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Abstract—The significant volume, variety, and velocity of
data received from the many Industrial Internet of Things (IIoT)
devices and other systems in a cloud-based or fog-based environ-
ment can complicate an organization’s effort in ensuring high
quality of experience for data users (DUs). For example, how do
we efficiently and fairly allocate resources among cloud centers
(CCs), fog service providers (FSPs), and DUs? This is particu-
larly crucial for the IIoT environment, such as those in critical
infrastructure sectors, such as energy and dams. Therefore, in
this article, we propose an optimal resource allocation scheme
for a fog-based IIoT environment. Specifically, we introduce fog
nodes (or FSPs) that compete with each other to provide services
for the DUs using resources from the CC. To maximize resource
utilization, we model the resource allocation problem as a double-
stage Stackelberg game and propose three algorithms to achieve
Nash equilibrium and Stackelberg equilibrium. Then, we evalu-
ate the performance of our proposed scheme with and without
having FSPs, as well as with another competing scheme. The find-
ings demonstrate the importance of fog computing in resource
allocation, and the performance of our scheme outperforms that
of the other scheme.

Index Terms—Fog computing, industrial wireless sensors,
resource allocation, Stackelberg game.

I. INTRODUCTION

INTERNET of Things (IoT) [1] can be found in both
commercial and industrial settings [and the latter is also

referred to Industrial IoT (IIoT)]. A typical IIoT setting, such
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as in energy and dams sectors, comprises a (large) number of
wireless sensors and computing devices (will be collectively
referred to as IIoT devices) tasked with sensing of environmen-
tal and/or other relevant data [2]. Such data are then uploaded
to the cloud center (CC) for processing. However, such a pro-
cess can be inefficient due to bandwidth limitations (e.g.,
due to competing demand for bandwidth [3], [4]) and conse-
quently, results in latency. The latter can be a limiting factor
in critical infrastructure or time-sensitive applications.

Hence, there has been a shift toward fog computing [5], [6]
by processing the data closer to its source. Such a move
allows one to achieve faster service delivery and consequently
better quality-of-experience (QoE) and improved user ser-
vice. In addition to achieving reduced latency and higher
energy efficiency [7], [8], we can also achieve better user
privacy [9]–[11]. However, to deploy fog computing in an
IIoT environment is not without challenges. For example,
the significant volume, variety, velocity of data, and het-
erogeneity of processing resources complicate the task of
efficient resource utilization [12]–[14]. Hence, there has been
significant interest from the research community to design
approaches for resource allocation in a fog-cloud architec-
ture [14]–[22]. In other words, fog computing complements
existing cloud computing infrastructure by addressing limita-
tions, such as latency and bandwidth.

In addition to the existing approaches, we posit the potential
of using game theory to optimize the resource allocation in
a fog-cloud architecture, for example, by jointly considering
both QoE and the costs of data users (DUs), the utilization of
resources associated with the CC, and the diversity of resource.
This is the approach we take in this article. Specifically, we
use the Stackelberg game [23] to propose an optimal resource
allocation scheme between the CC and DUs by introducing fog
service providers (FSPs). This allows DUs to minimize their
costs but achieving higher QoE, and the CC to maximize their
resource utilization.

We will now briefly introduce the Stackelberg game [23].
This is the study of conflict and cooperation between intel-
ligent rational decision makers (players), and the players are
the leader and the follower. Particularly, the follower chooses
the best response based on the strategy executed by the leader.
The combination of the optimal strategy for the leader and
the follower’s best response forms a Stackelberg equilibrium.
Here, a double-stage Stackelberg game is used to model
the interactions among CC, FSPs, and DUs. For the FSPs,
we model their competition as a noncooperative game. Each
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player has an objective to participate in the scheme, such as
minimizing costs and satisfying DUs’ QoE, maximizing the
profits for FSPs, and improving the utilization of resources
while guaranteeing profit maximization for the CC. We also
propose three algorithms to find the Nash equilibrium among
all FSPs and the Stackelberg equilibrium among all players.
The main contributions of this article can be summarized as
follows.

1) The design of a novel resource allocation scheme among
the CC, FSPs, and DUs. A double-stage Stackelberg
game is then applied to model the interactions among
these three parties.

2) A Stackelberg equilibrium of these three parties and the
Nash equilibrium among all FSPs can be obtained using
our three proposed algorithms.

The remainder of this article is organized as follows. In
the next two sections, we introduce some related work and
the architecture of our scheme, respectively. Then, we present
our proposed approach in Section IV, and the optimal strategy
by calculating the Stackelberg equilibrium and Nash equilib-
rium in Section V. Section VI presents our evaluation findings.
Finally, we conclude this article in Section VII.

II. RELATED WORK

Chiang and Zhang [14] summarized the opportunities and
challenges of fog computing and the networking context of
IoT. One of these challenges is resource allocation [14], [15],
as decisions on how to efficiently allocate computing resources
rely on many factors.

Agarwal et al. [16] presented an efficient architecture and
algorithm for resource provisioning in the fog environment
by using virtualization. Gupta et al. [17] proposed iFogSim
to simulate the IoT and fog environment, which can then
be used to quantify the impact on latency, network conges-
tion, energy consumption, and costs associated with resource
management. Modeling fog-cloud architecture as an integer
optimization problem, Souza et al. [18] presented a quality-
of-service (QoS)-aware service allocation problem. Offloading
a mobile device’s tasks to nearby cloudlets, which consist
of clusters of computers, is another approach that has been
used to reduce the completion time of an application [19].
Liu et al. [20] studied the energy consumption, execution
delay, and costs incurred by the offloading processes in a fog
computing system and applied queuing theory to resolve
a multiobjective optimization problem. This includes minimiz-
ing the energy consumption, execution delay, and payment cost
by finding the optimal offloading probability and transmitting
power for each mobile device.

