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Abstract

Soil moisture plays an important role in modulating regional climate from sub-seasonal to seasonal timescales. Particularly
important, soil moisture deficits can amplify summer heatwaves (HWs) through soil moisture-temperature feedback which has
critical impacts on society, economy and human health. In this study, we evaluate decade-long convection-permitting Weather
Research and Forecast (WRF) model simulations over the contiguous US on simulating heatwaves and their relationship
with antecedent soil moisture using a dense observational network. We showed that the WRF model is capable of capturing
the spatial patten of temperature threshold to define HWs, though the simulation shows a warm bias in the Midwest and cold
bias in western mountainous regions. Two HW indices, based on frequency (HWF) and magnitude (HWM), are evaluated.
Significant anti-correlations between antecedent soil moisture and both HW indices have been found in most parts of the
domain except the South Pacific Coast. A detailed study has been conducted for the Midwest and South Great Plains regions,
where two heatwaves had occurred in the last decade. In both regions, the high quantile of the HWF distribution shows a
strong dependence on antecedent soil moisture: drier soil leads to much larger increase on the upper quantile of HWF than
it does on the lower quantile. Soil moisture effects on the higher end of HWM are not as strong as on the lower end: wetter
antecedent soil corresponds to a larger decrease on the lower quantile of HWM. WREF captures the heterogeneous responses
to dry soil on HWF distribution in both regions, but overestimates these HWM responses in the Midwest and underestimates
them in the South Great Plains. Our results show confidence in WRF’s ability to simulate HW characteristics and the impacts
of antecedent soil moisture on HWs. These are also important implications for using high-resolution convection-permitting
mode to study the coupling between land and atmosphere.

Keywords Soil moisture - Heatwave - Regional climate - Land—atmosphere interaction - Soil moisture-temperature
feedback - WRF

1 Introduction

Summer heatwaves (HWs) have significant impacts on the
environment, society, and human health (Brooke Anderson
and Bell 2011). Under climate change, these extreme hot
in Convection-Permitting Climate Modeling, consisting of events are projected to be(fome mor.e frequent, intense and
papers that focus on the evaluation, climate c’hange assessment, longer (Meehl and Tebaldi 2004; Diffenbaugh and Ashfaq
and feedback processes in kilometer-scale simulations and 2010; IPCC 2012). Thus, understanding the physical mecha-
observations. The special issue is coordinated by Christopher L. nisms of HWs and improving HW forecast skills is of great
Castro, Justin R. Minder, and Andreas F. Prein. importance and allows a proactive approach to mitigating
potential HW damages.

This paper is a contribution to the special issue on Advances
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yanping li @usask.ca Although persistent synoptic high pressure induced by
1 large scale atmospheric blocking is a necessary factor in
Global Institute for Water Security, University causing persistent heatwaves (Perkins 2015), land—atmos-
of Saskatchewan, Saskatoon, SK, Canada . . . . .
, ' ] phere interactions also play an important role in amplify-
National Center for Atmospheric Research, Boulder, CO, ing the hot extremes through a soil moisture-temperature
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feedback mechanism (Jaeger and Seneviratne 2011; Miralles
et al. 2014). Soil moisture availability determines the evap-
otranspiration, a key process in exchange of water and
energy between the land surface and atmosphere. During
dry periods, low soil moisture limits the available surface
energy converted to latent heat. More energy is partitioned
as sensible heat flux, inducing an increase of near-surface
temperature. Increased temperature then leads to a higher
vapor pressure deficit and evaporative demand, and thus to
a potential increase in evapotranspiration despite the already
existing dry conditions, leading to a further soil desiccation
(Seneviratne et al. 2010).

The soil moisture-temperature feedback mechanism and
its impacts on heatwaves have been studied using climate
models both in long-term climate simulations (Koster et al.
2004, 2006, 2009; Guo et al. 2006; Seneviratne et al. 2006;
Jaeger and Seneviratne 2011) and regional events studies
(Fischer et al. 2007; Whan et al. 2015; Hauser et al. 2015).
Both studies contribute to our understanding of the feedback
mechanism and the key role that soil moisture plays to influ-
ence near-surface temperature. However, these results, by
perturbing initial soil moisture or decoupling the land from
the atmosphere, could be artificial and model-dependent.
Substantial observational evidence is needed to further
understand the soil moisture-temperature feedback.

Several observations have confirmed previous modeling
studies at regional (Durre et al. 2000; Hirschi et al. 2011;
Quesade et al. 2012; Meng and Shen 2014; Sun et al. 2017)
and global scale (Mueller and Seneviratne 2012). These
works focus on the relationship between antecedent pre-
cipitation/soil moisture and summer hot extremes, and its
impacts on different distributions of hot extreme indices.
Owing to the lack of extensive long-term soil moisture
observations, they inferred soil moisture conditions using a
precipitation based index called the standardized precipita-
tion index (SPI) (McKee et al. 1993). Their results showed
that antecedent negative soil moisture anomalies were asso-
ciated with a high frequency of summer hot day as well as
longer duration of HW. Although precipitation is a major
driver for soil moisture, SPI does not consider the effect of
evapotranspiration. A similar multi-scalar statistical index
called the standardized precipitation evapotranspiration
index (SPEI) has been proposed to account for both pre-
cipitation and evapotranspiration on soil moisture (Vicente-
Serrano et al. 2009).

