Exploring student facility with ‘‘goes like’’ reasoning in introductory physics

Charlotte Zimmerman, Alexis Olsho, and Suzanne White Brahmia
Department of Physics, University of Washington, Seattle, WA, 98103

Andrew Boudreaux
Deprtment of Physics, Western Washington University, Bellingham, WA, 98225

Trevor Smith
Department of Physics, Rowan University, Glassboro, NJ, 08028

Philip Eaton
School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ 08205

Covariational reasoning—reasoning about how changes in one quantity relate to changes in another
quantity—has been examined extensively in mathematics education research. Little research has been done,
however, on covariational reasoning in introductory physics contexts. We explore one aspect of covariational
reasoning: “goes like” reasoning. “Goes like” reasoning refers to ways physicists relate two quantities through
a simplified function. For example, physicists often say that “the electric field goes like one over r squared.”
While this reasoning mode is used regularly by physicists and physics instructors, how students make sense
of and use it remains unclear. We present evidence from reasoning inventory items which indicate that many
students are sense making with tools from prior math instruction that could be developed into expert “goes like”
thinking with direct instruction. Recommendations for further work in characterizing student sense making as a
foundation for future development of instruction are made.
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I. INTRODUCTION

A perhaps unexpected byproduct of the COVID-19 pan-
demic is renewed clarity on how challenging it is for many
to conceptualize the exponential function. This is certainly
not novel; Albert Bartlett famously stated “The greatest short-
coming of the human race is our inability to understand the
exponential function”[1]. This has become a public issue
in the face of the coronavirus epidemic. Headlines such as
“What Does Exponential Growth Mean in the Context of
COVID-192,’[2] “The Exponential Power of Now,’[3] and
“Is Poor Math Literacy Making It Harder For People To Un-
derstand COVID-19 Coronavirus?”’[4] have put conceptual-
ization of function on the national stage.

It is evident that quantitative literacy—the set of skills that
support the use of mathematics to describe and understand
the world—is important, and lacking, in the United States to-
day. Quantitative literacy has many facets, including reason-
ing about signed quantities, proportional reasoning and co-
variational reasoning—conceptualizing change in one quan-
tity with respect to change in another quantity—and has been
studied across both Mathematics and Physics Education Re-
search [5-7]. Introductory physics, a broadly-required col-
lege course with a focus on quantifying and modeling nature,
is an excellent place to address this need.

This paper describes a study of students’ covariational rea-
soning in physics contexts. It contributes to the work in math-
ematics education, as well as to closing a gap in Physics Edu-
cation Research (PER), where it has been shown that reason-
ing in physics contexts is different from reasoning in purely
mathematical ones [8, 9]. We focus on one expert-like facet
of physics covariational reasoning: ‘“goes like” reasoning,
which refers to the use of proportionality to illustrate rela-
tionships between two quantities (i.e. “The force goes like
one over r squared”) [10]. We present some of the ways
an expert might use this reasoning, and preliminary results
from two items on the Physics Inventory for Quantitative
Literacy (PIQL) that suggest students have some productive
resources and emergent abilities with “goes like” reasoning
from prior math courses that are not yet coordinated with re-
sources about physical quantities in some contexts. Recom-
mendations for future work and instruction are made.

II. QUANTITATIVE LITERACY IN MATH AND PHYSICS

Proportional reasoning—reasoning about ratio as a
quantity—has been identified as critical for success in physics
by physics educators and in PER. Early PER focused on iden-
tifying specific reasoning difficulties such as the tendency to
use additive, rather than multiplicative, strategies and the ten-
dency of physics students to manipulate mathematical for-
malism without understanding the physical meaning of the
associated quantities and operations [11-13]. By the early
1980’s, studies in PER had begun to systematically document
and extend this body of work by using individual demonstra-
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tion interviews to explore student understanding of velocity
as the ratio Ax/ At and acceleration as the ratio Av/At [14—
16]. More recent work has examined the relationship between
basic reasoning ability, including proportional reasoning, and
the learning of physics content [17].

