study regions have been selected in this study (Fig. 1a), and
the choice of these sites is oriented towards having a range of major
crops. The first study region (110°-112°W, 52°30'-54°N, Fig. 1b) is lo-
cated in Alberta, Canada, which is a transition zone between mixed-
grass prairie and montane cordillera, and cropland constitutes nearly
60% of the area (Zhang et al., 2014b). According to Fisette et al.
(2013), the major crops in this study region are spring wheat and ca-
nola, which take 19% and 18% acreage of the area, respectively.
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Fig. 1. Study region. (a) location of the three study regions used in this study. (b) Extent of study region AB and its 2018 NDVI image. (c) Extent of study region NE and its 2018 NDVI image.
(d) Extent of study region HS and its 2018 NDVI image. The NDVI images of (b), (c) and (d) are composed by R: NDVI in September, G: NDVI in July, B: NDVI in May.

Therefore, we focus on spring wheat and canola in Alberta. The study re-
gion has a cold and temperate climate, The dry season is between Octo-
ber and March, monthly precipitation in the dry season are around
20 mm, and the most precipitation falls in June, with an monthly precip-
itation of 82 mm. The daily average temperatures in July and August are
above 15 °C and below —6 °C in January (Diebel et al., 2011).

The second study region (115°-117°E, 37-39°N, Fig. 1d) is located in
Hengshui (HS), China, laying in North China Plain. The acreage of farm-
land is 5.71*10° ha (approximately 70.3% of total land area) in Hengshui
city (Liu et al,, 2015). The study region has a warm temperate continen-
tal monsoon climate, which is characterized by hot, rainy summers and
cold, dry winters. In summer, average daily temperature between June
and August are above 26 °C, and average monthly precipitation in July
and August are above 120 mm; in winter, daily average temperature be-
tween December and February are around 0 °C, and from November to
March, the region have nearly no rainfall (Diebel et al., 2011). The major
crops in the study region are winter wheat, corn and cotton, and other
crops account for small proportion of the cropland. In this study, we
focus on cotton, corn and winter wheat for this region. As nearly all
the winter wheat field are used to sown corn after the wheat harvest,
we just refer these fields as winter wheat field in this paper.

The third study region (99°-101°W, 40°30'-42°N, Fig. 1c) locates in
Nebraska (NE), USA, which is a midwestern state, laying in the western

part of the Corn Belt region. It is one of the top agriculture production
state in the United States with total agricultural land of 45.2 million
acres, accounting for 91% of the state's total land area. Corn and soybean
are two dominant crops in the state, Other crop types, such as alfalfa,
sorghum and dry beans, account for a very small proportion of all crop-
lands (Zhang et al., 2019a). In this study, we focus on the two dominant
crop types (corn and soybean) in Nebraska. This study region have a the
climate is cold and temperate climate, the driest month is January with
20 mm of rainfall, and the most precipitation falls in July with an aver-
age of 111 mm; and in July and August, average daily temperature are
above 23 °C, and January has the lowest average daily temperature
with —5.6 °C. We select NE, which is located in USA, for comparing its
classification results with the other two study regions outside USA.

3. Dataset and method
3.1. Methodological overview

The overall workflow of this study is shown in Fig. 2. Firstly, we se-
lected training samples of 2017 from the high confidence pixels (the
trusted pixels) of 2017 CDL data (Section 3.2), 15-day NDVI time series
of 2017 were then generated using Harmonized Landsat Sentinel-2
(HLS) data in the region where the 2017 training samples located; and
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Fig. 2. General workflow of this study.

the 15-day NDVI time series of 2018 were generated using the Landsat-
8 and Sentinel-2 data in the three study regions (Section 3.3). Next,
NDVI time series of the 2017 training samples were extracted from cor-
responding 15-day composited NDVI time series data, these training
NDVI time series were used to train Random Forest classifiers. We
used these classifiers to identify crops in the three study regions with
NDVI time series of different length (Section 3.4). Local training and val-
idation samples were collected independently in the three study re-
gions (Section 3.2), local training samples were used to identify crop
types using Random Forest with different time-series length. Finally,
all classification results were verified using the validation samples and
classification accuracies were compared between classification result
derived by TL and local training samples.

