
Predicting Memory Accesses: The Road to Compact ML-driven
Prefetcher

Ajitesh Srivastava
University of Southern California

USA
ajiteshs@usc.edu

Angelos Lazaris
University of Southern California

USA
alazaris@usc.edu

Benjamin Brooks
University of Southern California

USA
bjbrooks@usc.edu

Rajgopal Kannan
Army Research Lab - West

USA
rajgopal.kannan.civ@mail.mil

Viktor K. Prasanna
University of Southern California

USA
prasanna@usc.edu

ABSTRACT
With the advent of fast processors, TPUs, accelerators, and hetero-
geneous architectures, computation is no longer the only bottle-
neck. In fact for many applications, speed of execution is limited
by memory performance. To address memory performance, more
accurate prefetching is necessary. While sophisticated machine
learning algorithms have shown to predict memory accesses with
high accuracy, they suffer with several issues that prevent them
from being practical solutions as hardware prefetchers. These issues
are centered around size of the model that results in high memory
requirement, high latency and difficulty in online retraining. As
the first step towards building ML-based prefetchers, we propose a
compressed-LSTM approach for accurate memory access prediction.
With a novel compression technique based on output encoding,
we show that for the problem of predicting one of n memory loca-
tions, our technique results in O(n/logn) compression factor over
the traditional LSTM approach. We further demonstrate through
experiments on several benchmarks that the prediction accuracy
drop due to compression is small and the training is fast. The actual
compression obtained is of the order of 100×.

CCS CONCEPTS
• Information systems→ Data mining; • Computer systems
organization → Neural networks; • Software and its engi-
neering → Memory management.

KEYWORDS
memory access prediction, prefetching, deep learning, compression
ACM Reference Format:
Ajitesh Srivastava, Angelos Lazaris, Benjamin Brooks, Rajgopal Kannan,
and Viktor K. Prasanna. 2019. Predicting Memory Accesses: The Road to
Compact ML-driven Prefetcher. In Proceedings of the International Sym-
posium on Memory Systems (MEMSYS ’19), September 30-October 3, 2019,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7206-0/19/09. . . $15.00
https://doi.org/10.1145/3357526.3357549

Washington, DC, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3357526.3357549

1 INTRODUCTION
Improving instructions per cycle (IPC) for single-thread applica-
tions with stagnating clock frequency requires dealing with funda-
mentally difficult constraints, e.g., branch mispredictions and cache
misses. Overcoming these constraints, while difficult, promises to
bring substantial increases in IPC. This has now become a neces-
sity to support the scale of growing data. Fast processors, TPUs,
accelerators, and heterogeneous architectures, have enabled fast
computation due to which memory performance has become the
bottleneck in many applications. Many applications are memory
bound and the problem of reducing the latency of memory accesses
must be addressed. Several emerging memory technologies such
3D-Stacked DRAM and Non-volatile Memory attempt to address
memory bottleneck issues from a hardware perspective, but with a
tradeoff among bandwidth, power, latency, and cost.

Rather than redesigning existing algorithms to suit specific mem-
ory technology, we propose to develop Machine Learning (ML)
based approach that automatically learns access patterns which
may be used to prefetch data. Specifically, LSTM (Long-Short Term
Memory) based Deep Learning has been successfully used in natural
language tasks such as part of speech tagging [1], grammar learn-
ing [2], and text prediction [3]. In fact, the “Quicktype” function of
iPhone uses LSTM [4] to predict the next word while typing. Since
memory accesses have an underlying grammar similar to natural
language (albeit simpler due to being context free), such models are
naturally applicable to learning accesses. However, only recently,
application of LSTM has gained the attention of researchers for
learning accesses [5, 6]. While it has been shown to obtain high
precision and recall, the approach of training offline and testing
online for individual application is not a practical prefetcher, as
pointed by the researchers themselves, and is only the initial step
towards building one.

A practical LSTM based prefetcher implementation requires deal-
ing with certain challenges that we address (i) size of the machine
learning model (small - to enable fast inference and ensure feasi-
bility of implementation); (ii) training with large traces to obtain a
(small) model that is highly accurate in predicting memory accesses;
(iii) ensuring real-time inference; and (iv) retraining the model on-
line, on-demand to learn application specific models, which would

https://doi.org/10.1145/3357526.3357549
https://doi.org/10.1145/3357526.3357549
https://doi.org/10.1145/3357526.3357549

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Srivastava et. al.

require fast learning with small amount of data. A typical size (num-
ber of parameters) of LSTM model for memory access prediction is
dominated by the output layer due to a dense layer connecting tens
of thousands of outputs (possible memory addresses). This forms
the basis of all the challenges listed earlier. We propose a compres-
sion technique that achieves a factor of O(n/logn) in reduction
of parameters without compromising accuracy, thus overcoming
these challenges. Note that our objective, in this paper, is not to
develop a full scale prefetcher, but to design a highly accurate and
compact LSTM based access predictionmodel that demonstrates the
utility of highly compressed LSTMs for improving prefetching. A
prefetcher built on top of this model and its hardware implementa-
tion will be explored in future work. Specifically, our contributions
are as follows.

