Toward a framework for the natures of proportional reasoning in introductory physics
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We present a set of modes of reasoning about ratio and proportion as a means of operationalizing expert
practice in physics. These modes, or natures of proportional reasoning, stem from consideration of how
physicists reason in context and are informed by prior work in physics and mathematics education. We frame
the natures as the core of an emerging framework for proportional reasoning in introductory physics, that will
categorize the uses of proportional reasoning in introductory physics contexts, and provide guidance for the
development of reliable assessments. We share results from preliminary assessment items indicating that
university physics students have difficulty interpreting and applying ratios in context.
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I. INTRODUCTION

Scientists and engineers think mathematically about
events, or mathematize, when making sense of the world. In
introductory physics, we would like our students to become
more proficient mathematizers. Recent findings, however,
suggest that students experience difficulty with many aspects
of how mathematics is used in physics [1-4].

The use of ratios to characterize systems and processes is
a hallmark of physics and a foundation for mathematizing.
Introductory physics courses present new ratio quantities in
rapid succession, such as velocity, acceleration, and
coefficient of friction in mechanics, electric field, potential
difference, and resistance in E&M, heat capacity, frequency,
and so on. Students not facile with ratio reasoning may
struggle to employ these quantities for sense making, and
instead may resort to memorization and pattern matching [5].

Students entering university physics will have practiced
with ratios in pre-college math classes and likely worked
with ratios in scientific contexts. Physics educators,
however, have recognized the challenge that ratio reasoning
poses to student success in physics. Indeed, Arnold Arons
wrote in 1990 “One of the most severe gaps in the cognitive
development of students is the failure to have mastered
reasoning involving ratios...this disability is one of the most
serious impediments to the study of science” [5]. Physics
education researchers have identified some difficulties more
systematically; for example, Trowbridge and McDermott
found that “fewer than half of the students demonstrated
sufficient qualitative understanding of acceleration as a ratio
to be able to apply this concept in a real situation” [6].

We view proportional reasoning as complex and multi-
faceted. Patrick Thompson has described proportional
reasoning as a broad set of interconnected and context
dependent skills, represented by a “proportionality cloud”
[7]. He has shown how the equivalent ratios paradigm — the
narrow skill from school mathematics involving “this is to
this as that is to that” — overlaps with a variety of topics
typically treated as separate. We believe that developing
such interconnected skills in the context of explaining real-
world phenomena is central to “thinking like a physicist.”
More specifically, we view expert ability as involving
intentional use of distinct modes of ratio reasoning and fluent
shifting from one mode to another.

In this paper, we begin to unpack proportional reasoning
from the perspective of an expert, by articulating specific
modes of reasoning that arise in introductory physics. We
refer to such modes as “natures,” following our earlier work
on the natures of negativity in physics [8]. (“Natures of
negativity” refers to the ways physics experts reason about
signs and signed quantities.) Although the natures of
proportional reasoning presented here are preliminary, and
not yet comprehensive, we believe they can form the core of
a more complete set, which could then guide research on
student reasoning and the design of assessment tools. A
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mature set of natures of proportional reasoning would in this
way support systematic improvement of instruction.

II. THEORETICAL FRAMEWORK

We adopt the view that expert practice in physics
involves coordinated procedural and conceptual mastery of
the relevant mathematics. In articulating natures of
proportional reasoning, we have thus avoided focus on
computation alone. Gray and Tall have defined proceptual
understanding, in which computational and conceptual
facility coexist [9]. We have found this notion useful for
examining the ways that experts reason with ratios in
introductory physics contexts.

As an example, a proceptual understanding of fraction
would entail fluid transition between the procedure of
dividing 6 by 8, and the conceptualization of 6/8 as a precise
quantification of portion. Similarly, a physics student with a
proceptual understanding of acceleration would move
between the computational procedure (dividing Av by At)
and the conceptualization of the ratio as a quantity unto
itself, which conveys the change in velocity corresponding
to each unit of the elapsed time, and has its own units,
properties, and utility. We regard a proceptual understanding
of ratios in physics as the successful blend of computational
procedures and conceptual understanding — where
conceptual understanding includes the physical meaning of
a ratio — the way the quantity represents a physical quality.

III. RESEARCH METHODS

This paper presents natures of proportional reasoning in
introductory physics — i.e., specific ways experts reason. We
have conducted systematic research on student facility with
these natures. We have employed a variety of questions to
investigate student reasoning, some drawn from the research
literature and others developed ourselves. The questions do
not emphasize computational skill; most require neither a
calculator nor significant mental math. Questions were
designed to target a single nature of proportional reasoning.
Some questions involve a forced choice (i.e., multiple choice
format), while others are free response. In all cases, students
were asked to explain their reasoning.