3.2. Training and validation sample generation

3.2.1. Training samples from CDL data

As we focused on corn, soybean, cotton, spring wheat, canola and
winter wheat, we collected higher confidence pixels of these six crops
from 2017 CDL data and used these samples as training samples. For
winter wheat, samples of winter wheat and double cropping systems
which containing winter wheat (such as wheat-corn) are combined as
winter wheat samples in this study. Firstly, we generated a high confi-
dence mask using the CDL confidence layer in 2017 and used 95% as
the confidence threshold. Next, we acquired the spatial distribution of
each crop with the high confidence mask. The training samples were vi-
sually selected from the high confidence distribution map of each crop.
We generated 100 km * 100 km grid for the US mainland (Fig. 3a), and
in each grid, we selected fields larger than 4 ha (containing 7 = 7 Landsat
samples) as training target fields. One pixel in each field was selected as
a training sample (Fig. 3b), and up to 30 pixels were selected as training
samples for each crop type in each grid. Thus, 8448 samples were ac-
quired for the CONUS and the number of training samples for each
crop were shown in Table 1.

3.2.2. Local samples in three study regions

We collected local samples for the three study regions in 2018. The
local samples for HS were collected by a ground survey, and those for
NE and AB were collected from the CDL and AAFC Annual Crop

Inventory Data in 2018, respectively (Fisette et al., 2013). In HS, the
fields were surveyed in June 2018, size of all surveyed crop fields were
larger than 60 m*60 m to ensure that these surveyed fields can contain
pure 30 m Landsat pixels. The crop types and geographic coordinates of
surveyed fields were recorded, and the central points of these fields
were used as local samples. In total, 1356 samples were collected in
HS (Table 2). In NE, we firstly used the 2018 CDL confidence layer to
generate high confidence mask using 95% confidence level as the
threshold, and then generated high confidence corn and soybean
maps in the study region. Next, samples were visually selected from
the high confidence corn and soybean maps. This procedure is similar
to the training sample selection procedure (Fig. 2b) and a total of
1312 local samples was acquired for NE. In AB, we visually selected
local samples from AAFC Annual Crop Inventory Data. Because AAFC
did not provide classification confidence layer, we only used crop type
layer to select local samples in AB and acquired a total of 1222 samples.
For the three study regions, we used 500 samples as local training sam-
ples and the other samples as local validation samples. The number of
training samples for each crop were calculated based on the ratio of
the local sample we collected among these crops, and the samples
used as training samples were randomly selected from the local sam-
ples. The number of training and validation samples were shown in
Table 2.

3.3. Landsat-8 and Sentinel-2 data

We used Harmonized Landsat Sentinel-2 (HLS) data product in this
study. As Sentinel-2 MSI and Landsat-8 data have similar spectral bands,
NASA's Harmonized Landsat-8 and Sentinel-2 (HLS) project co-registers
the two data sources, performs Bidirectional Reflectance Distribution
Function (BRDF) normalization and band pass adjustment. Therefore,
HLS data provides consistent surface reflectance data at 30-m spatial
resolution (Claverie et al., 2018).

In 2017, HLS data covering the spatial distribution of the training
samples selected in this study (294 tiles in total) were utilized, For
each tile, we collected all HLS data between Day of Year (DOY) 60 and
330, then calculated NDVI for each image with Red and NIR bands
(Huete et al., 2002; Rouse et al., 1974), and then generated 15-day
NDVI time series by selecting the maximum NDVI value within each
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15-day window if there exists available value in the 15-day period. when cloud-free images cannot be acquired daily, 15-day image time
While, if there is no available value, the 15-day composited NDVI of series could best describe the crop phenological difference and reduce
that time period is labeled as “missing value”. We used 15-day NDVI the number of “missing value”, which is the best choice for in-season
time series in this study because our previous studies showed that crop classification (Hao et al., 2018c). Next, the missing value in the
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Table 1
Number of visually selected samples and training samples.
Corn Soybean Cotton Spring Canola Winter Total
wheat wheat
Number of visually 2759 3135 854 450 120 1130 8448

selected samples

15-day composited NDVI time series were firstly filled with a moving
window method by calculating the average of the two neighboring
high quality values in the time series, the gap-filled NDVI time series

were then smoothed using Savitzky-Golay (S-G) filters to further ame-
liorate irregular variations in the NDVI time series (Chen et al., 2004;
Shen et al.,, 2015; Zhang et al., 2018). The equation for calculating
NDVI is shown in Eq. (1).

