Toward a valid instrument for measuring physics quantitative literacy

Trevor 1. Smith
Department of Physics & Astronomy and Department of STEAM Education,
Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028

Philip Eaton
School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ 08205, USA

Suzanne White Brahmia, Alexis Olsho, and Charlotte Zimmerman
Department of Physics, University of Washington, Box 351560, Seattle, WA 98195-1560, USA

Andrew Boudreaux
Department of Physics & Astronomy, Western Washington University, 516 High St., Bellingham, WA 98225, USA

We have developed the Physics Inventory of Quantitative Literacy (PIQL) as a tool to measure students’ quan-
titative literacy in the context of introductory physics topics. We present the results from various quantitative
analyses used to establish the validity of both the individual items and the PIQL as a whole. We show how
examining the results from classical test theory analyses, factor analysis, and item response curves informed
decisions regarding the inclusion, removal, or modification of items. We also discuss how the choice to include
multiple-choice/multiple-response items has informed both our choices for analyses and the interpretations of
their results. We are confident that the most recent version of the PIQL is a valid and reliable instrument for
measuring students’ physics quantitative literacy in calculus-based introductory physics courses at our primary
research site. More data are needed to establish its validity for use at other institutions and in other courses.
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I. INTRODUCTION

Physics Quantitative Literacy (PQL) is defined as the in-
terconnected skills, attitudes, and habits of mind that together
support the sophisticated use of elementary mathematics in
the context of physics [1-4]. Developing PQL is a desired
outcome of physics instruction, but valid measures of reason-
ing about quantities and their relationships in physics contexts
are absent from research-based assessment instruments in in-
troductory physics. We have developed the Physics Inven-
tory of Quantitative Literacy (PIQL) to address this need [4].
The PIQL is a reasoning inventory that probes the quantifica-
tion typically used in introductory physics that has a potential
impact analogous to the early concept inventories in physics
education research that catalyzed curriculum development ef-
forts by raising awareness of broad instructional goals that are
not being met [5-7].

In introductory physics, PQL involves using simple math-
ematics in sophisticated ways. Reasoning about ratios and
proportions, covariation, and signed quantities/negativity are
at the heart of quantification in introductory physics [1, 8, 9].
The PIQL was designed based on these three facets of quan-
tification, with many items being drawn from previous re-
search in mathematics and physics education [10-16].

Over the past two years we have engaged in an iterative
process of data collection and analysis, item development,
and test revision to establish the validity of the PIQL for use
in calculus-based introductory physics courses. In the fol-
lowing sections we discuss the methods we used to analyze
the data, how we interpreted the results, and the decisions we
made to improve the PIQL. Our focus is on using a variety of
quantitative measures to gain a holistic view of the PIQL to
optimize our ability to measure student reasoning. We present
the results from each analysis individually, but our decisions
to modify individual items and the PIQL as a whole were
based on the collective results from all of them.

II. INVENTORY DEVELOPMENT AND DATA SOURCES

The prototype version of the PIQL focused primarily on
measuring student reasoning about ratios and proportions
[12-14] and signed quantities/negativity [15-18]. This 18-
item protoPIQL also included two items on covariation taken
(with permission) from the Precalculus Conceptual Assess-
ment (PCA) [10]. Revisions were made to improve the va-
lidity and reliability of the PIQL, reduce redundancies, and
ensure that all three facets of PQL were represented. Later
versions of the PIQL include 20 or 21 items.

Data for this study were collected at the beginning of each
term (before instruction) in three calculus-based introductory
physics courses at a large public research university in the
northwestern US. Previous results have shown that overall
score distributions on the PIQL are not significantly differ-
ent in the three courses [19, 20], and this trend has persisted
throughout all versions of the PIQL; therefore, we have com-
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bined all data collected in each term for this study. Due to
our iterative revisions, the items on the PIQL in each of the
six data sets are slightly different; we label the data sets by
their version of the PIQL: protoPIQL, v1.0, v1.1, v2.0, v2.1,
and v2.2. Data were collected from approximately 1000 stu-
dents for each version.

III. QUANTITATIVE VALIDATION USING CLASSICAL

TEST THEORY

We used various quantitative analyses to measure the va-
lidity and reliability of each version of the PIQL. Using Clas-
sical Test Theory (CTT) we calculated the difficulty and dis-
crimination parameters for each item; we want to have a wide
range of difficulty values with most items between 0.2 and
0.8 (representing the fraction of students who answer each
item correctly), and we want most discrimination values to
be above 0.3 (representing the difference in CTT difficulty
between the top and bottom 27% of students) [21]. We also
calculated Cronbach’s o as a measure of reliability: a value of
at least 0.7 indicates that the test is reliable for measuring the
performance of groups of students on a single-construct test,
and a value of at least 0.8 indicates that the test is reliable for
measuring the performance of individual students [22].

