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Abstract—Internet-of-Things (IoT) devices and systems will be
increasingly targeted by cybercriminals (including nation state-
sponsored or affiliated threat actors) as they become an integral
part of our connected society and ecosystem. However, the chal-
lenges in securing these devices and systems are compounded
by the scale and diversity of deployment, the fast-paced cyber
threat landscape, and many other factors. Thus, in this article,
we design an approach using advanced deep learning to detect
cyber attacks against IoT systems. Specifically, our approach inte-
grates a set of long short-term memory (LSTM) modules into an
ensemble of detectors. These modules are then merged using a
decision tree to arrive at an aggregated output at the final stage.
We evaluate the effectiveness of our approach using a real-world
data set of Modbus network traffic and obtain an accuracy rate
of over 99% in the detection of cyber attacks against IoT devices.

Index Terms—Deep learning (DL), Internet of Things (IoT),
IoT security, network traffic, recurrent neural networks (RNNs).

I. INTRODUCTION

HE Internet of Things (IoT) can be broadly defined as a
T pervasive network of a (broad) range of connected smart
nodes that offer diverse digital services, including the collec-
tion of environmental and user data. For example, IoT nodes
can sense, process, and communicate (complex) information
through IoT infrastructures to improve the quality and quan-
tity of services and user experience in sectors ranging from
healthcare to transportation to power management to military,
etc. On the flip side, IoT devices and systems can also be an
attack vector where an attacker (or an adversary) can seek to
obtain information, target other entities (e.g., governments),
and/or facilitate nefarious activities.
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In existing networks (including those comprising IoT
devices), security systems such as intrusion detection systems
(IDSs) are typically used to monitor the network traffic
and identify suspicious activities within the traffic [1], [2].
IDSs can be either signature based or anomaly based, where
signature-based IDSs recognize intrusions (or suspicious activ-
ities) by finding the relationship between the previously
learned rules/signatures of known attacks’ rules. Anomaly-
based IDSs, on the other hand, monitor network traffic and
compare the traffic with previously learned patterns to spot
malicious activities [3]. It is known that signature-based meth-
ods are not very effective in detecting new and unknown
attacks. Anomaly-based methods have shown to be able to rec-
ognize known and new attacks [4] to some degree, but they
often have high false-positive rates.

In recent years, there has been renewed interest in explor-
ing the utility of artificial intelligence (AI) techniques, such as
machine learning (ML) and deep learning (DL), in designing
cybersecurity solutions, such as malware detection [5]-[11]
and threat intelligence [12], forensic investigation [13], and
privacy-preserving techniques [14]. DL-based approaches typ-
ically include a learning model with several layers, and
each layer contains a significant number of computational
nodes. However, designing efficient and effective Al-based
IoT attack detection systems remains an open research
challenge.

In this article, we propose a new approach that monitors
the network traffic of IoT networks over the Modbus proto-
col [15] and extracts network packets to train an ensemble
of long short-term memory (LSTM) models. From there, it
aggregates the output of LSTMs by a decision tree (DT)
and assigns the right label to each network connection.
The proposed approach is characterized by the following
capabilities.

1) A significantly high level of accuracy in detecting

different attacks within IoT networks.

2) The capability to detect attacks for different periods,

including right from the start of an attack.

3) The marginal false-positive (FP) rate with respect to the

ensemble of detection modules.

The remainder of this article is organized as follows.
Section II briefly reviews the extant literature. In Section III,
we outline our research methodology. In Sections IV and V,
we present our proposed approach, describe the evaluation
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setup, and discuss the findings. Finally, Section VI concludes
this article.

II. RELATED LITERATURE

There has been an increasing focus on ensuring the security
of IoT networks, partly due to the popularity of IoT devices
in our society [16]. For example, Oh et al. [17] introduced
a signature-based intrusion detection method for IoT systems,
using multiple pattern-matching algorithms. Using a data set
of Snort and ClamAV extracted rules, their approach has a
detection rate between 81% and 90% in different experimen-
tal settings. In another study, Anthi et al. [18] proposed an
anomaly-based IDS for smart home IoT devices using a three-
layer IDS that leverages a supervised learning mechanism.
They achieved an F-measure between 90% and 98%. However,
signature-based mechanisms can be bypassed by modifying
the attack’s rules without degrading its harmfulness.