As an effective mathematical tool to study the conflict and
cooperation between intelligent rational decision makers (play-
ers), game theory obtains increasingly widely research [28].
We observe that a number of approaches use game theory
to build a resource allocation scheme in cloud computing
and to optimize the results by calculating the game equi-
librium. However, surprisingly the use of game theory in
a fog environment is less explored. Jie et al. [21] investigated
the interactions between a fog agent and users to enhance
real-time resource utilization and service quality. Specifically,

Fig. 1. System architecture among CC, FSPs, and DUs scenarios.

the interactions are modeled as a repeated Stackelberg game.
Zhang et al. [22] proposed a joint optimization framework to
achieve optimal resource allocation in fog computing based on
the Stackelberg game. Although game theory has been applied
to research resource allocation for fog computing, satisfying
the QoE, minimizing the cost requested by DUs, meeting other
potential demands for resources with respect to the CC, and
competitions among FSPs are usually neglected. This is the
gap we seek to address in this article.

There have been other fog-related research efforts. In [24],
for example, BodyEdge was proposed to reduce transmit-
ted data and processing time. The key components of
BodyEdge include a mobile client module and an edge gate-
way. Duan et al. [25] proposed using hybrid industrial wireless
networks to address task scheduling by designing a task
assignment method and a collaborative routing algorithm.
Luo et al. [26], [27] focused on a smart factory environment
and integrated wired/wireless fieldbus networks and wireless
sensor networks to increase data delivery efficiency and reduce
energy usage.

III. PROPOSED ARCHITECTURE

In this section, we introduce the proposed resource alloca-
tion scheme architecture, as shown in Fig. 1. The architecture
consists of three parties, namely, CC, FSPs, and DUs. The CC
possesses m types of resources that are used to meet a variety
of demands. It determines the number of resources allocated
to the FSPs, depending on the bids, to request resources from
them. FSPs comprise n individuals, and each individual uti-
lizes resources purchased from the CC to provide paid services
for other relevant DUs. Considering that the estimation of
QoE [29] among similar data is approximated, we assume that
any type of DU is a group of users whose data are similar. Each
DU type will select one or more FSPs to process the data. To
guarantee both efficiency and speed in the scheme, we assume
that the relationship of resources and DUs is a one-to-one
match. Hence, both the numbers of DU types and resources
are equal.

Generally, we can gauge the demand for various resources
based on historical/archival data (e.g., sales data). There are
also instances where current demand for a service may deviate
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from past demands, and this is also considered in the design
of our scheme. Also, in our scheme, we consider the sce-
nario where noncooperating FSPs compete for resources from
a given CC, and we assume that the CC is a rational player
seeking to improve the utilization of its resources.

A. Cloud Center

Given a finite amount for each resource type, the CC needs
to consider factors, such as the cost to maintain resources and
the amount of reserved resources required to handle data for
its potential users. Here, we assume that the set of resource
types is denoted as Mr = {1, 2, . . . , m}, i.e., the number of
resource types is m, and the total amount of resource i is Bi,
where i ∈ Mr. Thus, the CC’s strategy is the amount of all
types of resources provided to FSPs b = {b1, b2, . . . , bm},
where bi = ∑n

j=1 bij ∈ [0, Bi], and bij denotes the amount
of resources i allocated to FSP j from the CC. Meanwhile, to
mitigate the potential conspiracy of FSPs, for example, in forc-
ing prices down, the CC can also provide services (resources)
for some potential users. Specifically, the revenue for one
unit of resource from potential users will influence the CC’s
strategy, and the amount of resources i allocated to poten-
tial users from the CC is Bi − bi. Since the CC provides
a range of resources, scalability is crucial to its operation. In
this scheme, B = {B1, B2, . . . , Bm} denotes the total amount
of various resources, and the individual resource does not
have any influence and restriction over other resources. Here,
we can unilaterally decide the amount of any resource type
Bi, i ∈ Mr based on the actual demand. This is to avoid
resource wastage or having insufficient resources (i.e., ensure
the scheme’s scalability).

B. Fog Service Providers

We model the role of FSP as an individual who has a set
of fog nodes that are placed close to the IIoT devices. We
assume the existence of noncooperating FSPs, competing to
buy resources from the CC in order to provide paid services
to DUs. Here, we denote N = {1, 2, . . . , n} as the set of FSPs,
i.e., there exist n different FSPs in our scheme. The strategy is
two-tuple, which can be formulated as (fj, pj), where for any
FSP j ∈ N, fj = {fj1, fj2, . . . , fjm} denotes the bid for one unit
to request resources from the CC, and pj = {pj1, pj2, . . . , pjm}
denotes the prices for one unit to charge DUs.

C. Data Users

The DUs rely on remote computing resources to process
data, and these DUs want to minimize the cost of data process-
ing without having unacceptance delay in getting access to the
processed data. Thus, the objective of DUs is to minimize the
cost and obtain an acceptable QoE. Here, Mu = {1, 2, . . . , m}
denotes the set of DUs types. Ti is the total data belonging to
DU i that should be delivered to one or more FSPs and is for-
mulated as ti = {ti1, ti2, . . . , tin}, where Ti = ∑n

j=1 tij, i ∈ Mu

and tij indicates the amount of data delivered to FSP j
from DU i.