• We propose an LSTM-based approach to predict the next
access with high accuracy.

• We propose a compression technique that results in a com-
pact design with number of parameters reduced by a theo-
retical factor of ≈ n/logn.

• We present experiments on several benchmarks to show
that our compressed LSTM (with parameter reduction of the
order of 100×) can reach high accuracy comparable to the
original LSTM model.

• We demonstrate that our compressed LSTM can be retrained
only in few epochs and can reach high accuracy using a
small trace.

• We show that compressed LSTMs have the potential to signif-
icantly improve prefetching.We use a simple cache simulator
that prefetches blocks based on access predictions made by
our compressed LSTM and comparatively evaluate perfor-
mance metrics versus several state-of-the-art prefetchers.

2 RELATEDWORK
The problem of leveraging memory access patterns to improve
prefetching has been studied in the literature. [7] and [8] present
the first attempts to leverage predictions using a) a Markov pre-
dictor, b) a linear predictor, and c) a time delay neural network,
in order to dynamically reconfigure interconnection networks for
hiding processor-memory control latency. The authors use three
benchmark apps and also conclude that neural network approaches
are computationally expensive, and thus not tractable, something
that is not true nowadays. Similarly, feedforward neural network
designs in [9] have barely outperformed classical benchmarks (LRU,
ARC, etc.) in caching policy while requiring excess training time.
[10] leverages a Markov chain model that is able to predict access
patterns and detect anomalous behaviors for a given app, by essen-
tially detecting deviations from the expected behavior. The work in
[11] combined a linear model for prefetching with a reinforcement
learning approach to eviction choice. The work in [12] presents
a similar approach that uses a classification framework to detect
malware by analyzing its access patterns. The remaining of the rel-
evant work focuses on leveraging predictions to improve prefetch-
ing [5, 6, 13–15], which is different than our proposed framework
in the sense that the prediction error is calculated only on cache
misses (or overall speedup) and not on specificmemory location pre-
diction misses (which is more fine-grained prediction). In addition,

our fine-grained modeling framework can enable memory layout
optimizations. The most relevant approach to our work is presented
in [6] where the authors propose a framework that uses LSTMs
to improve prefetching. A similar LSTM approach for prefetching
is presented in [5]. In [14], the authors propose the use of logistic
regression, and decision tree models to enhance prefetching. The
authors in [15] evaluate various machine learning models on their
ability to improve prefetching for data center applications. Neural
networks and decision trees where shown to achieve the highest
performance in this application domain. The work in [13], [16],
and [17] presents an extensive evaluation of LSTM for prefetching,
achieving similar performance improvements as the other LSTM
based approaches.
Distinguishing fromExistingWork. The LSTM based approach
in [6] is the most recent and promising work in this area, however,
the authors approach the problem from an offline perspective. The
approach is impractical to be directly applied for prefetching, and
as stated by the authors, is only a first step towards an LSTM-
based prefetcher. They, and several state-of-the-art machine learn-
ing based access predictors perform the training on cache misses as
it reduces the size of training. However, an accurate prefetcher will
change the the distribution of cache misses and hence invalidate
its own trained model. Secondly, to achieve higher accuracy, some
online training is necessary to learn application specific patterns.
We propose to use a hybrid offline+online training approach where
a base model is trained offline first. At runtime, in case of low ac-
curacy, a more specialized model is trained in real-time with the
hypotheses that high accuracy can be obtained by only few training
samples with few epochs, and that this high accuracy can be sus-
tained for a long period of time before another round of retraining
is required.

While the focus of this paper is on improved memory access
prediction as a first step towards building ML based prefetchers in
emerging architectures (Sec. 5.2), there is also an extensive body
of work on non deep learning based prefetching. Examples of such
prefetchers include the Best-Offset Prefetcher (BOP) [18], the Signa-
ture Path Prefetcher (SPP) [19], the Variable Length Delta Prefetcher
(VLDP) [20], and the Composite Prefetcher (TPC) [21]. These are
state-of-the-art optimized prefetchers which can also leverage var-
ious hardware and architecture optimizations to deliver further
performance gains. [18] prefetches the address corresponding to
the most popular delta (address offset) found in training. [20] mem-
orizes the deltas that follow access sequences of varying lengths.
[19] utilizes a custom signature - defined as a function of memory
address delta and previous signature, to output the next predicted
delta. [21] selectively applies several prefetcher designs to more
accurately recognize unique access patterns. In order to demon-
strate the potential benefits of LSTM based prefetching, we use a
simple cache simulator to compare the performance of our access
prediction against state-of-the-art prefetchers (Sec. 4.6).