Figure 1 shows the distributions of the CTT difficulty and
discrimination parameters for each version of the PIQL. Five
of the items in the protoPIQL were considered too easy (dif-
ficulty above 0.8), and three items had discrimination values
below 0.3; moreover, there was a gap in the middle of the
difficulty distribution with only one item having a difficulty
in the range between 0.3 and 0.55. Due to these results, we
chose to use only 10 of these items in subsequent versions of
the PIQL, with two of them being periodically modified. For
PIQL v1.0, 10 items were added based on previous research
on all three of our PQL facets [10, 12—-18], which resulted in
a much broader distribution of CTT difficulty values. One ad-
ditional proportional reasoning item was added to PIQL v1.1;
for PIQL v2.0 two covariation items were replaced by newly
developed items based on research in mathematics education
[23-25]; two items were slightly modified for v2.1; one item
was removed for PIQL v2.2 due to consistently high difficulty
and low discrimintation parameters.

Taken together, these revisions have resulted in a 20-item
instrument with a broad range of difficulty values (only one of
which is above the desired upper limit of 0.8), and all items
having discrimination values above 0.3. Six of the 20 have
large discrimination (above 0.6), meaning that high-scoring
students are much more likely to answer these questions cor-
rectly than low-scoring students. Additionally, Cronbach’s o
has also increased: o = 0.67 on the protoPIQL, which does
not meet the threshold for measuring either groups of stu-
dents or individuals; however, o = 0.80 on PIQL v2.2, which
meets both thresholds. The distribution of difficulty values
for PIQL v2.2 is a little higher than we think would be ideal
(average of 0.54), but we have chosen to keep some of the eas-
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FIG. 1. CTT difficulty (a) and discrimination (b) parameter distributions for all versions of the PIQL. The desired range of difficulty values is
between 0.2 and 0.8 (shown by dashed red lines). The desired range for discrimination is above 0.3.

ier items because we recognize that the students in our data
set may have had more prior exposure to mathematics and
physics instruction than is typical of the introductory physics
student population [26]. We consider the changes in parame-
ter values to indicate that we have created a valid and reliable
inventory for measuring PQL for students in calculus-based
introductory physics courses.

IV. ANALYZING DATA FROM MULTIPLE-CHOICE/
MULTIPLE-RESPONSE ITEMS

We consider PQL to be a conceptual blend between physics
concepts and mathematical reasoning [27, 28]. In order to
measure the complexity of ideas that students bring from
both of these input spaces, we have chosen to include some
multiple-choice/multiple-response (MCMR) items in which
students are instructed to “select all statements that must be
true” from a given list, and to “choose all that apply” (em-
phasis in the original text). The MCMR item format has the
potential to reveal more information about students’ think-
ing than standard single-response items, but it also introduces
challenges with data analysis, as typical analyses of multiple-
choice tests (such as CTT) assume single-response items.

For MCMR items, dichotomous scoring methods require a
student to choose all correct responses and only correct re-
sponses to be considered correct. For example, item 18 on
PIQL v2.2 has two correct answer choices: D and G. In a di-
chotomous scoring scheme a student who picks only answer
D would be scored the same way as a student who chooses an-
swers E and F (incorrect). This ignores the nuance and com-
plexity of students’ response patterns within (and between)
items. As such, the CTT results for these items are not en-
tirely representative of students’ responses.

In an effort to move beyond the constraints of dichotomous
scoring for MCMR items, we have developed a four-level
scoring scale in which we categorize students’ responses as
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Completely Correct, Some Correct (if at least one but not
all correct response choices are chosen), Both Correct and
Incorrect (if at least one correct and one incorrect response
choices are chosen), and Completely Incorrect [19, 20]. Fig-
ure 2 shows the results of using this four-level scoring scale
to categorize student responses to the six MCMR items on
PIQL v2.2. The dark purple Completely Correct bars are
equivalent to CTT difficulty; however, Fig. 2 also shows us
that at least 60% of students provide at least one correct re-
sponse to each item (Completely Correct, Some Correct, and
Both Correct and Incorrect combined), although this is of-
ten coupled with an incorrect response (6%—44% of students
categorized as Both Correct and Incorrect). This tells a very
different story than the CTT results, which group the Some
Correct, Both, and Completely Incorrect categories together
into a broad Incorrect category.