D. Quality-of-Experience

QoE is used to quantify the user’s experience, which takes
into account that the delay at the FSPs should not exceed

the DUs’ acceptable threshold, mathematically expressed as
follows:

g(pji) = 1 − e
ωij

( pji
pi th

−1
)
. (1)

In (1), g(pji) denotes the tolerance function of DU i with FSP j.
ωij can be defined as the trust preference of DU i for FSP j
based on past ratings of FSP j’s services. Such ratings are
from DUs who had prior interactions with FSP j [30], [31].
pith represents the threshold value for one unit of DU i and
follows a linear function of distance li from DU i to the service
providers and the amount of DU i’s data Ti that should be
processed, i.e., pith = θ · liTi, where θ is scalar.

In comparison to the distance from DU i to the CC, the dis-
tances between DU i and all FSPs are relatively small, which
can be considered to be equal. Furthermore, the threshold
value with respect to fog nodes is relatively smaller (in com-
parison to the cloud), and the threshold value with respect to
less data is also smaller than that with respect to more data.
Here, higher trust preference and larger threshold value will
result in larger tolerance. Inversely, the tolerance g(pji) will
reduce the growth of price pji charged by FSP j. To guarantee
better service delay limited by lower tolerance and minimize
the total cost of DU i, less data will be delivered to FSP j (see
also Section IV). On the other hand, (1) also can be used to
measure the service delay directly provided by the CC in the
nonfog environment. As discussed above, the threshold pith is
quantified by distance li from DU i to the service providers.
Then, we can adjust the value of li to study the service delay
in a nonfog environment.

To further explain (1), the findings using pths and ωs are
shown in Fig. 2. The value of the function decreases quickly
as the price to DU increases. Clearly, a DU with a larger pth

and higher ω indicates that the DU has a higher acceptable
threshold. Also, given pith and the price charged, if ωij > ωij′ ,
i.e., the preference of DU i to FSP j is higher than j′, then
g(pji) > g(pj′i), i.e., the acceptable threshold of DU i with
FSP j is higher than j′. On the other hand, for any FSP j,
given ωij > ωi′j and price charged, if pith > pi′ th, i.e., the
acceptable threshold of DU i is larger than that of DU i′, then
g(pji) > g(pji′), i.e., DU i is more tolerant of FSP j compared
with DU i′.

IV. PROPOSED SCHEME

In this section, we describe our proposed resource allocation
scheme based on the Stackelberg game.

A. Scheme

As previously discussed, we introduce FSPs to the setup;
hence, resulting in three parties in our resource allocation
scheme. Clearly, the parties’ selections can be affected by
each other. For example, a lower bid from the FSPs may
lead to fewer resources offered by the CC. Similarly, a higher
price charged by the FSPs may result in less data from DUs.
A summary of notation used is presented in Table I.

The scheme uses a double-stage Stackelberg game to
derive the optimal result by calculating the equilibrium. For
simplicity, we select one FSP, one resource type, and the
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Fig. 2. Tolerance with different threshold values.

corresponding DU type to explain the flow of our scheme in
Fig. 3. We assume that all players in this game are ratio-
nal and their objective is to maximize their utility. In the
framework used, with trading between the CC and FSPs and
between FSPS and DUs, it is challenging to achieve maximum
utility for all of them simultaneously. We need to consider
a sequential decision-making process.

In the first stage, the CC will determine the amount of avail-
able resource i and the cost for one unit to maintain resource i,
denoted as Bi and ci, including ci1 used for potential users and
ci2 used for FSPs, respectively, to FSP j. Based on the situation
of DU i, as the leader in the Stackelberg game, FSP j decides
upon the bid for one unit to request resource i from the CC,
denoted as fji. Note that competition exists among all FSPs.
Hence, we propose Algorithm 4 based on the proportional
share allocation mechanism [32] to calculate the optimal bid
strategy. Then, given the bids of all FSPs, including FSP j,
the demand di, and the revenue ri from potential users, as
the follower in the Stackelberg game, the CC determines the
amount of resource i allocated to FSP j, denoted as bij. This
is calculated with a convex optimization problem.

In the second stage, DU i will determine the threshold value
for one unit and the total amount of data to be processed,
denoted as pith and Ti, respectively, to FSP j. As the leader
in the Stackelberg game, FSP j gives the price for one unit
to charge DU i for providing services. To resolve the com-
petition among all FSPs, we propose Algorithm 3 based on
the subgradient method [33], [34] to obtain the Nash equilib-
rium. Then, given the price for one unit of FSP j and that of

TABLE I
SUMMARY OF NOTATIONS

Fig. 3. Double-stage Stackelberg game for CC, FSP j, and DU i.

the other FSPs, as the follower in the Stackelberg game, DU
i determines the optimal data allocation, which is computed
using Algorithm 1.

B. Models

We will now present the models of the CC, FSPs, and DUs,
respectively.