3 APPROACH
In order to better understand the memory access patterns for dif-
ferent applications, we analyze six long traces generated using the
PARSEC benchmark suite [22], and study their autocorrelation coef-
ficients (ACFs) for various lags, as well as the frequency distribution

Predicting Memory Accesses: The Road to Compact ML-driven Prefetcher MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

0 100 200 300 400 500
Lag

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ut
oc
or
re
la
ti
on

C
oe
ffi
ci
en
t

Autocorrelation Coefficients
For Trace Blackscholes

0 100 200 300 400 500
Lag

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ut
oc
or
re
la
ti
on

C
oe
ffi
ci
en
t

Autocorrelation Coefficients
For Trace Bodytrack

0 100 200 300 400 500
Lag

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ut
oc
or
re
la
ti
on

C
oe
ffi
ci
en
t

Autocorrelation Coefficients
For Trace Canneal

0 100 200 300 400 500
Lag

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ut
oc
or
re
la
ti
on

C
oe
ffi
ci
en
t

Autocorrelation Coefficients
For Trace Ferret

0 100 200 300 400 500
Lag

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ut
oc
or
re
la
ti
on

C
oe
ffi
ci
en
t

Autocorrelation Coefficients
For Trace Fluidanimate

0 100 200 300 400 500
Lag

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

A
ut
oc
or
re
la
ti
on

C
oe
ffi
ci
en
t

Autocorrelation Coefficients
For Trace Swaptions

Figure 1: Autocorrelation coefficients for each trace for various lags.

of the memory deltas, i.e. the difference between consecutive mem-
ory addressees accessed. As we can see in Fig. 4, the ACFs reveal the
existence of Long Range Dependencies (LRD) of various lengths,
especially in the case of Canneal, Ferret, and Fluidanimate traces,
whereas the Blackscholes, Bodytrack, and Swaptions traces appear
to have ACFs that decay faster. Nevertheless, these patterns are
good indicators for the suitability of LSTMs to model memory ac-
cess patterns since LSTMs were proposed to handle the challenges
imposed by LRDs [23].

3.1 LSTM-based Prediction
An LSTM model is a form of a recurrent neural network that has
gained popularity in the recent years due to its effectiveness in
modeling complex time-series with time lags of unknown size that
separate important events [23, 24]. The main idea of LSTM is the
use of self-loops where the gradient can flow for long durations
without vanishing or exploding. This, in combination with the use
of a forget-gate, allows the LSTM to accumulate knowledge that
can be “forgotten” later depending on the input data.

LSTMs are characterized by the following recursive equations:

f(t) = σ
(
Wf x

(t) + Uf h
(t−1) + bf

)
(1)

i(t) = σ
(
Wix(t) + Uih(t−1) + bi

)
(2)

c̃(t) = tanh
(
Wcx(t) + Uch(t−1) + bc

)
(3)

c(t) = i(t) ⊙ c̃(t) + f
(t) ⊙ c(t−1) (4)

o(t) = σ
(
Wox(t) + Uoh(t−1) + bo

)
(5)

h(t) = o(t) ⊙ tanh(c(t)) (6)

where f(t), i(t), c̃(t), c(t), o(t),h(t) are the forget gate, input gate,
candidate state, current state, output gate, and hidden state, re-
spectively, Wf ,Wi ,Wc ,Wo are the input weights for the forget
gate, input gate, candidate state gate, and output gate, respectively,
and Uf ,Ui ,Uc ,Uo are the recurrent weights for the forget gate,
input gate, current state, and output gate, respectively. In addition,
⊙ is the (element-wise) Hadamard product, and σ is the sigmoid
function.

3.2 LSTM Based Sequence Prediction
Given a memory trace we wish to train an LSTM model that can ac-
curately predict future accesses. Instead of actual memory locations,
we transform the memory traces to sequences of integers using
ordinal encoding, and then we transform the resulting sequence

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Srivastava et. al.

into a sequence of memory deltas by calculating the difference
between consecutive addresses, similar to [6]. The reason for this
is to allow the model to predict memory locations for any future
execution of the same application, since the relative memory dif-
ferences are expected to stay consistent. We model the problem
of memory access prediction as a classification problem instead
of regression, similar to [6], where each memory address can be
treated as a word of a large vocabulary. In order to have a compact
model with adequate levels of accuracy and to avoid overfitting,
we remove deltas that have frequency of ≤ N (e.g. 10, however the
parameter can be adjusted depending on the application, or even
automated using a percentile-based threshold).

Figure 2: Compression using output encoding.

3.3 Compression
Since the LSTM model is intended to be the basis of a prefetcher,
we would like it to be as compact as possible. The size (number of
parameters) of the simple LSTM model for classification is domi-
nated by the dense last layer. Few thousands or even hundreds of
output nodes may lead to slowing down of inference due to large
number of output labels. Suppose, the number of labels is n and
the layer before the last one has a dimension H . This results in
Hn connections (parameters). Suppose the number of rest of the
parameters is H0 which is typically small due to low dimensional
latent representation. Then total number of parameters is H0 + Hn.
In our experiments, n ≈ 50, 000 ≫ H ,H0. We propose to achieve a
very high compression by representing the vocabulary in binary
(Figure 2), i.e., for vocabulary of size n, we create the output layer
with logn nodes each of which can take a 0 or 1 value. Now, we
train the LSTM to predict a multi-label output with logn labels
instead of a single label (1 out of n) classification problem. Now,
the number of parameters in the model is H0 +H logn. Therefore,
compression ratio r is

H0 + Hn
H0 + H logn ≈

n

logn . (7)

Note that we have made the prediction problem much harder due to
the fact that all the bits the logn bits need to be predicted correctly

for the right memory access prediction. However, the compression
factor is O(n

logn) which is extremely high. In fact, the experiments
demonstrate that order of 1000x compression can be achieved with
a negligible loss in accuracy.

