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sured data from several sensors. However, the malicious injection of the anomalies or out-
liers in measured sensor data may disrupt the automated decision making capabilities of
the applications running at the centralized location. Therefore, the detection of such out-
liers is an essential problem for IoT that needs to be researched out. This paper presents a

Iéaﬁ:rrdj&ector scalable outlier detector that uses Hierarchical clustering in conjunction with Long Short-
Hierarchical clustering Term Memory (LSTM) neural network. Hierarchical clustering provides scalability to the
LSTM neural network outlier detector by finding correlated sensors. The LSTM neural network is coupled with
M-estimator the robust statistics, M-estimator, to accurately detect outliers in time-series data. The sim-

ulation results on different data-sets show that the proposed method has an accuracy of
more than 90% for different attack strength. Also, the model parameter can be tuned ac-
cording to the application requirement so that the outlier detector can be tailored to either
precision or recall sensitive.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Internet of Things (IoT) envisions the presence of ubiquitous devices and sensors for continuous measuring of environ-
mental parameters [1-3]. The measured data is transferred to the centralized entities, like cloud, edge, or Software-Defined
Network (SDN) controller, where the data is analyzed and processed to extract useful information and assist in IoT-enabled
automated applications [1,4]. There are many IoT applications that use measured data in time-series format [5,6]. However,
it is possible that the time-series data is manipulated by an adversary, inducing outliers in it [7,8]. Exposure to the Internet
may allow adversary to remotely control sensor and alter its measured value. Multiple recent studies have emphasized the
analysis and detection of such attacks [9,10]. The main motivation for such attacks is to disrupt the reliability of IoT service
providers [11,12].

Frequent occurrence of outliers due to compromised sensors reduces the effectiveness of intelligent and automated de-
cision making capabilities of the applications. The outliers may result in system breakdown, thus reducing the user’s trust
regarding a service. For an enterprise, this may result in a long-term revenue loss due to bad customer experience or brand
perception. For example, as reported in [11], if a particular mobile application fails, it is likely that 48% of users will use
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Fig. 1. Traffic count at different locations.

it again, 34% users may switch to some other competitive application, and 31% of them will tell to friends about their bad
experience [11,12]. Therefore, outliers need to be effectively detected and filtered out.

In the context of IoT, detecting outliers is difficult due to the volume and variability of the data. Also, a large number
of sensors are present in IoT, making problem further difficult. The IoT devices generate data having diverse patterns and
characteristics. Therefore, developing anomaly or outlier detector satisfying the need of every sensor is difficult. Fig. 1 shows
the vehicular traffic near two different locations. It can be observed that the two time-series differ significantly. Therefore, an
outlier detector developed for one of them cannot be effectively used for the other. Thus, the traditional anomaly detectors,
that does not consider the diversity in the data and presence of a large number of sensors, cannot be effectively used in the
IoT domain. If conventional methods are applied in the IoT domain, then a separate model is required for each sensor. Such
a system suffers from scalability issue due to the presence of a large number of sensors in IoT. Therefore, for IoT, a scalable
outlier detector needs to be researched out.

Further, several state-of-the-art anomaly detectors relies on different assumptions about the sample data-set. For exam-
ple, the conventional Grubbas test assumes that the sample size should be large enough for high detection accuracy [13].
The assumption about the sample size of data cannot always hold, and therefore, it is not an effective method for every
condition. Outlier detectors relying on statistical properties of sample data assume that the data comes from a particular
distribution [14]. The assumption cannot always be true. Therefore, although the statistical characteristics of a sample data-
set are useful for detecting outliers, relying solely on them reduces their effectiveness. Many outlier detectors use supervised
learning on training data having labeled (or known) anomaly patterns [15]. However, due to diversity and volume of data,
the labeled anomaly patterns may not always be available. Therefore, supervised learning on existing anomaly patterns is
not an efficient technique.

In this paper, we spell out an outlier detector that is scalable and does not depend on the underlying assumptions
about the sample data or labeled anomalies. We employ Hierarchical clustering to impart scalability to the outlier detector.
Hierarchical clustering finds the correlated sensors and forms clusters. The sensors in a cluster have similar measurement
patterns and an outlier detector developed for one of them can be used for every sensor in a cluster. For detecting outliers,
we partition time-series into segments so that the effect of data distribution is minimized. We use robust statistics M-
estimators coupled with the LSTM neural network to detect outliers in a time series segment. The proposed method that
combines the M-estimators and LSTM neural network can effectively detect up to 50% outliers in every time-series segment.
The main contributions of this paper are as follows:

« Proposal of a Hierarchical clustering method for effectively finding sensors with correlated measurements. The Hierarchi-
cal clustering is used for providing scalability to the outlier detector.

- Investigation of an outlier detector that uses the cluster information and employs M-estimator coupled with the LSTM
neural network.
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« Evaluation of the proposed method using two disparate data-sets to validate its effectiveness and comparison with the
other state-of-the-art techniques.

The rest of this paper is organized as follows. Section 2 provides a brief literature survey on this topic. Section 3 present
the problem statements and the description of the methods used in this paper. Section 4 describes an overview of the
proposed outlier detector. In Section 5, we investigate the proposed outlier detector. In Section 6, simulation experiments
and results are presented and Section 7 concludes this paper.