1) CC: As the owner of resources, the CC wants to
maximize the utility, which includes gaining revenue from sell-
ing of resources to FSPs and providing services to users. We
can formulate the utility as follows:

U(b) = uou(b) + ucu(b) (2)
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where

uou(b) =
m∑

i=1

(ri − ci1)

(
Bi − bi + ρi ln

Bi − bi

di

)
(3)

ucu(b) =
m∑

i=1

n∑
j=1

bij(fji − ci2). (4)

Here, uou(b) denotes the revenue of providing services to its
users, and ucu(b) is the revenue from FSPs. For uou(b), we
need to consider the satisfaction of the remaining resources
that are providing services, denoted as ρi ln (Bi − bi)/di, where
di represents the ideal demand for resource i from its poten-
tial users, and Bi − bi is the actual remaining resource i. The
satisfaction function is defined to characterize the quantitative
difference between the ideal demand and actual provision. ρi is
the importance of the services’ satisfaction on resource i. ri is
the revenue for one unit of resource i from users. ci is the cost
for one unit of resource i. As users directly communicate with
the CC without involving the FSPs, the corresponding cost ci1
is larger than the cost ci2 used for FSPs. ucu(b) is equal to the
sum of revenue associated with all resources from all FSPs,
where the revenue of resource i from FSP j is the product
of the amount of resource bij and the net profit for one unit
fji − ci2. Thus, the optimization problem for the CC can be
formulated as

max
b

U(b) (5)

s.t. bi ∈ [0, Bi], i = 1, 2, . . . , m. (6)

2) FSPs: By purchasing resources from the CC, each FSP
provides paid services for one or more DUs. Thus, the objec-
tive is to maximize the utility that equates the total revenue
obtained from DUs, excluding the cost of buying the resources.
The utility of FSP j can be formulated as

Uj(fj, pj) = Rj(pj) − Cj(fj) (7)

where

Rj(pj) =
m∑

i=1

tijpji (8)

Cj(fj) =
m∑

i=1

bijfji =
m∑

i=1

bi
fji

Fi−j + fji
fji. (9)

Here, Rj(pj) denotes the total revenue from DUs and equals
the sum of revenue from all DUs, where the revenue of each
DU is the product of the amount of data delivered to FSP j
and the price for one unit paid by the DU. Cj(fj) is the cost
paid to the CC. We apply the proportional share allocation
mechanism, in which each FSP submits bids for the various
resources and gets a fraction that is proportional to the FSP
bid and inversely proportional to the sum of all other FSP
bids for the same resource. Stated more formally, the total
bids of resource i equals Fi = ∑n

j=1 fji, and FSP j receives
a fraction qji = fji/Fi of resource i. Fi−j denotes the total
bids provided by all FSPs except for FSP j for resource i.
bifji/(Fi−j + fji) is the amount of resource i allocated to FSP

j denoted as bij. Therefore, the optimization problem for FSP
j can be formulated as

max
fj,pj

Uj(fj, pj) (10)

s.t. fji < pji, i = 1, 2, . . . , m (11)

tij < bij = bi
fji

Fi−j + fji
, i = 1, 2, . . . , m (12)

m∑
i=1

fji ≤ Lj. (13)

These constraints are practical considerations. The price must
be higher than the bid restricted by (11). The constraint
in (12) guarantees that FSPs have sufficient resources to pro-
vide services for DUs, and the constraint in (13) indicates that
the total bids for buying resources cannot be more than the
budget Lj.

3) DUs: As the owner of data, each DU needs one or more
FSPs to process the relevant data on a paid basis. Thus, the
objective of each DU is to minimize the cost paid to FSPs,
which can be defined as

Ui(ti) =
n∑

j=1

tijpji. (14)

Although minimizing cost is our objective, QoE should not
be ignored. Hence, the optimization problem for DU i can be
formulated as

max
ti

−Ui(ti) (15)

s.t. 0 <
C

bij − tij
≤ g(pji), j = 1, 2, . . . , n (16)

n∑
j=1

tij = Ti (17)

tij ≥ 0, j = 1, 2, . . . , n (18)

tij
(
pji − pith

) ≤ 0, j = 1, 2, . . . , n. (19)

Note that g(pji) is formulated by (1). The constraint in (16) is
the tradeoff between cost and service delay. Particularly, based
on the price charged by FSP j, the value of tolerance function
g(pji) can be obtained, which can be regarded as the constraint
of service delay provided by FSP j, i.e., the service delay
C/(bij − tij) cannot surpass the tolerance g(pji). The function
of such constraint is to avoid unilateral minimizing cost at
expense of service delay. Then, DU i will decide the amount
of data tij based on the constraint in (16) and the values of bij

and g(pji). Here, the service delay is reflected by the inverse of
difference between bij and tij, i.e., C/(bij − tij), where param-
eter C is scalar. A larger difference between the amount of
service bij and that of arrival tij will result in reduced delay.
The principle of the constraint in (16) is that higher quality
services will be constrained by lower tolerance g(pji) gener-
ated by higher price pji. Then, DU i will deliver less data to
FSP j to decrease cost as well as guarantee the service delay.
The constraints in (17) and (18) imply that the data of DU i
can be delivered to one or more FSPs until all data are com-
plete. The constraint in (19) guarantees that DU i may deliver
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Algorithm 1 DU i’s Best Response Algorithm
Input: Threshold value of price pith; Total data Ti;

Step value �pith
Output: Best data distribution t∗i = (t∗i1, t∗i2, . . . , t∗in)

1 ti ←DATA DISTRIBUTION
2 while

∑n
j=1 tij < Ti do

3 pith ← pith + �pith and repeat step 1 until
∑n

j=1 tij = Ti
4 return t∗i = (t∗i1, t∗i2, . . . , t∗in)

