
Anomaly Detection using Supervised Learning and
Multiple Statistical Methods

Watson Jia∗
Princeton University

Email: ∗watsonj@princeton.edu

Raj Mani Shukla†
University of Nevada, Reno

Email: †rshukla@unr.edu

Shamik Sengupta‡
University of Nevada, Reno

Email: ‡ssengupta@unr.edu

Abstract—The presence of anomalies or outliers within time-
series data can have a detrimental effect on the efficiency of
automated decision-making applications. For example, in the
context of vehicular traffic flow, various services reliant on
traffic data may be negatively impacted by anomalies. This
paper presents an automated anomaly detection method based on
supervised Long-Short Term Memory (LSTM) neural network
and statistical analysis. We train LSTM neural network to predict
non-robust statistical properties and combine them with robust
properties to determine the anomalies in time-series data. The
proposed method relies on segmentation and tunable parameters
for anomaly test. We measure the efficacy of our method in terms
of Precision, Recall, and F-measure. The metrics approach to
100% for certain instances. We also analyzed the performance on
the prevalence of anomalies and on varying specific parameters
of the model.

Index Terms—Anomaly detection, Robust statistics, Time-
series, Internet of Things

I. INTRODUCTION

The expansion of the Internet of Things (IoT) has en-

abled the society that has become much more integrated

with technology than in the past. Sensors have played an

integral role in enabling the growth of IoT and have enabled

numerous technological applications in various fields. Through

an Internet connection, remotely controlled sensors can gather

large amounts of valuable information from the environment

and organize the collected data in a central location for

analysis [1]. One application is in traffic flow, where sensors

can collect traffic information from roads in the form of a time-

series. By taking advantage of patterns and periodic behavior

in these time-series, there are many potential applications,

such as helping provide for better traffic management by

authorities or travel decisions by a commuter [2]. Sensors

have many other applications such as in smart homes, electric

vehicles, or enabling smart grids, and the effectiveness of these

applications can have many benefits for individuals as well as

society at large [3] [4] .

However, the data collected by sensors is non-deterministic

and can be affected by outside factors. This leads to the

presence of anomalies or outliers within these time-series

data, which can have an adverse effect on the effectiveness

of automated decision-making IoT applications, especially if

they are reliant on statistical methods [5]. A variety of factors

can cause anomalies. One source is external environmental

factors; for example, in the case of traffic flow, a car accident

could lead to an unusual dip in traffic detected by sensors at a

given location. In time-series data, this may be manifested as a

sudden drop in traffic flow for a location. Another source can

be the quality of the sensor itself; if the sensor is not correctly

calibrated or physically tampered with, a given sensor will

not be able to collect accurate information. Anomalies can be

malicious; in a data falsification attack, a malicious actor tar-

gets a sensor or a group of sensors and intentionally modifies

the data values collected [6]. This is an area of significant

concern in the IoT since malicious anomalies can negatively

impact the effectiveness of decision-making capabilities in

IoT-enabled applications [7]. Anomalies negatively impact

automated statistical analysis in IoT applications. For example,

taxi service may be negatively impacted if it is using data that

has been corrupted or otherwise of bad quality. Thus, it is

of great interest that we be able to detect anomalies within

time-series data to ensure the effectiveness of data analysis

applications. We explore the problem of anomaly detection

in time-series data from the perspective of traffic flow data

collected from sensors throughout the state of California.

The problem of anomaly detection presents several chal-

lenges. For one, there are myriad of sensors connected to

the IoT, each of which can collect a wide variety of data.

Moreover, in the context of our problem, different traffic flow

sensors have different challenges that must be addressed. For

example, some sensors are located remotely and experience

adverse conditions in comparison to sensors located in urban

areas. Due to the sheer quantity of data that must be considered

as well as challenges with each sensor, manual anomaly

detection is infeasible. Automated statistical analysis must be

conducted instead to be able to process these large amounts of

data quickly and identify anomalies within them. This suggests

a supervised learning approach; however, there is a lack of

labeled anomaly data to be able to train learning models for

this problem. Moreover, there is the question of what statistical

methods and tests may be effective in anomaly detection that

is, what statistical metrics may be robust to anomaly influences

so that they can identify anomalies with a high degree of

accuracy.

