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  Abstract—This paper proposes a decentralized dynamic state 
estimation (DSE) algorithm with bimodal Gaussian mixture 
measurement noise. The decentralized DSE is formulated using 
the Ensemble Kalman Filter (EnKF) and then compared with 
the unscented Kalman filter (UKF). The performance of the 
proposed framework is verified using the WSCC 9-bus system 
simulated in the Real Time Digital Simulator (RTDS). The 
phasor measurement unit (PMU) measurements are streamed in 
real-time from the RTDS runtime environment to MATLAB for 
real-time visualization and estimation. To consider the data 
corruption scenario in the streaming process, a bi-modal 
distribution containing two normal distributions with different 
weights and variances are added to the measurements as the 
noise component. The performances of both UKF and EnKF are 
then compared for by calculating the mean-squared-errors 
(MSEs) between the actual and estimated states. 

Index Terms-- Ensemble Kalman Filter; Dynamic State 
Estimation; Real-Time Digital Simulator; Unscented Kalman 
Filter; Phasor Measurement Unit 

I.  INTRODUCTION 

State Estimation (SE) is a widely used tool in the power 
system to monitor the power system states [1]. State 
estimation is generally divided into two approaches; Static 
State Estimation (SSE) and Dynamic State Estimation (DSE). 
SSE approaches, such as weighted least squares (WLS) [2], 
are utilized in utilities for estimation of power system states, 
i.e., voltage magnitudes and angles, under steady-state 
conditions. However, DSE is formulated to estimate 
generators states, e.g., rotor angle, rotor angle deviation, 
under dynamic contingencies.  

With the proliferation of phasor measurement units 
(PMUs), with the streaming rate of 30 to 60 samples-per-
second (SPS), PMU data-driven applications have become 
feasible [3],[4] and can be utilized in the utilities to estimate 
the generator states under dynamic situations. In [5] several 
DSE algorithms are reviewed and implemented based on 
PMU data. In [6]-[7], a sample-based Kalman filter known as 
unscented Kalman filter (UKF) is used to obtain the mean and 
covariance of the dynamic states of generators. However, the 
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UKF-based DSE is derived based on the unimodal Gaussian 
distribution assumption for both state transition and 
measurement noise that can lead to weak performance in the 
presence of non-Gaussian measurement noise. Reference [8] 
shows that measurement noise follows non-Gaussian 
distribution functions, such as bi-modal distribution 
containing two normal distributions with different weights 
and variances. The Ensemble Kalman Filter (EnKF) which is 
based on Monte Carlo sampling approach, is beneficial for 
the state-estimation with unknown or non-Gaussian state or 
measurement noises. In EnKF-based algorithms, Gaussian 
distributions assumption is utilized for the prior and posterior 
distributions. However, the Monte Carlo sampling approach 
helps the algorithm to be more robust compared to the other 
estimation algorithms such as UKF. Hence, it is of paramount 
importance to investigate the effects of measurements noise 
with non-Gaussian distribution on the performance of the 
DSE algorithms.  

Therefore, this paper proposes a decentralized DSE 
algorithm, based on two different Kalman Filter approaches, 
UKF and EnKF, to develop and evaluate the impact of bi-
modal Gaussian mixture noise on PMU data. This algorithm 
utilizes the voltage magnitudes and angles, and the power 
injections that are streamed from a simulated real-time 
environment, RTDS. 

 The rest of this paper is organized as follows: In Section 
II, the decentralized dynamic state estimation framework is 
presented. Real-time simulation of the DSE framework is 
discussed in Section III. Section IV introduces the case study 
and show all the simulation results. Section V summarizes the 
paper with some concluding remarks.  

II.  DECENTRALIZED DYNAMIC STATE ESTIMATION 

In this paper, decentralized DSE framework is used for 
prediction of the generators’ states, and then to correct the 
predicted states using the latest available PMU data. 
Predicting the states in advance helps in filling the gap in the 
measurements, arising due to varying communication delays 
in the networks, and generates the pseudo measurements, 
which can be used in the measurement update step, in case of 
incomplete information or the communication link failure. 

A.  Power System Model 

It is assumed that the generalized non-linear model of the 
power system can be represented in the following global 
structure: ݔ(݇ + 1) = ,(݇)ݔ]݃ ,(݇)ݑ ,(݇)ݓ (݇)ݕ [݇ = ℎ[ݔ(݇), ,(݇)ݑ ݇] +  (1)																				(݇)ݒ
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where ݔ(݇) is the state variable vector at time ݇, ݑ(݇)	is 
the input vector, ݓ(݇)	is the process noise, ݒ(݇)	is the 
measurement noise which is a bi-modal distribution 
containing two normal distributions with different weights 
and variances,	ݕ(݇) is the measurable output, and  ݃ and ℎ 
are the system and output functions respectively. 