5 end while

Algorithm 2 Data Distribution
Input: Amount of resources bi1, bi2, . . . , bin;

Prices to charge p1i, p2i, . . . , pni;
Threshold value of price pith; Total data Ti;
Preference ωi1, ωi2, . . . , ωin

Output: Data allocation ti
1 Initialization T

′
i = 0;

2 for j = 1, 2, . . . , n do
3 if pji ≥ pith then tij = 0
4 else
5 Arrangement pji in increasing order, where

p1i ≤ p2i ≤ . . . ≤ pki, and k ≤ n
6 end if
7 end for
8 for j = 1, 2, . . . , k do

9 if bij ≤ C

/
[1 − e

ωij(
pji
pith

−1)
] then tij = 0

10 else

11 if T
′
i + bij − C

/
[1 − e

ωij(
pji
pi th

−1)
] ≤ Ti then

tij = bij − C

/
[1 − e

ωij(
pji
pith

−1)
], T

′
i ← T

′
i + tij

12 else
13 tij = Ti − T

′
i

14 end if
15 end if
16 end for

data to the FSPs, whose charged prices are lower than the
threshold value of DU i. Otherwise, no data will be delivered.

V. EQUILIBRIUM ANALYSIS FOR RESOURCE ALLOCATION

In this section, we compute the Stackelberg equilibrium
of the three parties (i.e., CC, FSP, and DU) and the Nash
equilibrium among all FSPs. Particularly, for the double-stage
Stackelberg game, we use the backward induction method
to analyze this game, as it can reflect the sequential depen-
dence of decisions decided by all parties and is an effective
approach to calculate the Stackelberg equilibrium. Note that
the proofs for the lemmas in this section can be found in the
Appendices.

A. Data Delivered by DUs in Stage II

Different types of data can be processed by different
resources; hence, there is no competition among these DUs.
Based on (15)–(19), Algorithm 1 is used to calculate the best
strategy t∗i = (t∗i1, t∗i2, . . . , t∗in) of DU i, for any i ∈ Mu.

To minimize the cost, DU i first applies (16)–(19) as the
criteria to deliver data ti, which can be generated by the func-
tion named Data Distribution (line 1). Then, DU i begins
to adjust the price until all the data have been submitted
(lines 2–5). In Algorithm 2, to satisfy the objective func-
tion, DU i first selects the lower prices as the candidates to

deliver data (lines 1–7). Then, setting (16) as the baseline, the
data begin to be distributed to different FSPs (lines 8–16).

Lemma 1: Given pi, DU i’s optimal strategy t∗i satisfies

t∗ij =

⎧⎪⎪⎨
⎪⎪⎩

bij−C
/[

1−eωij(pji/pith−1 )
]
, j ∈ P1\k

Ti−∑j∈P1\k bij−C
/[

1−eωij(pji/pith−1 )
]
, j = k

0, j = P2
⋃

Q

where P is the sequential set with respect to the value of pi,
and |P| = z. Note that the elements in P should satisfy the
conditions pji < pith and bij > C/[1 − eωij([(pji)/(pith)]−1)].
Inversely, the remaining n − z inadequate elements are con-
tained in the set Q. Here, as the amount of data Ti is limited,
no data may be delivered to some of FSPs whose charges
belong to P. Hence, P is divided into P1 including the first k
and P2 including the remaining z−k. The FSPs whose charges
belong to P1 can obtain the data delivered by DU i, while the
ones whose charges belong to P2 failed.

Lemma 2: Given the strategies of all FSPs, each DU has
a unique optimal strategy.

B. Resources Allocation by CC in Stage I

Given the bids to request various resources provided by
all FSPs (f1, f2, . . . , fn) and the rewards from potential users
(r1, r2, . . . , rm), we give the optimal CC strategy, denoted as
b∗ = (b∗

1, b∗
2, . . . , b∗

m) by calculating a convex optimization
problem based on (2)–(6).

Lemma 3: The strategy set of CC is nonempty, convex, and
noncompact.

Lemma 4: Given fi = (f1i, f2i, . . . , fni), the optimal CC
allocation strategy on resource i satisfies

b∗
i (fi) =

⎧⎪⎪⎨
⎪⎪⎩

0, Fi ≤ Fi

Bi − ρi(ri−ci1)∑n
j=1

fji(fji−ci2)

Fi−j+fji
−(ri−ci1)

, Fi < Fi < Fi

Bi − ε, Fi = Fi

where ε → 0, Fi denotes the total bids offered by FSPs, Fi is
under threshold of total bids when bi is equal to 0, and Fi is
over threshold of total bids when bi is equal to Bi. The values
of Fi and Fi can be calculated by the proof of Lemma 3 in
Appendix C.

Lemma 5: Given the strategies of all FSPs, the optimal CC
strategy is unique.