These four-level scoring results also reveal differences hid-
den by dichotomous scoring. For example, on PIQL v2.2
two items (Q17 and Q18) have more than one correct answer
choice. Figure 2 shows that approximately the same number
of students answers these items completely correctly, but Q17
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FIG. 2. Fraction of student responses in each category of our four-
level scoring scheme for MCMR items. These results are from the
final version of the PIQL (v2.2).
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FIG. 3. Item Response Curves for three items on PIQL v2.2. Each plot shows the fraction of students who chose each response out of the
students who earned each score on the total test. Item 14 has correct answer B, item 17 has correct answers A, C, and D, and item 18 has

correct answers D and G.

has a much higher fraction of students in the Some Correct
category. Students are much more likely to include one of the
incorrect responses to Q18 than they are for Q17. The items
with multiple correct answers also present a new question: is
it better for a student to choose Some Correct answers or Both
Correct and Incorrect answers? The answer may depend on
the specifics of each item and the associated answer choices.
Future work will include analyzing data from MCMR items
to develop a more sophisticated scoring scheme.

To further examine the responses students give to individ-
ual PIQL items we use Item Response Curves (IRCs), which
show the fraction of students who choose each answer choice
as a function of the students’ overall score on the PIQL [29—
32]. IRCs have been used with single-response tests to rank
incorrect responses and to compare different student popula-
tions with regard to both correct and incorrect answer choices
[31, 32]. We find IRCs particularly helpful for examining stu-
dent responses to items with multiple correct answers.

Figure 3 shows three IRCs with different behavior. Item 14
is a single-response item with correct answer B. Even fairly
high-scoring students persist in choosing a particular incor-
rect answer F. Item 17 has three correct responses (A, C,
D), with A being the most commonly chosen, and C being
the least commonly chosen. Few students at any score level
choose E, and fewer than 20% of students who score above
average (10.8) choose either incorrect response (B, E). Item
18 is particularly interesting in that all responses are chosen
by 20%-60% of students in the middle score range (8-12).
This supports the results from Fig. 2 that students are likely
to choose both a correct and an incorrect response to Q18.

Both the four-level scoring scheme and the IRCs provide
more information than traditional CTT analyses and allow us
to see patterns in students’ responses that go beyond typical
dichotomous scoring methods. We have used these to gain
a deeper qualitative picture of student performance on each
PIQL item, and these have been very valuable for deciding
which items to keep, eliminate, or modify.
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V. EXPLORING THE SUBSTRUCTURE OF THE PIQL

The PIQL was initially developed to probe student reason-
ing about three facets of PQL: ratios and proportions, covaria-
tion, and signed quantities/negativity. In the language of fac-
tor analysis, this would imply that the PIQL was originally
intended to have a three-factor structure. Since the intended
factor structure of the PIQL was well understood at the begin-
ning of its development, confirmatory factor analysis (CFA)
was used at the onset, in conjunction with exploratory fac-
tor analysis (EFA). CFA is a model-driven statistical method
whose goal is to identify the adequacy of a proposed factor
model to response data from the instrument being analyzed
[33]. EFA is a data-driven statistical method whose goal is to
uncover the underlying dependencies between observed vari-
ables [34]. For all versions of the PIQL, CFA determined that
the proposed (facet-driven) factor model was not an adequate
representation of the PIQL’s latent trait structure [35]. The
target threshold for CFA is to have goodness-of-fit statistics
such as the Confirmatory Fit Index (CFI) and Tucker-Lewis
Fit Index (TLI) above a threshold of 0.9 [36]. For all versions
of the PIQL the CFI and TLI were below 0.8 when using the
facet-driven factor model.

Given that the CFA results do not fit with the proposed
model, we moved on to a more in-depth investigation using
EFA. The goal of using EFA was to determine if the PIQL
has any substructure, and how closely any substructure aligns
with the three facets of PQL. The results from parallel analy-
sis suggested that 3—4 meaningful factors could be extracted
for the earlier versions of the PIQL (protoPIQL, v1.0, and
v1.1) [37]; however, when examining these structures, they
were found to be inconsistent with the originally intended fac-
tors, based on the three facets of PQL [35]. During this initial
development of the PIQL, EFA models of versions v1.0 and
v1.1 each contained a factor that only contained the same two
items. These two items were found to have item loadings
on the same factor of above 0.8, compared to the next highest



loading value of approximately 0.5. These items’ loadings re-
mained essentially the same when they appeared sequentially
on v1.0 and when they were separated and placed onto dif-
ferent pages of the instrument in v1.1. This suggested these
items were redundant, which lead to the removal of one of the
items from the PIQL in future iterations.