Note that depending on the implementation, the input layer
would also require a similar compression at a possible cost of ac-
curacy loss. In our experiments 4, we explore the effects of both
output compression and double (input+output) compression.

4 EXPERIMENTS
4.1 Setup
In order to evaluate our proposed memory access pattern predic-
tion architecture, we conducted extensive experimentation using
the PARSEC benchmark [22]. The Intel Pin [25] tool was used to
obtain memory access traces for each application. Instead of actual
memory locations, we transform the memory traces to sequences
of deltas by subtracting each consecutive hexadecimal memory
address and converting the final difference to decimal. The reason
for this is to allow the model to predict memory locations for any
future execution of the same application, since the relative memory
differences are expected to stay consistent, as well will also show
experimentally below.

As explained earlier, we approach the memory access predic-
tion as a classification problem where each memory address can
be treated as a word from a large vocabulary (i.e. the vocabulary
of memory deltas). In order to have a compact model with ade-
quate levels of accuracy and to avoid overfitting, we remove deltas
that have frequency less than a certain threshold (e.g. 10). This
allows the total vocabulary size to be kept relatively small, without
compromising too much on the accuracy. The datasets used are
summarized in Table 1.

4.2 Prediction Models
We used several variations of LSTMmodels for sequence prediction,
as well as simpler models that can be used as baselines. Specifically,
we implemented the following models:

(1) Vanilla LSTM (vlstm): This is a simple LSTM architecture
for sequence prediction with an embedding layer with 10
units, followed by an LSTM layer with 50 units, followed by
a dense layer with 50 units, and one hot encoded outputs (for
the deltas). We also used a dropout of 10%, look back window
3 (i.e., takes last three access predictions as input), 5 training
epochs, a batch size 256, a cap of the vocabulary at 50K most
frequent deltas (larger vocabularies where not feasible due
to the large number of parameters that needed to be trained),
and 50-50 train/test split. The loss function used was the
categorical cross entropy with softmax activation functions.

(2) Compressed LSTM (clstm): This is our compressed-LSTM
which is similar in architecture as in 1) above, with the only
difference that the output deltas have been converted to 16-
bit binary format. This reduces the output size and the neural
network is trained to predict binary outputs that are later
converted to decimal. For this, we use sigmoid activation
function and binary cross entropy loss function.

Predicting Memory Accesses: The Road to Compact ML-driven Prefetcher MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

Table 1: Memory Access Pattern Datasets.*Note:#deltas represents the distinct deltas used in first 200K accesses only, after a
100K accesses of warmup.

dataset #addresses #deltas * # vlstm parameters # clstm parameters # dclstm parameters
blackscholes 63,141,878 14,708 279,868 160,096 23,944
bodytrack 67,921,497 65,536 3,062,383 668,376 23,944
canneal 525,279,009 65,536 3,062,383 668,376 23,944
ferret 269,989,952 65,536 3,062,383 668,376 23,944

fluidanimate 838,028,424 56,516 3,062,383 578,176 23,944
swaptions 66,999,281 44,076 2,700,836 453,776 23,944

clstm dclstm la nb vlstm

Model Name

0.0

0.2

0.4

0.6

0.8

P
re
di
ct
io
n
A
cc
ur
ac
y

Prediction Accuracies
Trace Blackscholes

clstm dclstm la nb vlstm

Model Name

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P
re
di
ct
io
n
A
cc
ur
ac
y

Prediction Accuracies
Trace Bodytrack

clstm dclstm la nb vlstm

Model Name

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re
di
ct
io
n
A
cc
ur
ac
y

Prediction Accuracies
Trace Canneal

clstm dclstm la nb vlstm

Model Name

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re
di
ct
io
n
A
cc
ur
ac
y

Prediction Accuracies
Trace Ferret

clstm dclstm la nb vlstm

Model Name

0.0

0.1

0.2

0.3

0.4

P
re
di
ct
io
n
A
cc
ur
ac
y

Prediction Accuracies
Trace Fluidanimate

clstm dclstm la nb vlstm

Model Name

0.0

0.2

0.4

0.6

0.8

P
re
di
ct
io
n
A
cc
ur
ac
y

Prediction Accuracies
Trace Swaptions

Figure 3: Prediction accuracies for each trace for offline training and predictions on the same trace.

(3) Doubly Compressed LSTM (dclstm): This is exactly the
same architecture as in 2) above, with the only difference that
the input deltas are also converted to 16-bit binary format
to reduce the input vocabulary size and reduce the number
of model parameters.

(4) Last Access Prediction (la): The next memory access delta
is predicted to be the exact same as the one directly before
it. This is used as the simplest possible baseline.