C. Noncooperation Among FSPs in Stages I and II

In stage II, based on the prediction of DUs’ optimal
response, all FSPs compete with each other to derive the
maximum utility by deciding the best strategy p∗

j . Here,
Algorithm 3 is used to compute the Nash equilibrium of all
FSPs. As there is no relationship among these different types
of resources when charging different types of DUs, we can
maximize the utility obtained from each DU separately. Hence,
for any i ∈ Mu, our goal is

max
pji

uj

(
pji, p∗−ji

)
= t∗ijpji − b∗

i
fji

Fi−j + fji
fji (20)

where p∗−ji denotes the best prices to charge DU i, except
that FSP j. uj(pji, p∗−ji) represents the utility of FSP j about
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Algorithm 3 Optimal Price Strategy of All FSPs
Input: Step value �; Threshold value p1th, p2th, . . . , pmth
Output: Best price strategy p∗

1, p∗
2, . . . , p∗

n
1 Initially, each FSP sets an initial price pji = pith. Then no data has been
submitted by any DU as the prices exceed the thresholds
2 While At least one FSP adjusts its price do
3 for DU i do
4 Applying Algorithm 1 to calculate the optimal data distribution based
on the price sets (p1i, p2i, . . . , pni) by all FSPs
5 end for
6 for FSP j do
7 Each FSP stores the current value of the service prices pold

j =
(pold

j1 , pold
j2 , . . . , pold

jm )

8 Each FSP tries to increase or decrease its price with a small step �,
and calculates his\her own utility based on the prediction of the DUs’ optimal
data distributions
9 if uj(p

old
ji , pold∗−ji ) ≤ uj(p

old
ji + �, pold∗−ji ) and

uj(p
old
ji − �, pold∗−ji ) ≤ uj(p

old
ji + �, pold∗−ji ) then

pji = min{pold
ji + �, pith}

10 if uj(p
old
ji , pold∗−ji ) ≤ uj(p

old
ji − �, pold∗−ji ) and

uj(p
old
ji + �, pold∗−ji ) ≤ uj(p

old
ji − �, pold∗−ji ) then

pji = max{pold
ji − �, 0}

11 else
12 pji = pold

ji
13 end if
14 end if
15 end for
16 end while

resource i given the prices of others. As the value of the sec-
ond derivative of uj(pji, p∗−ji) for pji is negative, uj(pji, p∗−ji) is
a concave function.

In Algorithm 3, given the prices of all FSPs, each type of
DU begins to deliver their data depending on Algorithm 1.
Then, the FSPs begin to change their prices to obtain max-
imum utility (lines 3–5). In each round of the circulation,
for each type of resource, each FSP changes the price with
the fixed value �. If the utility of the price increasing with
� is higher than the prices decreasing with � and remains
unchanged, then in the next round, the price changes to pji+�.
If the utility of the price decreasing with � is higher than the
prices increasing with � and remains unchanged, then in the
next round, the price changes to pji − �. Otherwise, the price
remains unchanged. When all FSPs cannot deviate from their
current price unilaterally for higher utility, the circulation ends
(lines 6–16).

Lemma 6: The Nash equilibrium in Algorithm 3 is unique.
Lemma 7: The unique optimal bid strategy of FSP j

calculated by Algorithm 4 satisfies

f ∗
ji =

⎧⎨
⎩
√

biF2
i−j

/
(bi − β) − Fi−j, i ∈ �′

0, i ∈ �′′.
(21)

In stage I, given the forecast of the CC’s best response, we pro-
pose Algorithm 4 as the best strategy f∗j based on the Lagrange
multiplier [35].

Algorithm 4 is allocated in the sense that each FSP searches
the set of prices that maximize the utility, when the prices
as provisioned by the other FSPs have been determined.
Following an iterative process of updating the vector of the
price, the preceding algorithm will converge to an efficient
equilibrium, and then the optimal price set for each FSP can be

Algorithm 4 Optimal Bid Strategy of FSP j
Input: Total bids except j (F1−j, F2−j, . . . , Fm−j); Budget Lj
Output: Best bid strategy f∗j = (f ∗

j1, f ∗
j2, . . . , f ∗

jm)

1 Initially, FSP j give the bid strategy 0, i.e., fji = 0. Then no resource has
been allocated to it. �′ = �′′ = ∅
2 for resource i do
3 Applying (5), (6) to calculate the resource allocation bi based

on the total bids Fi. Then arrangement bi
/

Fi−j in decreasing order
4 end for
5 While

∣∣�′∣∣ < λ do
6 for i = 1, 2, . . . , m do
7 if

tijFi−j
bi−tij

< fji ≤ pji and

β= arg
∑m

i=1

√
biF2

i−j

/
(bi − β) − Lj −∑m

i=1 Fi−j = 0 then

�′ ← i and f ∗
ji =

√
biF2

i−j

/
(bi − β) − Fi−j

8 else
9 �′′ ← i and f ∗

ji = 0
10 end if
11 end for
12 end while

TABLE II
SYSTEM PARAMETERS

obtained. Here, we apply dichotomy to calculate the approxi-
mate value of β. We can get the following theorem based on
the above-mentioned lemmas.

Theorem 1: A unique Stackelberg equilibrium exists among
the CC, all FSPs, and all DUs in our proposed double-stage
Stackelberg game.

VI. PERFORMANCE EVALUATION

A. Setting of Simulation Parameters

In this section, we considered different parameters to quan-
tify the performance of our scheme. We used C++ to code the
Stackelberg equilibrium under different optimization strategies
and performed the evaluations on a personal computer (PC)
with Intel Core 3.40-GHz CPU and 8-GB memory.

The physical machine topology of the data center is gen-
erated randomly in order to be as realistic as possible.
Meanwhile, to ensure the heterogeneity of resource (DU)
types, CC provides physical machines with different speci-
fications, such as CPU, memory, hard disk storage, and so on.
Naturally, the number of resource (DU) types is 3. Here, we
also set the number of FSPs as 3. The values of resource
parameters and correlation coefficients with respect to the
simulated physical machine are shown in Table II.
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Fig. 4. Influence of pth and ω on service quality.

