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Abstract

The Core Scientific Dataset (CSD) model with JavaScript Object Notation (JSON) serializa-
tion is presented as a lightweight, portable, and versatile standard for intra- and interdisci-
plinary scientific data exchange. This model supports datasets with a p-component
dependent variable, {Uy, ..., Ug, ..., Up-1}, discretely sampled at M unique points in a d-
dimensional independent variable (X, . . ., X, - . ., X4-1) Space. Moreover, this sampling is
over an orthogonal grid, regular or rectilinear, where the principal coordinate axes of the grid
are the independent variables. It can also hold correlated datasets assuming the different
physical quantities (dependent variables) are sampled on the same orthogonal grid of inde-
pendent variables. The model encapsulates the dependent variables’ sampled data values
and the minimum metadata needed to accurately represent this data in an appropriate coor-
dinate system of independent variables. The CSD model can serve as a re-usable building
block in the development of more sophisticated portable scientific dataset file standards.

1 Introduction

A frustrating and common problem faced by scientists in many disciplines is the lack of a por-
table scientific dataset format and universal standards for exchanging and archiving multi-
dimensional datasets—both experimental and computational. Scientific datasets are too often
saved in vendor-specific file-formats using proprietary software, making archiving and data-
exchange problematic even within a discipline, let alone across disciplines. A majority of scien-
tists rely on vendor-specific proprietary software to interact with their datasets. These scientists
are at a constant risk that the original dataset files could become unreadable if a future version
of the software stops supporting older file formats or the vendor stops supporting the software,
or even worse, goes out of business.

As a result of such risks and incompatibilities, many scientists resort to using comma-sepa-
rated values (CSV) files for dataset exchange and archival. Such an approach, however, is not
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resourceful, especially in the case of multi-dimensional datasets. Furthermore, such
approaches often leave out essential metadata about experimental or computational proce-
dures. Other scientists resort to specialized library packages to import datasets from the ven-
dor-specific file formats into their favorite programming languages such as Matlab, Python, R,
Java, or use the third-party software for dataset imports. This is only a temporary fix since it
just delays the original problem as the dataset files are translated to yet another third-party
software or user-specific file-format—and again, often with metadata loss.

With increasing pressure from the funding agencies and scientific journals to archive and
share primary and processed data, there is a growing sense of urgency for a stable, resourceful
and future-proof file-format for the exchange of scientific datasets. Here we take the first step
in addressing this problem by proposing a Core Scientific Dataset (CSD) Model that can encode
a wide variety of multi-dimensional and correlated datasets. The objective of the CSD model
is to encapsulate the data values and the minimum metadata needed to accurately represent
the data in an appropriate coordinate system. We envision the CSD model as a re-usable build-
ing block in a hierarchical description of more sophisticated portable scientific dataset file
standards.

2 Overview of CSD model

The CSD model supports a dataset of a continuous physical quantity (dependent variable)
discretely sampled on a multi-dimensional grid with vertexes associated with one or more
independent quantities (dimensions), e.g., a density as a function of temperature, a current as
a function of voltage and time, an ionization energy as a function of element symbol, etc.

Similarly, the CSD model supports a dataset with a multi-component dependent variable.
For example, a color image with a red, green, and blue (RGB) light intensity components as a
function of two independent spatial dimensions, or the six components of the symmetric sec-
ond-rank diffusion tensor MRI dataset as a function of three independent spatial dimensions.
In the CSD model, a dataset is defined as an p-component dependent variable, {U, ..., Ug, ..,
U,_,}, discretely sampled at M unique points in a d-dimensional (X, .. ., Xj, . . ., X4_1) space.
Moreover, this sampling is over an orthogonal grid, regular or rectilinear, where the principal
coordinate axes of the grid are the dimensions. A regular grid is an orthogonal grid where the
spacing between vertex coordinates along each dimension is uniform. If the spacing along any
one of the dimensions is not uniform, the grid is rectilinear.

The CSD model can also hold multiple datasets when different physical quantities (depen-
dent variables) are sampled on the same multi-dimensional (independent variables) grid. We
refer to this case as correlated datasets. One such example would be the simultaneous sampling
of current and voltage as a function of time. Another example would be datasets for air tem-
perature, pressure, wind velocity, and solar-flux, all simultaneously sampled on a two-dimen-
sional grid associated with the same region of latitude and longitude coordinates.

We adopt the JavaScript Object Notation (JSON) as the file-serialization format [1] for the
CSD model because it is human-readable, if properly organized, as well as easily integrable
with any number of programming languages and field related application-software.

2.1 UML class diagram

The schema for the CSD model, in the form of a UML class diagram [2], is shown in Fig 1. In
such diagrams, each class is represented with a box that contains two compartments. The top
compartment contains the name of the class, and the bottom compartment contains the attri-
butes of the class. A composition is depicted as a binary association decorated with a filled
black diamond. Inheritance is shown as a line with a hollow triangle as an arrowhead.
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read_only: Boolean[0..1] = False altitude: ScalarQuantity[0..1]
version: String[1]
timestamp: String[0..1] . > :
geographic_coordinate: GeographicCoordinate[0..1] . . DependentVariable
description: String[0..1] =" 0. type: DVObjectSubtype(1]
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numeric_type: NumericType[1]
unit: String[0..1] ="
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- . quantity_type: QuantityType[1]
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type: DimObjectSubtype[1] sparse_sampling: SparseSampling[0..1] = {}
label: String[0..1] =™ description: String[0..1] ="
description: String[0..1] =" application: Generic[0..1] = {}
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o | | quantity_name: String[0..1] 0..1 | sparse_grid_vertexes: Integer[1..*] {ordered}
%Z period: ScalarQuantity[0..1] b encoding: EncodingType[1] = "none"
S | | reciprocal: ReciprocalDimension[0..1] = {} unsigned_integer_type: UnsignedintegerType[1]
= description: String[0..1] ="
L LinearDimension application: Generic[0..1] = {}

count: Integer[1] ReciprocalDimension

increment: ScalarQuantity[1] - )

coordinates_offset: ScalarQuantity[0..1] coordinates_offset: ScalarQuantity[0..1]

origin_offset: ScalarQuantity[0..1] ongmfoffset: ScalalrQuantlty[O“ 1]

quantity_name: String[0..1] quantity_name: String[0..1]

period: ScalarQuantity[0..1] @ label: String[0..1] ="

complex_fft: Boolean[0..1] = False 0..1] period: ScalarQuantity[0..1]

reciprocal: ReciprocalDimension[0..1] = {} description: String[0..1] =

application: Generic[0..1] = {}

Fig 1. Unified Modeling Language (UML) [2] class diagram of the Core Scientific Dataset (CSD) Model. Each class is represented with
a box that contains two compartments. The top compartment contains the name of the class, and the bottom compartment contains the
attributes of the class. The enumerations DimObjectSubtype and DVObjectSubtype are described in Tables 1 and 2 as the description of
the type attribute. The enumerations QuantityType, NumericType, and EncodingType are described in Tables 3, 4 and 5, respectively.
The enumeration UnsignedIntegerType is a subset of NumericType enumeration with only unsigned integers. The ScalarQuantity
represents a physical quantity containing a numerical value and a unit. Note: When encoding is base 64 the type and multiplicity for
the components attribute in InternalDependentVariableis String[1.."]. Similarly, when encodingisbase64 the
type and multiplicity for the sparse grid vertexes attribute in SparseSamplingis String[1].

https://doi.org/10.1371/journal.pone.0225953.g001

Each line in the bottom compartment of a box describes a single attribute of the class in the
form:

name : type multiplicity]=default {properties}

In this line name is the name of an attribute in the class, t ype defines the kind of object
that may be placed in the attribute, multiplicity indicates how many objects are assigned
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Table 1. The description of the attributes from the Dimension class in version 1.0 of the CSD model.

attribute

type
labels

coordinates

count
increment

coordinates offset

origin offset

complex fft

period

quantity name

label
description

reciprocal

application

Dimension
description

Required attribute for all Dimension objects. Holds a String object with one of the allowed DimObjectSubtype enumeration
literals—1linear, monotonic or labeled.

Required attribute for LabeledDimension objects. Holds an ordered and unique array of String objects containing UTF-8 allowed
characters. Invalid for LinearDimension and MonotonicDimension objects.

Required attribute for MonotonicDimension objects. Holds an ordered and unique array of strictly increasing or decreasing
ScalarQuantity objects along the dimension. The dimensionality of ScalarQuanti ty objects must be consistent with each other
and other dimension attributes. Invalid for LinearDimension and LabeledDimension objects.

Required attribute for LinearDimension objects. Holds an Integer object specifying the number of coordinates, Ny, along the
dimension. Invalid for MonotonicDimension and LabeledDimension objects.

Required attribute for LinearDimension objects. Holds a ScalarQuanti ty object specifying the increment, Axy, along the
dimension. Invalid for MonotonicDimension and LabeledDimension objects.

Optional attribute for LinearDimension objects. Holds a ScalarQuantity object specifying the coordinates offset, by, used in Eq
(3) to calculate the coordinates along the dimension. The default value is a physical quantity with a numerical value of zero. Invalid for
MonotonicDimension and LabeledDimension objects.

Optional attribute for LinearDimension and MonotonicDimension objects. Holds a ScalarQuantity object specifying the
origin offset, oy, along the dimension. The default value is a physical quantity with a numerical value of zero. Invalid for
LabeledDimension objects.

Optional attribute for LinearDimension objects. Holds a Boolean specifying how the coordinate, By, along the dimension are
calculated from Eq (3). When false, the value of Z; = 0 otherwise, Z; = T}/2 where Ty = Ny and Ny, — 1 for even and odd values of Ny,
respectively. Invalid for MonotonicDimension and LabeledDimension objects.

Optional attribute for MonotonicDimension and LinearDimension objects. Holds a ScalarQuantity object specifying the
period of the dimension. The default value is a physical quantity with an infinite numerical value, that is, the absence of this key indicates
that the dimension is non-periodic. When present it indicates that all dependent variables are periodic along the dimension. A
ScalarQuantity object with a numerical value of zero is invalid for this attribute. Invalid for LabeledDimension objects.