There are multiple statistical properties that time-series data

can exhibit, such as mean, median, and M-estimator . These

properties are often used in statistical anomaly detection tests,

each with their own advantages and disadvantages [8]. The

mean can be accurate in describing the central tendencies of

1291

2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA)

978-1-7281-4550-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICMLA.2019.00211

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 23,2020 at 16:55:11 UTC from IEEE Xplore. Restrictions apply.

normally distributed data-sets as well as skewed distributions

such as log-normal and Poisson distributions. However, the

mean is not a robust statistic and is heavily influenced by

the presence of anomalies. In contrast, the median is a robust

measure of central tendency but may not be as accurate in

describing the central tendencies of skewed distributions. M-

estimators have the benefits of being robust as well as being

able to provide a sample average. However, computing M-

estimators is more complex and involved. In this paper, we

combine these three statistical properties of the data samples

to detect anomalies. Furthermore, once anomalies are present

in data, the robust statistical measures may not deviate, but the

minimum and maximum values of the data-set may change,

thus affecting the maximum deviation of the data. We employ

a Long-Short Term Memory (LSTM) based neural network

to predict deviations in segments of our time-series data as if

anomalies were not present in our data. More importantly, an

LSTM model is well suited to apply predictions to time-series

data, since it can take advantage of longer-term patterns within

the data as well as not being affected by large gaps between

important events in the time-series. We then combine statistical

metrics with supervised learning to be able to address the

anomaly detection problem.

This paper attempts to address the anomaly detection prob-

lem in the context of traffic flow data in the form of a time-

series collected from IoT sensors. The main contributions of

this work are as follows.

• We employ LSTM neural network to estimate non-robust

statistical property and combine it with robust statistical

property of a sample.

• We combine the statistical analysis with supervised learn-

ing, LSTM neural network, to determine the anomalies

in time-series segments.

• We also verify the effectiveness of our approach using

realistic data traces from California freeways.

The rest of the paper is organized as follows: Section II

briefly describes the literature survey. Section III presents the

proposed system model. Section IV provides a description

of the problem statement and proposed method. Section V

describes experimental process and section VI concludes this

paper mentioning the direction of future research scopes.

II. LITERATURE SURVEY

There has been work done in the literature regarding

anomaly detection. Supervised learning to train on labeled

anomaly has often been used in literature. In [9], Malhotra

et al. have proposed an anomaly detection model for time-

series data that has used LSTM neural network. The given

method predicts time-series value, and based on the error, the

anomaly test is performed. However, the given method has

used LSTM network like a time-series predictor. Although

the method has been used for anomaly detection, this kind of

model is found to be more successful when used as predicting

future values of a time-series [10], [11]. Further, any concrete

statistical analysis has not been done in the given work. In [12],

Salman et al. have used Linear Regression and Random Forest

for anomaly detection and their categorization in Multi-cloud

environment. The method proves to provide very high accuracy

(99% detection, 93.6% categorization) for a particular data-

set. However, the method has used a labeled data-set where

anomalies and their types are known prior to the training

model. Most of the time, anomalies are not known in advance,

or new kinds of anomalies appear. Supervised learning on

labeled anomalies cannot be used efficiently in such cases as

enough training data is not available.

Principal Component Analysis (PCA) has also been used for

anomaly detection. Netflix has proposed an anomaly detection

method using the PCA [13]. Here, the methodology finds

any anomaly regarding the unusual sign-in process or any

failed banking transaction to alert end users. However, the

data that has been used here is in a different form and not

time-series data.