To facilitate malicious activity detection,
Azmoodeh et al. [19] proposed a DL-based approach
that extracts a graph of executable files’ operation codes.
They then introduced a feature selection method and used
it to generate an adjacency matrix of extracted graphs prior
to training a convolutional neural network (CNN) in order
to identify malicious and benign applications. This approach
needs binary executable as input. In order to enhance the
security of wireless IoT networks, Aminanto er al. [20]
proposed a deep-feature extraction and selection model using
deep autoencoders. Then, they combined the autoencoder
with a supervised classification algorithm and reportedly
achieved a detection rate of 99.918% and a false alarm rate
of 0.012% for detection impersonation attacks. This method
is designed to have maximum performance for impersonation
attacks while our approach considered a broader range of
IoT’s cyber attacks.

Activities within IoT systems rely on sequential data, such
as the sequence of network packets, operational codes, or envi-
ronmental sensed variables. Hence, HaddadPajouh et al. [21]
presented a deep recurrent neural network (RNN)-based
approach that uses the sequence of IoT executable’s oper-
ational codes for training (together with a data set of IoT
malware and benign samples). Findings from their evaluation
reported an accuracy rate of 98.8% in recognizing mali-
cious payloads. For device-level detection in IoT systems,
Azmoodeh et al. [22] collected power consumption signals of
infected IoT nodes. Then, they applied a grinding algorithm
to these signals and trained different classifiers to identify
infected nodes. They reportedly achieved an accuracy rate of
94.27% in detecting IoT nodes infected by crypto-ransomware.
However, HaddadPajouh ef al. [21] and Azmoodeh et al. [22]
required device-level information to detect malicious activ-
ities. For enhanced scalability and robustness, Diro and
Chilamkurti [23] presented an LSTM-based model for dis-
tributed cyber attack detection in fog-to-things communica-
tion. They reportedly achieved an accuracy rate of 99.91% and
98.22% on the ISCX and AWID data sets, respectively. This
method has not been proposed to apply to Modbus network
traffic. In addition, the proposed method considers a window
of network session to enhance its detection rate as well to
reduce false alarms.
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Supervisory control and data acquisition (SCADA) and
Modbus protocol are two fundamental building blocks
in ToT-based systems, particularly those deployed in crit-
ical infrastructures and industrial systems [24], [25].
Anton et al. [26] evaluated the performance of ML-based
anomaly detection systems on the industrial Modbus data
set of cyber attacks. They investigated the utility of support-
vector machine (SVM), random forest (RF), k-nearest neigh-
bor (kNN), and k-means clustering on a synthetic data set,
and the findings suggested that SVM has the highest accuracy
rate of 100% in the majority of their experimental set-
tings. Despite the significant performance, this approach was
designed and assessed on a synthetic data set which degrades
its reliability to work on real environments. In another study,
Goldenberg and Wool [15] modeled the behavior of the
Modbus protocol to detect intrusions using deterministic finite
automaton (DFA). Their algorithm modeled the traffic of the
Modbus protocol and was sensitive to anomalies. The authors
reportedly obtained accuracy rates between 65% and 99%
for different numbers of DFAs. Ullah and Mahmoud [27]
proposed a hybrid model for detecting anomalous SCADA
data using an ML-based model, which eliminates irrelevant
features to increase the accuracy of detection. According
to the authors, their approach achieved a precision rate of
100% in the majority of their experiments on the KDD99
data set. Anton et al. [26], Goldenberg and Wool [15], and
Ullah and Mahmoud [27] made an effort to identify anoma-
lies that are more likely to have a higher false alarm while the
proposed approach is proposed to learn attack behaviors and
detect them.

III. RESEARCH METHODOLOGY

In this section, we first describe our data set, its con-
tent, and our approach to preparing it for the learning task
(Section III-A). Then, we explain our approach to extract data
for the learning task (Section III-B) and introduce our evalua-
tion approach to evaluate the competency of the learning task
(Section III-C).

A. Data Set

To have a clear view of the used data set in this article,
Section III-A1 provides a description of the Modbus pro-
tocol, and Section III-A2 gives the information about the
characteristics of the data set.

1) Modbus Over TCP/IP: The Modbus' protocol is widely
deployed in industrial control systems (ICSs), and it works
in a master/slave mode. Although it was initially developed
for serial communication, it is now often used over the trans-
mission control protocol (TCP). There have been different
versions of Modbus proposed over the years, namely, Modbus
RTU, Modbus ASCII, and Modbus over TCP/IP.

The Modbus/TCP is a recognized and approved protocol
by the Internet assigned number authority (IANA) since 1996,
with its default port number of 502. Instead of using the
device address, Modbus uses an IP address to communicate
and interact between the master and slave nodes. As shown

1 http://www.modbus.org
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Fig. 1. Modbus PDU over TCP/IP.