P(NIR) —p(Red)

NDVI = p(NIR) + p(Red)

M

where p(NIR) and p(Red) donate the SR reflectance of NIR and Red band
respectively, which are Band 5 and Band 4 of Landsat-8 data or B8 and
B4 of Sentinel-2 data. Afterwards, the NDVI time series of all these

Table 2
Number of visually selected samples and training samples.
NE AB HS
Training Validation Training Validation Training Validation
Corn 311 521 Canola 251 408 Cotton 72 115
Soybean 189 335 Spring wheat 249 404 Corn 72 105
Winter wheat 356 502
Total 500 856 500 812 500 722
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B
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Fig. 4. Classification accuracy with different time series length using TL and LO in Hengshui. The start point of the time series used for crop mapping is DOY 60, e.g. the 75 in X-axis denotes

the time series between DOY 60 and 75 used for crop classification.
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training samples were extracted from 15-day composited NDVI image
time series in 2017.

In 2018, as the study region AB and NE are covered by the HLS data
product (four tiles, 12UVD, 12UVE, 12UWD, 12UWE for AB and four
tiles, 14TLL, 14TLM, 14TML, 14TMM for NE), we collected HLS data in
these two study regions and generated 15-day time series between
DOY 60 and 330, the data processing is same to the 2017 NDVI time se-
ries processing. Study region HS is not covered by HLS data product, so
that we firstly generated 15-day maximum composited NDVI time se-
ries between DOY 60 and 330 of Landsat-8 Surface Reflectance (SR)
dataset on Google Earth Engine (GEE) (Google, 2015), the dataset is
available as “LANDSAT/LC08/C01/T1_SR” on GEE and 113 Landsat-8 im-
ages were collected. As for Senttinel-2 data, L2A product of HS in 2018
was not available, we downloaded Sentinel-2 L1C TOA reflectance
from the European Space Agency (ESA) Copernicus Open Access Hub
(ESA, 2016). The TOA reflectance were then atmospherically corrected
using the Sen2Cor (version 2.8) processor (Main-Knorn et al., 2017).
NDVI were calculated and the cloud pixels were masked using the
cloud mask of the LIC product. In total, 969 images were collected and
then a 15-day composited NDVI time series data were generated. For
each 15-day time period, maximum NDVI of Landsat-8 and Sentinel-2
value were calculated as the composited NDVI of the 15-day time pe-
riod, the NDVI image time series were gap-filled with moving window
and then smoothed with S-G filter. Finally, 15-day NDVI time series of
training and validation samples in the three study regions were ex-
tracted from the corresponding NDVI time series image.

3.4. Crop type classification

In all three study regions, we used the GFSAD 30 data (Teluguntla
et al,, 2018) to mask out non-cropland area, and then tried to identify
crop types within the cropland using Random Forest (RF) classifier
(Breiman, 2001). For each study region, CDL-based training samples of
the major crops in the study region were used to train the RF classifier.
NDVI time series of different length were used as input features and
generated different RF classification models. Next, the trained RF classi-
fier was used to identify crop types in the study regions with corre-
sponding NDVI time series, so that we could acquire crop distribution
maps generated with different time series length and further estimate
the effect of time series length on crop classification accuracy. The
time series length ranged from 15-day (NDVI between DOY 60 ~ 75)
to 270 day (NDVI time series DOY 60 ~ 330) in all three study regions
We refer these results through transfer learning as TL in the following
sections of this paper. In addition, we also used local training samples
to identify crops for comparison. After applying cropland extent mask,
we used the local training samples to train RF classifiers and then clas-
sified crops with NDVI time series of different length in all three study
regions. These results were referred as LO in this paper.

RF is a commonly used machine learning classifier for land cover
classification (Belgiu and Dragut, 2016; Maxwell et al., 2018). The RF
classifier combines multiple classification trees, during the training pro-
cedure, each tree is constructed using two-thirds of the training sam-
ples, the remaining one-third of the samples are used for test
classification with “out-of-bag error” (OOB error). For the classification
procedure, the classification output is determined by the majority vote
of the individual classification trees. RF have the advantage of handling
high dimensional data effectively. In this study, the RF was imple-
mented using the he Random Forest library for R (Breiman et al.,
2013). There were two free parameters when implementing RF
model; the number of trees (ntree) and the number of features to split
the nodes (mtry), the two free parameters were set as 1000 and the
square root of the total number of input features. In the training proce-
dure of RF, all 2017 training samples were used, and the input features
were the NDVI of the time periods included in the certain time series
length. For example, when we tried to use image time series between
DOY 60 and 120 to identify crop types, the input features were all 15-

day composited NDVI between DOY 60 and 120. Next, the RF models
were used to identify crop types with NDVI data of corresponding
time series length.