Work on the role and challenge of proportional reasoning
in physics contexts has included attention to scaling and func-
tional reasoning [13]. We build on this body of work by inte-
grating the language of covariational reasoning established by
Research in Undergraduate Mathematics Education (RUME)
community [6, 18-22]. Covariation encompasses all func-
tions that relate two or more quantities and considers multiple
ways that one can think about those relationships. For exam-
ple, one can consider discrete covariation (if the radius is dou-
bled, what happens to the electric field at a point?), or contin-
uous covariation (how does the field change smoothly as the
radius is increased?) [6]. We suggest that proportional rea-
soning is a subset of covariational reasoning, focused specifi-
cally on linear relationships and using ratios that have mean-
ing as a single entity (such as velocity and acceleration).

Physics educators regularly identify “thinking like a physi-
cist” as a goal of introductory physics. In a 2019 study
of the ways in which experts use covariational reasoning to
solve introductory physics problems by Zimmerman, Olsho,
Boudreaux, Loverude, and White Brahmia, it was noted that
physics experts use functional reasoning by employing the
“o” symbol or phrases like “goes like” to illustrate relation-
ships in statements like Area o r2, Force goes like 1/r2,
etc. [10] This kind of “goes like” expert thinking is used to
represent a wide variety of simplified relationships between
quantities, and can be viewed through the lens of conceptual
blending where physics experts are subconsciously blending
together their reasoning about physics concepts and their rea-
soning about mathematical functions [23].

In his work on proportional reasoning, Arons asserts that
the capacity for scaling and functional reasoning will not nec-
essarily develop spontaneously [13]. Indeed, the need for
curricular intervention is evident from the current literature.
What is less clear is what resources and emergent abilities stu-
dents do have regarding quantitative literacy prior to physics
instruction, and what educators can do to build upon these
skills to develop quantitative reasoning in their students.

III. EXPERT “GOES LIKE” REASONING

“Goes like” reasoning refers to simplifying and making
sense of the covariational relationship between two changing
quantities as a single function that illustrates the behavior of
an evolving system. For example, consider a classic introduc-
tory physics problem: a ball thrown from a cliff. An expert
might reason that if the ball’s initial height is increased, the
final speed of the ball will also increase. They might reason
further that the final speed of the ball “goes like” the square
root of the height. Here, “goes like” reasoning allows the
expert to focus on the functional form of the relationship be-



tween two changing quantities, and to ignore any constants
or pre-factors. This is a form of physics covariational rea-
soning as it describes how one quantity changes with respect
to another in a simplified, functional way and in turn allows
for efficient problem solving, as the expected behavior of the
system can be quickly and clearly illustrated.

Expert use of “goes like” reasoning is the result of a con-
ceptual blend between their facility with the mathematical
functions involved and the physics content knowledge that
enables experts to relate physical phenomena to those func-
tions [23]. Zimmerman et. al found that physics graduate
students have strong associations between certain routinely
used physics quantities that allow them to make inferences
about relationships between quantities in a given problem,
termed “compiled relationships” [10]. This simplifies prob-
lems to those they can solve more efficiently, or to which they
may already know the answer from experience [10]. Unlike
novices, someone with substantial experience with physics is
able to make claims such as “This problem involves a poten-
tial, which goes like 1/7” or “This looks like scattering, so I
expect it to be an exponential.”

Novice physics students, in our experience, often also have
useful compiled relationships that model real world contexts,
and we consider these to be resources for physics learning.
Many of these associations seem to evolve from prior math
instruction and we see emerging evidence that students may
resort to solving a physics problem by “doing math,” mean-
ing that the absence of a conceptual blend is an obstacle for
effective problem solving. For example, where experts may
associate circular motion with sinusoidal curves, introductory
physics students may more readily associate trigonometric
functions with right triangles.

This led us to wonder what resources students in an in-
troductory physics course are using to relate two quantities,
and whether they include “goes like” reasoning. In particular,
we asked: do students enter introductory physics with rea-
soning about functional behavior already formed and ready
to be applied from math courses? In addition, do their “goes
like” resources improve after instruction in a physics class,
where instruction typically takes the form of experts model-
ing their reasoning and discussing it in lecture? To answer
these questions, we probed students’ covariational reasoning
using items from an inventory currently in development: the
Physics Inventory for Quantitative Reasoning (PIQL) [7, 24].

