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Abstract

Many interesting search problems can be formulated as bi-
objective search problems, that is, search problems where
two kinds of costs have to be minimized, for example, travel
distance and time for transportation problems. Bi-objective
search algorithms have to maintain the set of undominated
paths from the start state to each state to compute the set of
paths from the start state to the goal state that are not domi-
nated by some other path from the start state to the goal state
(called the Pareto-optimal solution set). Each time they find
a new path to a state s, they perform a dominance check to
determine whether this path dominates any of the previously
found paths to s or whether any of the previously found paths
to s dominates this path. Existing algorithms do not perform
these checks efficiently. On the other hand, our Bi-Objective
A* (BOA¥*) algorithm requires only constant time per check.
In our experimental evaluation, we show that BOA* can run
an order of magnitude (or more) faster than state-of-the-art bi-
objective search algorithms, such as NAMOA*, NAMOA*dr,
Bi-Objective Dijkstra, and Bidirectional Bi-Objective Dijk-
stra.

Introduction

The A* algorithm (Hart, Nilsson, and Raphael 1968) is at
the core of many heuristic search algorithms developed to
solve shortest path problems due to its strong theoretical
properties, especially when used in conjunction with con-
sistent heuristic functions. In such problems, one has to find
a path from a given start state to a given goal state that mini-
mizes the path cost. However, there are often multiple kinds
of path costs in real life. For example, government agencies
that transport hazardous material need to find routes that do
not only minimize the travel distance but also the risk of ex-
posure for residents (Bronfman et al. 2015). Motivated by
such applications, researchers have extended A* to solve
multi-objective shortest path problems where one wants to
find the set of Pareto-optimal paths from the start state to
the goal state, that is, the optimal paths on the Pareto fron-
tier. Two such state-of-the-art A* extensions are the Multi-
Objective A* (MOA*) (Stewart and White IIT 1991) and New
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Approach for MOA* (NAMOA*) (Mandow and Pérez-de-la-
Cruz 2010) algorithms.

These best-first multi-objective search algorithms differ
from A* in various ways. The most relevant difference in
the context of this paper is that the concept of optimality
is now related to dominance since the set of Pareto-optimal
paths is the set of paths that are not dominated by any path,
where path p dominates path p’ iff each kind of path cost
of p is no larger than the corresponding kind of path cost
of p’ and at least one kind of path cost of p is smaller than
the corresponding kind of path cost of p’. Since dominance
checks are repeatedly performed throughout the execution
of these algorithms, the time complexity of the checks plays
a crucial role for their efficiency. For example, upon gener-
ating any node, they need to check if the newly found path
to some state s is dominated by a previously found path to s
and, if so, discard the newly found path. They also need to
check whether a previously found path to s is dominated by
the newly found path to s and, if so, discard the previously
found path.

NAMOA* is inefficient at performing these checks.
Pulido, Mandow, and Pérez-de-la-Cruz (2015) proposed an
improvement, called NAMOA*dr. NAMOA*dr significantly
improves the time complexity of some of the checks to con-
stant time, but the time complexity of other checks remains
linear in the size of the Open list and the number of paths
found to a given state.

In this paper, we address these limitations. Our Bi-
Objective A* (BOA¥*) algorithm prunes dominated paths
more efficiently by exploiting that there are only two kinds
of path costs and that the heuristic function is consistent. It
performs all dominance checks in constant time, which we
achieve by making some of the eager checks more efficient
and converting the remaining eager check into a number of
lazy checks, each of which can be performed in constant
time. This improvement results in a significant speedup, es-
pecially for large instances.

Our extensive experimental results on road maps show
that BOA* can run an order of magnitude (or more) faster
than NAMOA*, NAMOA*dr, Bi-Objective Dijkstra, and
Bidirectional Bi-Objective Dijkstra, especially for large in-
stances. We conclude the paper by discussing how one might



be able to improve and extend BOA*, including how to
speed it up, find representative solutions on the Pareto fron-
tier, find bounded-suboptimal solutions, and generalize it to
problems with more than two kinds of path costs.

Notation and Terminology

A bi-objective search graph is a tuple (S, E, c), where S
is the finite set of states, E C S x S is the finite set of
edges,and c : E — R20 x R29 is a cost function that
associates a pair of non-negative real costs with each edge.
Succ(s) = {t € S| (s,t) € E) denotes the successors of
state s.