(5) Naive Bayes (nb): This model caps the vocabulary at the 2K
most popular deltas (larger vocabularies where impossible
to use for Naive Bayes due to memory errors). It also uses
the previous four memory access deltas (encoded by the
vocabulary) to predict the next delta using a Naive Bayes

model structure. The accuracy of the model is calculated
only on the deltas seen in order to provide more optimistic
estimates, since the 2K vocabulary cap is significantly less
than the 65K of CLSTM or the 50K of VLSTM.

Evaluation metric - Accuracy We use accuracy on a test set
in each of the scenarios listed below. Accuracy is calculated as the
fraction of correctly predicted address. To be considered correct, for
“vlstm” and “la”, the prediction has to match exactly with the true
access. If the true access is outside the set of accesses used to train
the model, then it is counted as incorrect. For “clstm” and “dlstms”
all the 16 bits must correctly match the binary representation of
the true access. We allow a more optimistic accuracy evaluation of
“nb” to make the baseline stronger. It should be easier for “nb” to

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Srivastava et. al.

achieve a higher accuracy as it only has to correctly predict one
of 2K accesses compared to 50K for LSTM-based approaches. Also,
unlike LSTM-based approaches “nb” is not penalized on an address
that is not one of the 2K used to train it.

Scenarios Tested Below we summarize the memory access pre-
diction scenarios tested:

(1) Offline Training/Testing On Same Trace: In this sce-
nario, we generate a trace which is used for training and test-
ing the model. We discard the first 100K accesses as warmup,
and then use the next 200K for training and the next 200K for
testing. Other chunks of memory accesses produced similar
results, and so we only presenting this offline setting.

(2) Emulating Online Learning: In this scenario, the model
collects few thousands memory accesses (e.g. 10K) and start
training the LSTM model. The model can be used to gen-
erate predictions right away (e.g. after the first epoch of
training), and while more epochs are completed, more ac-
curate estimates can be generated. The average accuracy is
calculated in rolling windows of 50K samples, and once the
accuracy falls below a threshold, the retraining is performed
but starting from the weights of the neural network from the
previous training period, so that the network accumulates
knowledge. In our case, the threshold is set to 60% since it
provided a good trade off between accuracy and frequency
of retraining

(3) Offline Training/Testing On Different Traces: In this
scenario, we generate a trace from a given app which is used
for training a model. The model produced is later used to
predict the memory access patterns of the same app in a later
rerun (same input as well as different input), such that we
can see how reusable models can be and how feasible it is to
have a general model that can be used for a large variety of
inputs.

(4) Prefetch Evaluation: The main goal of our work is accu-
rately predicting memory accesses using compressed LSTM
models and not demonstrating a full prefetcher, which we
plan to build in future work. However, to perform a com-
parison with state-of-the-art prefetchers, we integrate our
compressed LSTM predictions with a cache simulator to
demonstrate a preliminary version of the prefetcher.

4.3 Offline Learning
The results for offline training/testing on the same trace are shown
in Fig. 3 for each trace. As we can observe, all the variations of the
LSTM models perform much better than the baselines (i.e. “nb” and
“la”), of which “la” is always theworst. Among the LSTMmodels, the
“vlstm” performs slightly better at the expense of larger number
of parameters to train, and longer training times, which where
measured to be up to 15x the training times of the “clstm”. On the
other hand, “clstm” and “dlstm” appear to perform very closely to
“vlstm” for all the six apps under study, that shows thatwe can obtain
a consistent compression of space and time and yet not lose too
much on accuracy. Regarding the model accuracies overall, for five
out of the six apps, the compressed LSTMs achieved accuracies that
ranged from 82% to 63% (extremely close to their respective “vlstm”).
The most challenging trace appears to be the Fluidanimate where

1 2 3 4 5
Epoch No.

0.84

0.86

0.88

0.90

0.92

A
cc
ur
ac
y

Training Accuracy Per Epoch
Trace Swaptions

Figure 4: Training accuracy per training epoch for the Swap-
tions app. Five epochs appear to be enough for the training
accuracy to start stabilizing.

LSTMs appear to overfit and could not generalize very well. Of
course, these can be treated with more data or further tuning of the
model hyperparameters. However, in this paper, we did not fine tune
the model to each trace separately but instead we tried to provide
a simple model setup that can be used to build a generic predictor
that can work for various apps. Details of compression can be found
in Table 1. Note that “clstm” results in up to 5× compression, while
“dlstm” leads to > 100× compression.

4.4 Emulating Online Learning
The results for the online learning models are shown in Fig. 5 from
where we can see that each LSTM model achieves a steady testing
accuracy over time that is very close to their offline averages. The
only exception is for Fluidanimate, where the initial accuracy was
really good (around 80%) but due to overfitting, the model could
not predict the subsequent set of deltas very well. However, after
two retraining epochs (50K accesses each), the model performance
went back to its initial levels.

4.5 Testing on Different Traces
The results for pretrained models on reruns are shown in Fig. 6.
We again observe that the LSTM models outperform the baselines
in predicting accesses on both (i) the same input (“rerun”) and (ii)
different input (“new”). Again, we observe that the compressed
LSTM models achieve comparable accuracy to “vlstm”. The only
significant accuracy drop is observed in Blackscholes for“dclstm”
for rerun on the same input (≈ 20%). We believe that further tuning
of the embedding layer hyperparameters can fix this issue, as that is
the only distinction from “clstm”which does not show a significant
drop.