Although the above observational studies have shown evi-
dence of soil moisture-temperature feedback on HWs, they
mainly focused on the frequency and duration of HWs, while
the HW intensity and its relationship with soil moisture has
not yet been assessed. A statistical significant correlation sug-
gests a strong connection between soil dryness and extreme
heat, but does not necessarily imply causality (Mueller and
Seneviratne 2012). Moreover, previous regional climate model
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simulations could capture the link between the soil moisture
deficits and hot extremes but only for the moisture-limited
regime. For wetter climates, the models tended to overestimate
the strength of soil moisture-temperature feedback (Hirschi
etal. 2011). Furthermore, previous studies used data from both
global/regional models and gridded observational/re-analysis
products at a spatial resolution of 50-100 km, which is not suf-
ficient to capture the land—atmosphere feedback and perform
HW impact studies on a local scale.

Long-term climate downscaling using convection-
permitting models (CPM) provides an opportunity to fill
the gaps in spatial scales (Prein et al. 2015). A 13-year
(2000 October-2013 September) 4-km CPM simulation
was conducted for the contiguous US (CONUS), using the
Weather Research and Forecast (WRF) model (Liu et al.
2017). The CPM simulation, by explicitly resolving con-
vection, improves summer precipitation simulations (Liu
et al. 2017), which is important for assessing soil-moisture
evolution and land—atmosphere feedbacks. This simulation
represented realistically fine-scale land surface properties,
such as topography and land-cover types which are criti-
cal in land—atmosphere coupling studies. In addition, the
fine resolution dynamical downscaling allows the studies of
HW impacts on local scale, which is more relevant to public
health issues.

The purposes of this study are to: (1) evaluate different
temperature thresholds in defining the simulated HW for
two HW indices; (2) assess the correlation between anteced-
ent soil moisture and summer HWs in the WRF CONUS
simulation; and (3) evaluate how differently the distribution
of HW indices responds to observed soil moisture and how
well this feature is represented in the WRF 4-km CONUS
simulations. The Midwest (MW) and South Great Plains
(SGP), where soil moisture-temperature feedbacks are strong
and two extreme heatwaves happened in 2006 and 2011,
are investigated in detail. This paper is organized as the fol-
lowing: Sect. 2 describes observation and WRF simulation
datasets, as well as the indices used to define heatwaves and
soil moisture anomaly; Sect. 3 evaluates the CPM WREF in
simulating HWs and discusses their correlations with ante-
cedent soil moisture against observation datasets; Sect. 4
provides a broad discussion of antecedent soil moisture
as a physical driver of HWs, its predictive skills and WRF
CONUS performance compared to observation and other
studies; conclusions are provided in Sect. 5.

2 Data and methods
2.1 WRF model

Previous studies have stated the advantages of high resolu-
tion convection-permitting modeling in studying the land
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surface processes, by improving the representation of fine-
scale terrains, such as mountainous and urban areas, and
the heterogeneity of surface fields, such as soil moisture
(Prein et al 2013a, b, 2015). In this study, we use high-
resolution convection-permitting regional climate simula-
tions, conducted on the Weather Research and Forecasting
(WRF) model V3.4.1 (Skamarock et al. 2008), to explore
the soil moisture-temperature feedback on summer HWs.
The simulations start from the October of 2000 and run
to the September of 2013 on 4-km horizontal grid spac-
ing (1360x 1016 grid points), covering the contiguous US
(CONUS) (Fig. 1a). The physical parameterization schemes

Fig. 1 a WRF model domain

used in these simulations are the Thompson aerosol-aware
microphysics (Thompson and Eidhammer 2014), the Yon-
sei University (YSU) planetary boundary layer (Hong et al.
2006), the rapid radiative transfer model (RRTMG; lacono
et al. 2008) and the Noah-MP Land Surface Model (LSM).
(For more detailed descriptions about the selection of physi-
cal schemes, model modifications, and simulation configura-
tion, please see Liu et al. 2017).

In the CONUS WREF simulations, soil moisture and sur-
face fluxes exchange to the atmosphere are simulated by the
Noah-MP Land Surface Model (LSM) (Niu et al. 2011; Yang
etal. 2011), a community model with multi-parameterization
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options to the original Noah LSM (Chen and Dudhia 2001).
The Noah-MP LSM has been applied broadly, both in offline
mode (Cai et al. 2014a, b) and coupled with atmospheric
models (Chen et al. 2014; Barlage et al. 2015). Particularly,
previous studies have shown improvement in simulating
snowpack (Musselman et al. 2017) and severe storm fore-
cast (Duda et al. 2017) by a more realistic representation of
surface physics in the Noah-MP LSM coupled with high
resolution CPM. In addition, Liu et al. (2017) provided
several key modifications to the Noah-MP LSM, including
microphysics-based snow-rain partitioning, realistic surface
Snow coverage representation, patchy snow in surface energy
balance calculation, and heat transport by precipitation into
the ground (see Liu et al. 2017). In this study, we are inter-
ested in soil moisture anomaly and how it contributes to
summer HWs through soil moisture-temperature feedback.
For this purpose, the WRF model simulated soil moisture
anomalies are compared with an observational network (see
Sect. 2.2) and the evaluation results are shown in Sect. 3.1.