Since the decentralized DSE is the focus of this paper, the 
general power system model in (1) can be simplified to its 
equivalent form of a single machine connected to an infinite 
bus via transmission lines where the generator states will be 
considered as the states of the system [9]. This equivalent 
dynamic model will be the basis for developing and 
validating our generator state estimator in RTDS. The 
generator dynamic state-space model can then be 
characterized by the following fourth-order nonlinear 
equations [10]-[11]:  ݔ = ௤ᇱ݁	߱∆	ߜ] 	݁ௗᇱ ]் = ்[ସݔ	ଷݔ	ଶݔ	ଵݔ] ݑ  = [ ௠ܶ	ܧ௙ௗ	]் = ்[ଶݑ	ଵݑ] ݕ  = [ ௧ܲ	ܳ௧	]் =  (2)																												்[ଶݕ	ଵݕ]

ሶଵݔ  = ߱଴ݔଶ ݔሶଶ = ܬ1 ଵݑ) − ௘ܶ −  (ଶݔܦ
ሶଷݔ = 1ܶௗ௢ᇱ ଶݑ) − ଷݔ − ௗݔ) − ௗᇱݔ )݅ௗ) 
ሶସݔ = 1ܶ௤௢ᇱ ସݔ−) + ൫ݔ௤ − ௤ᇱݔ ൯݅௤) 

ଵݕ = ௧ܲ = ௘ܶ = ௧ܸݔௗᇱ ଷݔ sin ଵݔ + ௧ܸଶ2 ቆ ௤ݔ1 − ௗᇱݔ1 ቇ sin 2  ଵݔ

ଶݕ = ܳ௧ = ௧ܸݔௗᇱ ଷݔ cos ଵݔ − ௧ܸଶ ቆsinଶ ௤ݔଵݔ + cosଶ ௗᇱݔଵݔ ቇ						(3) 
 

where ߜ is the rotor angle in (elec.rad), ߱ is the rotor 
speed in (pu), ݁௤ᇱ 	 and ݁ௗᇱ  are ݍ − ݀ and ݏ݅ݔܽ −  transient ݏ݅ݔܽ
voltages in (pu), respectively, ߱଴ = 2 ଴݂	is the nominal 
synchronous speed in (elec.rad/s), ௘ܶ 	is the air-gap torque 
which is assumed to be equal to electrical active power 
(i.e.	 ௧ܲ) in (pu), and ௠ܶ	and ܧ௙ௗ	are the mechanical input 
torque in (pu) and the exciter output voltage in (pu), 
respectively. Besides, ௧ܲ and ܳ௧  are the system’s active and 
reactive output powers which are assumed to be the system’s 
measurements. The other variables are the nominal data of the 
selected synchronize machine.  

The DSE scheme is shown in Fig.1. As it can be seen, for 
predicting the states in the next time step using the nonlinear 
models, we need the PMU data (active and reactive power 
injection) at the generator bus, generator’s parameters, and ܧ௙ௗ and ௠ܶ input to the generator [10]. 

 
Fig.1. Decentralized DSE scheme 

B.  Unscented Kalman Filter (UKF) 

The UKF is a sample-based estimation method, which 
leverages the unscented transformation using a deterministic 
sampling approach to approximate the mean and covariance 
of a random state vector. The minimum number of samples 
are selected and then propagated into the system’s non-linear 
functions to calculate the new mean and covariance of the 
output states. However, UKF algorithm assumes a unimodal 
Gaussian distribution for both state transition and 
measurements noises, which can be imprecise in the case of 
multimodality in the system’s noises distributions [12]. The 
results in this paper show that with non-Gaussian 
measurement noise, UKF performs poorly to predict and 
update the system states.  

C.  Ensemble Kalman Filter (EnKF) 

EnKF is a sampling-based estimation approach, which was 
first introduced by Evensen [13] as a data assimilation 
method. EnKF uses Monte Carlo sampling approach to 
generate the particles and assumes Gaussian distributions for 
the prior and posterior distributions. Zhou et al. demonstrate 
that the EnKF algorithm outperforms other algorithms when 
the typical PMU sampling rate is used for estimation and is 
more compatible with online implementation [14]. The 
provided examples in [14] show that the EnKF yields better 
results for dynamic state estimation in the power system, 
which is a complex and highly non-linear problem. However, 
to the best of the authors’ knowledge, the performance of the 
EnKF against unknown or non-Gaussian noises has not been 
properly studied. In this paper, we would like to assess the 
robustness of EnKF-based DSE with respect to non-Gaussian 
measurement noise and compare it with UKF-based method. 