Clustering is also another technique used in the literature

to detect anomalies. In [14], Li et al. have proposed a method

for representing features cluster center and nearest neighbor

(CANN). The proposed method performs better than the tra-

ditional k-NN or SVM based approach. In [15], Pandeeserai et

al. have proposed an anomaly detection method using a hybrid

of Fuzzy C-Means clustering algorithm and Artificial Neural

Network (FCM-ANN). The presented method outperforms

than the Nave Bayes classifier and classic Artificial Neural

Network (ANN) even for low-frequency attacks. However, in

IoT sensors, new valid patterns tend to occur frequently [16].

Thus, misclassification problem in clustering-based approach

may disrupt the primary purpose of anomaly detection.

This paper has used LSTM based supervised learning in

combination with the statistical properties of the time-series

data to detect anomalies. In contrast to traditional supervised

learning-based approaches that have used labeled anomalies

for training a model, we train the model to estimate non-

robust statistical properties and deviations in data. Thus in

our method, the disadvantage due to not-availability of la-

beled anomalies and occurrence of new patterns in anomalies

are avoided.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we describe the overview of the proposed

system architecture. We also formally describe the anomaly

detection problem.

A. System model

The model consists of distributed sensors that collect traffic

data in the state of California and send it to a centralized

server [17]. The centralization makes IoT-based applications to

be easily developed [18]. Each sensor is a physical inductive-

loop traffic detector located at a specific location that records

certain statistics, including its location, which is denoted in

terms of a positive real number PostMile, a traffic flow

statistic denoted as AggF low, and a traffic speed statistic

denoted as AggSpeed. Every five minutes, the traffic sensor

records an AggF low and AggSpeed value, and through an

internet connection, the sensor sends this data to a centralized

1292

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 23,2020 at 16:55:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Anomaly Detection Model

server. We consider the traffic flow statistics collected by all

sensors during October 2017. All time-series data collected

by the sensors are held in the centralized server where they

are viewed and analyzed by transit authorities, academic

researchers, and the general public. For the anomaly detection

problem, we consider the time-series of traffic flow data at a

particular sensor location.

B. Problem Statement

We use discrete-time unit i such that i is a set of natural

number, and it represents a particular time-slot. The length

of the discrete-time slot is τ . The time-series vehicular traffic

count values at a time-slot i is represented using the variable

xi. We divide time-series data into segments of size k such that

a segment starting at time-slot i is represented as TSi and is

equal to the vector {xi, xi+1....xk−1}. The problem statement

is given a segment of values {xi, xi+1....xk−1}, determine the

points in the segment that are anomaly or outliers. These points

are those that deviate significantly from their usual value.

IV. METHODOLOGY

Figure 1 shows the overview of the proposed architecture

to determine anomalies in time-series data. We analyze time-

series data and based on that, determine whether a particular

point is anomalous or not. The different steps used in the given

anomaly detection problem has been outlined below.

A. Segmentation

First, we split the raw time-series data into segments. The

segmentation of time-series is done according to the parameter

k, where k is the length of each segment. Segmentation allows

us to identify anomalies in their localized contexts. For every

such segment, we assume that the middle 50% of values are

not anomalies. That is if we sort a segment in ascending order

of their values, then the values that lie in the middle 50%
portion are assumed to be true values. These middle half values

are represented as TSm,i. The other half values at extreme

ends may or may not be anomalies. The proposed method finds

the anomaly test in 50% of the values that are in extreme ends.

B. Statistical analysis

For every segment, we find its statistical properties either

using LSTM-based estimator or directly computing it. Thus,

for every segment, we first estimate the mean of the segment.

That is we find mean(TSi). Since TSi itself may have

anomalies the actual mean values may not be a real one as even

the presence of a single anomaly may changes the mean value

of TSi. Therefore, we employ the LSTM neural network to

predict mean value rather than calculating directly from TSi.

The LSTM model that we developed takes TSm,i such that

middle half values as input and based on that predicts the mean

of the whole segment mean(TSi). Thus the points that may

be anomaly have not been used at all in our LSTM model,

and only clean data is used for predicting the mean of the

whole segment.