2.2 Observations

To evaluate the WRF model temperature and soil mois-
ture output, we used meteorological station data from the
Global Historical Climatology Network-Daily dataset
(GHCN-Daily) (Menne et al. 2012; Newman et al. 2015).
Daily maximum temperature (Tmax) and precipitation data
from a total number of 9877 stations within the WRF model
domain are used to calculate heatwave indices and soil mois-
ture proxy in this study. The locations of the GHCN-Daily
station are also shown in Fig. 1a, with stations in the Mid-
west (MW, 41-46N, 90-105W) and the South Great Plains
(SGP, 29-40N, 95-105W) are highlighted.

Soil moisture observations from the US Department of
Agriculture (USDA) Soil Climate Analysis Network (SCAN)
(Schaefer et al. 2007) are used to evaluate the simulations.
The SCAN soil moisture data are collected by dielectric con-
stant measuring devices at five different depths: 5 cm, 10 cm,
20 cm, 50 cm and 100 cm. The monthly top 1-m SCAN soil
water content are integrated for each observation site and
compared with the 1-m soil water integrated from the top
three model soil layers (i.e., 5 cm, 25 cm, 70 cm) in Noah-
MP. Due to measurement maintenance and data quality con-
trol issue, data from many stations are missing in various
time, thus we calculated the ratio between available data (in
monthly interval) and total period of simulation (from 2000
Oct to 2013 Sep) as the data availability. Figure 1b shows
the locations of SCAN soil moisture measurement and their
data availability within our simulation period.

To compare with observations from both SCAN and mete-
orological stations, the closest model grid points to the sta-
tion locations are extracted. The fine grid spacing of the con-
vection-permitting WRF model and the dense observational
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network together allow the grid-to-station comparison between
WREF model grid points and observational stations. In the fol-
lowing text, the analysis and variables derived from observa-
tion (including SCAN soil moisture and calculated tempera-
ture and soil moisture index) and WRF model are denoted as
OBS and WREF, respectively.

2.3 HWindices

In this study, we apply the HW definition by Perkins and Alex-
ander (2013), in which heatwave is defined as a consecutive
period of extreme high temperature upon a statistically based
threshold. In their definition, the threshold is the 90th percen-
tile of daily Tmax for each calendar day in a year, TX90. This
threshold is calculated based on a 15-day moving window,
which is centered on the day in question, in order to account
for seasonal cycle and obtain sufficient sample size for a real-
istic percentile value. The HW event is defined as three or
more consecutive days when daily Tmax exceeds the TX90
threshold. Based on this definition, two HW indices, frequency
and magnitude, are defined: HWF (heatwave frequency) is the
number of days qualified as HWs and HWM (heatwave mag-
nitude) is the mean daily Tmax during the HWs. For assess-
ing soil moisture impacts on summer HWs, we calculated the
TX90 threshold for each day in June—July—August (JJA) for
the whole 13-year simulation period (during 2000 and 2013).
Therefore, the two HW indices are obtained for these three
months separately, in total 39 samples in 13 years.

2.4 Soil moisture indices

Because of the uncertainties inherent to long-term gridded
soil moisture data, many studies have used different indices to
estimate soil moisture deficit (Dai 2011; Hirschi et al. 2011;
Muller and; Seneviratne 2012; Quesade et al. 2012). In this
study, two hydro-meteorological indices were evaluated for
model simulation and observational networks, including the
soil moisture anomaly (SMA) and the standardized precipita-
tion evapotranspiration index (SPEI).

The SMA describes the deviation of soil moisture in a
period of a year to the soil moisture climatology and normal-
ized by the standard deviation of soil moisture over the same
period. In this study, the monthly top 1-m SMA is calculated
from both the SCAN measurements and the closest grid points
in WRF model, following the method of Orlowsky and Senevi-
ratne (2013):

0 )
—

SMA =

where 8 is monthly-averaged top 1-m soil water content, y
and o are the mean and standard deviation of top 1-m soil
moisture of the same months over the 13-year study period.
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As shown in Fig. 1b, there are limited number of soil
moisture measurements from SCAN network within the
contiguous US domain. Only 185 stations have long term
soil moisture measurement, while 9877 stations have tem-
perature and precipitation observations. In order to get better
coverage of soil moisture estimate, we used the SPEI index
by Vicente-Serrano et al. (2009) to estimate the soil mois-
ture anomaly in spring. The SPEI is based on precipitation
and temperature data to calculate the accumulation of water
deficit/surplus, precipitation minus potential evapotranspi-
ration (P-PET), for a selected time period. Mathematically,
the SPEI is similar to the SPI, but it also includes the effect
of temperature variability on soil moisture deficit. The pro-
cedure proposed by (Vicente-Serrano et al. 2009) was used
to estimate potential evapotranspiration by Thornthwaite’s
method (Thornthwaite 1948). And the P-PET series is fitted
to a 3-parameter Pearson III distribution at each station to
obtain the SPEI for both station observation and the WRF
model. Here, the analysis focuses on the SPEI calculated on
3-month timescale (SPEI-3) to represent the seasonal soil
moisture anomalies in spring. The values of SPEI represents
the standard deviation from the mean state (0), where SPEI
values larger/smaller than 0.5/— 0.5 represent abnormal wet/
dry conditions.