Optional attribute for MonotonicDimension and LinearDimension objects. Holds a String object containing the quantity
name associated with the dimension. This value may resolve ambiguities which may otherwise be inherent. For example, with only a unit
of “J/ (mol*K) ”, one cannot distinguish between the thermodynamic quantities ‘molar entropy’ and ‘molar heat capacity.” Similarly, the
units “1/s”, “Bg”, and “Hz"” all have the dimensionality of inverse time, but generally “Bq” would be an acceptable unit for the
quantity of radioactivity and “Hz” for frequency. If unspecified the valid quantity name is left at the end-user’s discretion. A list of
CSDM-accepted physical quantity names and their corresponding dimensionalities can be found in the supporting information. Invalid
for LabeledDimension objects.

Optional attribute for all Dimension objects. Holds a String object of UTF-8 allowed characters containing the label for the
Dimension object. The default value is an empty string.

Optional attribute for all Dimension objects. Holds a String object of UTF-8 allowed characters describing an instance of the
Dimension object. The default value is an empty string.

Optional attribute for MonotonicDimension and LinearDimension objects. Holds a ReciprocalDimension object. See Fig 1
for the list of attributes in this object. These attributes follow the same definitions as described in this Table with the only difference being
that these attributes describe the reciprocal dimension. Invalid for LabeledDimension objects.

Optional attribute for all Dimension objects. Holds a generic dictionary object. See section 2.5 for expected behavior.

There are three subtypes of this class—LinearDimension, MonotonicDimension, and LabeledDimension. See Fig 1 for the list of valid attributes for a

given subtype. If an attribute is optional, its value should only be serialized to the file if it is not the default value. As a reccommendation, when deserializing a JSON file

the numerical value associated with the physical quantities should be converted to a 32-bit or higher floating-point number.

https://doi.org/10.1371/journal.pone.0225953.t001

to the attribute. The multiplicity can be a single number, e.g., “ [1] ”, indicating that one
object must be assigned to the attribute. Alternatively, the multiplicity can be given as a lower
and upper bound for how many objects can be assigned to the attribute, e.g., “ [0. . 1] indi-
cates that the assignment of a single object to an attribute is optional. An asterisk indicates an
unlimited number of objects. For example, an attribute with a multiplicity of “ [1. .*]” must
have no less than one object and an unlimited upper bound of objects that can be assigned

to it. The default is the object assigned when an optional attribute is unspecified. The
{properties} value at the end of the line gives additional information on the attribute. In
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Table 2. The description of the attributes from the DependentVariable class in version 1.0 of the CSD model.

attribute

type

components

components_url

quantity type

numeric type

unit
quantity name

encoding

component labels

name

description

sparse_sampling

application

DependentVariable
description

Required attribute for all DependentVariable objects. Holds a String object with one of the two allowed DVObjectSubtype
enumeration literals—internal or external.

Required attribute for InternalDependentVariable objects. Holds an ordered array of p components. When the value of encoding
attribute is none each component, Uy, is an ordered array of numerical values. When the value of the encoding attribute is base 64, each
component is a Base64 string. Invalid for ExternalDependentVariable objects.

Required attribute for ExternalDependentVariable objects. Holds a String object containing the Uniform Resource Locator
(URL) of a local or a remote file where the ordered array of numerical values {U, .. .,Uy, .. ., U,} are stored as binary data. The CSD model
utilizes the ht tps and £1ile schemes for locating the files. For local data files, the URL is specified relative to the . csdfe file and is located
either in the folder containing the . csdfe file or in a subfolder of the folder containing the . csdfe file. The corresponding syntax follows

file:./relative/path/to/the/file. Invalid for InternalDependentVariable objects.

Required attribute for all DependentVariable objects. Holds a String object with any of the allowed Quanti tyType enumeration
literals from Table 3. The value specifies the number, p, and interpretation of the DependentVariable components.

Required attribute for all DependentVariable objects. Holds a String object with one of the allowed NumericType enumeration
literals from Table 4. This value represents the numeric type and the number of bits associated with each numerical value in Eq (5) when the
component data is stored in an external file or when Base64 encoded into a string. When numerical values are expressed as JSON numbers,
this value specifies the numerical precision needed for import.

Optional attribute for all DependentVariable objects. Holds a String object representing the unit associated with the data values in Eq
(5). The default value is “”, i.e., the data values are dimensionless.

Optional attribute for all DependentVariable objects. Holds a String object containing the quantity name associated with the physical
quantity. See the description for the quantity name attribute in Table 1 for further details.

Optional attribute for InternalDependentVariable objects. Holds a String object with one of the allowed EncodingType
enumeration literals in Table 5. This value specifies the encoding method used to store the data values in the components attribute. The
default value is none. Invalid for ExternalDependentVariable objects.

Optional attribute for all DependentVariable objects. Holds an ordered array of String objects where the 4™ String is the label
associated with the ¢ component. The default value is an ordered set of empty strings.

Optional attribute for all DependentVariable objects. Holds a String object of UTF-8 allowed characters containing the name
associated with the dependent variable. Naming is good practice as it improves the human readability of the serialized file when multiple
dependent variables might be present. The default value is an empty string.

Optional attribute for all DependentVariable objects. Holds a String object of UTF-8 allowed characters describing an instance of the
DependentVariable. The default value is an empty string.

Optional attribute for all DependentVariable objects. Holds a SparseSampling object, which contains the attributes

dimension indexes and sparse grid vertexes. Theattribute dimension indexes holds an array of integers indicating
which dimensions in the ordered array of dimensions are sparsely sampled and form the sparse grid. The attribute
sparse grid vertexes holds an array of integers defining the ordered set of sampled vertexes on the sparse grid. See section 2.4.1 for
further details.

Optional attribute for all DependentVariable objects. Holds a generic dictionary object. See section 2.5 for expected behavior.

If an attribute is optional, its value may only be serialized to the file if it is not the default value.

https://doi.org/10.1371/journal.pone.0225953.t1002

Fig 1 this is used to indicate whether a set of objects assigned to an attribute is ordered and/or
unique.

For object attribute names we adopt the “snake case” convention with all lower case charac-
ters and “camel case” for class or type names. Attribute value types used in the model are given
in Table 6 along with the corresponding JSON value type used for serialization of the model.
Of particular importance in the CSD model is the ScalarQuanti ty type, which is com-
posed of a numerical value and any valid SI unit symbol or any number of accepted non-SI
unit symbols. It is serialized in the JSON file as a string containing a numerical value followed
by the unit symbol, for example, *3.4 m” (SI) or *2.3 bar” (non-SI). The CSD model fol-
lows the International System of Units guideline [3] for defining the physical quantities. In
software usage, one must adhere to stricter conventions for unit and physical constant symbols
to avoid ambiguities and symbol collisions. All unit symbols are case sensitive. For derived
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Table 3. QuantityType enumeration literals allowed in version 1.0 of the CSD model.

literals
scalar
vector_n

matrix m n

symmetric matrix n

pixel n

description
This value represents a p = 1, single-component dependent variable where the i data value is interpreted as a scalar value, S, = U, ,.
The value represents a p = n component dependent variable where the i data value is interpreted as a vector,V; = [U,, U, U,y

The value represents a p = mn component dependent variable where the i data value is interpreted as a m x n matrix, with m rows and n columns.
The p components of the matrix are in column-major order.

i mi (n—1)m,i
Uy, Ui U(nfl)m+1.i
M, =
Unti Uss Ui

Here, the entry at the 7" row and the ¢ column is U,,,..,.

n(n+1)
2

The value represents a p = component dependent variable. This is a special case of matrix data value where n = m and the matrix is symmetric
about the leading diagonal. In this case, only the upper half of the matrix is specified. The 1 x 1 symmetric matrix, M, of the i data value is

interpreted as,

[]U.x Ul.i Un—l,r
U U Usnoai
MY =
Ui Upgy oo U,

The value represents a p = n component dependent variable where the i" data value is interpreted as a pixel, [Uy;, Uy, . . ., Up—y,:], with the n
components corresponding to pixel component intensities. Note this quantity type, as do all quantity types, is restricted to components that share the
same physical dimensionality, i.e., can be added or subtracted, making it, for example, appropriate for holding RGB or CMYK components but not
HSV components.

The literals are String objects and correspond to the value of the quantity type attribute of the DependentVariable object. In the description, the index i

refers to the i data value from the ordered array, Ug, in Eq (5).

https://doi.org/10.1371/journal.pone.0225953.t003

Table 4. NumericType enumeration literals allowed in version 1.0 of the CSD model.

literals description
uint8 8-bit unsigned integer
uintlé6 16-bit unsigned integer
uint32 32-bit unsigned integer
uint64 64-bit unsigned integer
int8 8-bit signed integer
intl6 16-bit signed integer
int32 32-bit signed integer
int64 64-bit signed integer
float32 32-bit floating-point number
float64 64-bit floating-point number
complex64 two 32-bit floating-points numbers
complex128 two 64-bit floating-points numbers

The literal is a String object corresponding to the value of the numeric_type attribute of the
DependentVariable object.

https://doi.org/10.1371/journal.pone.0225953.t1004
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Table 5. EncodingType enumeration literals allowed in version 1.0 of the CSD model.

literals | description

base64 | The binary data corresponding to the ordered array of numerical values in U, from Eq (5) is stored as a
Base64 encoded strings for the numeric type specified assuming ‘little-endian’ format. This is the
recommended storage method when the type attribute of the corresponding DependentVariable
objectis internal.

none The literal denotes that the ordered array of numerical values from Eq (5) are serialized as JSON
numbers. This is the default encoding type when the encoding attribute is not present in the
DependentVariable object.

The literals are the String object corresponding to the value of the encoding attribute of the
DependentVariable object.

https://doi.org/10.1371/journal.pone.0225953.t1005

unit symbols, the multiplication and division of the units are represented by the asterisk sym-
bol, “*”, and the solidus symbol, “* /", respectively. For example, a unit of speed is “m/s".
Note that derived unit symbols in the CSD model require explicit use of the multiplication
symbol instead of multiplication implied with spacing between symbols, e.g., use “N*m”
instead of “N m”. Similarly, avoid the use of compound symbols, e.g., use “kW*h” instead of
“kWh". The caret symbol, “~” is used for raising unit symbols to a power—a unit of force is
“kg*m”~2/s”2”, and a unit of concentration is “g/cm” 3”. Operator precedence can be
specified using parentheses, e.g., *J/ (mo1*K) ”. Also, note that while both °C and °F are
valid units, they are not proper thermodynamic temperature units and are discouraged due to
their ambiguity. Further details on the SI system and how units are used in the CSD model are
given in the supporting information.