2. Literature Survey

There have been several works done on anomaly or outlier detection for IoT-based applications. Thanigaivelan et al.
have presented a distributed approach to detect anomalies for IoT in [16]. In the given work, the anomaly detection task
is distributed between nodes and router. The nodes in the system record data rate or packet size for detecting anomalies.
The router located at the edge collects information about anomalies, and based on the obtained correlated values, verifies
a point as anomalous. Li et al. have proposed a distributed anomaly detection and trust management services for the IoT
sensors in [17]. In the given method, an IoT node verifies for any anomaly in the other IoT nodes that are present within its
transmission range. Based on the information, each IoT node informs to the sensors in its neighborhood about the possible
outliers. Then, the data is fused according to the Dempster-Shafer Theory (DST) [18]. To verify the trustworthiness of the
collected data, the proposed method checks if the measured sensor data is consistent with its neighborhood sensors. The
approaches mentioned by Thanigaivelan et al. and Li et al. are distributed in nature. Therefore, they pose a problem due
to the low computing power of individual nodes. The rise of the Big data in IoT requires a massive amount of data to be
processed, and thus, the above approaches are not suitable for the [oT domain. Furthermore, the per sensor model is not
scalable for IoT due to the presence of a large number of sensors.

Bhattacharjee et al. [9] have proposed the use of statistical characteristic of sample data, Harmonic-Arithmetic mean
(HM-AM) ratio, for anomaly detection. The proposed method is useful for the point as well as group anomalies. However,
the work has used the data-sets where HM=~AM such that the data points are close to each other. For the data-sets having
significant variations in measured values, the method cannot be effective as in such a case HM — AM ratio is not close to
one. Furthermore, the given method assumes that the data sample is normally distributed that cannot be correct every time.
The importance of finding local outliers has been described by Markus et al. in [19]. The local outliers are the points that
are not close to their neighborhood points. For this purpose, the paper has described a Local Outlier Factor (LOF) for every
data point. The LOF determines the amount by which an object is separated from its neighborhood points. If a point is well
close to its neighbors, its LOF value is high. For every other point, the method assigns an upper and lower bound on LOF
value. The LOF is a useful method for finding local outliers as local factors are sometimes more meaningful and provide
better insights into the data than the global factors. Su et al. [20] have proposed an outlier detector based on the density of
the scattered data. In this work, the local outlier factor is redefined by taking the advantage of the distribution of the data.
The work pre-processes the data using Rough Clustering based on Multi-Level Queries (RCMLQ) method, and then Efficient
Density-based Local Outlier detection for Scattered data (E2DLOS) is proposed for anomaly detection. Bhattacharjee et al.,
Markus et al., and Su et al. have proposed methods that rely on the data having a certain distribution. Often the sample
size is small enough, and thus, the sample data cannot be categorized into specific distribution, or distribution advantages
cannot be made. Thus, the above approaches for the anomaly detection are not valid in such types of cases.

In [21], Pandeeswari et al. have described using the neural network for anomaly detection in the cloud data. The given
method employs a combination of Fuzzy C-Means and Artificial Neural Network (FCM-ANN) methods that improve the
detection accuracy as compared to the techniques like Naive Bayes classifier and simple ANN algorithm. The given method-
ology is found to be effective in the presence of low-frequency outliers and performs with a low false alarm rate. Vallis
et al. [22] have presented Extreme Studentized Deviate (ESD) and Seasonal Extreme Studentized Deviate (S-ESD) methods
for the anomaly detection in Twitter data. The ESD and S-ESD methods use Median and Median Absolute Deviation (MAD)
to determine the outliers. However, the methods proposed by Pandeeswari et al. and Vallis et al. detect anomalies on the
aggregate data collected in the cloud from a large number of devices. Thus, they are suitable for the cloud computing data
analysis. The anomalies in the measured data in a particular IoT node has not been described in the given works.

In contrast to the above works, this paper develops an outlier detector that does not relies on computing capabilities
of the individual IoT nodes. It does not depend upon data samples having specific distribution. Furthermore, the proposed
outlier detector is both scalable and accurate. It is not tailored to a specific sensor. Also, the given outlier detector does not
depend upon the training data containing labeled anomaly patterns.

3. Preliminaries
Before proceeding to the proposed methodology, we explain below the problem statements and the motivations for using

Hierarchical clustering and Long Short-Term Memory (LSTM) neural networks, in the context of the proposed scalable outlier
detector for Internet of Things (IoT) sensors.
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3.1. Problem statements

The outliers in time-series data are the points in the sample that does not have an expected value. They have value
greater or less than the actual value because a malicious adversary may have altered the sensor data. The problem to find
outliers in IoT is divided into two parts.

The different IoT sensors provide a diverse range of time-series patterns. There are also a large number of sensors in IoT.
Therefore, the first problem is to determine correlated sensors in IoT. We propose to use Hierarchical clustering to find the
sensors that have correlated measurements. Once correlated sensors are obtained, the second step is to develop an outlier
detector for a correlated cluster of sensors. Therefore, the second problem is to accurately find anomalous points in the
sample. We use Long Short-Term Memory (LSTM) neural network coupled with the robust statistical analysis to find the
anomalous points or outliers in IoT.

3.2. Hierarchical clustering

Hierarchical clustering is one of the many clustering techniques that is used for the data analysis purpose [23]. We use
Hierarchical clustering since it is flexible and has fewer assumptions about the underlying data patterns. The methods like K-
means algorithm assumes that the number of clusters is known in advance. The density-based methods like Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) and Ordering Points to Identify the Clustering Structure (OPTICS)
are based on the different density between clusters [24]. The distribution-based algorithm like expectation maximization
method assumes that the data comes from a particular distribution like normal or gaussian [25]. Support Vector Machines
(SVM) is also a popular mechanism, but it is computationally expensive [26].