3.5. Accuracy assessment

Validation samples were used to assess the classification accuracies
in both TL and LO with confusion matrix (Congalton, 1991). Three met-
rics, producer's accuracy (PA), user's accuracy (UA) and accuracy for an
individual land-cover class (AILC) calculated from confusion matrix,
were used to evaluate the accuracy of individual classes (Congalton,
1991; Lu et al., 2014). The overall accuracy (OA) was also used to eval-
uate the classification accuracy of all crops in each study region.
Egs. (2)-(5) were used to calculate PA, UA, AILC and OA.

PA; = g v)
UA — % 3)
AILG, = 7(13/'1?‘?[]%‘ 7 (4)
OA = %C\ (5)

where PA; and UA; donate the PA and UA of class i, AILC; donates AILC of
class i, N; donates number of correctly identified validation samples of
class i, R; donates number of validation samples of class i, C; donates
number of validation samples classified as class i, and N¢ and N, donate
number of correctly identified and total number of validation samples.

Besides the metrics calculated from confusion matrix, we applied
McNemar's test to evaluate the pair-wise statistical significance be-
tween different classification approaches (De Wit and Clevers, 2004).
McNemar's test is a non-parametric test based on the standardized nor-
mal test statistic, calculated as Eq. (6):

fia—f2
Z=—="—"" (6)
Vi +

where f;, is the number of samples that are correctly classified by clas-
sifier 1 and incorrectly classified by classifier 2; and f,; is the number of
samples that are correctly classified by classifier 2 and incorrectly clas-
sified by classifier 1. We defined three cases of differences in accuracy
between classifier 1 and classifier 2 according to significant analysis:

(1) No significance between classifiers 1 and 2 (N): —1.96 <Z < 1.96.

(2) Positive significance (classifier 1 has higher accuracy than classi-
fier 2) (S+):Z>1.96.

(3) Negative significance (classifier 1 has lower accuracy than classi-
fier 2) (S—):Z< —1.96.

4. Result
4.1. Classification accuracies

Accuracy assessment of Hengshui (HS) study region (Fig. 4) showed
that TL had good potential to identify the major crops when using NDVI
time series of the entire growing season (between DOY 60 and 330) for
classification, and overall classification accuracy (OA) of the study re-
gion was 97.79%, and producer's accuracy (PA) and user's accuracy
(UA) were 98.26% and 88.98% for cotton, 86.67.38% and 97.85% for
corn, and 97.39% and 97.22% for winter wheat. While, when the NDVI
time series length was between 120 day (DOY 60-180) and 210 day
(DOY 60-270), a lot of corn samples were misclassified as cotton,
which led to the low corn PA and cotton UA; and after the NDVI time
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series length was longer than 225 day (DOY 60-285), the majority of
corn samples were correctly identified. Basically, LO results had higher
classification accuracies than the TL results. For example, when NDVI
time series of DOY 60-285 were used for classification, PA and UA of
LO result were 98.26% and 99.12% for cotton and 98.05% and 99.12%
for corn, which were significantly higher than TL derived results (PA
and UA for cotton are 98.24% and 79.72%, PA and UA for corn were
72.38% and 98.70%). Wall-to-wall comparison of classification results
(Fig. 5) showed that winter wheat could be accurately identified in
the three sub-regions at DOY 210 time phase, TL with DOY 60-210
NDVI time series cannot not distinguish cotton and corn in HS as a lot
of corn pixels were misclassified as cotton. When NDVI time series of
the entire growing season (DOY 60-330) were utilized, TL classification
map was very similar to LO result in all the three sub-region classifica-
tion maps, which indicated that TL need longer time series to generate
reliable crop classification distributions in HS.