2.2 CSDM object

At the root level of the CSD model is the CSDM object. The CSDM object includes a
required version attribute whose value is a string representing the version number of
the CSD model, here assigned a string value of “1.0”. The optional t imestamp attribute
indicates when the CSDM file was last serialized and holds a combined date and time string

Table 6. Mapping of CSD model attribute values to JSON serialized values.

CSD model attribute value type JSON value type
DependentVariable object
Dimension object
DimObjectSubtype string
DVObjectSubtype string
ScalarQuantity string
NumericType string
EncodingType string
QuantityType string
String string
Integer number
Boolean boolean

The relation between the CSD model attribute value types and the corresponding JSON serialized value type. In
JSON serialization the attribute name is the JSON key.

https://doi.org/10.1371/journal.pone.0225953.t1006
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representation of the Coordinated Universal Time (UTC) formatted according to the ISO-
8601 standard. The optional geographic coordinate attribute indicates where the
CSDM file was last serialized and holds a GeographicCoordinate object, inside which
are three attributes: the required 1atitude and longitude, and the optional alti-
tude. Positive latitude values indicate latitudes north of the equator, while negative values
indicate latitudes south of the equator. Longitude values are relative to the zero meridian,
with positive values extending east of the meridian and negative values extending west of the
meridian. Positive altitudes indicate above sea level while negative values indicate below sea
level. All three are ScalarQuantity types. The optional boolean read only attribute is
set to true for archived datasets—informing applications that the dataset should not be modi-
fied or overwritten. The optional tags attribute holds a set of UTF-8 allowed string values
describing keywords associated with the dataset. The description attribute appears in
nearly every CSD model object and holds a UTF-8 allowed string describing the instance of
the model object. The application attribute also appears in nearly every CSD model
object and is a generic object that can be used for storing application-specific metadata
within the CSD model. Further details on the expected behavior of application attri-
butes are given in section 2.5.

The dependent variables and dimensions attributes each hold a set of Depen-
dentVariable and Dimension objects, respectively. The ordered and unique set of
Dimension objects, indexed from k = 0 to d — 1, define the d-dimensional coordinate grid
where discrete samples of the dependent variables are taken.

2.3 Dimension object

The mapping of grid vertexes along the k™ dimension to an ordered set of coordinates, X, are
defined by one of three Dimension subtypes: LabeledDimension, MonotonicDi-
mension, and LinearDimension. Fig 1 gives the required and optional attributes along
with their default values for the three subtypes. Descriptions of the attributes for all three sub-
types are also given in Table 1, and examples of various instances are given in section 3.

2.3.1 LabeledDimension object. An ordered set, Ay, of Ny character string labels in the
labels attribute of a LabeledDimension object are mapped to the grid vertexes along
the k™ dimension, becoming the ordered set of coordinates, X, along the dimension, as given
by

X, = A,. (1)

This is a purely qualitative dimension, with no physical significance given to the spacing
between grid vertexes along the dimension.

2.3.2 MonotonicDimension object. An ordered set, Ay, of N strictly ascending or
descending coordinates in the coordinates attribute of a MonotonicDimension
object are similarly mapped to the grid vertexes along the k™ dimension and become the
ordered set of coordinates along the dimension, also given by Eq (1).

For the MonotonicDimension and LinearDimension objects, the CSD model
allows the mapping of grid vertexes along a dimension to an ordered set of absolute coordi-
nates, X2, using the origin_offset attribute according to

X =X, + 0,1, (2)

where oy is the value of the origin offset attribute. Note, the ScalarQuantity
objects in Xy, and o, must all share the same unit dimensionality.
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2.3.3 LinearDimension object. The ordered set of Ny uniformly spaced coordinates along
the k™ LinearDimension object are given by

X, =Ax, (J, = Z,) + b1, (3)

where Axy and by, are the ScalarQuantity objects in the increment and coordina-
tes offset attributes, respectively, and J; is an ordered set of coordinate indexes along the
k™ dimension,

J,=00,1,2...j,...,N, —1]. (4)

Here, N} is the Integer object in the count attribute. As before, the absolute coordi-
nates along the k™ dimension are given by Eq (2). Again, the ScalarQuanti ty objects Ax;,
by, and o must all share the same unit dimensionality.

The Zj variable in Eq (3) is an integer with a value of Z; = 0 when the LinearDimension
attribute complex fftis false.The complex fft issetto true when acomplex fast
Fourier transform (FFT) has been applied to the dataset along the k™ dimension, and then the
value of Z; becomes T}/2, where Ty = Ny and Ny, — 1 for even and odd values of Ny, respectively.
There are two reasons for the inclusion of the attribute complex fft and the different val-
ues of Z;. First, it provides the metadata needed for determining whether a forward (false)
or reverse (t rue) complex FFT should be performed on the dataset. Second, a value of Z; =
Ti/2 in Eq (3) when complex fft is true associates by with the zero “frequency” after a
complex FFT. This definition makes b, independent of count and the increment in the
Reciprocal dimension, i.e., the dimension before the complex FFT.

2.3.4 ReciprocalDimension object. An optional attribute named reciprocal can be
present in both the LinearDimension and MonotonicDimension objects. This attri-
bute holds a ReciprocalDimension object which contains metadata about the coordinate
that is reciprocal to the Xj coordinate. This metadata is useful for datasets which are frequently
transformed into the reciprocal dimension, such as NMR, FTIR and x-ray datasets.

2.4 DependentVariable object

The DependentVariable object can be one of two subtypes: InternalDependent-
Variable and ExternalDependentVariable, depending on whether the serialized
components are stored internally with the rest of the serialized metadata or externally at a
location specified by a uniform resource locator (URL) [4], respectively. Descriptions of all
DependentVariable attributes are given in Table 2, as well as through examples given in
section 3. See Fig 1 for the required and optional attributes along with their default values.

A DependentVariable object holds an ordered set of p components indexed from
q=0top-1,

oo Uk (5)

Each component, U, contains an ordered array of M physical quantity values indexed from
i=0to M — 1. These values represent samples on the coordinates grid and are ordered to fol-
low a column-major order relative to the ordered set of dimensions. If U, contains a sample at
every vertex of the d-dimensional grid, then

1
M= | |N,, (6)

d—
k=0
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and the mapping of the values in U, to the grid vertexes follows a simple reshaping of U, to a
Ny x Ny % ... x Ny_; matrix where d is the number of Dimension objects. In this case, the
location or memory offset of the i™ value in a component array maps to a grid vertex with
coordinate indexes, (jo, ji, - - -» j4—1)> given by

ji=——— mod N,,  k=0,....d—1. (7)

=0 "¢

Conversely, the memory offset of the i value in a component array is obtained from the

ordered array of coordinate indexes (jo, i, - - -» j4-1), according to
-1 k-1
=5 (I )i ®
k=0 \1=0

It is also helpful to recall that the value of the empty product, [ [/, a,, where m > n is 1.

Taken together, the i values from each of the p components form a quantity specified by
one of the quantity type attribute values given in Table 3.

InternalDependentVariable. The components attribute in an InternalDepen-
dentVariable object holds an ordered array of p components, and each component, U,,
is an ordered array of M numerical values associated with the g™ component. When the
value of the encoding attribute is none or unspecified, a JSON serialization of this object
gives a human-readable list of numerical values. This approach, however, is not resourceful
compared to the serialization of raw binary data. As JSON files are strictly text-based it is not
possible to serialize raw binary data inside a JSON file. A commonly used approach to reduce
JSON file sizes in such situations is to encode raw binary data into plain text using a binary-
to-text encoding scheme. The CSD model allows this approach with the raw binary data for
each component encoded into a Base64 string when the encoding attribute is set to
base64. In this case, JSON serialization of the components attribute in an Internal-
DependentVariable object holds an ordered array of p Base64 strings where the g™
string represents the array U,. Out of the various binary-to-text encoding schemes, we chose
Base64 encoding because of its widespread use and easy access to decoders across most
object-oriented programming languages. Base64 provides an efficiency of ~75% compared
to the serialization of raw binary data. When encoding and decoding raw binary data with
Base64 we assume a ‘little-endian’ byte order for multi-byte numeric types such as 32-bit and
64-bit integers or floats. Typically, data saved on Intel x86 platforms use the little-endian as
the native format. Also, binary floating-point standard IEEE 754 is assumed for float and
complex numeric types.

ExternalDependentVariable. The components_url attribute is only valid when the
value of the corresponding t ype attribute is external. Its value is a String object con-
taining the address of a local or a remote file where the ordered array of numerical values
{Uo, .. ..U, ..., Uy} are stored as binary data. In this case we also assume little-endian byte
order and the binary floating-point standard IEEE 754 for float and complex numeric types.
The CSD model utilizes the ht tps and £i1e schemes of the Uniform Resource Locator
(URL) for locating the files. For local data files, the URL is specified relative to the . csdfe file
(see section 2.6) and is located either in the folder containing the . csdfe file or in a subfolder
of the folder containing the . csdfe file. The corresponding syntax follows, file:./rela-
tive/path/to/the/file.

2.4.1 SparseSampling object. Eqs (6), (7) and (8) are no longer valid when the Depen-
dentVariable components are sparsely sampled on the d dimensional grid. In this case,
additional metadata is required to determine the grid vertex, (jo, j1, - - -» ja-1), where the ith
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sampled component value belongs. If the component is sparsely sampled along all d dimen-
sions, then the additional metadata can be an ordered set of M grid vertexes. We must, how-
ever, consider the general mixed case of s fully sampled dimensions and d — s sparsely sampled
dimensions. In this case, we adopt an approach where the component values are organized
into a set of fully sampled s-dimensional cross-sections taken at vertexes of a sub-grid formed
from the sparsely sampled dimensions, which we will call the sparse grid. In adopting this
approach, we require that the component values along the fully sampled dimensions are packed
together into the array in column-major order relative to the ordered set of fully sampled dimen-
sions, i.e., excluding the sparsely sampled dimensions.