IV. ASSESSING “GOES LIKE” REASONING

The PIQL is a reasoning inventory that measures funda-
mental aspects of mathematical reasoning that are ubiquitous
in physics modeling. The instrument began with items target-
ing proportional reasoning and reasoning about signed quan-
tities and has since grown to include items related to covari-
ational reasoning more broadly. During its development, the
PIQL has been administered over several years in a 3-quarter
calculus-based introductory physics course at a large research
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university in the Pacific Northwest. It is given at the start of
each of the quarters (Phys 121, 122, and 123), such that it
serves as a pretest for each term and we are able to measure
how students improve during the course of instruction. In
this paper, we report on the results of two items from 918 stu-
dents responses (N=326 in 121, N=309 in 122, and N=283
in 123) from the Winter 2020 Administration (PIQL 20W),
which was given in-person during 50-minute class sessions.

In this paper, we focus on the results of two PIQL items
aimed at assessing covariational reasoning: Flag of Bhutan
and Ferris Wheel. Flag of Bhutan has been a validated item
on the assessment for several years, originally taken with per-
mission from previous work on proportional reasoning [25].
We will reframe the problem and results using the language
of covariational reasoning and ‘“goes like” thinking. Ferris
Wheel is a new item on the PIQL, drawn from previous work
on expert covariational reasoning in mathematics and physics
[10, 26]. We will provide some analysis of the results from
PIQL 20W as well as some insights on student “goes like”
reasoning from recent validation interviews. Other aspects of
quantification and PQL are also involved in these responses,
but will not be discussed in this paper.

A. Flag of Bhutan

In the Flag of Bhutan question, students are asked what as-
pects of the flag would be larger by a factor of 1.5 if the length
and the width were both increased by a factor of 1.5 (see Fig.
1). This item was originally designed as a scaling assessment
to measure student facility with both linear and non-linear re-
lationships, as some answer choices depend linearly on length
and width (such as the length of the dragon’s backbone, or the
distance around the edge of the flag) and the answer choice
“the amount of cloth needed to make the flag” depends on
length times width [25]. While scaling was considered a facet
of proportional reasoning at the time, it was understood by the
researchers that scaling with non-linear functions is notably
different than scaling with linear relationships. We believe
that this question can be re-examined in the context of dis-
crete covariation and “goes like” thinking.

One of the challenges of the Flag of Bhutan item as writ-
ten on the PIQL is that it is a multiple-choice/multiple-
response (MCMR) question. Thereby, its score is low com-
pared to other items on the PIQL because these items are
scored dichotomously for comparison with other multiple-
choice/single-response items [27]. However, the nature of
the item does not fully account for the significantly low num-
ber of completely correct responses (26% of all students) and
this rate does not change significantly throughout the intro-
ductory sequence (25% in 121, 25% in 122, and 31% in 123)
suggesting that students do not improve with instruction. The
benefit of MCMR items is that the percentage of students that
give partially correct answers—the student chooses at least
one correct response and no incorrect responses—tells a more
nuanced story. 74% of all students choose a combination of



FIG. 1. The Flag of Bhutan. The prompt for this item asks students
to select all of the following quantities that are larger by a factor
of 1.5 when the length and width of the flag are both increased by
a factor of 1.5: (a) The distance around the edge of the flag, (b) the
amount of cloth needed to make the flag, (c) the length of the curve
forming the dragon’s backbone, (d) the diagonal of the flag, and (e)
none of these. Students are prompted to choose all answer choices
that apply. We believe the correct answers to be (a), (c) and (d).

(a), (c), and/or (d) which suggests that most students have
some productive resources about the functional relationship
between length, width, and area that could be built upon.