In the given context, we have a large number of sensors providing disparate time-series patterns. The problem is to deter-
mine sensors that provide similar measurement patterns. Thus, it is not known in advance the number of correlated clusters
of sensors. Additionally, we consider that sample distribution is not known in advance. The clustering method should also
be less computation-intensive. Since, the Hierarchical clustering is a light-weight and non-parametric technique, it aptly fits
in our problem.

In the Hierarchical clustering method, initially, all the data points are considered as an individual cluster. Subsequently,
it repeatedly performs the two steps. First, it identifies the two clusters that are close to each other. Then, it merges those
clusters to form one big cluster. The process is repeated until the entire data-set is collected in a single cluster. Depending
upon the variation in the distance between two clusters that are being merged, the user can determine the number of
clusters for an application.

3.3. LSTM neural network

There are different methods for time-series analysis. For example, the Auto Regressive Integrated Moving Average
(ARIMA) is often used for time-series analysis. However, LSTM network is found to be efficient in capturing long-term rela-
tions between temporally separated data points in sequential data. LSTM is suitable for time-series data analysis as it has
memory units. Thus, for non-linear and time-series data-sets the LSTM is often suitable as compared to other methods [27].
Therefore, this paper has used LSTM for the outlier detector problem.

LSTM neural network contain cells for processing data where each cell has input, output, and forget gate. The gates keep
track of amount of information transferred from input to output and next cell. The input gate controls the extent up to
which input value is passed to the cell, forget gate controls the information to be remembered and passed to the next cell,
and output gate controls the amount of information from input and previous gate to be used as the output [27]. Thus, the
cell in the LSTM neural network acts as its memory and helps in extracting long-term dependencies in the data.

4. Outlier Detector Architecture

Fig. 2 shows the overview of the proposed model. The proposed model is deployed at the centralized cloud unit. The
measured data from spatially distributed sensors is transfered to the centralized unit for use in different applications [28].
In cloud, before using data for a specific application, it is analyzed using the given model to detect the presence of outliers.

The proposed model consists of the two modules, namely the sensor clustering module and outlier detection module. As
shown in the figure, the time-series data is first passed through the filter to remove noise and is then fed to the clustering
and the outlier detection modules.

The clustering process is performed offline on the recorded time-series data from every sensor. We assume that the
data used for the sensor clustering does not contain any outlier. Before clustering, we use the Principal Component Analysis
(PCA) on time-series to reduce its dimensions. Thus, the data fed to the Hierarchical clustering has lower dimensionality and
makes clustering process computationally efficient. After PCA analysis, the Hierarchical clustering determines the correlated
Sensors.

The outlier detection module is performed both offline and online. During offline phase, the LSTM neural network is
trained on known data-set for its optimized performance. During online phase, the module is used for detecting outliers.
Outlier detection module contains a statistical module (M-estimator) and LSTM neural network module. The time-series data
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Fig. 2. Architecture describing outlier detection process.

is first segmented, and then on every segment statistical analysis is performed. The time-series segment is also fed to the
LSTM neural network for estimating range in every segment. The LSTM neural network uses the processed information from
clustering module. The processed data from both the M-estimator module and LSTM neural network module is combined
in the outlier detector to find the outliers in every segment. The following section describes the different modules and their
functioning in detail.

5. Methodology

We present below the detailed description of the proposed outlier detector. In our analysis, the time is discretized into
the length of the interval 7, and every such interval is called a time-slot. We use variable i, j, and k to denote location, day,
and time-slot respectively. The sensor at location i is represented using variable s;. Variable L represents the total number
of sensors such that i< {1, 2, ..., L}. The data is stored in a matrix n. The values in matrix n are transformed by normalizing
them between 0 and 1 using the min-max scaling.

The measured value at location i, day j, and time-slot k is represented using variable n; ;. Subscript “_" is used to rep-
resent time-series. If one or more subscript (i, j, or k) in n;; is replaced by “_” then the corresponding variable represents
the time-series vector containing all the values of the replaced variable. For example, the time-series representing measured
sensor data at location i on day j is given as n; ; . Here, the variable for the time-slot (k) is replaced by “_" and thus rep-
resents the data for every time-slot. The first element of vector n; ;_is the sensor data in the first time-slot, the second is
the second data in second time-slot and so on. Similarly, n; _ is one big vector that represents the sensor data in a time-
series format at location i for all days and time-slots. To represent the values for a range of time-slots between k and k + x
(x is an integer), we use k_k+x in the subscript. Thus, the vector n; j . represents the sensor data between time slots
k to k + x. Similar notation is used for representing range of days and locations. In this paper, we use symbol “x” to de-
note scalar multiplication between two numbers or between a number and a vector/matrix. Dot product and element-wise
multiplication between two vectors or matrix is represented using symbol “.” and “*” respectively.

The time-series data (n; j ) contains noise. To reduce the effect of noise, the n; ; is passed through the moving average
filter. As shown in Fig. 2, the time-series is passed through a noise removal filter. Filtered data is used in clustering as well
as in the outlier detection module. For detecting outliers, the first step is to find the cluster of correlated sensors and is
described in the following section.

“wn

5.1. Clustering module

We reduce time-series vector near every sensor to a low dimensional representation using Principal Component Analysis
(PCA). Reducing time-series to a low dimensional representation makes Hierarchical clustering in the subsequent step com-
putationally efficient. Thus, the Hierarchical clustering, instead of using entire time-series vector, uses its low dimensional
representation and is computationally efficient.