D.  Measurement Characteristics 

Despite the advantages of PMUs, the captured data stream 
might have some quality issues such as large measurement 
bias, non-Gaussian noise, data packet loss, loss of GPS 
synchronization, measurement delays, missing timestamps, 
and cyber-attack. The non-Gaussian PMU noises could 
follow Laplace, Cauchy, bimodal or tri-modal Gaussian 
mixture distributions. Fig.2 shows two different bimodal 
Gaussian mixture distributions with either zero means or 
various means.  

There are several models that can be applied to model 
deviations from the Gaussian assumption. Among them, the 
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Gaussian sum distribution is widely used because any non-
Gaussian distribution p(x) can be expressed as, or 
approximated sufficiently well, by a finite sum of known 
Gaussian densities according to the Wiener approximation 
theorem [15]   

(ݔ)݌ =෍ݓ௜ܰ൫௜ , (4)ே೎																													௜ଶ൯ߪ
௜ୀଵ  

where ݓ௜	is the weight and ∑ ௜ே೎௜ୀଵݓ = 1; ௖ܰ is the number of 
Gaussian components; the mean and covariance matrix 
associated with the ith Gaussian component are denoted by 
௜ 	and ߪ௜ଶ, respectively. 

 
Fig.2. Bimodal Gaussian mixture distributions with either zero means or 
various means  

In this paper, we study the effect of bimodal Gaussian 
mixture measurement noise as one of the common non-
Gaussian noise types, on the performance of the decentralized 
DSE.  

III.  REAL-TIME SIMULATION OF DSE 

A.  RTDS simulation 

RTDS is a real-time simulation platform, which uses a 
combination of hardware and software components to carry 
out power system simulations in real-time [16]. The Gigabit 
Transceiver Network (GTNET) card is utilized to connect the 
RTDS to External devices. The RTDS, used for the present 
work, is equipped with the GTSYNC card to receive the one 
pulse per second (pps) signal from the satellite through GPS 
clock. This signal is used to synchronize the software PMUs 
with the GPS clock. 

The GTNET card supports various protocols including the 
IEEE C37.118-2011 protocol [17] to send PMU data to 
executing the DSE as shown in Fig. 3. To acquire the PMU 
data, the output of the GTNET is received by the MATLAB 
through the communication channel. To capture the 
measurements at various operating conditions, load variation 
commands are sent to the RTDS from the DSE application 
platform at regular intervals. 

 
Fig.3. The architecture of the interface between RTDS and MATLAB 

B.  DSE simulation 

In this paper, the GTNET PMUs are configured to provide 
measurements, active and reactive power injections, at the 
rate of 30 or 60 samples-per-second (SPS). The UKF- and 
EnKF-based DSE algorithms are executed, normally at the 
rate of PMU measurement data refresh, by utilizing the latest 
available data. Using the Software in the Loop (SIL) 
configuration, the DSE execution process is repeated for 
numerous loading conditions by automatically changing the 
load of the test system. In this paper, the UKF- and EnKF-
based DSE algorithms are carried out with Gaussian mixture 
measurement noises. 

IV.  EXPERIMENTAL RESULTS AND DISCUSSION 

A.  Case Study 

Figure 4 shows the WSCC 9-bus system diagram that is 
simulated in RTDS and then augmented with an automated 
script in MATLAB to capture the PMU data and execute the 
DSE algorithms. Noted that for all the simulations, the 
experimental platform is Win7; Intel with CPU E5420 2×2.5 
GHz; RAM 16 GB. 