Predicting Memory Accesses: The Road to Compact ML-driven Prefetcher MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

1 2 3 4 5

Accuracy Evaluation Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

retraining

retraining

Online Learning Accuracy Over Time
Model CLSTM

bodytrack

canneal

ferret

swaptions

blackscholes

fluidanimate

1 2 3 4 5

Accuracy Evaluation Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

retraining

retraining

Online Learning Accuracy Over Time
Model VLSTM

bodytrack

canneal

ferret

swaptions

blackscholes

fluidanimate

Figure 5: Online learning accuracies over time. Accuracy is reevaluated periodically and if it gets below 60%, then the model
is retrained.

CLSTM DCLSTM LA NB VLSTM

Model Name

0.0

0.2

0.4

0.6

0.8

P
re
di
ct
io
n
A
cc
ur
ac
y

Pretraining Prediction Accuracies
Trace Blackscholes

new rerun

CLSTM DCLSTM LA NB VLSTM

Model Name

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re
di
ct
io
n
A
cc
ur
ac
y

Pretraining Prediction Accuracies
Trace Bodytrack

new rerun

CLSTM DCLSTM LA NB VLSTM

Model Name

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re
di
ct
io
n
A
cc
ur
ac
y

Pretraining Prediction Accuracies
Trace Canneal

new rerun

CLSTM DCLSTM LA NB VLSTM

Model Name

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re
di
ct
io
n
A
cc
ur
ac
y

Pretraining Prediction Accuracies
Trace Ferret

new rerun

CLSTM DCLSTM LA NB VLSTM

Model Name

0.0

0.1

0.2

0.3

0.4

P
re
di
ct
io
n
A
cc
ur
ac
y

Pretraining Prediction Accuracies
Trace Fluidanimate

new rerun

CLSTM DCLSTM LA NB VLSTM

Model Name

0.0

0.1

0.2

0.3

0.4

P
re
di
ct
io
n
A
cc
ur
ac
y

Pretraining Prediction Accuracies
Trace Swaptions

new rerun

Figure 6: Prediction accuracy comparisons for each trace when tested on a rerun trace from the same app with the same
input parameters, vs the same app with different input parameters.

4.6 Prefetch Evaluation
We compare a simple prefetcher based on our doubly compressed
LSTM predictions against the following state-of-the-art prefetchers:

• The Best-Offset Prefetcher (BOP) [18] determines the most
popular delta over a training period and maintains that delta
as a consistent prediction.

• The Signature Path Prefetcher (SPP) [19] utilizes a custom
signature as input - it is defined as a function of memory
address delta and previous signature. During training, each
signature is associated with the memory address deltas that
follow it via a delta frequency dictionary. Thus, when mak-
ing predictions, the frequency dictionary enables the predic-
tion of the next delta with a certain confidence. Prediction
confidence is a function of prediction decay (alpha = 0.9),

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Srivastava et. al.

Blackscholes Bodytrack Canneal Ferret Fluidanimate Swaptions

Trace Name

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re
fe
tc
hi
ng

C
ov
er
ag
e

Prefetching Coverage

LSTM

LDP

SPP

BOP

VLDP

Blackscholes Bodytrack Canneal Ferret Fluidanimate Swaptions

Trace Name

0.0

0.2

0.4

0.6

0.8

1.0

H
it
R
at
e

Cache Hit Rate

LSTM

LDP

SPP

BOP

VLDP

Figure 7: Prefetching coverage and cache hit rate for each prefetcher.

historical delta frequency, and prior prediction confidence.
If the confidence is high enough (lower-bound = 0.3), the
prefetcher transitions to the signature that follows the delta
prediction and makes further predictions along a “path”. This
allows for predicting and fetching memory addresses several
time steps into the future.

• The Variable Length Delta Prefetcher (VLDP) [20] maintains
a set of dictionaries that have ordered sequences of prior
address delta accesses as keys and subsequent address deltas
as values. Each dictionary only stores sequences of a spe-
cific length (in our case, 1,2, and 3 – up to 2000 entries per
dictionary. The model populates these dictionaries based
on observed memory accesses during a training period and
fetches data when past access sequences correspond to an
existing key (ceding to longest observed sequence keys).

• The Last-Delta Prefetcher (LDP) is used as a basic baseline
for offset prediction. For the next delta, LDP simply reuses
the previous memory address delta (that occurred between
the last two accesses).