5.1.1. Principal Component Analysis

For clustering, we use the time-series data for one week from every sensor. The vector representing weekly time-series
data is represented using variable v;, where v; = n; 1 7 . The vector v;, for every i, is processed using Principal Component
Analysis (PCA) and reduced to a low cardinality representation while preserving patterns in the original sample.
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PCA is an unsupervised machine learning algorithm that is used for data analysis [29]. It reveals the hidden structure in
high dimensional data-sets and provides a low-rank approximate matrix, given the original matrix. Since it is an efficient
dimension reduction technique, we use it to extract the dominant components of the time-series vectors.

We use the matrix V, such that V = {vq,v,,...v;}, for reducing the cardinality of every v; vector. v; is a row of V and
represents the sample data for one sensor. Since there are L number of sensors, the number of rows in matrix V are L.
The number of columns is the cardinality of vector v; and is represented as D. The primary objective of PCA is to find a d
dimensional coordinate system, where d < D. The coordinates in the new subspace are orthogonal to each other. Also, they
are linear combinations of the sample data and maintains maximum variability in data points. Mathematically, the problem
is to find ¥ such that V = V.P, where the dimensions of P are D x d. For the given time-series representation, we determine
the different principal components such that the first principal component is one in the direction provided by Eq. 1.

P = ar‘gumax{E i(vi.p)*} (1)
p =
The value of p that maximizes the right hand side of the Eq. 1 is the first principal component p;. In Eq. 1, the term
v;.p is the projection of vector v; in the direction of unit vector p. The objective is to find the direction p; that maximizes
the variability of the vectors v;. Proceeding similarly, if first d — 1 principal components are determined, the d, principal
component is one of the residuals. The residual is obtained by removing the data mapped into the d — 1 directions. Thus,
dy, principal component p, is obtained as given in Eq. 2.

Pd= arﬁgHm?x| |(V — ¢ V(pi.p)).pll 2)
p =

Once the principal orthogonal axes are determined, the transformed data in their direction is obtained using Eq. 3.
V=Vvp (3)

It can be proved that the first d principal components of V are the top d eigenvalues in the covariance matrix of V.
However, the proof is beyond the scope of this paper and can be found in [29]. For the given data, using PCA, we have
reduced the cardinality of vector v; by 61%.

5.1.2. Hierarchical clustering

The matrix V is used to perform Hierarchical clustering and find correlated sensors. Hierarchical clustering is an unsu-
pervised non-parametric clustering method that can be used to group objects according to similar patterns and put them in
a cluster [30]. Every row of V represents reduced data sample for a sensor. Since the number of sensors are L, the number
of rows in V is also equal to L. The clustering process for finding similar sensors is explained in Algorithm 1.

Algorithm 1 Hierarchical clustering.

Input: Reduced matrix- V

Output: Clusters- ¢

1: Assign each data sample to a single cluster.
2: repeat

3:  Find the two most similar clusters.

4 Merge clusters obtained in step 2.

5: until A single cluster is obtained.

The clustering process begins by assigning every row of V to a cluster. Thus, in the beginning, we have as many clusters
as the number of sensors L such that every cluster has a single element. In successive steps, the two clusters which are sim-
ilar to each other are merged to form a single cluster. Thus, as the algorithm progresses, the number of clusters decreases.
The merging process continues until a single cluster is formed.

To find the similarity between two clusters, euclidean distance between cluster centroids is used. The two clusters having
minimum euclidean distance between their centroids are merged in each step. For a cluster having single element, centroid
is the value of multidimensional vector (row of V). If it has more than one element, its centroid is obtained by taking the
average or center point. The average is obtained across each principal directions (columns of V). Thus, if any two row in ¥
are in a cluster then its centroid is obtained as the vector whose elements are the average of values in every column of the
corresponding rows.

5.1.3. Dendrogram and number of clusters

Fig. 3 shows the dendrogram plot explaining cluster formation process for a set of vehicular traffic sensors. The lowest
end of the plot (leaf) represent single sensors. The vertical lines that are combined to a single point show the two clusters
being merged. The vertical axis represents the euclidean distance between the cluster centroids. The difference in height of
the vertical lines, that are combined, is the distance between two clusters. If a horizontal line is drawn through the plot,
then the number of clusters, before the merge at the particular level, is equal to half the number of times the horizontal
line cuts the vertical lines.
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The number of clusters are selected such that the distance between the clusters being merged is less than a certain
threshold value. If the threshold distance is low (at the lower end of the dendrogram plot), large number of clusters are
formed. In this case, the samples within clusters will be very similar to each other. On the other hand, if the threshold
distance is significant, the number of clusters will be less, but the samples within the cluster will have high variability.
Thus, the number of clusters depends upon the chosen threshold value.

The variation in the euclidean distance between clusters being merged is plotted in Fig. 4. To select the number of
clusters, the point where there is an abrupt change in the slope of the graph is chosen as the threshold distance. As we can
see from the Fig. 4, the slope of the curve has an edge at three points, where distance approaches 2500, 3500, and 5500.
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One of these points can be chosen as the threshold distance to determine the number of clusters. As explained above,
for lower threshold distance 2500, the number of clusters will be more with less number of samples in a cluster, but points
within a cluster will be close to each other. For higher threshold value (5500) the cluster size will be significant with high
variability of sample points within cluster elements.

5.14. Cluster center

The cluster center can be obtained using various alternatives, like ward, average, single, complete, or centroid [30]. In
this paper, we chose centroid because it was found to provide the highest cophenetic correlation coefficient cc. A higher
cophenetic correlation coefficient implies that the clusters better represent the original data-set [31].