TABLE I
DATA SET INFORMATION (NUMBER OF PCAP FILES FOR EACH CLASS)

Class Number
of pcap files
1- Clean 3
2- MITM 22
3- ModbusQueryFlooding | 52
4- PingFloodDDoS 37
5- TepSYNFloodDDoS 37

in Fig. 1, protocol data unit (PDU) frames that include func-
tion code to run on the device, is the fundamental part of the
Modbus/TCP packet [28]. The majority of Modbus messages
include commands, such as read and write to control industrial
nodes.

2) Data Set Description: The data set [29] used in this
article contains Modbus/TCP network traffic data, which have
been simulated based on a small-sized process industrial
automation scenario. The data set includes five categories
of network traffic, namely, Clean traffic, man-in-the-middle
(MITM) attack, Ping DDoS Flood attack, Modbus Query
Flood attack, and TCP SYN DDoS Flood attack [30]. Network
traffics of data set were captured into pcap? files. Table I gives
information about the number of pcap files corresponding to
each class.

B. Extracting Modbus Flows

In order to extract the captured Modbus network traf-
fics, CICFlowmeter? toolset [31] was first utilized. As a
result, 83 features were extracted for each network packet.
Table II provides information about the number of samples
(network packet) belong to each class. Then, to eliminate
features that were highly correlated to environment setup
and were suspected of causing bias in resulting ML model,
FlowlD, SourcelP, DestinationlP, SourcePort, DestinationPort,
and Timestamp were removed. Finally, the column normaliza-
tion on the prepared data set was applied.

C. Evaluation Metrics

The following criteria are used to evaluate the utility of
ML-aided techniques in intrusion detection.
1) True Positive (TP): It indicates that an intrusion is
correctly identified.
2) True Negative (TN): It indicates that a benign activity is
detected as a nonmalicious activity correctly.

2https://en.Wikipedia.org/wiki/Pcap
3 http://www.netflowmeter.ca/netflowmeter.html
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TABLE II
EXTRACTED SAMPLES FROM PCAP FILES

Class Number of Samples
1- Clean 259,635
2- MITM 230,330
3- ModbusQueryFlooding | 4,021,403
4- PingFloodDDoS 616,746
5- TepSYNFloodDDoS 730,971
Total 5,859,085
Recurr?qum
| LsTMModer My
or “ _ LSTM Model My
| _ LsTMModer my
| LSTMModel s
| LsTMModel Mg
N

Fig. 2. Proposed method overview.

3) FP: It indicates that a benign activity is falsely detected
as a malicious activity.

4) False Negative (FN): It indicates that an intrusion is not
detected and labeled as a nonmalicious activity.

Based on the criteria described above, the following metrics

are introduced to quantify the effectiveness of a given system.

1) Accuracy: It indicates the number of samples that a clas-
sifier correctly detects, divided by the number of all
samples

TP + TN
TP+ TN+ FP +FN’

2) Precision: It is another metric that indicates the ratio of
predicted intrusion samples that are correctly predicted

. TP
Precision = ——. 2)
TP 4 FP

3) Recall: 1t indicates the ratio of intrusion samples that
are correctly predicted

Accuracy =

ey

TP
Recall = ———. 3)
TP + FN

4) F-Measure: It is the harmonic mean of precision and
recall, and is defined as follows:

2% TP
F-Measure = . 4
2% TP+ FP + FN

IV. PROPOSED METHOD

The proposed method includes a stack of deep RNNs
(Section I'V-A) that are trained with the prepared data set and a
DT that aggregates the output of RNNs (Section IV-B). Fig. 2
illustrates the conceptual view of our proposed method.

A. LSTM Models

Deep RNNs are a fundamental category of DL models
that are proposed to apply learning tasks on sequential data.
Despite the considerable capability of RNNs to learn from
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Fig. 3. LSTM cell.
TABLE III
PROPOSED METHOD’S LSTMS SETTINGS
Mode Name | Number of Layers Layer Size
LSTM-1 1 (100)
LSTM-2 1 (200)
LSTM-3 2 (100,100)
LSTM-4 2 (200,100)
LSTM-5 3 (100,100,100)
LSTM-6 3 (100,50,20)

sequential information, they suffer from the problem of miss-
ing data dependency during the long-term data patterns [32].
LSTM [33] is the fundamental and widely applied architec-
ture of RNNs that is capable of recognizing the pattern of
dependency between the sequence of input data and learn the
long-term pattern of data. Fig. 3 shows the structure of an
LSTM cell. An LSTM is formed by a set of cells, and each
cell includes three main layers, namely, forget gate, input gate,
and output gate. The forget gate is responsible for removing
the previous information of each cell and functions as follows:

fi=o (w1, 5] + by) )

where wy and by are weights and bias of the cell that are
learned during the training phase of the LSTM. Then, the input
gate that updates information of cell is calculated as follows:

il = ()'(Wi[l’lt_l, xt] + bl) Ct = tanh(WC[ht_l, x,] + bc) (6)