Accuracy assessment in Alberta (Fig. 6) showed TL had potential to
identify crops in Alberta. When NDVI time series of the entire growing
season (DOY 60-330) were used, OA of the study region was 86.45%,
PA and UA were 87.5% and 85.82% for canola, and 85.4% and 87.12% of
spring wheat. In contrast, LO achieved significantly higher classification
accuracies as OA was 96.55% when DOY 60-330 NDVI time series were
used. In addition, both TL and LO result showed that classification accu-
racy increased when the data of DOY 135-150 and 195-225 were used.
OA increased from 50.12% to 72.91% using TL and from 63.05% to 78.45%
using LO with DOY 135-150 NDVI, and increased from 76.11% to 83.25%
and from 80.30% to 94.09% using LO with DOY 195-225 NDVI. The wall-
to-wall comparison of the classification results of TL and LO derived
from DOY 60-225 and from DOY 60-330 NDVI time series, along with
the AAFC Annual Crop Inventory data, were showed in Fig. 7. LO derived
classification maps had similar crop pattern to AAFC result when DOY
60-225 NDVI time series were used in all three sub-regions, but in the
TL derived results, some canola patterns were misclassified as spring
maize when using DOY 60-225 NDVI time series to identify crop
types. Similar to the results in HS, when using NDVI of the entire grow-
ing season (DOY 60-330) to identify crops, crop patterns of TL and LO
derived results were similar.

Fig. 8 showed that when using entire time series (DOY 60-330) for
classification in NE, OA of TL was 94.86%, PA and OA were 91.55% and
99.31% for corn and 98.81% and 88.39% for soybean. And accuracies of
LO were higher than TL, entire time series achieved good accuracy as
OA was 96.73%, PA and UA were 97.12% and 97.5% for corn and 96.12%
and 95.55% for soybean. Among different time phases, images during
DOY 135-180 had high contribution to discriminate the two crops.
When NDVI of this time phase was used for classification, OA increased
from 40.71% to 80.72% for TL and from 58.88% to 92.06% for LO. After
that, OA of LO did not continue to increase with longer time series,
and OA of TL increased to 92.99% at DOY 270-285 time phase. Similar
to the other two study regions (HS and AB), the wall-to-wall compari-
son (Fig. 9) among CDL data, TL and LO results with DOY 60-330
NDVI time series showed that both TL and LO achieved good classifica-
tion accuracy as the classification maps in all sub-regions are similar to
CDL. For the classification result with DOY 60-180 NDVI time series,
both TL and LO misclassified some corn pixels as soybean and TL had
more misclassification pixels. These results indicated that the RF classi-
fier trained with training samples of CONUS could separate crops with
long NDVI time series, but cannot perform as good as the classifier
trained with local training samples for early-season classification.

4.2. Statistical analysis

Fig. 10 showed that Mcnemar's test results of the TL and LO with dif-
ferent time series length. In HS, Z value was high when the time series
length was longer than 90 days (DOY 60-150), which indicated that
TL had significant worse classification performance than LO. When the
time series length was longer than 210 days (DOY 60-270), Z-value

began to decrease, until when the entire NDVI time series were used
for classification, Z-value was near to the significant threshold (1.96),
which indicated that LO and TL did not have significantly difference. In
AB, LO significantly outperformed TL for almost all time series lengths
used for crop classification, except for the time length was between
90 days (DOY 60-150) and 120 days (DOY 60-180), which was exactly
time phases which classification accuracy of TL quickly increased
(Section 4.1). In NE, classification performances of TL and LO did not
have significant difference when time series length was shorter than
100 days (DOY 60-165), and after time series length increased to
120 days (DOY 60-180), the Z value increased and LO significantly
outperformed TL.

5. Discussion
5.1. Uncertainty of transfer learning

Although TL showed good potential to identify crops in all three
study regions, there were still some misclassification caused by pheno-
logical and crop calendar difference among different regions. The
monthly air temperature (acquired from ERA Interim monthly average
reanalysis product (Dee et al., 2011)) and NDVI time series among cot-
ton and corn planting regions in CONUS and HS are compared (Fig. 11).
In CONUS, cotton are mainly planted in Texas, Arizona and Georgia
States, where the latitude is lower than the cotton planting regions in
HS; so that the air temperature in HS is slightly lower than AZ, TX and
GA of USA, and growing season of cotton in HS is longer than those in
CONUS. As for corn, HS corn NDVI time series are significantly lower
than those in CONUS at early growing season, and corn NDVI in HS be-
tween DOY 60 and DOY 225 are quite similar to some CONUS cotton
samples, which leads to the misclassification of corn samples as corn
with TL (Section 4.1). While, as cotton NDVI remains high at DOY
270-285 time phase and corn NDVI is low, cotton and corn in HS
could be separated by TL when using NDVI time series of the entire
growing season. This indicates that although cotton and corn NDVI
time series have mismatch between training and test region, the two
crops could still be separated when long NDVI time series are used.