Fig. 5. Influence of pth and ω on DU utility.

B. Simulation Results

Fig. 4 illustrates the service quality with varying values of
ω and pth. As ω increases, the service quality decreases. The
main reason is that higher trust preference ω will result in
larger tolerance. Akin to ω, such results may also be obtained
with respect to pth. However, the growth rate of pth increases
with T , due to the relationship between pth and total data T .
In other words, the service quality deteriorates when more
data are processed. Fig. 5 shows the utility of DU with vary-
ing values of ω and pth. As ω increases, so does DU’s utility
(an opposite trend from service quality). This is because given
the total data T , the DU first selects lower prices as the candi-
dates to deliver data. A larger threshold value pth will result in
more requests for service quality but less cost for delivering
the data. However, compared with the significant volume of
data reflected by larger pth, the cost used to deliver data has
to increase regardless of the request for service quality.

Figs. 6 and 7 show the utility of DU and service quality
received for different total data Ts. Here, we compare our
scheme with both SGM presented in [22] and our scheme
without FSPs (i.e., nonfog). Specifically, Zhang et al. [22]
proposed a joint optimization framework to achieve optimal
resource allocation in fog-cloud computing and used the

Fig. 6. Influence of T on service quality.

Fig. 7. Influence of T on DU utility.

Stackelberg game to analyze pricing problem for data service
operators, as well as the resource allocation problem for
data service subscribers and the matching game to investi-
gate pairing problem between data service operators and fog
nodes. Here, the roles of data service operators, fog nodes,
and data service subscribers respectively, correspond to CC,
FSPs, and DUs discussed in our scheme. First, as the remote
distance between the CC and DUs increases, both utility and
service quality of nonfog worsen. Note that as the change of
the amount of data is relatively small compared to the remote
distance, the effect of the amount of data on the service quality
is weak. Also, the utility of our scheme is better than that of
SGM when T is large, while the service quality of our scheme
is better than that of SGM when T is small. Intuitively, SGM
only considers the influence of price on the service quality,
i.e., they are inversely proportional to each other. Hence, the
request for service quality of SGM is quite loose than that of
ours when the prices of candidates are lower as T is smaller;
thus, resulting in reduced cost but also less desirable service
quality. However, with the growth of T , the prices of candi-
dates also increase. A more rigorous request for service quality
will incur a higher cost for the SGM, in comparison to our
proposed scheme.

Fig. 8 illustrates the convergence of FSP’s utility in
Algorithm 3. Here, the utility of FSP will gradually increase
with the growth of iterations and finally converge to be
optimal with several iterations. Hence, in terms of simulation,
a unique Nash equilibrium among all FSPs can be obtained
by Algorithm 2.

Fig. 9 shows the utility of FSP for varying received data.
As the amount of received data increases, so does the profit
of FSP. The performance of our proposed scheme outperforms
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Fig. 8. Convergence of FSP utility.

Fig. 9. Influence of received data on FSP utility.

Fig. 10. Influence of r on CC utility.

that of SGM, as FSPs in our scheme provide services to DUs
based on the amount of resources obtained from the CC. On
the contrary, the FSPs in SGM first receive the data from DUs
and then try to obtain resources used to provide services.
Additional cost associated with the purchase of resources
occurs when the resources from the CC are not sufficient to
provide services for DUs.

Figs. 10 and 11 show the utility of the CC for both non-
fog and SGM with varying r and d, respectively. As SGM
does not consider providing services for users and only allo-
cates resources to the given FSPs according to the preference,
its utility will be worse and does not change with r and d.
The utility of the proposed scheme and nonfog decreases as d
increases, but as r increases, the proposed scheme outperforms
nonfog. This is because without FSPs, the CC has to increase
the cost to cope with additional logistics due to remote dis-
tances between the CC and DUs. Hence, this reinforces the
importance of fog computing in resource allocation and the
superiority of our scheme.

Fig. 11. Influence of d on CC utility.

VII. CONCLUSION

Given the increasing popularity of fog computing in an
industrial setting, resource distribution optimization tech-
niques were explored in this article. Specifically, we proposed
a novel scheme to optimize resource allocation, formulated as
a double-stage Stackelberg game. We demonstrated how we
can achieve Stackelberg equilibrium among DUs, FSPs, and
the CC, and Nash equilibrium among noncooperative FSPs,
using our proposed algorithms.

Future research will include implementing a prototype of the
proposed approach in a real-world fog-based IIoT environment
and extending the exploration of relationships among DUs.
These will allow us to fine-tune the modeling and achieve
better performance.

APPENDIX A
PROOF OF LEMMA 1

Proof: To maximize the utility and guarantee the service
quality, DU i will deliver the data strictly according to (16)
when the equality holds. Hence, the candidates must satisfy
conditions pji < pith and bij > C

/
[1 − eωij(pji

/
pith−1)], which

can be obtained by (16). Given the sequential set P, the deliver
process will stop until the limited data Ti have been submitted
successfully to the sequential set P1. Note that the FSP whose
price is the last one in P1 may receive the actual left data.
Finally, no data will be delivered to the FSPs whose prices
belonging to P2 and Q.