We calculate the median for every time segment directly

using vector TSi. The median lies in the middle portion of the

segment. Since we have already assumed that the 50% values

that lie between a segment are not anomalies the median for

the whole segment can be calculated directly. Thus median

is supposed to be robust even if there are 50% anomalies in

a segment. This implies that the value of median does not

change in the presence of anomalies.

We further calculate M-estimator for every segment TSi.

The critical property of the M-estimator is that it is also

resilient to the presence of anomalies. Moreover, it also does

not depend on samples having normal distribution. The M-

estimator for a sample TSi is obtained as the solution of the

equation 1.

Σk−1
i=i ξ(

xi − μ

σ(TSi)
) = 0 (1)

The denominator σ(TSi) is a function on sample TSi and

gives initial estimate which can be mean or median. The

solution of the equation μ is the robust M-estimator for sample

TSi. ξ is a real valued Huber function ξ(x) = x.min(1, b
|x|),

where b is a constant.

Thus using statistical analysis, we derive three properties

of a segment. First, we estimate the mean using LSTM

neural network, and then we calculate median and M-estimator

1293

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 23,2020 at 16:55:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Mean prediction model

directly for a given segment. We use these three properties

in our anomaly test. After finding statistical properties, we

determine deviations for every segment as described in the

following section.

C. Deviation calculation

Once statistical characteristics of every segment are ex-

tracted, we determine the maximum deviation of every seg-

ment from the particular statistical properties using LSTM

neural network. Thus, we use three other LSTM networks

to estimate the deviation from the mean, median, and M-

estimator. The deviations are predicted rather than directly

computing it because the segment TSi may contain anomalies.

Thus, directly computing deviation may not provide actual

deviation values. Moreover, while predicting deviation, we use

TSm,i rather than TSi as the input. Thus our deviation cal-

culation process is not affected by the presence of anomalies.

1) Development of training data for deviation calculation:
To better understand the concept of deviation, we describe

below, given a segment TSi how actual deviations are cal-

culated, and what input is fed to the LSTM for training. As

we all know, during the training phase, the known inputs and

outputs are used. The network is trained using known input

and output values. The predicted network output is compared

with the known output and based on the difference between

the two, the weights of the network are updated.

The known input values used for training the LSTM neural

network are TSm,i. For developing an LSTM predictor for es-

timating deviations from the mean, median, and M-estimator,

known output values are calculated as depicted in equation 2.

dmean
i = max(|xi − TSi|, ∀i ∈ (1, 2, ...k − 1) (2a)

dmed
i = max(|xi −M(TSi)|, ∀i ∈ (1, 2, ...k − 1) (2b)

dMest
i = max(|xi − S(TSi)|, ∀i ∈ (1, 2, ...k − 1) (2c)

Here, dmean
i , dmed

i , and dMest
i are the deviations from mean,

median, and M-estimator respectively. We consider M and

S as functions to find median and M-estimator values. The

LSTM neural network predicts these deviations using clean

TSm,i data.

2) LSTM architecture: As described above, we have used 4

LSTM models in the given anomaly detector. One of them for

predicting mean as described in earlier in current section IV-

B. The other three models are for predicting deviation from

the mean, median, and M-estimator. We have optimized the

4 LSTM Neural Network model for the number of LSTM

layers and Dense Layers. The models are depicted in Figure 2.

The topmost model in Figure 2 describes the LSTM model

to predict mean values. Middle model in Figure 2 describes

the LSTM models that predict deviation from the mean and

deviation from the median. The model at the bottom of

Figure 2 describes the LSTM model that predicts deviation

from the M-estimator.

D. Anomaly test

We combine the obtained statistical properties and predicted

deviation values to test if a given point in a segment is an

anomaly or not. We perform three different tests for a given

point as depicted in equation 3 subject to the constraints

defined for corresponding equations in 4.

(xi < TSi − α.dmean
i) + (xi > TSi) + α.dmean

i) = 1 (3a)

(xi < M(TSi)− β.dmed
i) + (xi > M(TSi) + β.dmed

i) = 1
(3b)

(xi < S(TSi)− γ.dMest
i) + (xi > S(TSi) + γ.dMest

i) = 1
(3c)

s.t.