Each prefetcher is used in each of the 6 traces under study. An
L1 cache simulator was implemented with 64 entries, block size
of 8 Bytes, and a Least Recently Used (LRU) cache replacement
policy. The LSTM prefetcher uses one stream buffer that holds 8
Bytes of consecutive memory location data. In order to evaluate the
prefetcher’s performance, we calculate two widely used metrics,
namely the cache coverage (defined as the fraction of cache misses
eliminated because of prefetching), and the cache hit rate. As we
can see from Fig. 7(a), the LSTM prefetcher, due to its effectiveness
in modeling variable temporal dependencies, achieves significantly
better coverage compared to all the other prefetchers (more than
6×) and can exceed 65% for four out of the six traces, which validates
our hypothesis that LSTM can be effectively used for prefetching
memory addresses. The same applies for the case of hit rate, as
shown in Fig. 7(b) from where we can see that LSTM significantly
increases the hit rate compared to all the other prefetchers, with the
increase ranging from 10 to 40 percentage points across different
traces. Note that these are full prefetchers which we are comparing
against by extracting only the access prediction portion. Imple-
mentation dependent factors such as larger stream buffer sizes can
significantly improve their performance results.

5 DISCUSSION
5.1 Insights
From the analysis presented in the Evaluation section, we can
derive the following conclusions regarding the proposed memory
prediction framework.

(1) Vanilla LSTM models provide only slightly higher accuracy
compared to the compressed LSTMs at a much higher train-
ing time and memory footprint due to the large number of
parameters required.

(2) Traditional models such as Naive Bayes and Logistic Regres-
sion do not provide good prediction accuracy in all the cases
considered. In addition, Deep Learning models better capture
the memory access prediction sequence.

(3) A relatively small number of bits (16) in the compressed
prediction architecture suffices to capture majority of the
variability seen in the traces.

5.2 Potential LSTM-based Prefetcher
Figure 8 provides an overview of a potential LSTM-based memory
controller framework. It consists of three modules: (1) Training
Module, (2) Inferencing Module, and (2) Optimization Module. The
TrainingModule is initializedwith aGlobalModel that is pre-trained
based on multiple application traces. When an application starts
executing, the Inferencing Module uses the Global Model to predict
traces, based on which prefetching is performed. At the same time,
if prediction accuracy remains lower than a pre-defined threshold
(θ1) for a certain length of the trace sequence (l1), then the model
is retrained based on the new trace sequence. Only recent traces
are taken into account while training. This can be done quickly as
demonstrated in our experiments. While the model is re-trained by
Training Module, Inferencing Module continues to predict trace for
prefetching using the previous model. This is done to ensure that
retraining does not interrupt the execution of the application.
Once the training is completed with a certain length of the trace
sequence, the Inference Module switches to the Specialized Model
for prefetching. The Specialized Model is periodically retrained as
mentioned above as the behavior of the application changes and
previously trained model becomes sub-optimal. The Optimization
Module utilizes the predictions to make prefetch decisions, which

Predicting Memory Accesses: The Road to Compact ML-driven Prefetcher MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

Figure 8: An overview of key components of our LSTM based prefetcher.

we will explore in future work. It considers the predicted accesses
and uncertainty in predictions and addresses the following: (1)
Prefetch initiation - when to prefetch, (ii) Prefetch granularity -
how much to prefetch, prefetch location - where to store prefetched
data (High Bandwidth Memory/cache). If the trace prediction is
highly accurate for a long prediction horizon, the Optimization
Module also decides if performing re-ordering of data will benefit
the application, taking into account the trade-off between speedup
that can be obtained due to optimized reordering and cost of re-
ordering. If it identifies an advantage considering the trade-off, the
application execution is interrupted and data is reorganized into
the memory hierarchy.

While our prefetcher is not tied to an existing architecture, in-
stead, it is aimed for an emerging technologies including 3D-stacked
DRAM tightly integratedwith FPGAs such as in Xilinx VU37P FPGA
and Intel Stratix 10 MX FPGA. These technologies have enabled an
architecture as shown in Figure 9, which will be the basis of our
proposed prefetcher design. It consists of a hierarchy of memory:
(i) far memory (e.g., such as DDR3) with high capacity, high latency,
and low bandwidth, (ii) near memory (e.g., 3D-Stacked DRAM) with
low capacity, low latency, and high bandwidth, and (iii) local mem-
ory (e.g., L1/L2 cache) with very low capacity, very low latency, and
very high bandwidth. The data in this hierarchy is to be processed
by a processor core with accelerators (Accl.) (e.g., implementing
linear algebra functions for ML), and a tightly integrated embed-
ded FPGA where our prefetcher will reside. In future work, we
will explore the use of FPGAs and eFPGAs for implementing high
throughput prefetching based on our compact LSTM design.

6 CONCLUSIONS
We have proposed a compression technique for LSTM that makes it
a good candidate to form the basis of a prefetcher. We have shown
that 100× compressed LSTM models can achieve high accuracy
with small number of parameters in predicting the exact memory
access when trained offline. Then, we have shown that the same

Figure 9: Target architecture.

model can also predict a rerun of the app with different model. We
have further shown that these models can be quickly trained with
a small dataset with small number of epochs, thus enabling online
retraining. The current compression factor observed is still below
the theoretically achievable n/logn. In future work, we will tune
the initial embedding layer to minimize the input dimensions that
will bring us closer to the theoretical factor.

ACKNOWLEDGMENTS
This work is supported by Google Faculty Research Award, Air
Force Research Laboratory grant number FA8750-18-S-7001, and
National Science Foundation award number 1643351.