2.5 Methodology

The analysis was conducted locally for each individual sta-
tion and model grid point. For the evaluation of WRF simu-
lation against observation, the model grid points that are
closest to station locations were extracted. In this study, the
relationship between two HW indices from the three summer
months (June-July—August, JJA) and the spring soil mois-
ture from preceding months (based on the 3-month SPEI
described in Sect. 2.4), for the year 2000-2013. We applied
three types of analysis on the monthly HW indices and soil
moisture estimate.

First, the WRF model performance on simulating sum-
mer HW indices and soil moisture proxy were evaluated
against meteorological station data and SCAN soil moisture
measurements. For temperature evaluation, the model simu-
lated TX90 threshold and HWF, HWM indices are compared
to those derived from observation for the summer months
(JJA). For the evaluation of model simulated soil moisture
indices, the monthly SMA and the SPEI-3 timeseries are
calculated from model output and compared with observa-
tion data from the SCAN.

Second, the HW indices for each summer month are
related to their antecedent 3 months SPEI by calculating
the Pearson correlation coefficient. The purpose of calcu-
lating correlation coefficient is to identify strong and sig-
nificant correlated regions, as well as to evaluate model
performance across the domain. Based on the correlation

coefficient results, regions with strong coupling between
land and atmosphere can be identified.

Third, a quantile regression analysis was conducted to
understand how soil moisture deficits impact the two HW
indices. The ordinary linear regression shows the relation
between the mean of the dependent variable y to the inde-
pendent variable x. Quantile regression examines how dif-
ferent parts of the distribution of a dependent variable y
respond to an independent variable x, based on the quantiles
of choice. Special interests were focused on two regions,
Midwest and South Great Plains, where two exceptional
HWs had occurred in the last decade. The quantile regres-
sion of HW indices against antecedent SPEI are calcu-
lated for these two regions, and their regression slopes for
each quantile are evaluated between the simulations and
observations.

3 Results

3.1 Evaluation of WRF-simulated heatwave indices
and soil moisture indices

The JJA seasonal averaged daily TX90 threshold from obser-
vation, WRF and their difference (model minus observation)
are shown in Fig. 2. TX90 varies greatly across the contigu-
ous US, with the hottest region in the Southwest desert area
in Arizona exceeding 44 °C. Another extraordinarily hot
region is located east of the Rocky Mountains in the South
Great Plains, including Texas, Oklahoma, Kansas, Louisi-
ana and Mississippi, with the threshold temperature higher
than 40 °C.

The WRF simulation accurately captures the spatial pat-
tern of the TX90 threshold, with two hot regions aforemen-
tioned and one cold region in the North and mountainous
area. Figure 2c shows the difference of TX90 between WRF
and observation, revealing a warm bias pattern straddled
along the western edge of the Great Plains. For many global
and regional climate model (Ma et al. 2014; Whan and Zwi-
ers 2016), the summer warm bias is a common issue in near-
surface temperature simulation over central North America
for both mean and maximum temperature. The highest warm
bias is about 3—4 °C in the Midwest and North Great Plains,
mostly in Iowa, Nebraska, Minnesota and South Dakota. A
noticeable cold bias of about 2-3 °C appears in the moun-
tainous and valley regions west of the Rocky Mountains.

HWEF characterizes the average number of HW days in a
month, which is well simulated in WRF (Fig. 3b). However,
WREF underestimates the spatial extent of the number of days
contributing to HWF in the Midwest, Ohio Valley, Missis-
sippi Basin, East Coast, and around the Great Basin.

The HWM is an index depicting the average magnitude
of daily Tmax among HW days, which is identified based on
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Fig.2 JJA-averaged daily TX90 threshold temperature calculated for a station, b WRF model, and ¢ model bias (WRF-OBS) for the summers of 2000-2013

the threshold temperature TX90. We show the HWM minus
the TX90 threshold (HWM — TX90) in Fig. 3d-f. (HWM
— TX90) can also be considered as an indicator of the vari-
ability of daily Tmax beyond its 90th percentile threshold.
Both observations and WRF (Fig. 3d, e) show a larger mag-
nitude (>2 °C) in the northern part of domain (north of
40 N), and near both east and west coast in daily Tmax. But
in the southern part of the domain, the departure of HWM
to TX90 are generally small. This may imply a heavier tail in
the distribution of daily Tmax for the northern part than the
southern part of the domain. The WRF model captured cor-
rectly this feature with small difference (less than + 1 °C).
Overall, the HW threshold and HW simulated by the WRF
CONUS simulation are reasonable in representing the obser-
vations and can be trusted in further analysis.

For soil moisture evaluation, the simulated top 1-m soil
moisture anomaly from WRF model is compared with the
SCAN measurement. The timeseries of monthly soil mois-
ture anomaly for two selected regions (MW and SGP) are
shown in Fig. 4. Since determining if the SPEI can represent
soil moisture anomaly is of interest in these two regions, the
SPEI-3 calculated for each month using meteorological data
and WRF simulation are shown in dashed lines. The Pearson
correlation coefficients between two soil moisture proxies,
SMA and SPEI-3, from observation (OBS) and WRF model
are shown in Table 1, with bold numbers indicating statis-
tical significance (p <0.01). In general, WRF model well
captured the temporal variability of soil moisture anomaly
accurately in both regions, with high correlation and statisti-
cal significance. SPEI is a good indicator for soil moisture
anomaly, with higher correlation in SGP than in MW. The
SPEI-3 derived from WRF model in both regions are in good
agreement with that from observation, thus it is reasonable
to use SPEI-3 as a soil moisture indicator and WRF model
has accurately simulated this index.