(xi < TSi − α.dmean
i).(xi > TSi + α.dmean

i) = 0 (4a)

(xi < M(TSi)− β.dmed
i).(xi > M(TSi) + β.dmed

i) = 0
(4b)

(xi < S(TSi)− γ.dMest
i).(xi > S(TSi) + γ.dMest

i) = 0
(4c)

The left-hand side of equations 3 is computed to test if its

value is 1 or zero. If the value equates to be 1 for a particular

statistics, then the point xi is classified as an anomaly using

that statistic. On the other hand, if its value is 0, then it is not

an anomaly. We test for anomalies for all three statistics and

then fed the result of different statistic to the counter.

E. Counter

Counter is a simple voter that decides if a point is an

anomaly or not. It takes the input from anomaly tests and

based on majority it decides whether a point is an anomalous

or not. Thus, if any two of the statistics says that the point xi

is an anomaly, then it is classified as an anomaly.

V. RESULTS

The proposed method is implemented in a Python-based

framework. The LSTM network is implemented using Keras

library. The traffic data is obtained from the Performance

Measurement System [17]. We simulated anomalies or outliers

by varying the measured sensor data. The simulated anomalies

can be either positive or negative. Positive anomalies are those

that have values more than the expected value. The negative

anomalies have values less than the expected minimum value.

The anomalies are added by either adding or subtracting the

actual values by stdDev × m, where stdDev is the average

standard deviation of every segment in training data, and m

1294

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 23,2020 at 16:55:11 UTC from IEEE Xplore. Restrictions apply.

m P R F

1 0.80121 0.39621 0.53022
2 0.88715 0.60413 0.71878
3 0.92648 0.72106 0.81096
4 0.94730 0.78044 0.85581
5 0.96266 0.81470 0.88252
6 0.97003 0.83433 0.89708
7 0.97745 0.84348 0.90554
8 0.98501 0.85230 0.91386
9 0.98586 0.85828 0.91766

10 0.99045 0.86327 0.92250

TABLE I
ANALYSIS FOR POSITIVE ANOMALIES

is a natural number denoting the magnitude of the anomaly

strength.

1) Performance metrics: We analyzed Precision, Recall,

and F-measure to assess the effectiveness of our anomaly

detection model on traffic series data with anomalies inserted

in each segment. The three quantities are computed as given

in equation 5.

P =
tp

tp+ fp
(5a)

R =
tp

tp+ fn
(5b)

F = 2 ∗ P ∗R
P +R

(5c)

Here, tp is the number of true positives, fp is the number

of false positives, and fn is the number of false negatives.

The F-measure is calculated by combining the precision and

recall and weighting them equally.

2) Performance evaluation: The performance is evaluated

by first varying the strength of the anomalies. We analyze the

performance both for positive and negative anomalies. We also

analyze the performance when the percentage of anomalies

is varied. Since, parameters α, β, and γ have been used in

proposed anomaly detector, we analyze the performance as

these parameters are varied.

A. Analysis of anomaly magnitude

The Tables I-III below illustrate the changes in each of the

Precision, Recall, and F-measure metrics when the anomalies

of each segment of size k = 12 are modified by a value of

the given magnitude times the standard deviation of the time

segment.

1) Positive anomalies: The performance metrics as the

strength of positive anomalies is varied is shown in Table I. We

add anomalies in the upper 25% values in each time segment.