Air temperature and NDVI time series of spring wheat and canola
were compared between CONUS and AB (Fig. 12). The latitude of AB is
higher than that of CONUS sample collecting regions, and the air tem-
perature of AB are slightly lower than MT, ND and SD. NDVI of spring
wheat in AB is covered by the training spring wheat samples, but
there are difference between canola NDVI time series in AB and ND,
this difference explains the relatively low PA and UA of TL derived ca-
nola. In addition, NDVI time series of canola and spring wheat in AB
are similar before DOY 180, which lead to the low accuracy of both TL
and LO at early-season. More features which could detect some other
characters of these two crops should be further used to improve the sep-
arability of canola and spring wheat.

Corn and soybean have phenological difference as the growing sea-
son of corn begin earlier than soybean (Fig. 13 b and c), so that the
NDVI time series from DOY 150 to 180 could achieve high classification
accuracy using local training samples (Fig. 8). However, as the training
samples are collected across CONUS and the crop growth conditions
varied among the training samples, TL derived crop maps have lower
classification accuracies.

Basically, when trying to identify crops in training sample shortage
region, one possible solution is to train the classification model in
other region/years, and then transfer the model to the test region. Dur-
ing this procedure, the challenge is that the crop condition between the
training and test regions are not perfectly match for the same crop,
which leads to uncertainty when applying TL in training sample short-
age regions. This uncertainty is common because Crop Progress and
Condition report showed that in each state, same crop have different
growth situations among multiple years (USDA, 2020). Wang et al.
(2019) also found that crop classification accuracies are low if the
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Fig. 7. Wall-to-wall comparison of TL and LO results with DOY 60- 225 and DOY 60- 330 image time series and AAFC Annual Crop Inventory data in Alberta. (a) (b) and (c) are the location
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results derived by LO using DOY 60- 225 NDVI time series; (j) (k) and (1) are classification results derived by TL using DOY 60- 330 NDVI time series; (m) (n) and (1) are classification result
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Fig. 10. McNemar's test results between TL and LO with different time series length of the three study regions. (a) McNemar result in HS, (b) McNemar result in AB, (c) McNemar result in
NE; red lines in the figure donate the thresholds of positive/negative significant (—1.96 in this study). The start point of the time series used for crop mapping is DOY 60, e.g. the 75 in X-axis

denotes the time series between DOY 60 and 75 used for crop classification.

GDD of training and test regions have significantly difference. Further-
more, different crops may have similar NDVI time series and lead to sig-
nificantly misclassification, just like the low accuracies of cotton and
corn in HS identified with short NDVI time series.

5.2. Advantage and limitation

In this study, we collected training samples from CDL data across the
CONUS, used these training samples to train Random Forest classifiers,
and then transfer these classifiers to identify crops in three test regions.
Existing training-sample-free crop classification methods have just tried
to transfer the classification model across multiple years in the same re-
gion (Hao et al., 2016a), or designed classification model for limited spe-
cific crops (Dong et al., 2016; Zhong et al., 2014); the crop growth

difference among region/years is still challenged. Compared with
these existing researches, the advantage of TL in this study is that this
method collect training samples from CONUS, which have a variety of
growth conditions for each crop, this enlarges the potential that the
crop condition in the test regions are included in the training sample
set; and classification model in this study is applicable for all major
crops included in the NASS CDL data. Classification accuracies in this
study also showed that TL could generate crop maps with reasonable ac-
curacies in HS and AB, although there were slightly climate differences
between the training (CONUS) and test regions (HS and AB).
However, there are still some drawbacks of current TL workflow:

(1) In this study, we collected training samples across the CONUS so
that the training samples contained multiple crop growth
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Fig. 11. Air temperature and NDVI time series of HS and CONUS. (a) average monthly air temperature of cotton planting region in CONUS and HS; (b) average cotton NDVI time series in
CONUS and HS; (c) air temperature of corn planting region in CONUS and HS; (d) average corn NDVI time series time series in CONUS and HS. In subplot (a) and (c), the data source of air
temperature are ERA Interim monthly average reanalysis product (Dee et al., 2011). In subplot (b) and (d), the NDVI time series are the average 15-day NDVI of samples in each state, AZ
denotes Arizona, GA denotes Georgia, TX denotes Texas, IA denotes lowa, IL denotes Illinois, IN denotes Indiana, KS denotes Kansas, MN denotes Minnesota, ND denotes North Dakota, NE
denotes Nebraska, OH denotes Ohio, SD denotes South Dakota, and HS denotes the study region Hengshui in this study.

situations, increasing the possibility that the training samples
contain the similar NDVI time series to those in the test regions.
But this also raise a problem that same crop under different cli-
mate conditions may be confused and different crops may have
similar NDVI time series, especially when time series length is
short. Therefore, the TL cannot perform good at early growing
season.

(2) Inthe test region where the climate condition is slightly different

from CONUS, NDVI of the same crop are still more similar than
different crops, so that TL could correctly identify crops with ac-
ceptable accuracies, such as cotton in HS and spring wheat in
AB, but if the climate and irrigation condition of the test regions
are significantly different from the training regions, NDVI time
series of the same crop may have larger difference, which will
further decrease the classification accuracy.

(3) This study used NDVI time series because NDVI have high
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Fig. 12. Air temperature and NDVI time series of AB and CONUS. (a) average monthly air temperature of spring wheat planting region in CONUS and AB; (b) average spring wheat NDVI
time series in CONUS; (c) air temperature of canola planting region in CONUS and HS; (d) average canola NDVI time series time series in CONUS and HS. In the subplot (b) and (d), the NDVI
time series are the average 15-day NDVI of samples in each state, MT denotes Montana, ND denotes North Dakota, SD denotes South Dakota, and AB denotes the study region Alberta in this
study.
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Dakota.

contribution for crop classification (Hao et al,, 2015), and NDVI is
sensitive to the biomass change at green-up stage, which is more
suitable for early-season crop classification (Wardlow et al.,
2007). Therefore, the results could estimate the potential of TL
for crop identification in training sample shortage regions. For
some specific crops, such as canola, some other features with
high contributions are not included in this study, which may
lead to lower classification accuracies of this study.

The training samples of this study were selected from CDL data,
but the remote sensing derived crop type product also contain
errors. Therefore, we used the classification confidence threshold
95% to mask out the low confidence pixels and then visually se-
lected training samples from high confidence pixels in large
fields. This procedure could effectively reduce the uncertainty
of the training data. For the crop classification validation, this
study used ground surveyed samples to verify classification re-
sult in HS, but in AB and NE, we used CDL and AAFC Annual
Crop Inventory Data for validation. The procedure for selecting
validation samples in NE is similar to that of training samples,
but in AB, the AAFC Annual Crop Inventory Data don't provide
confidence layer, so that the accuracy assessment in AB may be
slightly affected.

(4

P2

6. Conclusion

This paper proposed a Transfer Learning (TL) workflow, in which
classification models were trained with the high confidence CDL pixels
and corresponding 15-day composited NDVI time series. Training sam-
ples were collected across the CONUS to contain NDVI time series of
each crop under different climate and irrigation conditions. The trained
classification models were then used for crop classification in other re-
gions. In this study, the performance of this TL workflow was tested in
three test regions. The followings are the main conclusions:

(1) Transfer learning method achieved proper classification results
when using NDVI time series of the entire growing season, the
OAin HS, AB and NE are 97.79%, 86.45% and 94.86%, respectively.

(2) In HS and AB, local training samples achieved higher and earlier

classification accuracies than TL because the climate and envi-
ronment is slightly different between the training region
(CONUS) and the test regions, which led to the NDVI time-
series mismatch (such as corn in HS) and caused misclassifica-
tion in TL, but the NDVI time series of the same crop are still
more similar than different crops in the most cases.

In NE, the crop growth conditions are covered by training data
set, and LO still had slightly better classification performances
than TL. This is because training samples collected in CONUS
contained multiple crop conditions, caused confusion for TL and
led to misclassification, particularly at early growing season. In
contrast, NDVI of training and test samples are match with LO,
so that LO performed better than TL.

Further study should focus on identifying and generating new
features which are more stable to describe crop growth among dif-
ferent regions, so that the transfer learning workflow could be ap-
plied to regions where crop growth environment is significantly
different from training regions.
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