Finally, the output gate generates the cell output for the next
cell and the output of network as follows:

Ct :ﬁ *k C[_l + it k 61 l’l[ = U(Wg[h[_l, .X[] + bo) k tanh(C,)
(7

Generally, an LSTM network includes one layer of cells.
However, increasing the depth of the network elevates its
performance and accuracy for learning and recognizing com-
plex sequential patterns [34]. The proposed method includes
a stack of LSTMs having various settings to learn the vari-
ous pattern of network traffic associated with clean and attack
scenarios. The number of layers and the capacity of networks
are two main settings to design our LSTMs. Table III gives
information about the proposed method’s LSTMs. Besides, as
described in Section III, we train the proposed method for
different window sizes of the packet, and therefore, for each
window size, the input size of each LSTMs varies. Fig. 4
illustrates an LSTM for a window size of 5.
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Fig. 5. Schematic view of DT in the proposed method.

B. Ensemble of LSTMs

In order to make an aggregated decision about the output
of LSTMs, we integrate a DT component into our proposed
method. The DT accepts a collection of confidence rates for
each class within the data set and decides about the output.
The input of the DT module from LSTMs is as follows:

Input of DT = {LSTMLC where i € {Number of LSTMs}
AND ¢ € Number of Classes}. (8)

LSTM; . refers to the confidence rate of the ith LSTM-
trained model for class ¢. The DT accepts these confi-
dence rates as inputs and hierarchically learns the correlation
between the confidence rate of LSTMs and the true label of
network traffic. Fig. 5 schematically illustrates how a DT com-
ponent functions in the proposed method. In other words, DT
identifies the manifold of the output space of LSTMs and pro-
vides us with an explainable model to decide about the final
label.

V. EVALUATIONS AND FINDINGS

In this section, we evaluate the potential of state-of-
the-art classification algorithms on the prepared data set
(Section V-A). Then, we describe the performance of dif-
ferent LSTMs’ in recognizing Modbus cyber attacks (see
Section V-B). Findings from Section V-C demonstrate the
robustness of the proposed approach in detecting the IoT cyber
attack using network traffic. We also discuss the training and
inference times of the proposed system.

The experiments are implemented on an Ubuntu 16 system
with 128 GB of memory and 32 Core i7 CPUs. All scripts
for extracting and preprocessing data as well as learning
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TABLE IV
PERFORMANCE OF STATE-OF-THE-ART CLASSIFIERS:
A COMPARATIVE SUMMARY

Classifier Accuracy || Precision | Recall F-Measure
KNN 85.09% 87.50% 83.33% | 85.37%
SVM 86.96% 89.89% 86.96% | 88.40%
MLP 88.20% 88.17% 91.11% | 89.62%
Random Forest | 90.68% 92.22% 91.21% | 91.71%
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Fig. 7. Performance of LSTM model#2 over Modbus network traffic.

tasks are written in Python 3.7. We utilize Tensorflow* as
our DL platform. The experiments are performed for seven
different window sizes, namely: {1, 5, 10, 15, 20, 30, 40}, for
training the LSTMSs. We then apply the tenfold cross-validation
technique [35].

A. State-of-the-Art Classifiers

Before evaluating LSTM and the proposed method’s out-
comes and in order to assess the performance of prevalent
classification algorithms, we apply four state-of-the-art clas-
sifiers, namely: 1) KNN; 2) multilayer perceptron (MLP);
3) SVM; and 4) RF, on the prepared data set. We use Scikit-
learn® to implement these classification methods. As for KNN,
k =1 and for MLP, the size of the hidden layer is set to 200.

Table IV summarizes the results of the experiments.