The questions developed during the investigation
underwent repeated cycles of modification. Student
responses to initial versions were used to guide
modifications to improve not only the clarity, but also the
effectiveness of the questions in providing insights into
student thinking. It was often challenging to create questions
that did not trigger a common student response of trying to
apply an equivalent fractions template.

Questions were administered in writing in general
education, algebra-based, and calculus-based introductory
physics courses at Western Washington University (WWU),
New Mexico State University, and Rutgers University. Such
questions were given on course exams and as ungraded



quizzes. More than 1500 student responses have been
collected overall.

Questions were also administered in individual, one-
hour, think-aloud interviews conducted at WWU with over
20 student volunteers from general education and calculus-
based introductory physics courses as well as an introductory
physics course for preservice elementary teachers. A semi-
structured protocol was used: the interviewer posed specific
proportional reasoning questions and asked the interview
subject to “think out loud.” The interviewer clarified the
questions as needed, prompted the subject to explain their
thinking after sustained periods of silence, and asked the
subject to elaborate on brief or unclear statements. The
interviewer did not, however, offer hints or ask guiding
questions. The interviews were videotaped and transcribed.

Responses on forced choice questions have been
analyzed to obtain correct response rates; these results serve
as an indicator of the general level of student facility with
specific modes of ratio reasoning. (However, discussion of
variations in performance between student populations is
beyond the scope of this paper.) Thematic analysis has been
applied to written explanations and interview transcripts to
identify common reasoning difficulties [10]. Section IV
shares selected findings from both types of analysis.

IV. NATURES OF PROPORTIONAL REASONING
IN INTRODUCTORY PHYSICS

Here we present three natures of proportional reasoning
in introductory physics, describing each and briefly sharing
selected results of research on student facility. (We hope to
share more details of our research findings in future
publications.) In articulating the natures, we draw on prior
work in physics and math education, as well as our own
collective teaching experience. We view these natures as a
foundation on which to build a more complete framework.

The first two natures — verbal interpretation of a ratio and
construction of a ratio from constituent quantities — are
closely related under the overarching construct of unit rate.
The third nature — application of a ratio to determine an
unknown amount — may in some sense represent a higher
order skill, i.e., a mode of reasoning that is supported by the
first two natures. Articulating specific natures helps to
operationalize proportional reasoning ability and can guide
the development of tools for assessing fluency.

These three natures, discussed in detail in sections A.1,
A2 and B below, are broadly consistent with the
proportional reasoning learning targets identified in the
Common Core State Standards for Mathematics [11]. For
example, the standard “Understand the concept of unit rate
a/b associated with the ratio a:b and use rate language in the
context of a ratio relationship” aligns closely with verbal
interpretation of ratios (see A.l1). We do not claim that
students consciously marshal these natures of reasoning
when solving problems, or that the natures stem from
isolated cognitive entities or form a coherent basis for
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modeling cognition. Rather, they are presented as a practical
guide for assessment and the development of instruction.

A. Natures related to unit rate

Verbal interpretation of ratio and the construction of a
ratio constitute complementary natures of proportional
reasoning about unit rate. Indeed, these two reasoning modes
are in some sense inverses of one another. Verbal
interpretation of ratio requires students to “translate” a given
ratio-based quantity into everyday language in order to
express the specific information the quantity provides about
a system or process. For example, if the speed of a certain
uniform motion is known to be 50 mph, a student can
interpret the number 50 to recognize that the object travels
50 mi for each hour of the motion. A general notion of equal
sharing of two quantities (i.e., that equal increments of the
elapsed time correspond to equal increases in the distance
traveled) is here quantified in a specific way through
“translation” of the technical term “per” as “for each.”

Conversely, ratio construction asks students to use two
constituent quantities to construct a mathematical expression
that corresponds to a given verbal description. For example,
if the student is told that a car travels 240 miles in a 6-hr trip,
and is asked to determine how many miles the car travels in
each hour of the motion, she could construct the ratio 240/6.

1. Verbal interpretation of ratio

We regard the verbal interpretation of ratios as a
foundation for proportional reasoning in physics. Such
interpretation involves an internalized conception of the
physical meaning of a ratio quantity, separate from but
complementary to the recall and application of the formal
mathematical definition. For example, an expert not only
knows that the heat capacity C is computed from the ratio
Q/AT, but also conceptualizes C as the heat transfer
associated with a 1-degree temperature change. For an
expert, the verbal interpretation is part of an associative
network of ideas surrounding the ratio quantity, readily
activated along with the formula or other representation.
Furthermore, when confronted with a novel quantity, the
expert looks for a relevant interpretation, actively seeking
physical meaning. While physics experts move fluidly
between  mathematical  definitions and  physical
interpretations, introductory students may instead resort to
memorized patterns of manipulation [12, 13].