A bi-objective search problem instance is a tuple P =
(S, E, ¢, Sstart, Sgoal)» Where (S, E,c) is a search graph,
Sstart € S is the start state, and 5404, € S is the goal state.!
A path from s; to s, is a sequence of states si, So,..., Sy,
such that (s;, s;41) € F foralli € {1,...,n — 1}. Unless
mentioned otherwise, s1 = Sstqrt- A path is a solution for
instance P iff it is a path (from ss447¢) t0 Sgoai-

Boldface font indicates pairs. p; denotes the first compo-
nent of pair p, and p- denotes its second component; that is,
p = (p1, p2). The addition of two pairs p and g and the mul-
tiplication of a real-valued scalar k and a pair p are defined
in the natural way, namely as p+q = (p1 +q1, p2 +¢2) and
kp = (kp1, kp2), respectively. p < q denotes that (p1 < q;
and po < @) or (p1 = ¢ and p2 < g2). In this case, we
say that p dominates q. p < q denotes that p; < ¢; and
p2 < g¢o. In this case, we say that p weakly dominates q.
P < q (resp. P < q) for a set P of pairs denotes that there
exists ap € P such that p < q (resp. p < q).

c(r) = ' 'c(sisit1) is the cost of path m =
S1y-+y8n. ™ < 7 (resp. m < ') for two paths 7 and 7’
denotes that c(m) < c(n’) (resp. c¢(m) < c(n’)). In this
case, we say that = dominates (resp. weakly dominates) 7'

Given an instance P, a Pareto-optimal solution 7 for P is
a solution for P such that 7’ 4 7 for all solutions 7’ for P,
that is, a Pareto-optimal solution is one that is not dominated
by any solution. The Pareto-optimal solution set is the set of
all Pareto-optimal solutions. We are interested in finding any
maximal subset of the Pareto-optimal solution set such that
any two solutions in the subset do not have the same cost
and refer to this subset as the cost-unique Pareto-optimal
solution set.

A heuristic functionh : S — RZ% x RZ0 is such that the
h-value h(s) estimates the cost of a path from state s to the
goal state. h is admissible iff h(s) < c(r) for all states s and
all paths 7 from s to the goal state, that is, both components
of h are admissible for the corresponding components of the
cost function. Similarly, h is consistent iff (1) h(sg40a) =
(0,0) and (2) h(s) < c(s,t) + h(t) for all (s,t) € E. We
assume that the reader is familiar with the properties of A*
when used with a consistent heuristic function, for example,
that the sequence of expanded nodes has monotonically non-
decreasing f-values.

"'We use a single goal state for simplicity since any search prob-
lem instance with multiple goal states can be transformed into one
with a single goal state.

Best-First Bi-Objective Search

In this section, we describe how a Pareto-optimal solution
set can be computed using best-first search.

Open List: We can compute the Pareto-optimal solution
set with a modified version of A* that maintains an Open
list, containing the frontier of the search tree (that is, the
generated but not yet expanded nodes), and, optionally, a
Closed list, containing the interior of the search tree (that
is, the expanded nodes). A node is associated with a state,
a g-value, an h-value, and an f-value and corresponds to a
path to the state of a cost that is equal to the g-value. Differ-
ent from A¥*, the g-, h-, and f-values are tuples rather than
scalars. Also different from A*, the Open list might contain
different nodes with the same state, corresponding to differ-
ent paths to the same state, since we need to compute the
Pareto-optimal solution set rather than a single solution.

Node Selection: The algorithm repeatedly extracts a node
from the Open list. To guarantee optimality, the f-value of
the extracted node must not be dominated by the f-value of
any node in the Open list.

Solution Recording: When the algorithm extracts a node
with the goal state, the path corresponding to the node is a
solution. Different from A*, the algorithm cannot terminate
and return this solution since it has to compute the Pareto-
optimal solution set. Thus, it checks whether this solution is
dominated by a previously found solution. If not, then it adds
this solution to the solution set and removes all solutions
from the solution set that are dominated by this solution. In
both cases, it continues the search.

Node Expansion: = When the algorithm extracts a node
with a non-goal state, it expands the extracted node. Let the
extracted node have state s. The algorithm then generates
the child nodes of the extracted node, one for each successor
t of s, by adding them to the Open list. It terminates when
the Open list is empty and returns the solution set.