 

UNR RTDS 
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Fig.4. The WSCC 9-bus system diagram 

B.  Simulation Results and discussion 

 The PMU data obtained by the RTDS are noise-free, 
compared to actual PMU data from the field. To better match 
the obtained RTDS data with the world PMU measurements, 
a bi-modal Gaussian mixture noise with zero means, 
variances of 10−4 and 10−3, and weights of 0.9 and 0.1, is 
added to active and reactive power measurements [8]. We 
then use the noisy data to evaluate the performance of the 
UKF- and EnKF-based DSE approaches under the Gaussian 
mixture noise scenarios. The estimated states (the rotor angle, 
the rotor speed, and q-axis and d-axis transient voltages) are 
compared with the actual values to determine the accuracy of 
the above approaches with non-Gaussian measurement noise. 
In this paper, the PMU streaming rate is 60 SPS and the 
second generator’s dynamic states are estimated and 
compared for accuracies calculation. In order to assess the 
performance of the DSE algorithms under a dynamic 
contingency scenario, the load at bus 5 is disconnected at 
t=3.5 sec. It must be noted that execution time for EnKF-
based method with 100 sampling points and UKF-based 
method is around 3 msec which is less than the time interval 
between two subsequent PMU data, 16.6 msec. Therefore, 
both methods are able to utilize the latest available PMU data 
to estimate the dynamic states in an online manner. 

Fig. 5 and Fig. 6 show the estimated dynamic states 1 and 
3 (rotor angle and q-axis transient voltage) for UKF-based 
and EnkF-based DSE methods with the considered 
measurement noise. From the existing literature, we know 
that UKF- and EnKF-based DSE methods perform well with 
Gaussian measurement noise and it is difficult to distinguish 
the superiority of one method over the other one. As can be 
seen in Fig. 5, UKF-based method performs poorly with non-
Gaussian PMU measurement noise. However, as can be seen 
in Fig. 6, EnKF-based method shows superior performance 
compared to the UKF-based method with non-Gaussian 
noise, such as bimodal Gaussian mixture model.  

In addition, Fig. 7 and Fig. 8 show the square error of state 
3 for both UKF- and EnKF-based method, respectively. As it 
can be seen, for each sampling instant, the EnKF-based 

method leads to smaller errors compared to the UKF-based 
method, and subsequently a smaller Mean Square Error 
(MSE). It must be noted that errors and MSE trends are the 
same for all other states. The calculated MSEs for all four 
states for both methods are shown in Table I. 

 
Fig.5. State estimation of ݔଵ = ଷݔ and ߜ = ݁௤ᇱ  using UKF based DSE process 
with PMU data with bi-modal Gaussian mixture noise  

 
Fig.6. State estimation of ݔଵ = ଷݔ and ߜ = ݁௤ᇱ  using EnKF based DSE 
process with PMU data with bi-modal Gaussian mixture noise 

The reason behind the weak performance of the UKF is 
that this method is designed to work with Gaussian 
assumptions for measurement or state transition noises by 
creating several sigma points around the mean using the 
unscented transformation. However, with non-Gaussian 
noises, it has difficulty calculating the states in both 
prediction and update steps. On the other hand, EnKF uses 
the Monte Carlo simulation to generate the points in each 
iteration and it does work with any specific probability 
distribution. The important parameter that affects the results 
of EnKF is the number of Monte Carlo sampling.  The 
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estimation accuracy increases with an increase in the number 
of samples, with an increase in the computation time as well. 
The trade-off between the accuracy and computation time is 
defined by the user. In this paper, we use 100 sampling points 
to achieve the desired accuracy while keeping the execution 
time below 16 msec threshold. 

 
Fig.7. Square error of state 3 ݔଷ = ݁௤ᇱ 	with respect to its real values using 
UKF based DSE process with PMU data corrupted by bi-modal Gaussian 
mixture noise 

 

Fig.8. Square error of state 3 ݔଷ = ݁௤ᇱ 	with respect to its real values using 
EnKF based DSE process with PMU data corrupted by bi-modal Gaussian 
mixture noise 

Table I. MSE for all four dynamic states 
 x1 x2 x3 x4 

UKF 5.11×10-5 4.95×10-5 5.76×10-5 5.2×10-5 
EnKF 1.02×10-5 1.68×10-5 1.87×10-5 1.13×10-5 

 
V.  CONCLUSION 

This paper compares the performance of the Unscented 
Kalman filter (UKF) and the Ensemble Kalman Filter (EnKF) 
algorithm for decentralized dynamic state estimation (DSE) 

with bimodal Gaussian mixture measurement noise. The 
performance of the proposed framework is tested by 
estimating rotor angle, rotor speed, ݍ − ݀ and ݏ݅ݔܽ −  ݏ݅ݔܽ
transient voltages of the generators in the WSCC 9-bus 
system. This estimation is solved subject to load 
disconnection dynamic contingencies in the presence of a bi-
modal Gaussian mixture noise. The estimation results verify 
the superior performance of the EnKF-based method 
compared to the UKF-based method. These results include 
mean square error for various states of the generators with 
different noise characteristics. 
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