We measured the Precision, Recall, and F-measure values

when the anomaly magnitude was varied from 1−10 times the

average standard deviation stdDev of the segments in training

data. The table shows that the Precision, Recall, and F-measure

tended to increase as magnitude increases. This is to be as

expected as a group of extremely large values will continue

to appear quite anomalous in the context of the segment.

m P R F
1 0.65800 0.29890 0.41107
2 0.80999 0.51763 0.63162
3 0.87467 0.65818 0.75114
4 0.90642 0.72821 0.80760
5 0.92798 0.78443 0.85019
6 0.94023 0.81637 0.87393
7 0.95399 0.82418 0.88434
8 0.96076 0.81054 0.87928
9 0.96816 0.79923 0.87562

10 0.97517 0.80356 0.88109

TABLE II
ANALYSIS FOR NEGATIVE ANOMALIES

m P R F

1 0.78044 0.74676 0.76323
2 0.88451 0.80065 0.84049
3 0.93852 0.81512 0.87248
4 0.97286 0.82285 0.89159
5 0.98755 0.83134 0.90274
6 0.99351 0.84007 0.91037
7 0.99676 0.84356 0.91378
8 0.99882 0.84132 0.91333
9 0.99970 0.83683 0.91104

10 1.0 0.83383 0.90938

TABLE III
ANALYSIS FOR POSITIVE AND NEGATIVE ANOMALIES

2) Negative anomalies: We also altered the given time

segment by subtracting standard deviations to the lower 25%
of values in each time segment. The Precision, Recall, and F-

measure values are evaluated as the magnitude of anomalies

vary from 1−10 times of stdDev. We observed that Precision,

Recall, and F-measure increase as the magnitude increases.

The results are recorded in Table II.

3) Positive and negative anomalies: We evaluate the results

when both one positive and one negative anomaly are present

in Table III. The performance metrics are obtained when the

anomaly magnitude is varied from 1 − 10. We observe that

Precision tend to increase as magnitude increases. We also

observe that Recall also tend to increase, but it appeared to

level out at around 0.83−0.84. Both results are to be expected

as the anomaly test becomes less sensitive to anomalies as

magnitude increases, and we see more true positives and fewer

false positives. Interestingly, Recall appears to decrease at

higher values of magnitude. This may be due to the variability

in anomalies being on the threshold of the anomaly tests.

B. Analysis of anomaly percentage

The Table IV illustrates the changes in each of the Pre-

cision, Recall, and F-measure metrics when the percentage

of anomalies are modified in each time segment. We measure

the Precision, Recall, and F-measure values when the anomaly

percentage is varied up to 50%. We observed that Precision

tended to increase except for when there are 8.3% anomalous

values in the segment. We also observed the highest Recall

value when there were 16.667% anomalies in the segment.

Otherwise, recall tended to be around 0.60, and decreased

as the number of anomalies in the segment increased. This

1295

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 23,2020 at 16:55:11 UTC from IEEE Xplore. Restrictions apply.

% of anomalies P R F

8.3333 0.76974 0.63224 0.69425
16.667 0.93852 0.81512 0.87248

25 0.95989 0.61294 0.74815
33.333 0.98490 0.60230 0.74748
41.667 0.99270 0.58393 0.73533

50 0.99813 0.57643 0.73081

TABLE IV
ANALYSIS AS PERCENTAGE OF ANOMALIES IS VARIED

suggests a limitation to our algorithm’s effectiveness as the

statistical methods become less sensitive to more preva-

lent anomalies.

C. Analysis on Parameter Variation

In this section, we analyze the performance of individual

tests as their corresponding parameter α, β, or γ is varied. In

our analysis, we measured the variation in Precision, Recall,

and F-measure by keeping two tunable parameters constant

while varying the third. We varied the third tunable parameter

in steps of size 0.25 and starting from 0.5 up to 4.25 while

keeping the values of the other two tunable parameters fixed

at 2.0. Figure 3 shows the changes in the statistical metrics

when the parameter α, corresponding to the anomaly test

using the mean, is changed. As shown in the figure, even

when the α parameter is low, such that the anomaly test

threshold is highly sensitive, we can measure a very high

rate of effectiveness with our algorithm, with Precision over

90% and Recall over 80%. Note that as α increases, there

is an inverse correlation between Precision and Recall. This

is because as the threshold of anomaly classification using

the mean becomes higher. Innocuous values are less likely

to be classified, leading to fewer false positives, but anomaly

values are less likely to lie outside the anomalies test threshold,

leading to more false negatives. The best balance between

Precision and Recall appears to be when α = 0.5, as the

F-measure value is the highest at that point.