By examining the partially correct responses, we can infer
what kinds of resources students may be using. Only 24%
of students do not choose (a), which we interpret to mean
that the majority of students have facility with direct linear
relationships (in this case, perimeter to length and width). In
contrast, 55% of students do not choose (c) and 43% of stu-
dents do not choose (d), suggesting that some students may
not have yet developed the resources about more complex
functional relationships, such as v/I? 4+ w2, or those that do
not have a known functional relationship, such as the dragon’s
backbone, even if the result is linear. Students do, however,
tend to choose (c) and (d) together (66% of students either
chose both or neither). This indicates that while the diagonal
of the flag can be described by a geometric function and the
backbone cannot, the majority of students are able to realize
they have the same dependence on length and width. These
early signs of “goes like” reasoning could be developed by
coordinating the demonstrated student facility of linear func-
tions to more complex relationships with direct instruction.

B. Ferris Wheel

Ferris Wheel asks students to choose an equation that rep-
resents how the height of a Ferris wheel cart changes as a
function of the total distance it has traveled (see Fig. 2). This
item was developed for the PIQL to directly assess “goes like”
reasoning, inspired by the 2017 Hobson and Moore study on
covariational reasoning in which expert mathematicians were
given an animated version of a Ferris Wheel and asked to pro-
duce a graph that relates the total distance traveled by the cart
and the height of the cart [26]. Variants of the Ferris Wheel
problem have been used thoroughly and are well-validated in
mathematics education research, and the Hobson and Moore
study was recently replicated with physics experts where it
was observed that physics experts reasoned differently from
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the mathematicians [10, 28-31]. In particular, physics experts
demonstrated “goes like” reasoning and strong compiled re-
lationships between the circular motion presented in the an-
imation and trigonometric functions: “the height goes like a
trig function” [10].

In developing Ferris Wheel for the PIQL, we were inter-
ested to see if students also held compiled relationships, and
if they were using “goes like” reasoning to solve the problem.
When reformatting the item as multiple choice, we chose
distractors based on common covariational relationships in
physics (i.e. exponential growth). We also chose distractors
based on compiled relationships students may have including
the Pythagorean theorem, which students associate with tri-
angles in interviews and in open-ended version of other PIQL
items, and an expression containing the circumference, which
students associate with circles.

This item appears to be considerably less challenging than
Flag of Bhutan, as 58% of all students answer correctly on
PIQL 20W, however it is not an MCMR question so it can-
not be compared directly [27]. While the majority of students
in this sample answered correctly, incorrect answer choices
provide insight into what productive resources students that
do not answer correctly are using. The most common incor-
rect choices were (d) and (a) from Figure 2, with an answer
rate of 25% and 15% respectively across all three courses.
As before, the answer rate does not change significantly dur-
ing the course of instruction. These results suggest that the
“circumference-like” distractor and the ‘“Pythagorean-like”
distractor are appealing to a significant portion of the student
population. We interpret these answer choices as early “goes
like” reasoning—these are functions that are familiar to stu-
dents from prior math classes, and have been fruitful in past
experiences reasoning about circles and triangles. We suggest
these resources could be built upon and coordinated with rea-
soning about circular motion through direct instruction to de-
velop the “goes like” reasoning experts demonstrate between
circular motion and trigonometry.

Student interviews were conducted as part of the valida-
tion process for new items on the PIQL. Semi-structured, in-
dividual think-aloud interviews were conducted with six in-
troductory physics students at another public university in the
Pacific Northwest. Ferris Wheel was given as shown in Fig-
ure 2, and students were selected on a volunteer basis. We do
not claim that these two institutions represent identical pop-
ulations; they often have slightly different average scores on
PIQL assessment items, and fewer than half of those inter-
viewed arrived at the correct answer. Therefore, the inter-
views provide some details into what resources students that
do not yet have facility with circular motion may be using.

The Circumference-Like Distractor, answer choice (d),
was highly appealing to nearly all students interviewed, cit-
ing it as familiar and associating circumference with total
distance traveled: “I’d say (d) because its the only one that
has 27 R in there, which is the, essentially, the circumfer-
ence formula.” Indeed, nearly all students interviewed began
by defining the total distance traveled by the circumference,



FIG. 2. Ferris Wheel. The prompt for this item asks students
to identify which expression correctly identifies how h, the height
of the cart, directly changes with s, the distance traveled by the
rider, where the radius of the Ferris wheel is given by Rp: (a)
h(s) = +/s2+ R2, (b) h(s) Roexp(s/Ro), (¢) h(s)
Ro — Ry cos(s/Ro), (d) h(s) = s*/(2nRo)

and many returned to this definition throughout their problem
solving process. We recognize this as a form of quantitative
reasoning—students demonstrate a strong compiled relation-
ship between distance and circumference. They also tend to
connect total distance traveled (a quantity that changes with
time) with the circumference of one revolution (a quantity
that is fixed), meaning that the students interviewed did not
spontaneously consider the total distance as it is changing
when using circumference to solve the problem.