APPENDIX B
PROOF OF LEMMA 2

Proof: According to Lemma 1, DU i does not deliver data to
FSP j when the price pji is larger than the threshold value of
DU i. Additionally, when pji < pith, we get

∂t∗ij
∂pji

= −C · ωij
/

pith · eωij(pji
/

pith−1)[
1 − eωij(pji

/
pith−1)

]2
< 0. (22)

Then, we can guarantee that the larger price the FSP charges,
the less data the DU delivers to. Meanwhile, in this scheme,
each DU’s utility cannot be influenced by other DUs’ strate-
gies. Hence, given the strategies of all FSPs, each DU has
a unique optimal strategy.
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APPENDIX C
PROOF OF LEMMA 3

Proof: According to (2) and (3), the first- and second-order
derivatives of U(b) for bi are as follows:

∂U(b)

∂bi
= (ri − ci1)

(
−1 − ρi

Bi − bi

)
+

n∑
j=1

fji
(
fji − ci2

)
Fi−j + fji

(23)
∂2U(b)

∂b2
i

= −ρi(ri − ci1)

(Bi − bi)2
. (24)

As ∂2U(b)
/
∂b2

i < 0, thus U(b) is a concave function with
respect to bi. Given fi = (f1i, f2i, . . . , fni) and ri > ci1,
let ∂U(b)

/
∂bi be equal to 0, then we can derive the best CC

response about resource i as follows:

b∗
i (fi) = Bi − ρi(ri − ci1)

/⎡
⎣ n∑

j=1

fji(fji − ci2)

Fi−j + fji
− (ri − ci1)

⎤
⎦.

(25)

At the same time, we consider the threshold values of bids
about resource i by setting bi = 0 and bi = Bi, denoted as

Fi =
n∑

j=1

fji = arg b∗
i (fi) = 0 (26)

Fi =
n∑

j=1

fji = +∞. (27)

Hence, the allocated resources and the bids are searched in
unlimited regions, this lemma holds.

APPENDIX D
PROOF OF LEMMA 4

Proof: First, if Fi ≤ Fi, then no resource will be offered by
CC, i.e., the optimal CC strategy for resource i is 0. Second,
given ri, if Fi = Fi, which means that the bid for one unit of
resource i provided by the FSPs is far greater than the payment
for one unit of resource i from potential users, thus the vast
majority of resource i should be offered to the FSPs. Finally,
if Fi < Fi < Fi, then the optimal CC strategy is decided
by (25).

APPENDIX E
PROOF OF LEMMA 5

Proof: According to Lemma 4, for any resource i, if the
total bid Fi is less than the threshold value Fi, then the CC
does not provide resource i to all FSPs. If all FSPs give a quite
huge bid for resource i, then almost resource i can be sold to
them. For Fi < Fi < Fi, we have

∂b∗
i

∂fji
= ρi(ri − ci1) ·

[
fji

Fi−j + fji
+ Fi−j(fji − ci2)

(Fi−j + fji)2

]

×
/⎡
⎣ n∑

j=1

fji(fji − ci2)

Fi−j + fji
− (ri − ci1)

⎤
⎦

2

(28)

∂2b∗
i

∂f 2
ji

= 2ρi(ri − ci1)[∑n
j=1

fji(fji−ci2)

Fi−j+fji
− (ri − ci1)

]2

×

⎧⎪⎨
⎪⎩

Fi−j(fji − ci2)

(Fi−j + fji)3
−

[
fji

Fi−j+fji
+ Fi−j(fji−ci2)

(Fi−j+fji)2

]2

∑n
j=1

fji(fji−ci2)

Fi−j+fji
− (ri − ci1)

⎫⎪⎬
⎪⎭.

(29)

Here, ∂b∗
i

/
∂fji ≥ 0 implies that the larger bid the FSPs pro-

vide, the more resources the CC allocates. Additionally, the
value of (29) is negative. Then, by (28) and (29), we know
that b∗

i is an increasing concave function of fji. To sum up,
the optimal CC strategy is unique.

APPENDIX F
PROOF OF LEMMA 6

Proof: According to [33] and [34], the subgradient algo-
rithm can solve the convex optimization to obtain an optimal
solution with small ranges. Hence, each FSP cannot unilat-
erally adjust the price to derive higher utility when the sub-
gradient algorithm obtains an optimal solution. Furthermore,
giving the fixed starting price and the original �, we can use
the inductive assumption method to show that the prices in
each iteration are fixed. Hence, Algorithm 3 can obtain the
unique Nash equilibrium.

APPENDIX G
PROOF OF LEMMA 7

Proof: Let β be the Lagrange multiplier, and the FSP j’s
model shown as (7)–(9) be relaxed as follows:

L(fji, β) =
m∑

i=1

(
tijpji − bi

fji
Fi−j + fji

fji

)
− β

(
m∑

i=1

fji − Lj

)
.

(30)

Then, the conditions and constraints of the Kuhn–Tucker
first-order derivatives are as follows:

∂L

∂fji
= bi

2fjiFi−j + f 2
ji(

Fi−j + fji
)2 − β = 0 (31)

∂L

∂β
=

m∑
i=1

fji − Lj = 0. (32)

Based on (31) and (32), we have

fji =
√

biF2
i−j

/
(bi − β) − Fi−j (33)

m∑
i=1

fji =
m∑

i=1

√
biF2

i−j

/
(bi − β) − Fi−j = Lj (34)

where β= arg
∑m

i=1

√
biF2

i−j

/
(bi − β) − Lj −∑m

i=1 Fi−j = 0.

According to (11) and (12), we arrange bi
/

Fi−j in decreas-
ing order and divide the first λ satisfying tijFi−j

/
(bi − tij) <

fji ≤ pji into set �′, while the left ones are divided into
set �′′.
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