Figure 4 shows the changes in statistical metrics when the

parameter β, corresponding to the anomaly test using the

median, is changed. As shown in the figure, we observe an

inverse correlation between Precision and Recall, with Recall

being higher at low values of β and Precision being higher at

high values of β. These changes are much more precipitous

than that of the α parameter. Interestingly, Precision appears to

decline slightly at high values of β. The best balance between

Precision and Recall appears to be at β = 1.5, where the

F-measure is highest.

Figure 5 shows the changes in statistical metrics when the

parameter γ, corresponding to the anomaly test using the M-

estimator, is changed. We again observe the inverse correlation

between Precision and Recall. However, the rate of increase

of Precision is much higher than the rate of decrease of Recall

than observed in the α and β metrics. As a result, we observe

the highest F-measure value at γ = 2.25, higher than that of

the previous two parameters.

Fig. 3. Performance of mean test as α is varied

Fig. 4. Performance of median test as β is varied

Fig. 5. Performance of M-estimator test as γ is varied

1296

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 23,2020 at 16:55:11 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSIONS AND FUTURE WORK

This paper highlights the challenges behind anomaly detec-

tion as it relates to large quantities of time-series data. We

presented an automated anomaly detection method that relies

on supervised learning and statistical methods to determine

anomalies within the time-series. Our proposed anomaly de-

tection method relies on segmentation to determine anomalies

within their local contexts. We measured the efficacy of

our method from different perspectives, namely variation in

tunable parameters, anomaly magnitude, and the number of

anomalies, and quantified it in terms of Precision, Recall,

and F-measure in each case. Our method does best with

smaller tunable parameter values with low yet not insignif-

icant amounts of anomalies. In the future, there are certain

following improvisations that could increase the efficacy of

the anomaly detector.

1) Scalability: In connected communities, the number of

sensors and devices are enormous. Thus anomaly detector not

only has to be accurate but also scalable. In this regard, specific

clustering methods or transfer learning-based approach could

be adopted where a model developed for one sensor can be

applied to other correlated sensors. Furthermore, for imparting

scalability a hierarchical model can be developed. Thus for

the sensors present in a small area, anomaly detection can

be performed in edge devices [19]. For the spatially scattered

sensors, the processing can be done in cloud.

2) Statistical property matching: Different time-series may

have different robust statistical properties. For example, for a

specific time-series data, the mean may be a robust statistics,

while for other, Median or M-estimator may be a robust value.

Thus, before feeding a time-series for statistical analysis,

a matching layer can be added that determines the robust

statistics for a given sensor. Then only those robust statistics

should be used for anomaly detection.

3) Open source: Open-source software, packages, and op-

erating system are common in connected communities as they

enable easy to reconfigure, add, or remove devices and appli-

cations. Without the open source softwares the devices may

go defunct due to unavailability of supported formats [20],

[21]. However, due to the open-source software, a malicious

adversary may have perfect knowledge of the anomaly detector

model. This may help him to devise attack models that can

bypass the security mechanism. The analysis and defense

mechanism when anomalies are tailored to bypass anomaly

detector is an interesting topic to be explored.

ACKNOWLEDGEMENT

This research is supported by NSF Award #1723814.

REFERENCES

[1] R. Shukla, S. Sengupta, and M. Chatterjee, “Software-defined network
and cloud-edge collaboration for smart and connected vehicles,” in
Proceedings of the Workshop Program of the International Conference
on Distributed Computing and Networking, January 2018, pp. 6:1–6:6.

[2] M. Wu, T. Lu, F. Ling, J. Sun, and H. Du, “Research on the architecture
of internet of things,” in Proceedings of IEEE International Conference
on Advanced Computer Theory and Engineering (ICACTE), vol. 5,
August 2010, pp. V5–484–V5–487.