The SparseSampling object provides this metadata in its two attributes dimension
indexes and sparse grid vertexes.Thedimension indexes attribute holds
an ordered and unique set of integers indicating along which dimensions the Dependent-
Variable is sparsely sampled. These dimensions form the sparse grid. The sparse grid
vertexes holds an ordered set of vertexes on the sparse grid. Each sparse grid vertex is
an ordered array of d — s indexes. To make the serialization more resourceful, we flatten the
ordered set of arrays intended for the sparse grid vertexes attribute into an ordered
array of integers, for example,

[[1,0],[3,4],[5,7],8,11],...] — [1,0,3,4,5,7,8,11,.. ],

in a case of two sparsely sampled dimensions. The set of arrays (on the left) can be easily recon-
structed from the array of integers (on the right) given the number of indexes specified in the
dimension_indexes attribute. Additional storage reduction can be had by encoding the
sparse_grid vertexes array as a Base64 character string of specified unsigned
integer type and little-endian byte ordering. The encoding attribute in the Sparse-
Sampling object would indicate this option with a value of base64.

2.5 Generic application objects—Beyond the CSD model

As stated earlier, the objective of the CSD model is to encapsulate the data values and the
minimum metadata needed to accurately represent the data in an appropriate coordinate
system, that is, the minimum metadata for defining the current state of the dataset. Thus, the
goal of the CSD model is to always remain relevant as the state of the dataset changes. In our
refinement of the CSD model, we identified any metadata attribute as extraneous if it could
become irrelevant as the state of the dataset changes. Metadata attributes extraneous to the
CSD model could generally be classified as belonging in one of four broad and somewhat
overlapping categories: acquisition, process, analysis, and presentation. The design of mod-
els organizing these extraneous metadata attributes tends to be scientific domain specific,
although some commonalities exist. The CSD model allows the inclusion of metadata mod-
els describing these other categories using generic application objects. An application
can place its own attribute type, e.g., a dictionary object with application-specific metadata
attributes inside each generic application object using a reverse domain name notation
string as the attribute key, for example, “com.example.myApp”. The use of a reverse-DNS
key provides a simple mechanism for reducing name-space collisions. Overall, we believe
generic application objects give the CSD model enough flexibility to become the native
file format of many applications.

This approach, however, creates a dilemma when CSDM files are saved and opened by
different applications. Specifically, what does an application from company B (e.g., “com.B.
process”) do with generic application objects placed in a CSDM file by an application
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from company A (e.g., “com.A.acquire”)? On the one hand, company B could retain the
company A specific metadata (as found) in the generic application object using the “com.A.
acquire” key as well as serialize its own metadata using the “com.B.process” key. If the com-
pany B application made any modification to the dataset, however, it runs the risk that parts
of the company A application-specific metadata are now irrelevant or logically inconsistent
with the newly saved dataset—potentially causing company A’s application to crash when it
tries to open this newly saved dataset. On the other hand, company B could decide to discard
the company A specific metadata, in which case the company A application can safely open
the dataset saved by company B, but will have lost all of its previously saved metadata. Find-
ing a consistent solution to this dilemma is critically important as one can easily envision a
workflow where a dataset passes through many applications as it progresses from the raw
dataset to the final “product.” During such a workflow there is often an expectation of an
audit trail, which most likely could be determined from application metadata saved by each
application used during the workflow.

One approach that could solve this dilemma is to allow the CSDM file to contain a time-
ordered array of CSDM objects. In other words, company B would simply append a second
CSDM object with only company B metadata to the array that already contains the CSDM
object created by company A. No application metadata would be lost, and the metadata in
each CSDM object would be relevant and logically consistent with its respective datasets. In
this approach, the CSDM “array” file would grow as each application completes its task in the
overall workflow.

It is our opinion, however, that it is better to delegate such a task of managing a time-
ordered array of CSDM objects to the operating system. In this approach, we envision the
workflow associated with a particular dataset to result in a folder containing a series of CSDM
files, each a snapshot from the workflow as it progresses from the raw dataset to the final
“product.” When each application is finished with its workflow task a CSDM file is saved with
the read only flag set to true, so that any future work on the dataset would be performed
on a copy of the CSDM dataset, leaving the “read-only” file with application metadata intact.
Typically, the read _only flag would be set to true immediately after the acquisition of raw
data, after processing is complete, or after analysis of a dataset. Delegating the task of managing
a time-ordered set of CSDM objects to the operating system also makes the workflow status
involving individual CSDM files more transparent to the end-user. In adopting this solution
we propose the general rule that while app1ication attributes should be visible to any appli-
cation opening a CSDM file, only the reverse-DNS owners have permission to use their respective
keys to place an attribute in an application object.

An application could implement an additional layer of protection from application meta-
data loss by saving CSDM compliant files with its own application-specific file extension.
Other applications could still open the CSDM compliant file but would be discouraged from
saving with another application’s file extension.

2.6 JSON file-serialization

A JSON file is ordinarily a UTF-8 encoded text file which is built on two structures: a collection
of unordered key-value pairs and an ordered list of values. The “key”: value pair is sepa-
rated by a colon symbol, with the key to the left and the value to the right of the colon. Dif-
terent key-value pairs are separated using commas. The JSON keys are always wrapped in
double quotation marks, as in “key”, and the value type can either be (a) a string, (b) a num-
ber, (c) a JSON object, (d) an array, (e) a boolean or (d) null. A string is a composition of
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JSON allowed characters [1] wrapped in double quotation marks. A number can be integer or
float. A JSON object is an unordered set of key-value pairs which begins with a left curly brace,
{,and ends in a right curly brace, }. An array is an ordered collection of JSON values that
begins with a left square bracket, [, and ends in a right square bracket, ]. A boolean is true or
false. In the JSON serialization of the CSD model, the JSON ™ key ™ corresponds to the attri-
bute name of the various CSD model objects while the JSON value and CSD model attribute
value follow the relationship listed in Table 6.

Efforts have been made in the design of the CSD model to keep the keys intuitive and self-
explanatory to all scientists and engineers. To further enhance the human-readability aspect of
the files, we recommend, as a general rule, that no key be present in the file unless its value dif-
fers from the default value. With this in mind, the CSD model defines all boolean values as
false when unspecified. In other words, the only boolean keys that need to appear in the file are
those set to true.

The serialization file names are designated with two possible extensions: . csdf and .
csdfe, the acronyms for Core Scientific Dataset Format and Core Scientific Dataset Format
External. When all data values are stored within the file, i.e., there are no instances of an
ExternalDependentVariable object in the serialization, then the . csdf file extension
is allowed, otherwise, the serialization file name must use the extension . csdfe. This differ-
ence in extensions is intended to alert the end-user to a possible risk of failure if the external
data file is inaccessible when deserializing a file with the . csdfe file extensions.

3 dD{po, p1, - - .} example datasets

In this section we examine the CSD model in a number of illustrative examples. We use a
shorthand notation of dD{p} to indicate that a dataset has a p-component dependent variable
defined on a d-dimensional coordinate grid. In the case of correlated datasets the number of
components in each dependent variable is given as a list within the curly braces, i.e., dD{pq, p1,
D2 -}

Efforts have been made to include examples across disciplines, although given our expertise
in magnetic resonance spectroscopy, we include multiple examples from this field. It is worth
noting, however, that magnetic resonance datasets prove to be excellent test cases for the CSD
model as they are diverse and often multi-dimensional in nature. We have converted a variety
of datasets from various fields to the CSD model format. To accomplish this, we utilize several
Python packages [5, 6] to import the original field-specific scientific datasets as Numpy [7]
array(s) and export the latter in the CSD model format using the csdmpy package for Python,
described in the appendix.

3.1 1D{1} examples

In this section, we examine the JSON serialization for illustrative cases of 1D{1} datasets. These
are the simplest cases, with one dimension, d = 1, and one single-component dependent vari-
able, p = 1. The supplementary material gives further 1D{1} examples from FITR, UV-vis, and
EPR spectroscopies.

GMSL.csdf. An example of a JSON serialized CSD model holding a 1D{1} dataset is
shown in Listing 1. This dataset is a measurement of the global mean sea level [8] (GMSL)
based on the satellite altimeter data from 1993-20009.

Listing 1. CSD model depiction of the global mean sea level dataset. A JSON serialized
CSD model describing the global mean sea level dataset. The listing was created by the authors
using data from reference [8].
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GMSL. csdf

{

csdm": {
"version": "1.0",
"timestamp": "2019-05-21T13:43:00Z",
"tags": ["Jason-2", "satellite altimetry", "mean sea level", "climate"],
"description": "Global Mean Sea Level (GMSL) rise from late 19th to Early 21st
Century.",
"dimensions": [
il
"type": "linear",
"count": 1608,
"increment": "0.083333333 yr",
"coordinates offset": "1880.0417 yr"
ik
1l
"dependent _variables": [
{
"type": "internal",
"unit": "mm",
"quantity type": "scalar",
"numeric_type": "float32",
"component labels": ["GMSL"],
"components": [
[-183.0,
-171.125,

59.6875,
58.5]

I
) &)
T 9

—100+
—150

Global Mean Sea Level / mm

1880 1900 1920 1940 1960 1980 2000
Time / yr

Fig 2. CSD model depiction of the global mean sea level dataset. A line plot, derived from Listing 1, depicting the
global mean sea level as a function of time. The figure was created by the authors using data from reference [8].

https://doi.org/10.1371/journal.pone.0225953.9002
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At the root level is the csdm key, an acronym for the core scientific dataset model. The
value of this key is a JSON object which is a serialization of the CSD model’s CSDM object and
includes six keys—version, timestamp, tags, description, dimensions, and
dependent variables. The value of the dimensions key is an array (lines 7-14) with
a single JSON object defined in-between lines 8 and 13. This object is a JSON serialization of
the CSD model’s Dimension object. In this example, it represents a LinearDimension
object, as indicated by the value of 1inear in the type key, and with a coordinate count
of 1608 as defined by the value of the key count. Furthermore, it is a temporal dimension
with ScalarQuantity valuesof 0.08333 yr for increment and 1880.0417 yr
for coordinates_offset. The coordinates at vertexes along this temporal dimension are
obtained from Eq (3).