Efficiency: = We can improve the efficiency of the algo-
rithm by performing the dominance checks not once it has
found a solution but earlier. In particular, we do not need
to generate a child node with state ¢ of an extracted node
if the f-value of the child node (which is a lower bound
on the costs of all solutions that complete the path that the
child node corresponds to) is dominated by the f-value (that
is, cost) of a solution in the solution set or by the f-value
of a node with state ¢ that has already been generated (cor-
responding to a path to ¢ that has already been found). In
addition, we can remove all paths to ¢ from the Open list
whose f-values are dominated by the f-value of the newly
found path to ¢. If ¢ is the goal state, we also have to re-
move all solutions from the solution set whose f-values (that
is, costs) are dominated by the f-value (that is, cost) of the
newly found solution.

The NAMOA#* Algorithm

NAMOA* (Mandow and Pérez-de-la-Cruz 2010) is a best-
first multi-objective search algorithm that provides the foun-
dation for most multi-objective search algorithms. Algo-
rithm 1 shows its pseudocode for bi-objective search prob-
lems. It takes as input a bi-objective search problem and



a consistent heuristic function and computes the Pareto-
optimal solution set. We describe its key elements in the fol-
lowing.

Variables: Each node in the Open list is a triple of the
form (s, gs, fs) with state s, g-value g, and f-value f; and
corresponds to a path to s of cost g;. In addition, NAMOA*
maintains parents. Different from A*, a parent is a set of g-
values of some of the predecessors of s (rather than a single
predecessor) and is associated with g-value g (rather than
state s). Also different from A*, NAMOA* also maintains
two sets of g-values for state s, namely G;(s), which con-
tains the g-values of all expanded nodes with state s, and
G p(s), which contains the g-values of all generated but not
yet expanded nodes with state s.

Node Selection: NAMOA* always extracts a node from
the Open list whose f-value is not dominated by the f-value
of any node in the Open list. Such a node can be identi-
fied efficiently for bi-objective search problems as a node
in the Open list with the lexicographically smallest f-value
(f1, f2) of all nodes in the Open list (Line 8). To see why
this is correct, let (f71, f4) be the f-value of any node in the
Open list. Then, either (1) f1 = f{ and fo < f} or (2)
f1 < fi. Inboth cases, (f1, f3) A (f1, f2); thatis, (f1, f2)
is not dominated by the f-value of any node in the Open list.
Consequently, the nodes in the Open list should be ordered
in increasing lexicographic order of their f-values.

Solution Recording: When NAMOA* extracts a node
with the goal state, it has found an undominated solution. In
this case, it adds the g-value of the node to the solution set
and removes all nodes from the Open list whose f-values
are dominated by the f-value of the node (Lines 10-13).

Node Expansion: When NAMOA* extracts a node with
a non-goal state, it expands the extracted node (s, g5, f;) by
calculating its child nodes (¢, g, f;), one for each successor
t of state s. If it has generated a node with state ¢ and g-
value g; before, then it adds g, to the parent set parent(g;)
(Lines 16-18) (which corresponds to recording another path
to t of cost g; and is necessary since NAMOA* computes the
Pareto-optimal solution set rather than a single solution). In
this case, it does not add the child node to the Open list. Nei-
ther does it add the child node to the Open list if g; is dom-
inated by the g-value of a generated node with state ¢ (Lines
19-20) (which corresponds to pruning the newly found path
to t since it is dominated by another path to ¢ that has al-
ready been found). Neither does it add the child node to the
Open list if the f-value f; is dominated by the f-value (that
is, g-value and cost) of a solution in the solution set (Lines
22-23) (which corresponds to pruning the newly found path
to ¢ since it is dominated by a solution that has already been
found). Otherwise, it generates the child node by adding it
to the Open list, adding g; to G,,(t), making g, the only
g-value in the parent set parent(g;) (which corresponds to
recording the first path to ¢ of cost g;), and removing all ref-
erences to paths to ¢ from the Open list, G, (t), and G (¢)
that are dominated by the newly found path to ¢ (Lines 24-
28). It terminates when the Open list is empty and returns
the solution set (Line 29).