REFERENCES
[1] B. Plank, A. Søgaard, and Y. Goldberg, “Multilingual part-of-speech tagging with

bidirectional long short-term memory models and auxiliary loss,” arXiv preprint
arXiv:1604.05529, 2016.

[2] O. Vinyals, Ł. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton, “Grammar
as a foreign language,” in Advances in Neural Information Processing Systems,
pp. 2773–2781, 2015.

[3] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with lstm,” 1999.

[4] “Apple is bringing the ai revolution to your iphone.” https://www.wired.com/
2016/06/apple-bringing-ai-revolution-iphone/. Accessed: 2018-11-10.

https://www.wired.com/2016/06/apple-bringing-ai-revolution-iphone/
https://www.wired.com/2016/06/apple-bringing-ai-revolution-iphone/

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Srivastava et. al.

[5] Y. Zeng and X. Guo, “Long short term memory based hardware prefetcher: a
case study,” in Proceedings of the International Symposium on Memory Systems,
pp. 305–311, ACM, Oct. 2017.

[6] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang, C. Kozyrakis,
and P. Ranganathan, “Learning memory access patterns,” Mar. 2018.

[7] M. F. Sakr, S. P. Levitan, D. M. Chiarulli, B. G. Horne, and C. L. Giles, “Predicting
multiprocessor memory access patterns with learning models,” in ICML, pp. 305–
312, 1997.

[8] M. E. Sakr, C. L. Giles, S. P. Levitan, B. G. Horne, M. Maggini, and D. M. Chiarulli,
“Online prediction of multiprocessor memory access patterns,” in Proceedings
of International Conference on Neural Networks (ICNN’96), vol. 3, pp. 1564–1569
vol.3, June 1996.

[9] V. Fedchenko, G. Neglia, and B. Ribeiro, “Feedforward neural networks for
caching: Enough or too much?,” CoRR, vol. abs/1810.06930, 2018.

[10] F. B. Moreira, M. Diener, P. O. A. Navaux, and I. Koren, “Data mining the memory
access stream to detect anomalous application behavior,” in Proceedings of the
Computing Frontiers Conference, CF’17, (New York, NY, USA), pp. 45–52, ACM,
2017.

[11] N. Zhang, K. Zheng, andM. Tao, “Using grouped linear prediction and accelerated
reinforcement learning for online content caching,” CoRR, vol. abs/1803.04675,
2018.

[12] Z. Xu, S. Ray, P. Subramanyan, and S. Malik, “Malware detection using machine
learning based analysis of virtual memory access patterns,” in Proceedings of
the Conference on Design, Automation & Test in Europe, DATE ’17, (3001 Leuven,
Belgium, Belgium), pp. 169–174, European Design and Automation Association,
2017.

[13] L. Peled, U. Weiser, and Y. Etsion, “A neural network memory prefetcher using
semantic locality,” Mar. 2018.

[14] S. Rahman, M. Burtscher, Z. Zong, and A. Qasem, “Maximizing hardware prefetch
effectiveness with machine learning,” in 2015 IEEE 17th International Conference
on High Performance Computing and Communications, 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International
Conference on Embedded Software and Systems, pp. 383–389, Aug. 2015.

[15] S. Liao, T. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou, “Machine learning-
based prefetch optimization for data center applications,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis,
pp. 1–10, Nov. 2009.

[16] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang, “Deepcache: A
deep learning based framework for content caching,” pp. 48–53, 08 2018.

[17] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang, C. Kozyrakis, and
P. Ranganathan, “Learning memory access patterns,” CoRR, vol. abs/1803.02329,
2018.

[18] P. Michaud, “Best-offset hardware prefetching,” in 2016 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pp. 469–480, IEEE,
2016.

[19] J. Kim, S. H. Pugsley, P. V. Gratz, A. Reddy, C.Wilkerson, and Z. Chishti, “Path con-
fidence based lookahead prefetching,” in The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, p. 60, IEEE Press, 2016.

[20] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H. Pugsley, and
Z. Chishti, “Efficiently prefetching complex address patterns,” in 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 141–152,
IEEE, 2015.

[21] S. Kondguli and M. Huang, “Division of labor: A more effective approach to
prefetching,” in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pp. 83–95, June 2018.

[22] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: Charac-
terization and architectural implications,” in Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, PACT ’08, (New
York, NY, USA), pp. 72–81, ACM, 2008.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput.,
vol. 9, pp. 1735–1780, Nov. 1997.

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 2016.
[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools with
dynamic instrumentation,” SIGPLAN Not., vol. 40, pp. 190–200, June 2005.

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 LSTM-based Prediction
	3.2 LSTM Based Sequence Prediction
	3.3 Compression

	4 Experiments
	4.1 Setup
	4.2 Prediction Models
	4.3 Offline Learning
	4.4 Emulating Online Learning
	4.5 Testing on Different Traces
	4.6 Prefetch Evaluation

	5 Discussion
	5.1 Insights
	5.2 Potential LSTM-based Prefetcher

	6 Conclusions
	Acknowledgments
	References