B. LSTMs

In the first stage of our study, we train a set of LSTMs (see
also Section IV-A) and evaluate their performance to identify
IoT cyber attacks using network traffic. Specifically, we train
six different LSTMs having different structures and on seven
different window sizes. The epoch for training a deep learner

4https://WWW.tensorﬂow.org/
5 https://scikit-learn.org/
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is 200 and batch size sets to 1024. In addition, we utilize the
Adam optimizer.

During our experiments, we monitor the performance met-
rics described in Section III-C, in order to analyze the
first stage of our proposed method. Figs. 6-11 present the
performance of LSTMs in classifying Modbus network traffic
for different window sizes. For each metric, the figure includes
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TABLE V
PERFORMANCE OF OUR PROPOSED
APPROACH FOR DIFFERENT WINDOW SIZES

Winow size Accuracy | Recall | Precision | FI-measure
window-size-1 96.459 93.454 | 94.205 93.812
window-size-5 | 99.237 99.35T | 99.265 99.308
window-size-10 | 99.428 85.211 | 85.185 85.198
window-size-15 | 99.370 92.209 | 99.363 94.594
window-size-20 | 99.369 98.428 | 99.185 98.797
window-size-30 | 99.465 98.579 | 99.236 98.892
window-size-40 | 99.620 98.883 | 99.418 99.142

a group of bar charts that report the metric’s highest obtained
values for each window size setting.

From the findings, we observe that the LSTM classification
approach outperforms the other state-of-the-art classifiers (see
Table IV). Also, we observe that the Precision of the trained
model surpasses other evaluation criteria, and the performance
of different LSTMs varies over window sizes (i.e., LSTMs
have learned different patterns of network traffic). A general
trend is an increased window size that results in increased
performance. We also observe that LSTM, is the most accu-
rate model, with an accuracy rate of 95.59% (for window size
= 40) and the average accuracy of LSTM models is 92.46%.
LSTM3 (for window size = 40) is the best model to positively
predict samples, with a precision rate of 99.7%. The average
precision rate is 95.1%. In terms of the recall metric, LSTM4
for window size = 40 achieves 95.54% TP rate and the aver-
age is 91.92%. For the mean of precision and recall, LSTM4
for window size = 40 has an F-measure of 95.58% and the
average is 92.45%.

C. Proposed Approach

Similar to the preceding section, we evaluate the
performance of the proposed model for different window
sizes while a DT aggregates the output of LSTMs. As shown
in Table V, the best accuracy rate obtained is for window
size = 40, where our proposed approach obtains an accuracy
rate of 99.62% and the average accuracy rate is 98.99%. In
terms of precision, we achieve 99.41% precision and the aver-
age decreases from 95.1% to 96.51%. The proposed method
is capable of reaching a detection rate of 99.35% for win-
dow size = 5, and the average detection rate decreases to
92.32%. In terms of F-measure, our approach obtains 99.30%,
and the average decreases from 92.45% to 95.67%. One can
observe that the proposed method outperforms single LSTMs
and the other state-of-the-art classification algorithms for both
maximum and average performance.

D. Time Discussion

In terms of time complexity, an ideal cyber-attack detec-
tion should have reasonable and short training and inference
times while having acceptable detection performance. During
the training time, our proposed method (constructed by a set
of LSTMs) achieves acceptable performance within about 25
training epochs that last less than 65 s. Fig. 12 presents the
average performance of LSTMs (see also Section IV-A) over
training epochs.
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In terms of inference time, the proposed method requires
only 40 packets in the Modbus network session to detect
cyber attacks (see Table V). Based on the data set we used,
it requires less than a second for all different attack scenarios
to transmit 40 packets over a network session. In addition,
the proposed method latency for processing network pack-
ets and inferring is approximately 55 ms on average for the
experimental workstation.

VI. CONCLUSION

The expanding number of industries utilizing IoT devices
partly contributed to an increase in the frequency, size, and
severity of cyber attacks against IoT networks; thus, creating
an arms race between the cyber defenders and the cyber attack-
ers. In this article, we presented a novel ensemble method to
detect IoT cyber attacks over Modbus network traffic. In our
approach, we integrated an ensemble of LSTM deep models
and aggregated their outputs to achieve enhanced robustness.
Findings from our evaluations demonstrated the potential of
our approach in an IoT system, where using the DT as an
aggregator provides an explainable structure to enhance the
transparency of the proposed method [36].

In the future, we will explore the explainability of LSTM
models to propose a more transparent DL. model for detect-
ing IoT cyber attacks, particularly those in adversarial settings
(e.g., battlefields). We also plan to deploy the proposed
approach to different IoT protocols and transfer the learned
Modbus cyber attacks to other domains.
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