Arnold Arons has written extensively on verbal
interpretation of ratios. He notes that even after relevant
instruction, students may be unable to interpret density as the
number of units of mass for each unit of volume, or
acceleration as the change in velocity for each unit of the
elapsed time, and in general may use “per” without
understanding its meaning as “for every” [5]. In a study
involving Nigerian high school students, Akatugba and
Wallace found that students frequently relied on algorithmic
methods they could not explain [14]. Simon and Blume point



out that students presented with a ratio quantity often fail to
recognize it as derived from measurement [15]. For example,
when asked to interpret a road sign “6% grade,” students
explained that truck drivers might assign this number to a hill
in much the same way that a subjective, numerical rating is
assigned to a river rapid by expert kayakers. The students did
not seem to recognize that the grade refers to the number of
feet of change in elevation for each 100 feet of distance along
the road — or even that the numerical value does in fact have
a specific meaning which can (and should) be sought.

We have used a variety of written questions to probe
student ability to interpret ratios in physics contexts. On one
such question, the Porsche question, students are told “On
its website, Porsche states ‘Maximum: 21 mph per second’
in the technical specifications for a particular model” and are
asked to “Describe the information this statement provides
about the car, and explain the meaning of the word ‘per’ in
this situation.” This task has been administered in written
form in introductory calculus-based mechanics courses at
multiple institutions. Many students had difficulty
interpreting “per second” as “in each second.” (We note that
many students struggled to distinguish velocity and
acceleration, but do not discuss such difficulties here.) Some
students recognized that the term per signals a relationship
between two quantities, but did not articulate the essential
aspect of proportion: “The overall per second parameter . .
. is a time interval in which the car completed its task or
whatever is being tested. ‘Per’ specifically relates the car’s
performance to time in this situation.” This response seems
to identify 21 as a change that occurs over time, but not as
the change that occurs in a wunit time. The specific
interpretation of the numerical value, that each second
corresponds to a change in velocity of 21 mph, has not been
explicitly articulated, and may not have been internalized.

We have also administered questions that ask students to
interpret non-standard ratios. For example, the Inverse g
question asks students to interpret the ratio quantity 0.1 s*/m,
used to describe the motion of a falling object. The quantity
0.1 is “non-standard” in that it is not a named quantity, and
appears rarely if ever in physics text books. (Indeed, it is the
inverse of the acceleration ratio featured in the Porsche
question.) Although it does not have a common name, 0.1
can be interpreted as the number of seconds required for each
1 m/s change in the falling object’s velocity. We have posed
this question in informal settings to physics faculty and
graduate students. While they tend to express surprise or
puzzlement initially, they generally arrive at a correct
interpretation, often using units as a guide to their reasoning
(i.e., experts often recognize that 0.1 s*m can be recast as
0.1 s per m/s). In contrast, we have found the Inverse g
question to be very challenging for introductory students,
with only around 10% giving a correct interpretation at the
end of a calculus-based mechanics course. While perhaps not
surprising, this result suggests that the reasoning needed to
interpret an unfamiliar ratio in context may not be readily
accessible for many students.
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2. Construction of ratio

We have administered a variety of tasks to probe the
ability of students to construct a ratio that corresponds to a
given verbal description. These tasks are, in a sense, the
mirror image of the Porsche question presented above.
Consider, for example, the Bobbing block question. This task
involves a block suspended by a spring that bobs up and
down in a repeating motion. Students are told that B bobs
occur in 10 seconds, and are asked to write an expression for
the number of seconds required for a single bob, and to
explain their reasoning. We expected students to produce the
expression 10/B. When given to over 500 students in
multiple sections of general education introductory physics
at WWU, and over 500 additional students in calculus-based
mechanics at Rutgers University, between 45% to 60% of
responses included the correct expression 10/B. Nearly all
remaining responses gave the inverse of this expression (i.e.,
B/10). Thus, while most students recognized that the correct
response involves a ratio (rather than a difference or
product), many seemed to have difficulty constructing the
ratio that matches the given verbal description.

One general education physics student who gave the B/10
response seemed to be answering a question different than
the one asked: “The number of bobs in 10 sec is B, B divided
by 10 would give you bobs per a second.” Rather than the
period, this response is consistent with the frequency of the
periodic motion. Another student explicitly acknowledged
the period as the desired quantity, but still arrived at the
incorrect answer B/10: “To find the time it takes for a bob
we have to divide the number of bobs B by 10 seconds.”