The value of the dependent variables keyis an array (lines 15-31) with a single
JSON object describing the global mean sea level. This object is a JSON serialization of an
InternalDependentVariable object, with data values stored within the object, as indi-
cated by the value of internal for the t ype key. The data values are serialized as JSON
numbers as seen in-between lines 23-28 of Listing 1. Ellipses indicate where superfluous lines
were omitted from the listing. The value of £10at 32 for the numeric_type key indicates
that the array of JSON numbers should be converted into a numerical array of data values with
32-bit floating-point precision on import. The value of mm for the unit key is the unit associ-
ated with the data values. The value of the component labels is an array with a single
entry holding the label associated with the component values. The value of scalar for the
quantity type key indicates that the component of the dependent variable is interpreted
as scalar.

A plot of the dataset is shown in Fig 2. Note that meta-data on how a dataset is presented in
a plot or otherwise is not included in the CSD model. While such presentation metadata is out-
side the scope of the core model, it can be included in an application dictionary.

blochDecay.csdf. Another simple example of a 1D{1} dataset, acquired by the authors for
this work, is shown in Listing 2. This example corresponds to a *C free induction decay signal
from a nuclear magnetic resonance spectroscopy of ethanol.

The value of the dimensions key is an array (lines 12-26) with a single JSON serialized
LinearDimension object (lines 13-25) representing a temporal dimension with 4096 coor-
dinate positions sampled every 0.1 ms starting at —0.3 ms. The coordinate values along the
dimension are evaluated using Eq (3). This LinearDimension object also contains an
optional JSON serialized ReciprocalDimension object (lines 19-24) as the value of the
reciprocal key. In this example, it provides the metadata needed for describing the recip-
rocal time or the frequency dimension, i.e., after a Fourier transform.

The value of the dependent variables key is an array (lines 27-41) with a single
JSON serialized InternalDependentVariable object (lines 28-40) describing the sig-
nal response. While the keys and values in this object are similar to the corresponding object
from the previous example, a key difference is that the value of the numeric_type key
denotes a complex 64 numeric type. Complex numbers are stored as an ordered array of
alternating real and imaginary data values, starting with the real value. In this example, the
first and the last complex numbers of the signal in Fig 3 are (-8899.406 — i1276.773) and
(—193.923 — i67.065), respectively. Note that the length of the ordered data array is 2M for
complex numeric types, where M is the total number of sampled data points. Fig 3 shows a
line plot of the time domain NMR decay signal.

Listing 2. CSD model depicting an 1-D NMR dataset. JSON serialized CSD model
describing the '*C NMR Bloch decay time signal along with the relevant metadata of the recip-
rocal frequency dimension.
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blochDecay.csdf

{
"csdm": {
"version": "1.0",
"timestamp": "2016-03-12T16:41:00Z",
"geographic__coordinate": {
"altitude": "238.9719543457031 m",
"longitude": "-83.05154573892345°",
"latitude": "39.97968794964322°"
},
"tags": ["13C", "NMR", "spectrum", "ethanol"],
"description": "A time domain NMR 13C Bloch decay signal of ethanol.",
"dimensions": [
{
"type": "linear",
"count": 4096,
"increment": "0.1 ms",
"coordinates _offset": "-0.3 ms",
"quantity name": "time",
"reciprocal": {
"quantity name": "frequency",
"oﬁgh{_oﬂbet”: "75.42632886 MHz",
"coordinates _offset": "3.005363 kHz",
"label": "13C frequency shift"
}
Ir
g
"dependent _variables": [
{
"type": "internal",
"quantity type": "scalar",
"numeric_type": "complex64",
"components": [
[-8899.40625,
-1276.7734375,

-193.9228515625,
-67.06524658203125]

acetone.csdf. In Listing 3 is an illustration of a 1D{1} mass spectrum dataset [9] serialized
with sparse sampling. Here the InternalDependentVariable object (lines 17-43)
holds a SparseSampling object (lines 23-34) in the sparse sampling key. Inside the
SparseSampling object are the three keys dimensions indexes, sparse grid
vertexes,and unsigned integer type.Thedimensions indexes key holds
an array of integers specifying the indexes of the dimensions along which the dependent vari-
able is sparsely sampled. In this case, it is the zeroth dimension, i.e., the only dimension in the
dataset. The sparse grid vertexes key holds an array of integers specifying the ver-
texes on the one-dimensional sparsely sampled grid. Again, in this example with only one
dimension, the array of integers corresponds to the sampled sparse grid vertexes, i.e., the
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Fig 3. CSD model depicting an 1-D NMR dataset. A plot, derived from Listing 2, of the real (left) and imaginary
(right) >C NMR Bloch decay signal as a function of time.

https://doi.org/10.1371/journal.pone.0225953.g003

coordinate indexes, jo, along the zeroth dimension. The value uint8 for the unsigne-
d integer type key is the numeric type used when importing the JSON serialized integer
array from the sparse grid vertexes key.

3.2 2D{1} examples

TEM.csdf. In Fig 4 is an intensity plot of a Transmission Electron Microscopy (TEM) data-
set of a section of the early larval brain of Drosophila melanogaster used in the analysis of neuro-
nal microcircuitry [10]. The CSDM JSON serialization for this 2D{1} dataset is given in Listing
4. This dataset has two dimensions, d = 2, and one single-component dependent variable, p = 1.

The value of the dimensions key is an array with two JSON serialized LinearDimen—
sion objects, defined in-between lines 8-12 and 13-17. Both these objects describe a linearly
sampled spatial dimension with 512 points sampled every 4 nm. As before, Eq (3) gives the
ordered list of the coordinates along the respective dimensions. The value of the depen-
dent variables keyisan array containing a single JSON serialized InternalDepen-
dentVariable object (lines 20-26). Unlike the previous examples, the value of the
components key is an array with a single element. This element is a Base64 encoded string,
as indicated by the encoding key, and decodes to an array of binary data values which are
interpreted as an array of numerical values with a uint8 numeric type. The array of numeri-
cal values is then mapped to the 512 x 512 coordinate grid according to Eqs (7) and (8).

bubble.csdfe. In Fig5and in Listing 5 we present a 2D{1} astronomy dataset of the bubble
nebula acquired at 656 nm wavelength by the Hubble Heritage Project [11] team. In this exam-
ple, the value of the dimensions key is an array with two JSON serialized LinearDimen-
sion objects defined in lines 8-15 and 16-23. Both these objects describe a linearly sampled
angular dimension. The value of the dependent variables key is an array with a single
JSON serialized ExternalDependentVariable object, described in lines 26-32. In this
example, the value of the t ype key is external, indicating that the data values are stored in
an external file located at the Uniform Resource Locator (URL) address given by the compo-
nents_url key. In this case, the address corresponds to a local file, designated by the file
scheme of the URL, relative to the location of the bubble. csdfe file. The external file holds
an ordered array of 11592 x 11351 binary values, which are specified by the numeric type
key as 32-bit floating-point numbers.
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acetone.csdf

Listing 3. CSD model depiction of a sparse mass spectrum. JSON serialized CSD model
describing the mass spectrum of acetone.

"esdm": {
"version": "1.0",
"timestamp": "2019-06-23T17:53:26Z",
"description": "Mass spectrum of acetone",

"dimensions": [

"type": "linear",

"count": 51,

"increment": "1",

"coordinates _offset": "10",

"label": "m/z",

"quantity name": "dimensionless"

"dependent _variables": [

"type": "internal",
"name": "acetone",
"numeric_type": "float32",
"quantity type": "scalar",
"component labels": ["relative abundance"],
"sparse_sampling": {
"dimension_indexes": [0],
"sparse_grid_vertexes": [
27,
28,

48,
49
15
"unsigned _integer type": "uint8"
i
"components": [
[9 1
9,

270,
10]

Listing 4. CSD model depiction of a TEM image dataset. JSON serialized listing of a TEM
dataset containing one single-component InternalDependentVariable object and
two LinearDimension objects. The listing was created by the authors using data from ref-
erence [10].
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TEM. csdf
{
"esdm": {
"version": "1.0",
"timestamp": "2016-03-12T16:41:00Z",
"tags": ["TEM", "Drosophila melanogaster"],
"description": "TEM image of the early larval brain of Drosophila melanogaster
used in the analysis of neuronal microcircuitry.",
"dimensions" : [
af
"type": "linear",
"count": 512,
"increment": "4.0 nm",
}’
{
lltypell . |llinearll .
"count": 512,
"increment": "4.0 nm"
}
5
"dependent _variables": [
{
"type": "internal",
"quantity type": "scalar",
"numeric_type": "uint8",
"encoding": "base64",
"components": ["fmt6fI0DjI5w ... Onfzbekqw=="
3
]
}
}

length / um

1.0
length / um

dimensionless

Fig 4. CSD model depiction of a TEM image dataset. An intensity plot, derived from Listing 4, of a TEM dataset
depicting the early larval brain of Drosophila melanogaster. The figure was created by the authors using data from
reference [10].

https://doi.org/10.1371/journal.pone.0225953.g004
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Listing 5. CSD model depiction of an astronomy image dataset. JSON serialized listing of
the astronomy dataset describing the bubble nebula observed at 656 nm wavelength. The list-
ing was created by the authors using data from reference [11].

bubble.csdfe

{
"esdm": {
"version": "1.0",
"timestamp": "2016-02-26T16:41:00Z",
"tags": ["Bubble Nebula","Hubble"],
"description": "The dataset is a new observation of the Bubble Nebula acquired
by The Hubble Heritage Team, in February 2016.",
"dimensions": [
{
"type": "linear",
"count": 11596,
"increment": "-2.27930619e-05 °",
"coordinates offset": "350.311874957 °",
"quantity _name": "plane angle",
"label": "Right Ascension"
Ipg
{
"type": "linear",
"count": 11351,
"increment": "1.10055218e-05 °",
"coordinates _offset": "61.12851495 °",
"quantity name": "plane angle",
"label": "Declination"
}
g
"dependent _variables": [
{
"type": "external",
"name": "Bubble Nebula, 656nm",
"quantity type": "scalar",
"numeric_type": "float32",
I'components_url" : "file:./Bubble_1.dat"
}
]
}
ik

satRec.csdf. A monotonic dimension is employed when measurements are not uniformly
spaced or span several orders of magnitude along a dimension. An example of a 2D{1} dataset
with a monotonic dimension, acquired by the authors, is given in Listing 6. Here the dataset
comes from a *’Si NMR magnetization recovery measurement of a highly siliceous ZSM-12
zeolite sampled on a 2D rectilinear grid. Fig 6 depicts a stacked plot corresponding to the data-
set from Listing 6.