3.2 Correlation between heatwaves and antecedent
soil moisture

To determine the statistical relationship between antecedent
soil moisture represented by SPEI-3 and the HW indices
used in this study, we calculated their Pearson correlation
coefficients over the 13-year period (Fig. 5). Significant anti-
correlations with SPEI-3 exist for both HWF and HWM
(p<0.01) and appear in most regions in the continent, except
for the Southwest region of the Pacific coast. The signifi-
cant regions in HWM are generally further east compared
to those in HWF, both in the observation and WRF. These
anti-correlations suggest dry (wet) springs are associated
with more (less) HW days and higher (lower) HW tempera-
ture in summer months.

The WRF model accurately captures these significant
anti-correlations between antecedent soil moisture and
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Fig.4 Monthly soil moisture anomaly and SPEI-3 in selected two regions a in MW, and b in SGP. Solid dotted lines are from observational
results, and dashed lines are from WRF model; black lines are for soil moisture anomaly and blue lines are for SPEI-3 index

Table 1 Pearson correlation coefficient between monthly timeseries
of soil moisture anomaly and SPEI-3, from both observation and
WRF model in two regions (MW and SGP)

Region SMA_obsvs SMA_obsvs SPEI_obsvs SMA_wrf
SMA_wrf SPEI_obs SPEI_wrf vs SPEI_
wrf
MW 0.706 0.546 0.905 0.762
SGP 0.692 0.716 0.965 0.826

Bold numbers indicate statistical significance with p value less than
0.01

summer heatwaves in most regions, including the South
Great Plains (North Texas, Oklahoma, Kansas, Nebraska),
Midwest (Wisconsin, Illinois, Iowa, Minnesota) and Gulf
Coast (Louisiana, Arkansas, Mississippi). The WRF simu-
lation shows less areas with statistical significance in the
Canadian Prairies and Central US and more significant in
Michigan (p <0.01). These regions with significant anti-
correlations resemble the land—atmosphere coupling “hot
spots” in previous studies (Koster et al. 2004, 2006; Guo
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et al. 2006). In these regions the antecedent soil moisture has
strong influence on both frequency and magnitude of HWs
and, thus, may possess some predictability for HWs, espe-
cially in the Midwest, South Great Plains, and Gulf Coast.

3.3 Quantile regression analysis

The purpose of introducing quantile regression is to show
how antecedent soil moisture impacts on the two HW indi-
ces varies across different quantiles. The regression slope
of antecedent soil moisture (expressed as SPEI-3) and HW
indices represents the differences in the effects of soil mois-
ture at various quantiles. Figures 6 and 7 show the spatial
distribution of regression slopes for three quantiles (0.1, 0.5
and 0.9 for low, median and high quantile) of HWF and
HWM against antecedent soil moisture (SPEI-3) for both
observation (a—c) and WRF (d—f). The impacts of soil mois-
ture deficits on HWF become stronger from the lower to the
upper end of HWF distribution (Fig. 6a—c) and are promi-
nently negative for 0.9 quantile (Fig. 6c, f). For the lower
quantile (Fig. 6a, d) the regression slopes are close to zero
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Fig.5 Pearson’s correlation coefficient between SPI-3 and HWF (a, ¢) and HWM (b, d), from observation (a, b) and WRF model (c, d). High-
lighted stations/grid points indicate significant correlations at the 99% confidence level

across the domain. For the higher quantile (Fig. 6c, f), the
strongest impacts of antecedent soil moisture on HWF are in
the Midwest, South Great Plains and along the Gulf Coast,
where significant anti-correlations are shown in Fig. 5a, ¢
too. These results show that antecedent soil moisture has
strong impacts on HWF, especially on the higher quantile,
and can be used as a predictive index in these regions.
Unlike HWF, HWM exhibits strong relationships with
antecedent soil moisture in the low quantile, which is most
obvious in the South Great Plains and Pacific Northwest. It
implies that antecedent soil moisture has a stronger impact
on the low quantile HWM than the high quantile in these
regions. The strong impacts of antecedent soil moisture
on low HWM are accurately simulated in SGP region in
WREF compared to that of the observations. However, ante-
cedent soil moisture impacts on the higher quantiles (0.5
and 0.9 quantile) are underestimated. Quantile regression
slopes in this region become smaller in WRF simulation
than in the observations. There are also some regions,
where strong relationship between SPEI-3 and HWM in
all quantiles is seen, for example in the MW region. The

correlation becomes even stronger towards the high quan-
tiles. Conversely, the WRF model simulate stronger impacts
of antecedent soil moisture for the high quantiles than the
observations in the MW region.

The heatwave indices in two regions, Midwest (MW)
and South Great Plains (SGP), are analyzed further. For
these two regions, the scatter plots of both HWF and HWM
against SPEI-3 derived from observation and WRF simula-
tion are shown in Fig. 8. The regression lines for five dif-
ferent quantiles (0.1, 0.3, 0.5, 0.7, 0.9) are overlaid with
different colors. For HWF (Fig. 8a, c), in both regions obser-
vation shows a decreasing trend of regression slopes towards
higher quantile with the slope values becoming more nega-
tive, which suggests a stronger impact of antecedent soil
moisture on high HWF occurrence.