To explore student thinking in more depth, we have used
tasks like the Bobbing block question in individual, think-
aloud interviews. In this setting, which allows for follow up
questions to probe whether difficulties are surface level,
associated with careful reading of text and interpretation of
wording, or deeper level, associated with underlying
reasoning, we have found that some students struggle in a
sustained way to distinguish the expressions B/10 and 10/B,
despite repeated prompts to ensure that the question was
being interpreted as intended. In the interviews, some
students exhibited an intuitive tendency to focus on rates of
change with respect to time, rather than the alternative ratio
construction (i.e., the time required for one repetition).

We have administered a variety of additional tasks that
require students to construct a ratio from given
measurements in order to match a desired interpretation.
Results are similar to those from the Bobbing block question:
many students provide the inverse of the expected ratio.
Questions involving an unfamiliar target ratio (i.e., the
volume of a homogeneous material required to make one
unit of mass) tend to pose greater difficulty than more
familiar ratios (the mass for each unit of volume). Although
more prevalent among general education physics students,
even calculus-based students exhibit difficulties of this type.



B. Application of ratio

A ratio that characterizes a system or process allows
quantitative predictions to be made about cases not yet
observed. For example, the value of electrical resistance
expresses an invariant relationship between changes in the
current and voltage for a linear resistor — in which a quantity
of Ohms is the number of volts needed for each amp of
current. Knowledge of the resistance then allows a prediction
of the current that will result from any applied voltage.

Applying a known ratio in this way involves essentially
the same procedural skill as constructing a ratio: the
equation I = V/R can be used to find the current from a
measured voltage, or can be rearranged to find the resistance,
given measurements of the voltage and current. Here,
however, we treat application and construction of ratio
as separate natures of proportional reasoning. Indeed, the
form of quantitative reasoning that underlies applying a ratio
is distinct from that underlying constructing a ratio. When
dividing two quantities to form a ratio, we can imagine
splitting the numerator quantity into equal-sized pieces, a

rationale referred to as partitive division. When division is
used to apply a ratio, however, one seeks to segment some
total in units of size specified by the ratio, a
conceptualization referred to as quotative division [16].

The application nature of proportional reasoning is
ubiquitous in introductory physics; examples include the use
of density to find mass and the use of velocity to find
displacement. To examine student ability to apply ratios, we
have developed tasks that differ in contextual features, but
can all be solved with quotative reasoning. Two such tasks
are shown in Fig. 1. The Traxolene question (Fig. 1.a)
involves a typical introductory physics context, but a non-
standard ratio (i.e., cm’/g rather g/cm®). The Olive oil
question involves an “everyday context.” When
administered to over 500 students in calculus-based
mechanics at Rutgers University, correct response rates were
comparable: 66% on Traxolene and 61% on Olive oil. These
results suggest that some university physics students have
difficulty applying a known ratio to find an unknown
amount, perhaps particularly if the ratio is unfamiliar.

a. Traxolene question:

a. divide V2.2 b. divide 2.2/V
b. Olive oil question:

a. divide P0.26  b. divide 0.26/P

You are part of a team that has invented a high-tech material called “traxolene.” Each gram of traxolene has a
volume of 2.2 cubic centimeters. For an experiment, you are working with a piece of traxolene that has a
volume of ¥ cubic centimeters. To figure out the mass of this piece of traxolene (in grams), you should:

c. multiply Ve2.2

You go to the farmer’s market to buy olive oil. When you arrive you realize that you have only one

dollar in your pocket. The clerk sells you 0.26 pints of olive oil for one dollar. You plan next week to buy P
pints of olive oil. To figure out how much this will cost (in dollars), you should:

c. multiply Pe0.26

d. none of these

d. none of these

FIG. 1. Questions designed to assess student facility with application of ratio.

V. CONCLUSIONS

During a yearlong introductory physics course, students
encounter many ratio and product quantities. Lack of facility
with ratios may push students toward rote use of formulas,
unable to apply proportional reasoning to guide sense
making. We are developing a set of natures of proportional
reasoning to delineate the specific ways that experts reason
with ratios in introductory physics contexts. This paper
presents three such natures: verbal interpretation of a ratio,
construction of a ratios, and application of a ratio. We
expect these will form the core of a more comprehensive set.

Prior work led to development of a validated framework
for the natures of negativity in introductory physics. This
framework provides a comprehensive road map for the
reasoning sub-domain involving the interpretation of signs
and signed quantities in introductory physics contexts. Such

a map, in turn, serves as a practical guide for the
development of assessment questions that can reliably track
student progress and evaluate the effectiveness of
instruction. We are currently using the framework for the
natures of negativity to help us develop a Physics Inventory
of Quantitative Literacy (PIQL), which includes assessment
questions for student facility with negativity. Our goal is to
develop the PIQL into a valid, reliable, and easy to use
assessment of mathematization in physics more broadly
[17]. A validated framework for proportional reasoning will
contribute to this effort.
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