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Abstract—This paper proposes a decentralized dynamic state
estimation (DSE) algorithm with bimodal Gaussian mixture
measurement noise. The decentralized DSE is formulated using
the Ensemble Kalman Filter (EnKF) and then compared with
the unscented Kalman filter (UKF). The performance of the
proposed framework is verified using the WSCC 9-bus system
simulated in the Real Time Digital Simulator (RTDS). The
phasor measurement unit (PMU) measurements are streamed in
real-time from the RTDS runtime environment to MATLAB for
real-time visualization and estimation. To consider the data
corruption scenario in the streaming process, a bi-modal
distribution containing two normal distributions with different
weights and variances are added to the measurements as the
noise component. The performances of both UKF and EnKF are
then compared for by calculating the mean-squared-errors
(MSEs) between the actual and estimated states.

Index Terms-- Ensemble Kalman Filter; Dynamic State
Estimation; Real-Time Digital Simulator; Unscented Kalman
Filter; Phasor Measurement Unit

[. INTRODUCTION

State Estimation (SE) is a widely used tool in the power
system to monitor the power system states [1]. State
estimation is generally divided into two approaches; Static
State Estimation (SSE) and Dynamic State Estimation (DSE).
SSE approaches, such as weighted least squares (WLS) [2],
are utilized in utilities for estimation of power system states,
i.e., voltage magnitudes and angles, under steady-state
conditions. However, DSE is formulated to estimate
generators states, e.g., rotor angle, rotor angle deviation,
under dynamic contingencies.

With the proliferation of phasor measurement units
(PMUs), with the streaming rate of 30 to 60 samples-per-
second (SPS), PMU data-driven applications have become
feasible [3],[4] and can be utilized in the utilities to estimate
the generator states under dynamic situations. In [5] several
DSE algorithms are reviewed and implemented based on
PMU data. In [6]-[7], a sample-based Kalman filter known as
unscented Kalman filter (UKF) is used to obtain the mean and
covariance of the dynamic states of generators. However, the
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UKF-based DSE is derived based on the unimodal Gaussian
distribution assumption for both state transition and
measurement noise that can lead to weak performance in the
presence of non-Gaussian measurement noise. Reference [8]
shows that measurement noise follows non-Gaussian
distribution functions, such as bi-modal distribution
containing two normal distributions with different weights
and variances. The Ensemble Kalman Filter (EnKF) which is
based on Monte Carlo sampling approach, is beneficial for
the state-estimation with unknown or non-Gaussian state or
measurement noises. In EnKF-based algorithms, Gaussian
distributions assumption is utilized for the prior and posterior
distributions. However, the Monte Carlo sampling approach
helps the algorithm to be more robust compared to the other
estimation algorithms such as UKF. Hence, it is of paramount
importance to investigate the effects of measurements noise
with non-Gaussian distribution on the performance of the
DSE algorithms.

Therefore, this paper proposes a decentralized DSE
algorithm, based on two different Kalman Filter approaches,
UKF and EnKF, to develop and evaluate the impact of bi-
modal Gaussian mixture noise on PMU data. This algorithm
utilizes the voltage magnitudes and angles, and the power
injections that are streamed from a simulated real-time
environment, RTDS.

The rest of this paper is organized as follows: In Section
II, the decentralized dynamic state estimation framework is
presented. Real-time simulation of the DSE framework is
discussed in Section III. Section IV introduces the case study
and show all the simulation results. Section V summarizes the
paper with some concluding remarks.

II. DECENTRALIZED DYNAMIC STATE ESTIMATION

In this paper, decentralized DSE framework is used for
prediction of the generators’ states, and then to correct the
predicted states using the latest available PMU data.
Predicting the states in advance helps in filling the gap in the
measurements, arising due to varying communication delays
in the networks, and generates the pseudo measurements,
which can be used in the measurement update step, in case of
incomplete information or the communication link failure.

A. Power System Model

It is assumed that the generalized non-linear model of the
power system can be represented in the following global
structure:

x(k +1) = g[x(k), u(k), w(k), k]

y(k) = hlx(k), u(k), k] + v(k) 1)
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where x(k) is the state variable vector at time k, u(k) is
the input vector, w(k)is the process noise, v(k)is the
measurement noise which is a bi-modal distribution
containing two normal distributions with different weights
and variances, y(k) is the measurable output, and g and h
are the system and output functions respectively.

Since the decentralized DSE is the focus of this paper, the
general power system model in (1) can be simplified to its
equivalent form of a single machine connected to an infinite
bus via transmission lines where the generator states will be
considered as the states of the system [9]. This equivalent
dynamic model will be the basis for developing and
validating our generator state estimator in RTDS. The

generator dynamic state-space model can then be
characterized by the following fourth-order nonlinear
equations [10]-[11]:
x = [6 Aw eg eg]" = [x1 X5 x3 x4]7
u=[Ty Erq ]T = [u, uz]T
y=[P Q1 =y y.]" (2)
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where § is the rotor angle in (elec.rad), w is the rotor
speed in (pu), e; and e; are q — axis and d — axis transient
voltages in (pu), respectively, w, = 2nfyis the nominal
synchronous speed in (elec.rad/s), T, is the air-gap torque
which is assumed to be equal to electrical active power
(i.e. P) in (pu), and T;, and Ef, are the mechanical input
torque in (pu) and the exciter output voltage in (pu),
respectively. Besides, P, and Q, are the system’s active and
reactive output powers which are assumed to be the system’s
measurements. The other variables are the nominal data of the
selected synchronize machine.