The Pythagorean-like Distractor, answer choice (a), was
also of significant interest to those interviewed. Every student
interviewed verbally labelled this option as “Pythagorean,”
and many students drew an accompanying triangle, demon-
strating a strong compiled relationship between the expres-
sion itself and triangular geometry. Some students used this
understanding to recognize quickly that the Pythagorean ap-
proach would not work, one stating, “(A) is the Pythagorean
theorem, but that doesn’t make sense because that’s linear dis-
tance.” We interpret this as the student recognizing that the
Pythagorean theorem uses linear distances, and the total dis-
tance traveled is not linear. Another student debated about the
correctness of (a), stating, “This is like the Pythagorean theo-
rem... if we do it like this, [the student draws a triangle with
the hypotenuse representing total distance] I guess you could
estimate [the total distance] as being a straight line.” Here,
we infer the student is using a method often taught in cal-
culus courses to approximate curves as linear to make sense
of the linear quantities in a circular context. Both of these
students demonstrate the use of strong sense-making about
linear quantities in the context of circular motion using re-
sources from prior mathematics instruction.

The Trigonometric Answer, choice (c), was challenging
for students due to its high level of complexity. Students
puzzled over how to draw the corresponding triangle, “co-
sine gives me s over Ry...so they’re saying the radius is the
hypotenuse. How can that be?” We interpret this as the stu-
dent sense-making about how the mathematical expression
is connected to the physical representation, early evidence
of student conceptual blending. Another student was unique
among those interviewed in drawing a connection between
the unit circle and answer choice (c), recognizing that “6 is
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equal to arc length over the radius...the radius should be the
hypotenuse because the radius is the one thing that is mea-
sured throughout the circle.” The student makes the connec-
tion of the angle as a ratio, and uses their conceptualization
of the unit circle to identify the corresponding triangle.

These patterns suggest that the students interviewed have a
variety of strong sense-making resources about the circumfer-
ence formula, geometric approaches to the Pythagorean the-
orem, and early signs of conceptual blending between physi-
cal representations and mathematical formula. Students may
not yet coordinate these resources completely correctly with
circular motion, however, both in terms of time evolution and
the connection between the formalism and the physical repre-
sentation. Notably, those that did answer correctly during the
interviews arrived at their answer by plugging in points. In
particular, students focused on physically significant points,
for example, the bottom and top of the Ferris Wheel where
the height is at a minimum or maximum. This kind of prob-
lem solving— choosing physically relevant points to better
understand the behavior of the system—has been identified
as an expert-like behavior [10]. However, students uniformly
did so as a last effort, suggesting they may not see the expert-
like nature of this approach.

V. CONCLUSIONS

The results of Ferris Wheel and Flag of Bhutan demon-
strate that while students have difficulty with physics “goes
like” reasoning, they illustrate productive resources that could
be used to develop physics covariational reasoning. Re-
sponses to Flag of Bhutan show that students have strong
“goes like” reasoning about linear relationships, and those to
Ferris Wheel demonstrate that students have strong compiled
relationships regarding right triangles and the Pythagorean
theorem, and circles and circumference. However, without
direct instruction it is challenging for students to sponta-
neously coordinate complex functions like v/1% + w? to lin-
ear behavior and their reasoning about trigonometry to circu-
lar motion. It is important for instructors to recognize their
own expert habit of thinking in terms of a small, finite num-
ber of preferred functions in physics, while students emerge
from math courses without that framework. We recommend
instructors consider including explicit instruction to help stu-
dents develop a recognition of our preferred functions to fa-
cilitate “goes like” thinking. As this is preliminary work, ad-
ditional studies are needed to more deeply understand both
student and expert covariational reasoning in physics.
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