[3] R. M. Shukla, P. Kansakar, and A. Munir, “A neural network-based
appliance scheduling methodology for smart homes and buildings with
multiple power sources,” in Proceedings of the IEEE International Sym-
posium on Nanoelectronic and Information Systems (iNIS), December
2016, pp. 166–171.

[4] R. Shukla, S. Sengupta, and A. Patra, “Smart plug-in electric vehicle
charging to reduce electric load variation at a parking place,” in
Proceedings of the Annual Computing and Communication Workshop
and Conference (CCWC), January 2018, pp. 632–638.

[5] J. Hochenbaum, O. S. Vallis, and A. Kejariwal, “Automatic
anomaly detection in the cloud via statistical learning,” CoRR, vol.
abs/1704.07706, 2017. [Online]. Available: http://arxiv.org/abs/1704.
07706

[6] A. Vempaty, L. Tong, and P. K. Varshney, “Distributed inference with
byzantine data: State-of-the-art review on data falsification attacks,”
IEEE Signal Processing Magazine, vol. 30, no. 5, pp. 65–75, September
2013.

[7] R. M. Shukla and S. Sengupta, “Analysis and detection of outliers due
to data falsification attacks in vehicular traffic prediction application,”
in Proceedings of the IEEE Annual Ubiquitous Computing, Electronics
Mobile Communication Conference (UEMCON), November 2018, pp.
688–694.

[8] P. J. Rousseeuw and M. Hubert, “Anomaly detection by robust statistics,”
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discov-
ery, vol. 8, no. 2, p. e1236, 2018.

[9] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” in Proceedings.
Presses universitaires de Louvain, 2015, p. 89.

[10] J. Zhou and A. K. Tung, “Smiler: A semi-lazy time series prediction
system for sensors,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, May 2015, pp. 1871–1886.

[11] X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang, “Long short-term memory
neural network for traffic speed prediction using remote microwave
sensor data,” Transportation Research Part C: Emerging Technologies,
vol. 54, pp. 187 – 197, 2015.

[12] T. Salman, D. Bhamare, A. Erbad, R. Jain, and M. Samaka, “Machine
learning for anomaly detection and categorization in multi-cloud en-
vironments,” in IEEE International Conference on Cyber Security and
Cloud Computing (CSCloud), June 2017.

[13] Rad - outlier detection on big data. [Online]. Available: https://medium.
com/netflix-techblog/rad-outlier-detection-on-big-data-d6b0494371cc

[14] W. C. Lin, S. W. Ke, and C. F. Tsai, “Cann: An intrusion detection
system based on combining cluster centers and nearest neighbors,”
Knowledge-based systems, vol. 78, pp. 13–21, 2015.

[15] N. Pandeeswari and G. Kumar, “Anomaly detection system in cloud
environment using fuzzy clustering based ann,” Mobile Networks and
Applications, vol. 21, no. 3, pp. 494–505, Jun 2016.

[16] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomaly
detection techniques,” Journal of Network and Computer Applications,
vol. 60, pp. 19 – 31, 2016.

[17] The freeway performance measurement system. [On-
line]. Available: https://people.eecs.berkeley.edu/∼varaiya/papers ps.dir/
PeMSTutorial.pdf

[18] R. Shukla and S. Sengupta, “A novel software-defined network based
approach for charging station allocation to plugged-in electric vehicles,”
in Proceedings of IEEE International Symposium on Network Computing
and Applications (NCA), Cambridge, MA, USA, 2017, pp. 437–441.

[19] R. M. Shukla and A. Munir, “A computation offloading scheme lever-
aging parameter tuning for real-time iot devices,” in Proceedings of
the IEEE International Symposium on Nanoelectronic and Information
Systems (iNIS), Dec 2016, pp. 208–209.

[20] Open source iot is growing in importance.
[Online]. Available: https://www.iotworldtoday.com/2018/05/24/
open-source-iot-growing-importance/

[21] The role of open source in iot. [Online]. Available: https://
opensourceforu.com/2017/07/open-source-role-in-iot/

1297

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 23,2020 at 16:55:11 UTC from IEEE Xplore. Restrictions apply.