Algorithm 1: NAMOA*

Input : A search problem (5, E, ¢, Sstart, Sgoar) and a
consistent heuristic function h
Output: The Pareto-optimal solution set
1 sols < ()
2 for each s € S do
| Gop(s) « 0; Ga(s) < 0

4 Gop(s) < {(0,0)}

5 parent((0,0)) < 0

¢ Initialize Open and add (Sstart, (0,0), h(Sstare)) to it

7 while Open # () do

8 Remove a node (s, gs, f5) from Open with the

lexicographically smallest f-value of all nodes in
Open

9 Remove g from Gop(s) and add it to G¢(s)

10 if s = sg40a then

1 Add g to sols

12 Remove all nodes (u, gy, f,,) with fs < £, from
Open

13 continue

14 for each t € succ(s) do

15 gt + gs +c(s,t)

16 if g € Gop(t) U Gei(t) then

17 Add g, to parent(g:)

18 L continue

19 if Gop(t) U Ge(t) < g then

20 | continue

21 f, < g+ h(t)

2 if sols < f; then

23 | continue

2 Remove all g-values g; from G, (t) that are
dominated by g and remove their corresponding
nodes (¢, g;, f{) from Open

25 Remove all g-values from G;(t) that are
dominated by g

26 parent(g:) < {gs}

27 Add g; to Gop(t)

28 Add (t, g¢, f:) to Open

29 return sols

The NAMOA *dr Algorithm

Some of the operations of NAMOA* are time-consuming
since they perform dominance checks that involve either the
f-values (Lines 12 and 22) or g-values (Lines 24-25) and
require it to iterate over a number of elements proportional
to |Gop(t)], |Ge(t)], |Open|, or |sols|. Pulido, Mandow,
and Pérez-de-la-Cruz (2015) (in short: PMP) improved
NAMOA* to NAMOA*dr by proving that, if NAMOA*
(A1) uses a consistent heuristic function and (A2) always
extracts a node with the lexicographically smallest f-value
of all nodes in the Open list, then the following theorem
holds for bi-objective search problems:

Theorem 1 (Pulido, Mandow, and Pérez-de-la-Cruz 2015)
Assume that Al and A2 hold and let (s,g,f) be a newly
extracted node. Then, G (t) < gt (Line 19) and sols < f;
(Line 22) can be decided in constant time for bi-objective
search problems.

More specifically, checking whether G;(t) < g can be



done as follows: G (t) < (g1,92) iff g™" < go, where
g™" is the minimum of the go-values in G;(t). Checking
whether sols < fi can be done analogously. NAMOA *dr
uses these insights to implement Lines 19 and 22 in constant
time, except that Line 19 still needs to iterate over a num-
ber of g-values proportional to |G,,(t)| to check whether

Gop (t) < gt

Our Bi-Objective A* (BOA*) Algorithm
The improvements to NAMOA* proposed by PMP remove
some, but not all, of its most time-consuming operations
since it still iterates over a number of nodes proportional
to |Open| on Line 12, a number of g-values proportional to
|Gop(t)| on Lines 19 and 24, and a number of g-values pro-
portional to |G;(t)| on Line 25. In this section, we therefore
describe our Bi-Objective A* (BOA¥*) algorithm, a best-first
bi-objective search algorithm. Our primary design objective
is to perform all dominance checks in constant time. We
use Theorem 1 and additional insights (1) to avoid having
to maintain the sets G, (s) and G;(s) for all states s and
thus not having to perform any of the eager checks on Lines
24-25 to remove g-values from these sets and (2) to make the
eager check on Line 19 more efficient by maintaining a value
giin(s) for each state s, which is the smallest go-value of
any expanded node with state s. The remaining eager checks
on Lines 12 and 24 remove nodes from the Open list. We
convert these checks into a number of lazy checks, each of
which can be performed in constant time, by not removing
these nodes from the Open list (which is time-consuming
but might result in fewer heap percolations) but by perform-
ing the checks when nodes get extracted from the Open list
and then not expanding these nodes. A secondary design ob-
jective is to make the presentation of BOA* similar to that of
modern descriptions of A*, such as those in (Edelkamp and
Schrddl 2011), thereby making it potentially easier to under-
stand and implement. Another secondary design objective is
to compute the cost-unique Pareto-optimal set rather than
the Pareto-optimal set since it is sufficient for our purposes
to compute one representative solution for all cost-identical
and thus equally good solutions.