The DSE scheme is shown in Fig.1. As it can be seen, for
predicting the states in the next time step using the nonlinear
models, we need the PMU data (active and reactive power
injection) at the generator bus, generator’s parameters, and
Efq and Ty, input to the generator [10].
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Fig.1. Decentralized DSE scheme

B. Unscented Kalman Filter (UKF)

The UKF is a sample-based estimation method, which
leverages the unscented transformation using a deterministic
sampling approach to approximate the mean and covariance
of a random state vector. The minimum number of samples
are selected and then propagated into the system’s non-linear
functions to calculate the new mean and covariance of the
output states. However, UKF algorithm assumes a unimodal
Gaussian distribution for both state transition and
measurements noises, which can be imprecise in the case of
multimodality in the system’s noises distributions [12]. The
results in this paper show that with non-Gaussian
measurement noise, UKF performs poorly to predict and
update the system states.

C. Ensemble Kalman Filter (EnKF)

EnKF is a sampling-based estimation approach, which was
first introduced by Evensen [13] as a data assimilation
method. EnKF uses Monte Carlo sampling approach to
generate the particles and assumes Gaussian distributions for
the prior and posterior distributions. Zhou et al. demonstrate
that the EnKF algorithm outperforms other algorithms when
the typical PMU sampling rate is used for estimation and is
more compatible with online implementation [14]. The
provided examples in [14] show that the EnKF yields better
results for dynamic state estimation in the power system,
which is a complex and highly non-linear problem. However,
to the best of the authors’ knowledge, the performance of the
EnKF against unknown or non-Gaussian noises has not been
properly studied. In this paper, we would like to assess the
robustness of EnKF-based DSE with respect to non-Gaussian
measurement noise and compare it with UKF-based method.

D. Measurement Characteristics

Despite the advantages of PMUs, the captured data stream
might have some quality issues such as large measurement
bias, non-Gaussian noise, data packet loss, loss of GPS
synchronization, measurement delays, missing timestamps,
and cyber-attack. The non-Gaussian PMU noises could
follow Laplace, Cauchy, bimodal or tri-modal Gaussian
mixture distributions. Fig.2 shows two different bimodal
Gaussian mixture distributions with either zero means or
various means.

There are several models that can be applied to model
deviations from the Gaussian assumption. Among them, the
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Gaussian sum distribution is widely used because any non-
Gaussian distribution p(x) can be expressed as, or
approximated sufficiently well, by a finite sum of known
Gaussian densities according to the Wiener approximation
theorem [15]

Ne

p(x) = Z wiN (p,, 0?) 4)
i=1

where w; is the weight and Zlivjl w; = 1; N, is the number of

Gaussian components; the mean and covariance matrix

associated with the i Gaussian component are denoted by

u; and o/, respectively.
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Fig.2. Bimodal Gaussian mixture distributions with either zero means or
various means

Sum

In this paper, we study the effect of bimodal Gaussian
mixture measurement noise as one of the common non-
Gaussian noise types, on the performance of the decentralized
DSE.

III. REAL-TIME SIMULATION OF DSE
A. RTDS simulation

RTDS is a real-time simulation platform, which uses a
combination of hardware and software components to carry
out power system simulations in real-time [16]. The Gigabit
Transceiver Network (GTNET) card is utilized to connect the
RTDS to External devices. The RTDS, used for the present
work, is equipped with the GTSYNC card to receive the one
pulse per second (pps) signal from the satellite through GPS
clock. This signal is used to synchronize the software PMUs
with the GPS clock.

The GTNET card supports various protocols including the
IEEE C37.118-2011 protocol [17] to send PMU data to
executing the DSE as shown in Fig. 3. To acquire the PMU
data, the output of the GTNET is received by the MATLAB
through the communication channel. To capture the
measurements at various operating conditions, load variation
commands are sent to the RTDS from the DSE application
platform at regular intervals.
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Fig.3. The architecture of the interface between RTDS and MATLAB

B. DSE simulation

In this paper, the GTNET PMUs are configured to provide
measurements, active and reactive power injections, at the
rate of 30 or 60 samples-per-second (SPS). The UKF- and
EnKF-based DSE algorithms are executed, normally at the
rate of PMU measurement data refresh, by utilizing the latest
available data. Using the Software in the Loop (SIL)
configuration, the DSE execution process is repeated for
numerous loading conditions by automatically changing the
load of the test system. In this paper, the UKF- and EnKF-
based DSE algorithms are carried out with Gaussian mixture
measurement noises.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Case Study