The value of the dimensions key is an array with two JSON serialized Dimension
objects (lines 18-30 and 31-38). The first is a LinearDimension object, labeled as t,,
describing a temporal dimension with 1024 points sampled at every 80 ys with a coordina-
tes offset of —41.04 ms. Additionally, this LinearDimension object contains a Reci-
procalDimension object serialized as the value of the reciprocal key. The second is
aMonotonicDimension object, labeled as t;, with the coordinates associated with grid
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Fig 5. CSD model depiction of an astronomy image dataset. A log intensity plot, derived from Listing 5, of the

bubble nebula [11] observed at 656 nm wavelength. The figure was created by the authors using data from reference

[11].
https://doi.org/10.1371/journal.pone.0225953.9005

vertexes along the dimension explicitly given in the ordered set of values in the coordinates
key. The value of the dependent variables keyis an array with a single JSON serialized
InternalDependentVariable object (lines 41-47) describing the signal response. Here,
the data values are encoded as an array with one Base64 string in the components key.

This listing also gives an example of the use of the application keyin the csdm
dictionary. Here an application owning the domain name physyapps . com has placed an
attribute in the application dictionary using the reverse domain name key com.phy-
syapps . rmn. Domain name owners are free to place any valid JSON object as the value of
their respective reverse domain name attribute inside the application dictionary. In this
case, the domain name owner has used the reverse domain name key com.physyapps.
rmn to place a dictionary holding two keys, focus and dimension precedence.

An application key can also be placed in any Dimension, ReciprocalDimen-
sion, DependentVariable, and SparseSampling object. Again, according to the
rule in section 2.5, only the reverse domain name owner has permission to serialize a file using
their respective reverse domain name as a key in the application attribute.

iglu_ld.csdf. Listing 7 is a 2D{1} example of an NMR signal shown in Fig 7 with sparse sam-
pling along one dimension [12]. Here the InternalDependentVariable object (lines
30-44) holds a SparseSampling object (lines 37-43) in the sparse sampling key. The
SparseSampling object contains three keys dimension indexes, sparse grid
vertexes,and unsigned integer type.Thedimension indexes keyholds an
array of integers specifying the indexes of the dimensions along which the dependent variable is
sparsely sampled, in this case, the k = 1 dimension. The sparse grid vertexes keyholds
an array of integers specifying the vertexes on the one-dimensional sparsely sampled grid. Since
there are two dimensions in the dataset the array of integers corresponds to the coordinate
indexes, j;, along the k = 1 dimension. In this example, the dependent variable values are fully
sampled along the k = 0 dimension. The value of the unsigned integer type keyholds
the numeric type used in importing the integer array from sparse grid vertexes.
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Listing 6. CSD model depiction of a 2-D NMR dataset. JSON serialized listing of *Si

NMR magnetization saturation relaxation dataset containing one single-component Depen-

dentVariable object and two Dimension objects.

satRec.csdf

2
"csdm": {
"version": "1.0",
"timestamp": "2016-03-12T16:41:00Z",
"tags": ["29Si", "NMR", "nuclear magnetism relaxation", "zeolite ZSM-12"],
"description": "A 29Si NMR magnetization saturation recovery measurement of
highly siliceous zeolite ZSM-12.",
"application": {
"com.physyapps.rmn": {
"focus": {
"mem_offset": 166,
"component _index": 0,
"dependent variable index": 0

i
"dimension _precedence": [0,1]

}

}
"dimensions": [

{
"type":
"count": 1024,

"increment": "0.08 ms",
"coordinates _offset": "-41.04 ms",
"label": "t2",
"reciprocal": {
"Oﬁgh[_oﬂbet”: "79.578822262 MHz",
"coordinates offset": "-8.7660626 kHz",
"quantity name": "frequency",
"label": "29Si frequency shift"
i)

}’

i
"type": "monotonic",

"coordinates": [
B s RGRa
g
"label": "t1",
"quantity _name": "time"
Iy
] s
"dependent _variables": [
{
"type": "internal",
"quantity type": "scalar",
"numeric_type": "complex64",
"encoding": "base64",
"components": ["AEU2Q7h/...yONGPyJD"]

"linear",

"10 S","20 S","40 S","80 s"
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Fig 6. CSD model depiction of a 2-D NMR dataset. A stacked plot, derived from Listing 6, of an NMR dataset depicting the **Si saturation recovery
measurement of a highly siliceous ZSM-12 zeolite.

https://doi.org/10.1371/journal.pone.0225953.9006

iglu_2d.csdf. Listing 8 is a 2D{1} example of an NMR signal shown in Fig 8 with sparse
sampling along two dimensions [12]. As before, the sparse sampling key holds a Spar-
seSampling object with the dimension indexes, sparse grid vertexes,and
unsigned integer type attributes. The dimension indexes key holds an array of
two integers, k = 0 and 1, specifying the sparse sampling dimensions. The sparse grid
vertexes key holds an array of integers defining the vertexes on the two-dimensional
sparsely sampled grid. As described in section 2.4.1 this array is a flattened ordered set of
arrays which can be reshaped into the ordered set of sparse grid vertexes, i.e.,

0,0,1,0,...,972,511,1015,511] — [[0,0],[1,0],...,[972,511], [1015, 511]].

The i vertex in the ordered set of sparse grid vertexes specifies the sparse grid location of
the i value in each component array of the dependent variable.

3.3 2D{3} example

RGB_image.csdf. A simple example of a 2D dataset with multiple components is a color
image [13], such as the one shown in Fig 9. This is a 2D{3} dataset, with two LinearDimen-
sion objects and one three-component dependent variable, p = 3. The CSDM serialization is
shown in Listing 9. The dimensions key holds an array with two JSON serialized Linear-
Dimension objects (lines 8-13 and 14-19) with 1024 and 768 points, respectively, and a unit
sampling interval. The dependent variable key holds an array with a single JSON seri-
alized InternalDependentVariable object (lines 22-34) containing an image dataset
as indicated by the pixel 3 value ofthe quantity type key. The first part, pixel, indi-
cates pixel data, and the last part, 3, gives the number of pixel components. An array holding
to the three components, i.e., the red, green, and blue color intensities with each encoded as a
Base64 string, is the value of the components key. The Base64 decoded binary data values
are then interpreted as an array of 8-bit unsigned integer (uint8), for each component, and
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subsequently mapped onto a 1024 x 768 coordinate grid. The value of the component la-

bels key is an array of the labels ordered to match the order of the components.

Listing 7. CSD model depiction of a sparse NMR dataset with one sparse dimension.
JSON serialized listing of ">C-'>N NMR HSQC dataset containing one single-component
DependentVariable object and two Dimension objects. The listing was created by the

authors using data from reference [12].

iglu_1d.csdfe

i
"csdm": {
"version": "1.0",
"timestamp": "2019-07-07T23:41:50Z",
"dimensions": [
i
"type": "linear",
"count": 1024,
"increment": "0.192 ms",
"label": "1H t2",
"quantity name": "time",
"reciprocal": {
"origin _offset": "400.13 MHz",
"quantity name": "frequency",
"coordinates _offset": "-3.32 Hz"}
e
i
"type": "linear",
"count": 512,
"increment": "0.192 ms",
"label": "1H t1",
"quantity name": "time",
"reciprocal": {
"origin_offset": "400.13 MHz",
"quantity name": "frequency",
"coordinates _offset": "-3.32 Hz"}
ik
1,
"dependent _variables": [
{
"quantity name": "dimensionless",
"numeric_type": "complex64",
"components_url": "cos.data",
"quantity type": "scalar",
"type": "external",
"name": "cos",
"sparse_sampling": {
"dimension_indexes": [1],
"sparse_grid_vertexes": [
05 1, .., 470, 499
I
"unsigned _integer type": "uint16"
ik
}
]
}
}
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Fig 7. CSD model depiction of a sparse NMR dataset with one sparse dimension. A plot, derived from Listing 7, of

the real part of a 2D{1} dataset sparsely sampled in one dimension. The figure was created by the authors using data
from reference [12].

https://doi.org/10.1371/journal.pone.0225953.9007

3.4 3D{2} example

wind_velocity.csdfe. An example of a 3D{2} dataset, i.e., with three dimensions, d = 3,
and one two-component dependent variable, p = 2, is the wind velocity prediction [14] dataset
as a function of latitude, longitude and time, shown in Listing 10.

The value of the dimensions key is an array with three JSON serialized Dimension
objects. The first two LinearDimension objects, labeled as longitude and latitudes respec-
tively, describe two linear dimensions sampled at every 0.5° for 49 points starting at —102.5°
longitudes and 13.5° latitudes. Together, these two objects create a two-dimensional grid that
spans the region around the Gulf of Mexico as depicted in Fig 10. The third dimension is a
LabeledDimension object as indicated by the value of the t ype key. The corresponding
labels array lists six date-time stamps entries.

The value of the dependent variable key is an array with a single JSON serialized
ExternalDependentVariable object (lines 34-43) containing a two-component vector
dataset as identified by the quantity type key-value. This value is vector 2 where
the first part, vector, indicates vector data, and the last part, 2, gives the number of vector
components. The two vector components are labeled as ugrd10m-eastward windand
vgrdlOm-northward wind, in the array assigned to the component labels key.
The data values are located in an external file as a binary data whose address, relative to the
wind velocity.csdfe file, is the value of the components url key. The binary data
is interpreted as a 32-bit floating-point numerical array. Note, because the binary data does
not support array indexing, unlike JSON serialization, the corresponding numerical array of
data values is reshaped into a matrix which includes the number of components. In this case,
the reshaped matrix is 49 x 49 x 6 x 2, where the last number is the number of components,
p =2, and the remaining three is the number of points from the Dimension objects. Table 3
contains a description of the number of components, p, for each quantity type.
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Listing 8. CSD model depiction of a sparse NMR dataset with two sparse dimensions.