The cophenetic correlation value is determined as the linear correlation between the original pairwise distance between
the sample V and the distances obtained from the dendrogram plot. Thus, if Y represents the vector containing pairwise
distance of the elements in V and Z represents the euclidean distances between clusters where two points are first merged,
then the cophenetic correlation coefficient is obtained as in Eq. 4. Here, Yy is the distance between sy, and t;, original
observation in V and Zy is the distance between height of the dendrogram plot when sy, and t;, point are first combined in
a cluster. Variables y and z are the average of Y and Z respectively.

st Yot —=Y) x (Zst —2)

cC =
\/Es<t(yst —¥)? x Zgt (Zst — 2)?

(4)

5.2. Outlier detection

The obtained clusters are used for detecting outliers in time-series data. The outlier detector is developed for every
cluster of sensors. The given model is scalable because an outlier detector is used for many sensors. We describe below the
combination of LSTM neural network and M-estimator for detecting outliers in time-series data. The following analysis is
for a cluster of sensors. The trained LSTM neural network can be used for any sensor in the particular cluster. Thus, there
are as many models as the number of clusters obtained during clustering analysis.

5.2.1. Segmentation

As shown in Fig. 2, for detecting outliers, we first segment time-series. The time-series vectors are split into length
of equal intervals I". The segments are used for detecting outliers. In a segment, we assume that 50% of the samples near
median are true values. Thus, we verify for outliers in lower and upper ends of the segment. For example, if values in a time-
series segment are sorted in increasing order of magnitude, then half of the values in the middle portion are considered as
true values. The other half (25% at lower and 25% at upper ends) values may contain outliers. A particular segment starting
at time-slot k is represented using the variable s; = {n; j , 1 j 41, - - - N j k41 }- FOr convenience, we omit the subscript i and
j in s,. The segments of time-series are fed to the M-estimator for statistical analysis. Time-series segments are also used
by the LSTM neural network for estimating deviations in it. The statistical analysis and estimated deviation are combined to
find the outliers.

5.2.2. M-Estimator

The statistical analysis is performed on a time-series segment. We determine the M-estimator value for a segment. M-
estimator is the robust statistical measure of a sample data-set [14]. The critical properties of the M-estimator is that it is
resilient in the presence of outliers and does not depend on samples having normal distribution. Thus, even if the outliers
are present, the M-estimator value is expected to be constant. In contrast, statistical properties like mean is not robust
against outliers because the true sample mean changes even in the presence of a single outlier. For a segment, the M-
estimator is obtained as the solution of the Eq. 5.

kT (ni-f-k_l"l’) -0 (5)
k=k o (Sk)
The denominator o (s;) is a function on s, and gives initial estimate of the solution. The solution u of the equation is
the robust M-estimator u; for segment s;. £ is a real valued Huber function & (a) = a x min(1, %), where b is a constant.
The M-estimator is used to find the deviation d, for a time-series segment. For segment s;, the deviation from the robust
M-estimator f is found using Eq. 6.

di = max(|n; j i — pels 10 e — Bkl - 10 j e — pkl) (6)

We use quantities s, iy, and d, for training the LSTM neural network. That is based on the values s, i, and di, a
neural network model is developed that assists in determining outliers in time-series segments. The detailed analysis of
LSTM neural network and subsequently the outlier detector is provided in the following sections.
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Fig. 5. LSTM neural network.

5.2.3. LSTM neural network

We describe the LSTM neural network that is used for predicting deviation from robust M-estimator. Eq. 6 shows the
actual deviation from M-estimator in a time-series segment. However, in the presence of outliers, actual deviation in the
segment is different as calculated using Eq. 6 because the sample points are not true values but outliers. Thus, the proposed
method predicts the deviation from the M-estimator dﬁ , rather calculating it using Eq. 6.

From segment s, we find the vector s, containing 50% of s, elements near the median. The elements of the vector s}
are represented as s}’ (1), sy'(2),\ldots , and so on. Since the cardinality of s; is I', the vector ;" has the cardinality I'/2. The
prediction problem is, given the input s, design a LSTM neural network to accurately estimate d,’j.

The LSTM neural network architecture is shown in Fig. 5. The LSTM neural network has cells that process the inputs fed
to it. The cells are sequentially joined to each other to form a chain as shown in the figure. Each such chain is called a
layer of the LSTM neural network. The multiple layers are stacked above each other such that output of a layer is the input
for layer above it. The cell has a memory called as its state. The LSTM cell processes the data based on an external input,
output of the previous cell, and state of the previous cell [32].

The variable t is used to represent a cell. Thus, the cells adjacent to t, in same layer, are t — 1 and t + 1. Every cell has
forget, input, and output gates. Forget gate determines the information from the previous cell to be discarded in the current
cell. The input gate determines the information from the current input to be saved. The output gate determines the amount
of information to be passed to the next stage. Each gate receives external input (an element of vector s}') and output from
the previous cell. If r is a number between 1 and I'/2, gates process the input as given in Eq. 7, to get the outputs, f;, i, and
o;, of forget, input, and output gates respectively, for cell t.

fe=0g x Wp.s(r) +Us.he_1 + by) (7a)
ir = Og X (VVlSlm (I‘) + U,‘.h[,] + b,‘) (7b)
0r = 0g x (Wy.s"(r) + Up.hy_1 + by) (7¢)

Here, Wy, W;, and W, are the weight matrices between external input and the three gates. Uy, U;, and U, are the weights
between output from cell t — 1 and the gates. by, b;, and b, are the bias vectors, h,_; is the output from the cell ¢ — 1, and
og is the sigmoid activation function.