But for HWM, the scatter plots and quantile regression for
these two regions show different features. In MW (Fig. 8c,
d), although the trends of five regression lines are not as
clear as that of HWF, it does show stronger impacts (with
steeper slope) of antecedent soil moisture on high quantile
(Fig. 8c) in both the WRF simulation and observation. On
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Fig.8 Scatter plots of monthly HWF (a, b) and HWM (c, d) against lines for five different quantiles (0.1, 0.3, 0.5, 0.7 and 0.9) are shown
SPEI-3 from high-density observation (top) and from WRF simula- with different colors. SPEI value larger (less) than 0.5 (= 0.5) are
tion (bottom), based on stations/grid points averaged values for Mid- shaded in green (brown) to distinguish abnormal wet (dry) condition
west (MW) (a, ¢) and South Great Plains (SGP) (b, d). Regression
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the contrary, in SGP, the regression slopes are flat for the 0.9
quantile and steep for the 0.1 quantile, indicating stronger
impacts of soil moisture on lower quantiles (less negative)
as shown in Fig. 8d.

The difference in HWM responses at various quantiles
in two regions can be attributed to their different evapora-
tion or soil moisture regimes (Schwingshackl et al. 2017).
MW belongs to transitional-to-wet or transitional-to-energy
limited evaporation regime. Summer precipitation amount
is close to its potential evapotranspiration, so the region
relies on moisture storage from last spring and winter as
well as moisture input from current summer (Quiring and
Kluver 2009). Thus, the occurrence and intensity of summer
heatwaves rely on its antecedent soil moisture and summer
weather condition. The dependence becomes even stronger
for the high quantile of HWF and HWM. But SGP belongs
to dry-to-transitional or soil moisture limited-to-transitional
evaporation regime. Summer potential evapotranspiration
is much stronger than precipitation. Summer convective
weather in this region is more related to the moisture input,
which is usually associated with the low-level jet as part
of North Atlantic Subtropical High (NASH) that brings

(a) MW

slope:HWF/SPEI-3
|
)

0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9
Quantiles of HWF distribution

(c) MW

slope: HWM/SPEI-3
|
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Quantiles of HWM distribution

Fig. 9 Quantile regression slopes of the 0.1-0.9 quantiles for HWF
(a, b) and HWM (¢, d) in relation to SPEI-3 for the two regions (a,
c: MW, b, d: SGW), for both OBS (black dot) and WREF (red cross).

moisture from Gulf of Mexico, but is less related to ante-
cedent moisture storage in the soil. Thus, the high intensity
heatwave events are more a response to summer weather
condition than to antecedent soil moisture condition. None-
theless, all three drivers including the summer weather con-
ditions, antecedent dry soil moisture and anomalous SSTs
induced by climate variability will contribute to the occur-
rence of intensive HW events in SGP (Hoerling et al. 2013).

To evaluate WRF model performance, the quantile
regression slope between antecedent soil moisture and
HWEF/HWM were calculated from both observations and
WREF simulation. Figure 9 shows the regression slopes of 9
quantiles for both HWF and HWM in MW and SGP, with
the shaded area representing the 95% confidence interval.
The decreasing trends (slopes getting more negative for
higher quantile) of HWF and SPEI-3 in both regions are
accurately simulated by WREF, except for high (low) quan-
tiles in MW (SGP), where the WRF model overestimated
(underestimated) the effect of antecedent soil moisture. For
HWM, the decreasing trend in MW is not as obvious as
that in SGP, given a large spread in the confidence interval;
and an overestimation (underestimation) of the effects of

(b) scp

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
Quantiles of HWF distribution

(d) sGp

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Quantiles of HWM distribution

The shaded areas are the 95% confidence interval for quantile regres-
sion slopes for each given quantile
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antecedent soil moisture in MW (SGP) is shown for almost
all quantiles. These two features are consistent with the spa-
tial distribution of slopes shown in Fig. 7c—f.

4 Discussion

Multiple physical drivers exist behind heatwaves and the
contribution of each driver may vary across events and
regions. In a recent review paper on heatwaves by Per-
kins (2015), the physical drivers of HWs are summarized
in three main categories: synoptic condition, soil moisture
and land surface interaction, and climate variability. Our
study focuses on the impacts of antecedent soil moisture
on HWs through soil moisture-temperature feedback. The
results show that the feedback is stronger in a transitional
regime, while its manifestation requires interacting with
other drivers.

For example, soil moisture variation shows little impacts
on low quantile HWF in two focus regions, suggesting syn-
optic conditions may be more important for regions with
insufficient surface energy, which would prohibit evapotran-
spiration regardless soil moisture condition (Li et al. 2018)
(Figs. 6a, d, 8a, b). But for high quantile HWF, which are
likely associated with anticyclonic static synoptic condition,
antecedent soil moisture becomes a critical driver, amplify-
ing the soil moisture feedback after dry spring but suppress-
ing it when spring wet. This result about HWF is consistent
with other studies using observational data from Europe and
the globe (Hirschi et al. 2011; Herold et al. 2016; Mueller
and Seneviratne 2012).