JSON serialized listing of '"H NMR TOCSY dataset containing two Dimension objects and
one single-component DependentVariable object with sparsely sampled values in both

dimensions. The listing was created by the authors using data from reference [12].
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iglu_2d.csdfe

"esdm": {

"version": "1.0",
"timestamp": "2019-07-14T15:13:09Z",
"dimensions": [

{
"quantity_name": "time",
"type": "linear",
"count": 1024,
"increment": "0.192 ms",
"label": "1H t2",
"reciprocal": {
"origin_offset": "400.13 MHz",
"quantity _name": "frequency",
"coordinates_ offset": "-3.32 Hz"}
},
L
"quantity_name": "time",
"type": "linear",
"count": 512,
"increment": "0.192 ms",
"label": "1H t1i",
"reciprocal": {
"origin _offset": "400.13 MHz",
"quantity_name": "frequency",
"coordinates_ offset": "-3.32 Hz"}
}
1,
"dependent _variables": [
{
"type": "external",
"quantity _name": "dimensionless",
"numeric_type": "complex64",
"quantity _type": "scalar",
"components_url": "cos.data",
"sparse_sampling": {
"dimension _indexes": [0, 1],
"sparse_grid vertexes": [
o, 0, 1, 0, ..., 972, 511, 1015, 511
1|y
"unsigned _integer _type": "uint16"
Y
}
]

Fig 10 depicts a quiver plot of the wind velocity at three different date-time stamps. Under-

laid these plots is a map of the Earth corresponding to the given range of latitudes and longi-
tudes. These plots were generated using the Matplotlib library [16] for python in addition to

the Matplotlib Basemap toolkit [15] for rendering maps.
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Fig 8. CSD model depiction of a sparse NMR dataset with two sparse dimensions. A plot, derived from in Listing 8,

of the real part of a 2D{1} dataset sparsely sampled in both dimensions. The figure was created by the authors using

data from reference [12].

https://doi.org/10.1371/journal.pone.0225953.9008

3.5 3D{6} example

brain_MRI.csdf. A 3D{6} dataset has three dimensions, d = 3, and one six-component
dependent variable, p = 6. An example of such a dataset is the second rank symmetric diffusion
tensor MRI dataset [17] of a brain given in Listing 11.

The value of the dimensions key is an array with three JSON serialized Dimension
objects describing the three spatial dimensions, labeled as x, y, and z respectively. Here, all
objects describe a linear dimension with the sampling resolution of 1 mm, and 148, 190 and
160 points along the respective dimension.

The value of the dependent variables key is an array with a single JSON serialized
InternalDependentVariable object (lines 30-51) describing a symmetric matrix
dataset as indicated by the value of the quantity type key. The value symmetric
matrix 3 emphasizes a six-component dataset as noted in Table 3. The six components,
labeled as Dxx, Dxy, Dxz, Dyy, Dyz, and Dzz respectively, are stored as Base64 strings as the
value of the component s key. Each Base64 decoded binary array is interpreted as 32-bit
floating-points array and subsequently reshaped to a 148 x 190 x 160 matrix.

The symmetric matrix data from the brain MRI.csdf file was partially processed as a
second-rank symmetric diffusion tensor to determine the isotropic diffusion coefficients. The
intensity plots in Fig 11 depicts the projection of the isotropic diffusion coefficients on to the
three spatial dimensions.

Listing 9. CSD model depiction of a RGB image dataset. JSON serialized listing of an
RGB image dataset containing two Dimension objects, and one DependentVariable
object with three components corresponding to red, green and blue color intensities. The list-
ing was created by the authors using the data [13] available under (Creative common 0) CCO
license.
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2| "esdm": {
3 "version": "1.0",
4 "timestamp": "2016-03-12T16:41:00Z",
5| "tags": ["raccoon", "image", "Judy Weggelaar"],
6| "description": "An RGB image of a raccoon face.",
7| "dimensions": [
8 {
9 "type": "linear",
10 "count": 1024,
11 "increment": "1",
12 "label" : "horizontal index"
13 irn
14 {
15 "type": "linear",
16 "count": 768,
17 "increment": "1",
18 "label" : "vertical index"
19 }
200 1,
21| "dependent variables": [
22 {
23 "type": "internal",
24 "name": "raccoon",
25 "quantity type": "pixel 3",
26 "numeric_type": "uint8",
27 "encoding": "base64",
28 "component labels": ["Red","Green","Blue"],
29 "components": [
30 "eYqZmbue ... eHlbeHd2",
31 "cIGQkpKU ... mbycnJua",
32 "gbSlp6es ... ZWRiX1lc"
33 ]
34 }
35 1]
36| }
37| }
X
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Fig 9. CSD model depiction of a RGB image dataset. An image plot, derived from Listing 9, of an RGB dataset
depicting a raccoon face. Photo credit: Judy Weggelaar.

https://doi.org/10.1371/journal.pone.0225953.9009
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Listing 10. CSD model depiction of a meteorology vector dataset. JSON serialized listing

of the predicted wind velocities over and around the Gulf of Mexico. The model contains one
two-component DependentVariable object and three Dimension objects. Listing was
created by the authors using data from the national centers for environment information/
national oceanic and atmospheric administration [14].
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wind_velocity.csdfe

{
"esdm": {
"version": "1.0",
"timestamp": "2018-12-12T10:00:00Z",
"tags": ["wind velocity", "weather forecast"],
"description": "Dataset from NOAA/NCEP Global Forecast System (GFS) Atmospheric
Model. Latitudes and longitudes defined in geographic coordinate system

"dimensions": [
{
"type": "linear",
"label": "longitude",
"count": 49,
"coordinates _offset": "-102.5 °",
"increment": "0.5 °"},

Iltypell . lllinearll 5

"label": "latitude",

"count": 49,

"coordinates _offset": "13.5 °",
"increment": "0.5 °"},

"type": "labeled",

"description": "Forecast time for ForecastModelRunCollection. Data time
stamps defined with ISO 8601 format.",

"label": "UTC date-time stamp",

"labels": [

"2018-12-12T12:00:00Z",
"2018-12-12T18:00:00Z",
"2018-12-13T00:00:00Z",
"2018-12-13T06:00:00Z",
"2018-12-13T12:00:00Z",
"2018-12-13T18:00:00Z"]
}
] s
"dependent _variables": [
{ "type": "external",

"description": "Component labels are standard attribute names used by
Dataset Attribute Structure (.das). ’ugrdiOm’ is ’eastward wind
velocity at 10 m above ground level’, and ’vgrdiOm’ is ’northward wind
velocity at 10 m above ’ground level’.",

"components_url“ : "file:./NCEP_Global.dat",

"component_labels": ["ugrdiOm-eastward_wind", "vgrdiOm-northward_wind"],

"quantity type": "vector_2",

"name": "Wind velocity dataset",

"numeric_type": "float32",

"quantity _name": "speed",

"unit": "m/s"

1]
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Fig 10. CSD model depiction of a meteorology vector dataset. A quiver plot, derived from Listing 10, of the wind
velocities from the dataset in Listing 10 at three different date-time stamps. The underlaid map of the Earth
corresponding to the latitudes and longitudes is rendered using the Matplotlib Basemap toolkit [15]. The figure was
created by the authors using data from reference [14].

https://doi.org/10.1371/journal.pone.0225953.9010
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Listing 11. CSD model depiction of an MRI tensor dataset. JSON serialized listing of the
diffusion tensor MRI dataset [17] of the brain containing one six-component Dependent-
Variable object and three Dimension objects. Listing was created by the authors using
data from reference [17].

© 00 N O Uk W N

CU U b b o b R b R b R b W W W W W W W WW W NDNDNDNDNDNDNDNDN =R e e e e e
H O © 00 N O Uk WNHE O OO0 OO WN RO ©O000N OO WN RO © 00N OO WD~ O

52
53
54

brain_MRI.csdf

{
"csdm": {
"version": "1.0",
"timestamp": "2016-03-12T16:41:00Z",
"tags": ["MRI", "image", "brain" ,"diffusion temnsor"],
"dimensions": [
{
"type": "linear",
u|abe|u: "X",
"quantity name": "length",
"count": 148,

"increment": "1.0 mm"

"type": "linear",

u|abe|u: nyu’

"quantity name": "length",
"count": 190,

"increment": "1.0 mm"

"type": "linear",
u|abe|u: nzu’
"quantity _name": "length",
"count": 160,
"increment" :
}
1)
"dependent _variables": [
{
"type": "internal",
"quantity _type": "symmetric_matrix_ 3",
"encoding": "base64",
"numeric_type": "float32",
"components": [
"kIa/PisXXEAwp+4/Pa8MQHsG... ",
"aCplv7vVYcAAKOm/QpCkv2Jq. .. ",
"AAAAAAAAAAAAAAAAAAAAAFDP/... ",
"416IwdjgZsG+I4DB1H2IwbVO... ",
"pjiUPyb3pD9AaKo+IJF4Poyq. .. ",
"kIa/visXXMAwp+6/Pa8MwDn4... "
1,
"component _labels": [
UDxx!
UDXY LS
"Dxz",
IIDyy"’
"Dyz",
"Dz

"1.0 mm"
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Fig 11. CSD model depiction of an MRI tensor dataset. The intensity plots, derived from the diffusion tensor MRI dataset in Listing 11, are the projection of
the isotropic diffusion coefficients, calculated on to the three spatial dimensions. The figure was created by the authors using data from reference [17]. The
diffusion tensor MRI Brain dataset [17] courtesy of Gordon Kindlmann at the Scientific Computing and Imaging Institute, University of Utah, and Andrew
Alexander, W. M. Keck Laboratory for Functional Brain Imaging and Behavior, University of Wisconsin-Madison.

https://doi.org/10.1371/journal.pone.0225953.g011

3.6 2D{1,1,2,1,1} example

An example of a 2D{1,1,2,1,1} dataset using data from the US National Centers for Environ-
ment Information / National Oceanic and Atmospheric Administration [14] is given in
Listing 12.