The memory of LSTM cell (cell state) is evaluated using Eq. 8, where W, and U, are the weight matrices and b, is the
bias vector. The cell state depends upon current external input sI"(r), output of t —1 cell h;_;, and state of the ¢ —1 cell
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Ci_1. As depicted in Eq. 8b, the cell t forgets some information from state of the cell t — 1 (term f; *G;_;) and keeps some
information from current input and output of the cell t — 1 (term i; x (;), to get the updated state C;.

G = tanh(We.s™(r) + Uc.he_q + be) (8a)

C=fexCG_1+ir = G (8b)
The output of a cell depends upon the output gate (o¢) and cell state C, is given in Eq. 9.

ht = O¢ * tanh(Ct) (9)

The above analysis is for a single cell in a layer (input layer). The outputs of cells in a layer are the external inputs to
the cells in layer stacked above it.

5.2.4. LSTM neural network design

In the given prediction problem, the vector s} is the input and d}(’ is the output to the LSTM neural network. The cells
in the input layer of LSTM neural network are added based on the cardinality of the vector sj?. Since, for an input vector
sy, there is a single valued output d,‘(’, a neuron is added at the output. The outputs from the uppermost LSTM layer is
fed as input to the feed-forward neuron. The output of the neuron is the required predicted deviation d,‘j. Due to data
normalization, the output value ranges between 0 to 1. Therefore, the activation function of the output neuron is chosen as
tanh, as it is a continuous function and its range include required limits between 0 and 1. Between input layer and output
neuron, three LSTM layers are added so that the network accurately predicts the d,f value. The activation function for LSTM
cells is also chosen as tanh.

Initially, the LSTM neural network operates in training phase to set its weights and biases to optimum values. Once the
network is trained, it is used for predicting deviation. The training phase is an offline process that uses the known input
vectors s;' and output values dy. The quantities s]' and dy, are collected for one week data. During the training phase, the
weights and biases associated with the network are adjusted so that the difference between predicted deviation d,’: and
the actual deviation dj is minimum. Thus, the input s? is fed to the network to obtain the output d,’:. Then, based on the
mean squared error between predicted d,’: and actual d;, the weights of the neural network are adjusted. For neural network
training, we tested different optimization methods, like Adam, Adagrad, Adadelta, Gradient descent, and RMSprop [33]. Our
analysis resulted in using Adam optimization since it converges fast as compared to other methods. For training purpose, all
the input vectors are collected in a matrix X such that a row of X is one input vector s;'. The network is trained for 10000
iteration. To avoid the over-fitting of the network, we selected a dropout of 20% [34]. Thus, in every iteration, 20% of the
weights in each layer are ignored and not updated. Once the weights are optimally updated such that the error between
expected and known output is very low, they are saved and represent the proposed trained model for a cluster of sensors.

The trained model is used in prediction phase, when the outlier detector operates. During prediction phase, a vector s}
is fed as input to the neural network. The output provides the estimated value of the deviation from the M-estimator d,‘f.

The following section describes how the M-estimator and predicted deviation d,f are combined for detecting outliers.

5.2.5. Outlier detector

The process of finding outliers using M-estimator and LSTM neural network is described in the Algorithm 2. The algo-
rithm takes time-series segment s, as input. It uses a hyper-parameter « to determine the expected range of values within
which a segment lies. The algorithm employs trained LSTM neural network models. There are as many LSTM neural net-
work models as there are the number of clusters. The algorithm provides the number of positive 1, negative 1,, and the
total number of outliers 7;. Positive outliers 1, have value higher than the expected maximum value of a segment. Negative
outliers 7, have value less than the expected minimum value.

In step 1, algorithm determines the M-estimator p, for the time-series segment s;. Here, it should be noted that s
may contain outliers. Thus, using M-estimator is useful as it is robust against the presence of outliers. Then, step 2 finds
the deviation d,‘: using the LSTM neural network model. For determining deviation, out of different LSTM neural network
models, one for the cluster in which segment s, belongs is chosen. The number of outliers is set to zero in step 3.

After that, steps 4-11 iterates for every element of s,. In step 5, the algorithm checks whether an element is less than
the expected minimum value. The expected minimum value is set to p; — o x d,f. If the point is less than the expected
minimum value, it is considered as a negative outlier. Correspondingly, the negative and total number of outliers are incre-
mented in step 6. Similarly, step 8 verifies if a point is more than the expected maximum value p; + o x d,‘:. If the condition
is satisfied, the values of the positive and the total number of outliers are incremented in step 9. Tunable hyper-parameter
o is adjusted to get the different range of expected minimum and maximum values.

6. Results

This section describes in detail the evaluation results of the proposed method. We test the performance of the outlier
detector using two different data-sets; (1) vehicular traffic count and (2) environmental pollutant Carbon Mono-oxide (CO)
level.
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Algorithm 2 Outlier detector algorithm.
Input: Time-series segment- s,
Hyper-parameter- o,
Trained LSTM neural network models
Output: Number of outliers- np, 1n, ¢

1: g = Find_Mestimator(s,)

2: df = Find_Deviation(sj")

3: Np, M, Nt =0

4: forr <~ 1to I do

50 if sp(r) < pp — o x d,’: then
6: M=m+1,n=n+1
7. end if

8 if 5(r) > py +a x d} then
9: m=mp+1n=n+1
10:  end if

11: end for

6.1. Materials and methods

The vehicular traffic data used for testing the given method is collected from the Performance Measurement System
(PeMs). PeMs provides freeway traffic at California Highways [28]. The pollutant level is obtained from the California Air
Resource Board [35] website. We implemented the simulation atmosphere in a Python-based framework. In our frame-
work, different python tools and libraries are employed. The clustering module is implemented using Python-Scikit tool
[36]. The LSTM neural network is developed using Keras framework running on top of the TensorFlow environment [33].
The simulation is executed in Ubuntu 16.04 operating system running on Intel Core-i5 processor at 2.60 GHz and containing
four cores.