Figure 4 shows the WSCC 9-bus system diagram that is
simulated in RTDS and then augmented with an automated
script in MATLAB to capture the PMU data and execute the
DSE algorithms. Noted that for all the simulations, the
experimental platform is Win7; Intel with CPU E5420 2x2.5
GHz; RAM 16 GB.
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Fig.4. The WSCC 9-bus system diagram

B. Simulation Results and discussion

The PMU data obtained by the RTDS are noise-free,
compared to actual PMU data from the field. To better match
the obtained RTDS data with the world PMU measurements,
a bi-modal Gaussian mixture noise with zero means,
variances of 10 and 1073, and weights of 0.9 and 0.1, is
added to active and reactive power measurements [8]. We
then use the noisy data to evaluate the performance of the
UKF- and EnKF-based DSE approaches under the Gaussian
mixture noise scenarios. The estimated states (the rotor angle,
the rotor speed, and g-axis and d-axis transient voltages) are
compared with the actual values to determine the accuracy of
the above approaches with non-Gaussian measurement noise.
In this paper, the PMU streaming rate is 60 SPS and the
second generator’s dynamic states are estimated and
compared for accuracies calculation. In order to assess the
performance of the DSE algorithms under a dynamic
contingency scenario, the load at bus 5 is disconnected at
t=3.5 sec. It must be noted that execution time for EnKF-
based method with 100 sampling points and UKF-based
method is around 3 msec which is less than the time interval
between two subsequent PMU data, 16.6 msec. Therefore,
both methods are able to utilize the latest available PMU data
to estimate the dynamic states in an online manner.

Fig. 5 and Fig. 6 show the estimated dynamic states 1 and
3 (rotor angle and g-axis transient voltage) for UKF-based
and EnkF-based DSE methods with the considered
measurement noise. From the existing literature, we know
that UKF- and EnKF-based DSE methods perform well with
Gaussian measurement noise and it is difficult to distinguish
the superiority of one method over the other one. As can be
seen in Fig. 5, UKF-based method performs poorly with non-
Gaussian PMU measurement noise. However, as can be seen
in Fig. 6, EnKF-based method shows superior performance
compared to the UKF-based method with non-Gaussian
noise, such as bimodal Gaussian mixture model.

In addition, Fig. 7 and Fig. 8 show the square error of state
3 for both UKF- and EnKF-based method, respectively. As it
can be seen, for each sampling instant, the EnKF-based

method leads to smaller errors compared to the UKF-based
method, and subsequently a smaller Mean Square Error
(MSE). It must be noted that errors and MSE trends are the
same for all other states. The calculated MSEs for all four
states for both methods are shown in Table 1.
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Fig.5. State estimation of x; = § and x; = e; using UKF based DSE process
with PMU data with bi-modal Gaussian mixture noise

States 1 & 3 based on EnKF with Bimodal Noises
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Fig.6. State estimation of x; =& and x; = e; using EnKF based DSE
process with PMU data with bi-modal Gaussian mixture noise

The reason behind the weak performance of the UKF is
that this method is designed to work with Gaussian
assumptions for measurement or state transition noises by
creating several sigma points around the mean using the
unscented transformation. However, with non-Gaussian
noises, it has difficulty calculating the states in both
prediction and update steps. On the other hand, EnKF uses
the Monte Carlo simulation to generate the points in each
iteration and it does work with any specific probability
distribution. The important parameter that affects the results
of EnKF is the number of Monte Carlo sampling. The

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 22,2020 at 17:54:15 UTC from IEEE Xplore. Restrictions apply.



estimation accuracy increases with an increase in the number
of samples, with an increase in the computation time as well.
The trade-off between the accuracy and computation time is
defined by the user. In this paper, we use 100 sampling points
to achieve the desired accuracy while keeping the execution
time below 16 msec threshold.
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Fig.7. Square error of state 3 x3; = e, with respect to its real values using
UKF based DSE process with PMU data corrupted by bi-modal Gaussian
mixture noise
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Fig.8. Square error of state 3 x3; = e, with respect to its real values using
EnKF based DSE process with PMU data corrupted by bi-modal Gaussian
mixture noise
Table I. MSE for all four dynamic states

X1 X2 X3 X4
UKF 5.11x105 | 4.95x10 | 5.76x10° | 5.2x10°
EnKF 1.02x10° | 1.68x10 | 1.87x103 | 1.13x10°

V. CONCLUSION

This paper compares the performance of the Unscented
Kalman filter (UKF) and the Ensemble Kalman Filter (EnKF)
algorithm for decentralized dynamic state estimation (DSE)

with bimodal Gaussian mixture measurement noise. The
performance of the proposed framework is tested by
estimating rotor angle, rotor speed, q — axis and d — axis
transient voltages of the generators in the WSCC 9-bus
system. This estimation is solved subject to load
disconnection dynamic contingencies in the presence of a bi-
modal Gaussian mixture noise. The estimation results verify
the superior performance of the EnKF-based method
compared to the UKF-based method. These results include
mean square error for various states of the generators with
different noise characteristics.
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