On the other hand, the quantile regression between
SPEI-3 and HWM show different results. In SGP, where
antecedent soil moisture has stronger impacts on low quan-
tile HWM (Fig. 8d), the result is similar to a quantile regres-
sion study conducted for North and East part of Australia
(Herold et al. 2016), which is also in dry regime in sum-
mer. However, in MW the antecedent soil moisture shows
strong impacts on HWM in all quantiles (Fig. 8c), suggest-
ing antecedent soil moisture is very important for HWM in
this region.

Furthermore, the asymmetric response of HWF/HWM
to antecedent soil moisture for different quantiles suggests
potential predictive skill based on antecedent soil moisture
condition, especially for high quantile of HWF in both focus
regions and low quantile of HWM in SGP. This is described
as “asymmetric predictability” by Quesada et al. (2012),
who found that the occurrence of summer extreme heat
events is more sensitive to certain weather regime after dry
winter/spring compared to a wet season. Our results extend
the conclusion to the magnitude of summer heatwaves,
which depends more on synoptic weather systems in SGP

@ Springer

under wet soil condition, while the predictive skill of high
HWM with dry soil is always high.

The different responses of HWM on different quantiles
to antecedent soil moisture in these two regions (MW and
SGP) could be explained by their different evaporation
regimes and weather regimes in summer (Fig. 8c, d). In the
summer in SGP, evaporation is moisture-limited and the
synoptic conditions are largely dependent on the activities
of the static anticyclonic high pressure systems North Atlan-
tic Subtropical High, which brings moisture from Gulf of
Mexico. Thus, antecedent soil moisture has stronger influ-
ence on low quantile of HWM, while synoptic conditions
are a more dominant factor for the high quantile of HWM.
On the contrary, summer precipitation in the MW depends
largely on antecedent rainfall/snowfall in previous spring/
winter. In this region, the moisture recycling through soil
moisture-precipitation feedback (Li et al. 2017) confirms
that it is in energy-limited-to-transitional regime. That
explains why antecedent soil moisture is important for all
quantiles of HWM (Fig. 8c), and a strengthening trend is
observed towards higher quantiles (Fig. 9c¢).

In the relationship between antecedent soil moisture and
summer HW indices, the biggest differences between WRF
simulation and observation found in Figs. 6, 7, 8 and 9 could
be explained by warm temperature bias and dry precipita-
tion bias in both regions (Liu et al. 2017). In the MW, where
summer precipitation relies on local moisture recycling, less
precipitation and higher summer temperature introduce dry
bias in soil moisture, higher evaporation demand further des-
iccating soil under the dry condition. This over-coupling
between land and atmosphere contributes to a systematic
overestimation of the impact of antecedent soil moisture on
HWM in the MW (Figs. 7e, f, 9c). On the other hand, the
warm bias and dry bias in SGP is more related to the activi-
ties of NASH, which is the dominant factors for the summer
weather in SGP. Thus, the contribution of antecedent soil
moisture to HWM is underestimated with less negative slope
value in Figs. 7e, f and 9d.

Despite the warm and dry bias in the central US in sum-
mer have limited the model performance on HW magni-
tude, the WRF model accurately simulated the relation-
ship between HW frequency and SPEI-3 in both regions.
Other studies, comparing regional climate simulations with
observations, found overestimation of the impacts of ante-
cedent soil moisture deficits in wet regime (Hirschi et al.
2011). Our results showed reasonable estimation of soil
moisture impacts on HW occurrence. This could be due to
the improved representation of land surface properties in
high-resolution model as well as the explicit simulation of
convection in the model.

Although warm bias (3—4 °C) in daily maximum tempera-
ture exhibited in central US is a challenging issue in CPM
simulation, our results showed considerable improvement
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in simulated precipitation compared to coarser-resolution
non-convection-permitting regional climate model in North
America (Whan and Zwiers 2016). In addition, efforts in
the Hydrometeorology Applications Program group in
NCAR/RAL are being undertaken to reduce the warm and
dry biases in this region. This study showed a statistical
approach of evaluating the relationship between anteced-
ent soil moisture and temperature, which contributes to the
knowledge of antecedent soil moisture’s impacts on HW
aspects, the asymmetric predictive skill towards HWF/HWM
and the diagnosis of land—atmosphere coupling in regional
climate models.

5 Conclusion

Antecedent soil moisture has significant impacts on summer
heatwaves, as it can amplify the frequency and intensity of
heatwaves. Thus, it is essential to understand the physical
mechanism behind soil moisture and heatwaves and evalu-
ate how this relationship is represented in current regional
climate model. This study investigates the impacts of spring
soil moisture on summer heatwaves from station observa-
tions and the WRF regional climate model in convection-
permitting configuration (WRF CONUS). We started with
evaluating the 90th percentile of the daily maximum temper-
ature in June—July—August (JJA), and used it as the threshold
for defining heatwave events (TX90). The SPEI-3 is used as
a proxy for 3-month antecedent soil moisture as the supple-
ment to meteorological station soil moisture measurement.
The WRF model simulated the spatial patterns of a statistical
threshold temperature (TX90) of heatwaves reasonably well,
except for a 3—4 °C of warm bias in Midwest and 2-3 °C
of cold bias in western mountainous regions. Despite the
high temperature bias in central US in WRF CONUS, the
frequency and magnitude of HWs are reasonably simulated
by WRF CONUS compared to the observation, when using
a statistical threshold to define HW events (TX90). A soil
moisture proxy, SPEI-3, is then evaluated against in-situ soil
moisture measurement and the results showed that SPEI-3 is
a good indicator for monthly soil moisture anomaly.