We simulate outliers using the mean of the standard deviations in the training data segments. The average of the stan-
dard deviations in all s, vectors is obtained for training sample. The outliers proportional to the obtained average are in-
jected in the test data.

6.2. Evaluation metrics

The efficacy of the proposed method is evaluated using precision P, recall R, and F-measure F. The precision is the ratio
of true positives tp and the sum of true positives tp and false positives fp (Eq. 10).
__tp
Ctp+fp
The recall R is the ratio of true positives tp and the sum of true positives tp and false negatives fn and is calculated using
Eq. 11.

(10)

tp

R= 1
tp+ fn (1
The F-measure is obtained using Precision and Recall values as given by Eq. 12.
P xR
F=2x PR (12)

To find F-measure, we put equal weight to precision and recall values. The generalized form of F-measure is given in
Eq. 13, where the parameter 8 > 0. The F-measure is said to be recall-oriented, if 8 <1, and precision oriented, if 8> 1 [37].

P xR

fe= 4B o bk

(13)

6.3. Performance evaluation

We evaluate performance as the magnitude of outliers increases for both the data-sets. In Tables 1 and 2, the first column
represents the strength of the injected outliers. For example, mean_std_.5 is the actual value of data plus 0.5 times the mean
of recorded standard deviation in the training data.

Table 1 depicts the performance measure in the presence of positive outliers. From the table, we can observe that as
the magnitude increases, the performance of the outlier detector improves for both vehicular traffic and pollution level
data. It can be observed that the recall values are close to 1 in most of the rows. It led to conclude that the number of
false negatives are negligible. The precision values are also high for different magnitudes. The maximum precision value for
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Table 1
Analysis for positive outlier.
Strength Vehicular traffic Air pollutant
P R F P R F

mean_std_.5 089 055 068 095 0.7 0.81
mean_std_2 0.91 072 0.8 096 086 091
mean_std_3 093 089 0091 097 099 098
mean_std_4 093 096 094 097 1.0 0.98
mean_std_5 093 099 096 097 1.0 0.98
mean_std_6 0.93 1 096 097 1.0 0.98
mean_std_7 0.93 096 097 1.0 0.98
mean_std_8 0.93 096 097 1.0 0.98
mean_std_9 0.93 096 097 1.0 0.98
mean_std_10  0.93 0.96 097 1.0 0.98
mean_std_11 0.93 096 097 1.0 0.98
mean_std_12  0.93 096 097 1.0 0.98

_om o

Table 2
Analysis for negative outlier.
Strength Vehicular traffic Air pollutant
P R F P R F

mean_std_.5 095 0.5 066 086 022 035
mean_std_2 097 072 083 097 029 045
mean_std_3 099 09 094 099 076 0.86
mean_std_4 098 095 096 099 1.0 0.99
mean_std_5 097 099 098 098 1.0 0.99
mean_std_6 098 098 098 097 1.0 0.98
mean_std_7 099 098 098 097 1.0 0.98
mean_std_8 098 099 098 097 1.0 0.98
mean_std_9 099 099 099 09 1.0 0.98

mean_std_10  0.99 1 099 096 1.0 0.98
mean_std_11 098 1 099 097 1.0 0.98
mean_std_12  0.98 1 099 097 1.0 0.98
Table 3
Analysis as percentage of outliers vary.
% outliers Vehicular traffic Air pollutant
P R F P R F
8.3% 088 097 092 085 1 0.92
16.7% 098 096 097 093 097 095
25% 099 096 097 096 095 0.95
33.3% 1 096 098 1 097 0.98
41.7% 1 095 097 099 095 0.97
50% 1 096 098 1 098  0.99

vehicular traffic is 93% while for air pollutant is 97%. The F-measure approaches 96% for vehicular traffic and 98% for air
pollutant data. Thus, the metrics show that the given method accurately detects the outliers for different data-sets and has
a negligible number of false negatives.

Table 2 presents the performance analysis for negative outliers. The algorithm effectively captures the negative outliers
too in the sample. The precision values approach 95% for vehicular traffic count and 99% for air pollutant data. For high
injected magnitude, the recall values become 100% for both the data-sets. The corresponding F-measure also approaches to
98% for traffic and pollutant data. Thus, for negative outliers also the performance measure in terms of precision, recall, and
F-measure values are high.

Further, we observe the performance when both positive and negative outliers are present. For this case, the percentage
of outliers is varied, and the metrics values are given in Table 3. We observe that the performance in terms of the three
metrics improve as the number of outliers increases. For example, the precision approaches to around 1 for both data-sets.

Thus, the Tables 1-3 concludes that the given method accurately detects outliers, has less number of false positives, and
as the percentage of outliers increases accuracy increases.
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Fig. 6. Comparison of performance metrics as « varies.

6.4. Performance analysis as parameter « is tuned

Fig. 6 shows the variation in performance metrics as the parameter « in Algorithm 2 is tuned. We plot the graphs for
4 different strength of injected outliers. The figure portrays that for a low value of «, recall is better than the precision.
However, as the value of o increases, the precision becomes higher than the recall. Also, as the magnitude of outliers
increases, the plots become parallel to the horizontal axis, and the performance of the outlier detector improves. Thus, the
value of o, where the three metrics are equal to each other, increases on increasing the injection magnitude.