Analyses of the most recent versions of the PIQL (v2.0,
v2.1, and v2.2) suggest the instrument is now unidimensional,
with no strong substructure amongst the items. Results from
EFA parallel analysis suggested that these versions of the
PIQL could be adequately described by a single factor. Ad-
ditional evidence to support this conclusion was obtained by
performing CFA on v2.1 and v2.2 of the PIQL using a unidi-
mensional model, with measures of goodness-of-fit suggest-
ing that the unidimensional model adequately fit the student
response data. Specifically, the CFI and TLI were above 0.93
for both versions under CFA using a unidimensional model.
Additionally, the standardized root mean square of the resid-
uals was below 0.04, and the root mean square of the error
of approximation was below 0.04. A model is considered to
be an adequate representation of the data if these fit statistics
are below 0.06 and 0.08, respectively. Thus, these fit statistics
indicate a good fit between the data and the unidimensional
model [36]. This suggests that removing one of the redundant
items identified in v1.0 and v1.1, resulted in the collapse of
the PIQL’s multiple factor structure into one that is unidimen-
sional. This may also have been affected by replacing two of
the covariation items from v1.1.

A major confounding feature of these results is that the fac-
tor loadings were determined based on dichotomously scored
items. As shown in Fig. 2, up to 70% of students who choose
correct responses to MCMR items may be scored as incorrect
because either they didn’t choose all of the correct responses
or they also chose an incorrect response. As such, the fac-
tor loadings may not accurately capture the relationships be-
tween students’ responses for cases involving MCMR items.

To preserve the nuance and complexity of students’ re-
sponse patterns within (and between) items we used mod-
ule analysis for multiple-choice responses to examine the net-
work of student responses to PIQL items [38]. Module analy-
sis uses community detection algorithms to identify modules
(a.k.a. communities, etc.) within networks of responses to
multiple-choice items. We chose to analyze a network of only
correct responses to PIQL items. The benefit of this method is
that we can examine the patterns that arise from students’ se-
lections of each individual correct response, which preserves
some of the complexity of MCMR items.

Earlier module analyses of v1.0 and vl.1 using various
community detection algorithms on full data sets suggested
that there was some substructure in the PIQL. Again, these
results did not agree with the three facets that the PIQL was
intended to measure and also did not align well with the re-
sults of EFA [35, 39]. Recent developments in the application
of module analysis within PER have enabled a deeper and
more refined analysis of the module structure of the PIQL
[40]. Using Modified Module Analysis (MMA) on the final
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two versions of the PIQL, with a locally adaptive network
sparsification (LANS) in place of a global cutoff sparsifica-
tion, resulted in no discernible substructure between the items
on the instrument [40, 41]. This corroborates the conclusions
of EFA and CFA that the PIQL is not measuring multiple con-
structions and is thus a unidimensional instrument.

VI. CONCLUSIONS

Our goal is to develop a valid and reliable instrument
to measure PQL for students in calculus-based introductory
physics courses. Results from classical test theory show that
after several revisions the items on the PIQL have a broad
range of difficulty values, and all items have acceptable levels
of discrimination. The reliability of the PIQL has been estab-
lished, with Cronbach’s o = 0.80, which meets the typically
accepted criterion for measuring both properties of groups
and properties of individuals.

Results from exploratory and confirmatory factor analysis
and modified module analysis show that the PIQL is a uni-
dimensional instrument that measures a single construct. We
interpret this construct as being Physics Quantitative Literacy.
These results show that student responses to PIQL items do
not separate cleanly along the lines of ratios and proportions,
covariation, and signed quantities/negativity, suggesting that
these three facets of PQL (which are discernible to experts)
may develop simultaneously in students.

We have supplemented rigorous psychometric analyses
with four-level scoring methods for MCMR items and IRCs,
which provide additional information about students’ choices
of both correct and incorrect responses. These analyses
played a vital role in informing our decisions when revising
the PIQL. Future work will include developing more sophis-
ticated analyses that can include the nuance of MCMR data
into CTT-style analyses.

Additional manuscripts will detail the work we have done
to qualitatively validate both individual PIQL items and the
inventory as a whole using interviews of both students and
experts. As a result of all our analyses, we are comfortable
asserting that the PIQL is a valid and reliable instrument for
use in calculus-based introductory physics courses at our pri-
mary research site. Our next steps will include establishing
its validity in broader contexts by collecting data from stu-
dents in calculus-based introductory courses at other institu-
tions, as well as from students in algebra-based and concep-
tual physics courses, in order to increase the potential of the
PIQL to catalyze meaningful curriculum development efforts.
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