The Open list of BOA* contains nodes, which are akin to
the labels commonly used in the operations research litera-
ture (Raith and Ehrgott 2009). Each node x has a state s(z),
a g-value g(x), an f-value f(x), and a parent parent(z) and
corresponds to a path to s(z) of cost g(x). The parent is a
single node.

Algorithm 2 shows the pseudocode of BOA*. It takes as
input a bi-objective search problem and a consistent heuris-
tic function and computes the cost-unique Pareto-optimal
solution set. In each iteration, it extracts a node x from the
Open list with the lexicographically smallest f-value of all
nodes in the Open list (Line 10). It does not expand the node
if its go-value is at least 3" (s(z)) orits fo-value is at least
g5 (8g0a1) (Lines 11-12). Otherwise, it updates g5 (s(z))
(Line 13) and expands the node. If s(x) is the goal state, then
BOA* has found an undominated solution and adds node x
to the solution set sols (Lines 14-16). Otherwise, it calcu-
lates the child nodes of node x (Lines 18-21). It does not
add a child node y to the Open list if its go-value is at least

Algorithm 2: Bi-Objective A* (BOA*)

Input : A search problem (S, E, ¢, Sstart, Sgoar) and a
consistent heuristic function h
QOutput: A cost-unique Pareto-optimal solution set
1 sols « ()
2 foreach s € S do

| 95" (s) o0

w

4 x < new node with s(z) = Sstart

s g(x) « (0,0)

6 parent(z) < null

7 f(l?) — (hl (Ssta'rt)7 h2 (Ssta'rt))

8 Initialize Open and add = to it

9 while Open # () do

10 Remove a node x from Open with the
lexicographically smallest f-value of all nodes in
Open

11 if go(x) > ggﬂn(s(l’)) V fa(x) > ggﬁn(sgoal) then
12 | continue

3| g58"(s(2)) « g2()

14 if s(z) = sgoa then

15 Add z to sols

16 | continue

17 for each t € Succ(s(z)) do

18 y < new node with s(y) =t

19 g(y) < g(x) + c(s(x), )

20 parent(y) + x

2 £(y) < g(y) +h(?) ‘
2 if g2(y) > 95" (t) V f2(y) > 95" (Sgoar) then
23 | continue

24 | Addy to Open

25 return sols

gin(s(y)) orits fo-value is at least g5 (s404;) (Lines 22-
23). Otherwise, it generates the child node by adding it to
the Open list (Line 24). It terminates when the Open list is
empty and returns the solution set (Line 25).

Figure 1 shows a small example of the operation of
BOA*. We use the perfect distances as h-values, which can
be computed with Dijkstra’s algorithm. Table 1 shows a
trace of the Open list and changes to g5*™™ in each iteration
of BOA*. In the table and the text below, the triple (s, g, f)

refers to a node with state s, g-value g, and f-value f.

e In Iteration 1, the node (ss¢qrt, (0,0), (3, 6)) is expanded,
and its three child nodes with states sy, so, and s3 are
added to the Open list.

e In Iteration 2, node (s, (1,5), (3,9)) is expanded, and its
child node with state 54,4 is added to the Open list.

e In Iteration 3, node (54041, (3,9), (3,9)) is expanded, and
the first undominated solution is found.

e In Iteration 4, node (s1, (1, 1), (4, 6)) is expanded, and its
two child nodes with states so and s,4,,; are added to the
Open list.

e In Iteration 5, node (s, (2, 3), (4, 7)) is expanded, and its
child node with state s4,4; is added to the Open list.

e In Iteration 6, node (54041, (4,7), (4,7)) is expanded, and
the second undominated solution is found.

e In Iteration 7, node (s3, (1, 1), (5,6)) is expanded, and its



Figure 1: Example search graph. The pair of numbers inside
each state is its h-value.

child node with state s, is added to the Open list. Its child
node (sg0a1, (6,8), (6,8)) is not added to the Open list
because f2(Sgoar) =8> 7= gg“i“(sgoal).

e In Iteration 8, node (s2, (3,2), (5, 6)) is expanded, and its
child node with state s4,4; is added to the Open list.

o In Iteration 9, node (54041, (5, 6), (5, 6)) is expanded, and
the third undominated solution is found.

e In Iteration 10, node (Sg0a1, (8, 6), (8,6)) is extracted but
not expanded because f2(Sgoa1) = 6 > 6 = g5 (5 40a1)-

e Finally, in Iteration 11, the Open list is empty, and BOA*
returns the three undominated solutions found.