The figure infers that for an application requiring low false negatives, the o should be set to a low value. On the other
hand, applications requiring low false positives, & can set to a high value. Thus, the parameter « can be tuned, satisfying the
need of an application. Further, for effectively detecting outliers of low strength, @ can be tuned to a small value. However,
for detecting outliers having high strength, o can be set to a high value.

6.5. Performance analysis as cluster size varies

Fig. 7 shows the performance variation as the threshold euclidean distance increases for different magnitudes of outlier
strength. As we presented earlier in Section 5.1.3, on increasing the euclidean distance, the number of sensors in a cluster
increases and thus the system scales up. Figure interprets that the accuracy decreases as the threshold euclidean distance
(cluster size) increases. For small cluster size, the accuracy is greater as the model can better represent less number of
sensors within a cluster. For large cluster size, the sensor diversity within a cluster increases, and due to this, the accuracy
decreases. Furthermore, for high strength of injected outliers, there is a smaller decrease in accuracy as euclidean distance
increases. This is because those outliers tend to be easily detected.

Fig. 8 shows the number of models required to be developed as euclidean distance increases. For low euclidean distance,
the number of clusters is large, and thus the number of required models are large. Therefore, computational effort is high.
For high euclidean distance, the number of clusters is small, and thus the less number of models are required, and the
computational effort is low.

Thus, Figs. 7 and 8 show that as the threshold euclidean distance or cluster size increases, the accuracy decreases, and
the number of models to be developed becomes low, requiring less computational efforts. Therefore, there is a trade-off
between performance and computational efforts.

6.6. Comparison with other approaches
We compare the proposed method with statistical-based techniques. The Generalized Extreme Studentized Deviate

(GESD) test is used as a benchmark for the performance comparison [13]. Traditionally, GESD uses the mean and stan-
dard deviation of the sample as a statistical measure. The median and median absolute deviation (MAD) have also been
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used in GESD test [22]. We evaluate the proposed method against the above methods such that using mean (and standard
deviation) and median (and MAD) in GESD. Furthermore, we also test the performance using M-estimator and deviation
from it in GESD. The comparison for the different metrics is provided in Figs. 9-11 for vehicular data and in Figs. 12-14 for
pollutant data.

Figs. 9 and 12 show that the proposed LSTM neural network and M-estimator based method outperforms the GESD-
based techniques irrespective of the statistical measure chosen. For GESD, using mean and standard deviation as statistical
properties provides the highest precision values, that is lower than the proposed method. It should be noted that, by tuning
o, the precision can be further improved, but at the cost of the recall. The GESD-based methods do not have such tunable
parameter, and thus, the obtained precision values are fixed.
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Figs. 10 and 13 compares the recall values for both the data-sets. As shown in the figure, for the low strength of the
outliers, using GESD with M-estimator and deviation from it provides the highest recall. For high strength, the recall is
comparable for different methods. However, as shown in Figs. 9-14, precision and F-measures are lowest when using GESD
with M-estimators. Thus, although the GESD with M-estimator and deviation from it provides comparable recall, it is not a
viable option since the performance of the other two metrics deteriorates significantly.

Figs. 11 and 14 compares the F-measure of the GESD-based techniques and the proposed method. The figures show
that regarding F-measure, the given method outperforms different GESD-based techniques. Therefore, as presented, the pro-
posed outlier detector has better performance as compared to the statistical-based techniques in terms of precision, recall,
and F-measures. Also, the proposed method is scalable and can be tailored according to the application requirements. The
flexibility is not available in the statistical-based techniques, and thus the given architecture is better than contemporary
methods.
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6.7. Computation complexity

In the given outlier detector, first, we train the LSTM neural network, and then it is used for the operation. While training
phase is computation-intensive and takes a longer time, it is performed only once. The average time the outlier detector
takes, during the operating phase, to perform a test on a segment is 0.18 seconds. Thus, operating phase still takes a pretty
low execution time. Furthermore, we tested the performance using limited computing resources. The deployment of the
algorithm in the cloud is expected to further reduce execution time because of the presence of a large pool of computing
resources.
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7. Conclusions and future work

This paper has highlighted the importance of a scalable outlier detector for loT-based automated applications. We pre-
sented an outlier detector that not only accurately determines the anomalies but is also scalable. The performance of the
proposed architecture is tested on two different data-sets. The obtained results show that our method has high precision,
recall, and F-measure values. The given outlier detector can be tuned according to the application’s performance require-
ment, and either precision or recall values can be further improved. The performance is also tested as the number of sensors
in a cluster increases. There is a trade-off between performance and computational efforts as the cluster size increases. The
proposed method outperforms the contemporary methods that use statistical properties of the time-series sample.

In future, we aim to explore the different problems related to this field. Our plan is to research out the outlier detector
when abnormal values are present in entire time-series, rather than its segment. In this regard, our idea is to compare
between different diverse time-series. Subsequently, we plan to study the problem of classifying outliers originating from
different sources; variation in environmental parameters, compromised sensors, or faults in the sensor. Furthermore, in IoT
the softwares are open-source because it assists in easy to modify or configure them. Outlier detector is no exception and
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the adversary may know about the detection mechanism. Therefore, analyzing the problem when adversary manipulates
data to bypass existing outlier detection technique is also need to be investigated.
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