The soil moisture-temperature feedback is represented
by anti-correlations between antecedent soil moisture, the
SPEI-3, and two HW indices, HWF and HWM across the
domain. These strong anti-correlations are significant over
many areas in the North America, including the Midwest,
North and South Great Plains, South Coast as well as the
Canadian Prairie. The spatial distribution of these strong
coupling regions has been captured reasonably by the WRF
model.

Quantile regression analysis shows that the impacts of
antecedent soil moisture are asymmetric for the occurrence
and magnitude of HWs. The quantile regression slopes

represent the strength of the impact of soil moisture on HWF
and HWM for different quantiles. For HWF, soil moisture
has stronger impacts on the higher quantiles of the HWF,
suggesting other have a larger effect in certain regions with
sufficient surface energy, such as where anticyclonic syn-
optic conditions may play a dominant role. On the other
hand, the asymmetric effect of soil moisture on HWM var-
ies spatially. For two regions in interest, the Midwest (MW)
and South Great Plains (SGP), the impacts of antecedent
soil moisture are stronger for the lower quantile of HWM
in SGP, while strong for all the quantiles in MW. This dif-
ference could be related to their different summer weather
regimes - summer weather in SGP is highly impacted by
large synoptic scale processes, while in MW it is largely
depended on local feedback through moisture recycling of
the antecedent rain/snowfall.

The asymmetric response of heatwave occurrence and
magnitude to antecedent soil moisture (stronger for higher
quantiles of HWF in both regions but for lower quantiles
of HWM in SGP) provide important information for the
improvement of their predictive skill, as it is confident that
less heatwave events and lower heatwave temperatures will
appear after a wet spring than a dry spring in two regions.
In SGP, antecedent dry soil moisture embedded higher pre-
dictability for high HWM while less predictability for high
HWEF.

The WRF model also represents well the regression
slopes for HWF in most of the quantiles in both regions,
but overestimates the slopes for HWM in MW and under-
estimates the slopes in SGP. The warmer temperature and
less precipitation bias in these two regions in summer led to
increased evaporative demands and further desiccated soil
moisture, hence, strengthened local feedback in the MW.
On the other hand, other processes might be responsible for
underestimated land—atmosphere coupling in SGP, such as
the activities of NASH. Overall, the WRF CONUS simula-
tion is capable of capturing the soil moisture-temperature
feedbacks in these two regions, which has strong connection
in summer heatwaves.

The role of soil moisture in land—atmosphere interac-
tion, particularly in heatwaves are complicated and need
further analysis. Our study has important implications for
land—atmosphere coupling research as well as heatwave
monitoring and forecasting. Here we list a few non-exhaus-
tive implications as well as our future research plan:

1. Predictive skill for agriculture activities: agriculture is
very important but highly diverse in both regions, with
the eastern part of MW and SGP mainly rain-fed crop
but western part irrigated. Rain-fed crop production, in
particular, is critically dependent on weather conditions
in the warm season. Extreme temperature-induced heat
stress can seriously affect crop production. These two
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regions are also major places for livestock production,
including dairy and beef cattle, hogs and others, which
are also sensitive to heatwaves.

2. Diagnosis on land—atmosphere coupling: the overestima-
tion of soil moisture impacts on summer heatwaves in
the MW regions, both seen in the high quantile of HWF
and HWM, could be attributed to too strong land—atmos-
phere coupling. There have been many theories regard-
ing the over-coupling issue, including too strong surface
coupling due to out-of-date assumption on short vegeta-
tion in this region, which are mainly crop and grassland,
which transport higher heat flux from the surface to the
atmosphere, hence, intensifying the soil moisture-tem-
perature feedback. (Chen et al. 1997; Chen and Zhang
2009). Another theory is related to lack of irrigation
over this region in the land surface model, where irriga-
tion water could be a significant input that increases soil
moisture and evapotranspiration and cools the air (Huber
et al. 2014). These are strong motivations and potentials
for future land—atmosphere coupling studies.

3. High resolution convection permitting model: the ini-
tial motivation of performing high resolution regional
climate modeling is its advantages in simulating con-
vective precipitation. However, a recent study on the
summer convection storms using the same model data
showed less convection population simulated in the cur-
rent climate than observation (Rasmussen et al. 2017).
This result is connected to our findings here that a warm
and dry bias in the Great Plain region amplify soil mois-
ture-temperature feedback while suppress soil moisture-
precipitation feedback. The diagnosis and improvement
of land—atmosphere coupling in regional climate model
can potentially benefit the performance of convection-
permitting regional climate model.

4. Climate change impacts on land—atmosphere coupling:
In the second part of the WRF CONUS simulation, a
Pseudo Global Warming (PGW) method is applied to
add a climate perturbation from RCP8.5 scenario to
current climate, implying global warming. How global
warming impacts on land—atmosphere coupling, particu-
larly how soil moisture could impact heatwaves in future
climate, could be an interesting research topic.

Heatwaves are extreme temperature events that has dis-
astrous effects on human health and societies. Thus, it is
important to understand the physical mechanism of soil
moisture, and its interaction with synoptic condition and
climate variability and how they relate to HWs. This can
provide useful information for heatwave forecast and mitiga-
tion approaches.
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