In this example, the value of the dimensions key is an array with two LinearDimen-
sion objects describing the two spatial dimensions, labeled as longitude and latitude,
respectively. The value of the dependent variables key is an array with five Exter-
nalDependentVariable objects describing the surface temperature (po = 1), the air tem-
perature at 2 m above ground level (p; = 1), the two-component wind velocity vector at 10 m
above surface (p, = 2), the relative humidity (p; = 1), and the air pressure at the sea level (py =
1). Fig 12 depicts the intensity and quiver plots of four dependent variables.

3.7 0D{1,1} example

J_vs_s.csdf. The CSD model also allows the serialization of datasets without a coordi-
nate grid. A 0D{1,1} datasets, for example, has no dimensions, d = 0, and two single-compo-
nent dependent variable, p, = 1 and p; = 1. The listing for such a dataset [18] is given in
Listing 13. In this example, the two “correlated” dependent variables are the *°Si-*’Si
nuclear spin couplings, *J, across a Si-O-Si linkage and the s-character product on the O and
two Si along the Si-O bond across the Si-O-Si linkage [18]. The value of the dependent
variables keyis an array with two JSON serialized InternalDependentVariable
object (lines 7-16 and 17-27). The first object, named as Gaussian computed J-couplings,
describes the *J couplings. The data values are stored as a Base64 string in the components
key. The Base64 decoded binary array is interpreted as a 32-bit floating-point numerical
array following the value of the numeric type key. The second object is named as the
product of s-characters. Here, the data values are again stored as a Base64 string, which after
decoding is interpreted as a 32-bit floating-point numerical array. A scatter plot revealing
the correlation between the two dependent variables from the dataset in Listing 13 is pre-
sented in Fig 13.
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Listing 12. CSD model depiction of a meteorology dataset with multiple dependent-var-
iables. JSON serialized listing of multiple dependent variables including scalar and vector on
a two-dimensional grid. Listing was created by the authors using data from the US National
Centers for Environment Information / National Oceanic and Atmospheric Administration

[14].

NCEI.csdfe
42 "numeric type": "float64",
1o 43 "quantity type": "scalar",
2 "csdnft: { 44 "con1ponéats url": "file:./air_temp_at_2m.dat"
3| "version": "1.0", 45 1o h
4 "timestamp": "2017-09-17T12:00:00Z", 46 {
5 "read__or.lly": true, 47 "type": "external,
6 "description": "Dataset from NOAA/NCEP Global 48 "name": "Wind velocity at 10 m",
) Fo:{ecast System (GFS) Atmospheric Model.", 49 "unit": "m/s",
7| "dimensions": [ 50 "quantity name": "speed",
8 { 51 "con1p0néat labels": ["ugrdiOm - eastward wind
9 "type": "linear", velocity at 10m", "vgrdiOm - northward wind
10 "Fount": 192, velocity at 10m"],
11 “increment": “0.5 degree, 52 "numeric type": "float64",
12 "coordl'nates_offset": "264.0 degree", 53 "quantity type": "vector_2",
13 "quantity_name": "plane angle", 54 "con1ponéats url": "file:./wind_velocity.dat
14 "label": "longitude" 55 }, -
15 b5 56 {
16 { 57 "type": "extermnal",
17 "type": "linear®, 58 "name": "Relative humidity",
18 “Fount": 89, 59 "unit": "%,
19 "|ncren'1ent": "0.5 degree", 60 "quantity name": "dimensionless",
20 “coordl.nates_offset": "-4.0 degree", 61 "component labels": ["rh2m - relative humidity
21 "quantity _name": "plane angle", at 2m"] ,_
22 "label": "latitude" 62 "numeric type": "float64",
23 ¥ 63 "quantity type": "scalar",
24| 1, 64 "compone_nts url": "file:./relative_humidity.dat
25| "dependent_variables": [ " -
20 { 65 .
27 "type": "external", 66 {
28 “navuﬂ: "Surface air temperature", 67 "type": "external,
29 “unn“i K", 68 "name": "Air pressure at sea level",
30 "quantity _name": "temperature", 69 "unit": "Pa",
31 "component _labels": ["tmpsfc - surface air 70 "quantity name": "pressure",
teml?erature"] 5 71 "component labels": ["prmslmsl - mean sea level
32 "numel:lc_type": "float64", pressur;..] ,
35 "quantity _type": "scalar", 72 "numeric type": "float64",
34 “mmnponents_urh "file:./surface_temp.dat" 73 "quanthy_type": "scalar",
99 } 74 "components url": "file:./
a6 { sea_leve]:air_pressure .dat"
37 "type": "external", 75 }
38 "name": "Air temperature at 2 m", 76
39 "unit" : LRI 77
40 "quantity_name": "temperature", 78
41 "component labels": ["tmp2m - air temperature
at 2m"],
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Fig 12. CSD model depiction of a meteorology dataset with multiple dependent-variables. The figure depicts (a) an
intensity plot of the air temperature at 2 m above surface, (b) a quiver plot of the wind vectors at 10 m above surface, (c) an
intensity plot of the relative humidity, and (d) an intensity of the air pressure at sea level corresponding to the last four
dependent-variables from Listing 12. These plots are overlaid on the coastline map of the Earth corresponding to the
latitude and longitudes. These coastline were rendered using the Matplotlib Basemap toolkit [15]. The plots were generated
using the Matplotlib library [16] for python. The figure was created by the authors using data from reference [14].

https://doi.org/10.1371/journal.pone.0225953.9012

Listing 13. CSD model depiction of a computational dataset. JSON serialized listing of
quantum chemistry calculation of nuclear spin-spin coupling constant between *’Si nuclei
across a Si-O-Si linkage in small cluster molecule. An example dataset with two Dependent-
Variable objects and no Dimension objects. The listing was created by the authors using
data from reference [18].

J_vs_s.csdf

1| {

2| "esdm": {

3| "version": "1.0"

4 "timestamp": "2016-03-12T16:41:002",

5 "tags": ["magnetic resonance", "29Si", "nuclear J coupling", "computational
chemistry", "silicates"],

6| "dependent_variables": [

7 {

8 "type": "internal",

9 "name": "Gaussian computed J-couplings ",

10 "unit": "Hz",

11 "component _labels": ["J-coupling"],

12 "quantity _type": "scalar",

13 "numeric_type": "float32",

14 "encoding": "base64",

15 "components": [ "Btjvvi/vtr/+ ... w2TJQYV8OEE="]

16 1,

17 {

18 "type": "internal",

19 "name": "product of s-characters",

20 "unit": " %",

21 "component _labels": ["s-character product"],

22 "quantity _type": "scalar",

23 "numeric_type": "float32",

24 "encoding": "base64",

25 "components": [ "xIJYP6N5Wj+6 ... +ovDP3mOwz8="]

26 ]

27 }

28| 1

29| }

30| }
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Fig 13. CSD model depiction of a computational dataset. Two dependent variables [18] correlating *J; ¢, couplings
to the corresponding product of s-characters on the Si, O and Si atoms along the Si-O bond across the Si-O-Si linkage.
The figure was created by the authors using data from reference [18].

https://doi.org/10.1371/journal.pone.0225953.9013

4 Conclusions

We have designed the Core Scientific Dataset (CSD) Model as a lightweight, portable, versatile,
resourceful, and standalone data model that is capable of handling multi-dimensional and cor-
related datasets from various spectroscopies, diffraction, microscopy, and imaging techniques.
A guiding principle in the design of this model was to encapsulate only the minimal metadata
necessary to represent the correlated datasets sampled on a common orthogonal coordinate
grid. The model also allows for sparse sampling on this grid. Throughout the model, we

make use of the ScalarQuanti ty class, which is composed of a numerical value and any
valid SI unit symbol or any number of accepted non-SI unit symbols. This approach enables
tremendous flexibility in allowing the dataset model to be agnostic of the scientific domain.
Historically, this may have been perceived as a potential barrier to software implementation of
the CSDM, however, in recent years libraries capable of parsing units have become freely avail-
able for various computing environments such as Matlab, Mathematica, and python. The CSD
model is independent of the hardware, operating system, application software, and file-seriali-
zation method used for data exchange. The model provides a mechanism for the inclusion of
additional application-specific metadata without compromising its fundamental role as a data
exchange and archiving standard. When serialized using JSON serialization the resulting file
format is human readable and integrable with most object-oriented programming languages
and software. The serialization of the CSD model has been adopted as an open dataset file for-
mat in NMR software development under our control, i.e., SIMPSON [19, 20], DMFIT [21],
jsSNMR [22], and RMN [23], which already have a large installed user base within the solid-
state NMR scientific community. We envision the CSD model and its associated file format as
playing an important role in community accessible databases and in greater data-trail integrity
and compliance issues for many research laboratories.
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Appendix
Scaled variables

Coordinates along a dimension can also be converted into scaled quantities based on other
attributes in the Dimension object or in application meta-data. For example, in nuclear
magnetic resonance spectroscopy, the spectra are conventionally plotted as a function of a
dimensionless frequency ratio. In CSD model, the origin offset, o is interpreted as

the NMR spectrometer frequency and the coordinates_ offset, by, as the reference fre-
quency. Given the dimension coordinate, Xy, from Eq (3), the corresponding dimensionless-
coordinate ratio follows,

X,

ratio __
X =
O — by

©)

csdmpy

The csdmpy module is the Python support for the core scientific dataset (CSD) model file-
exchange format. The source code is available at https://github.com/DeepanshS/csdmpy and
the corresponding documentation at https://csdmpy.readthedocs.io/en/stable, which includes
links for downloading the CSDM compliant files used in this report.

The main objective of this python module is to facilitate the import and export of the CSD
model serialized files for Python users. Moreover, the module utilizes Python libraries such as
Numpy and therefore allowing the end-users to process or visualize the imported datasets with
any third-party package(s) compatible with Numpy.

Supporting information

S1 File. Additional CSDM examples and review of units and constants as used in the CSD
model.
(PDF)
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