Theoretical Results for BOA*

We assume that heuristic function h is consistent. We say
that a node x; dominates (resp. weakly dominates) a node
x9 iff the g-value of node x; dominates (resp. weakly dom-
inates) the g-value of node x-.

Lemma 1 Each generated (or about to be generated but
pruned) node x has f1- and fs-values that are no smaller
than the f1- and fs-values, respectively, of its parent node
P

Proof Sketch: Since the h-values are consistent,
c1(s(p), s(x)) + hi(s(xz)) > hi(s(p)). Therefore, we
get:

The same proof strategy yields fo(z) > fa(p). O

Lemma 2 The sequences of extracted nodes and of ex-
panded nodes have monotonically non-decreasing f-
values.

Proof Sketch: BOA* extracts the node from the Open list
with the lexicographically smallest f-value of all nodes in
the Open list (Line 10). This node has the smallest f;-value
of all nodes in the Open list. Since generated nodes that are
added to the Open list have f;-values that are no smaller

. Open list Update of
ertion | (s(a),g(@), f@) | gP™(s(x))
1 (Sstart7 (O, 0), (37 6)) < ggnn(sstart) =0
(517(1,1)7(476)) .
2 (527(175)7(339)) <~ g;ﬂm(SQ) =5
(537 (1, 1)7 (57 6))
(517(1,1)7(476)) i
3 (837(171)7(556)) gémn(sgnal) =9
(Sgoalz (37 9)7 (3,9)) «
s1,(1,1),(4,6 min
¢ ey | #neo=t
(53(171)7(576)) .
5 (890017 (8v 6)) (87 6)) 912111“(52) =3
(s2,(2,3),(4,7)) «+
(537(171)7(576)) .
6 (S‘]Ouh (47 7)7 (47 7)) — ggnn(sgnal) =7
CRCSNGIES
83, ) ) ’ — min
7 (Sgoala (87 6)7 (87 6)) 92 (83) =1
52,(3,2),(5,6 min
8 ((890515 (8)3 6()7 (8)7)6<_) 92 (82) - 2
Sgoal, 576 ) 57 min
9 ( .Sgiaﬁ 8,)6)(, (8,)6))Y 92" (Sgoal) = 6
10 (Sg0al, (8,6), (8,6)) +
11 empty

min

Table 1: Trace of the Open list and g5 (s(x)) in each iter-
ation of BOA*. <— marks the node that is extracted in that
iteration.

than those of their expanded parent nodes (Lemma 1),
the sequence of extracted nodes has monotonically non-
decreasing f7-values. Since nodes are expanded in the same
order in which they are extracted, the sequence of expanded
nodes also has monotonically non-decreasing f;-values. [

Lemma 3 The sequence of expanded nodes with the same
state has strictly monotonically decreasing fs-values.

Proof Sketch: Assume for a proof by contradiction that
BOA* expands node x; with state s before node zo with
state s, that it expands no node with state s after node
21 and before node xo, and that fy(z1) < fa(z2). Then,
g2(z1) + ha(s) = fa(z1) < fa(w2) = ga(x2) + ha(s).
Thus, go(x1) < go(x2). After node z is expanded and be-
fore node x5 is expanded, g3'"(s) = go(z1) (Line 13). Com-
bining both (in)equalities yields ¢g5"(s) < go(z2), which is
the first pruning condition on Line 11. Therefore, node x5 is
not expanded, which contradicts the assumption. (]

Lemma 4 The sequence of expanded nodes with the same
state has strictly monotonically increasing f1-values.

Proof Sketch: Since the sequence of expanded nodes has
monotonically non-decreasing f;-values (Lemma 2), the
sequence of expanded nodes with the same state also
has monotonically non-decreasing f;-values. Assume for a
proof by contradiction that BOA* expands node x; with
state s before node zo with state s, that it expands no node
with state s after node x; and before node x5, and that
fi(z1) = fi1(z2). We distinguish two cases:
e Node x5 is in the Open list when BOA* expands node x1:
When BOA* expands node x1, node z; has the lexico-



graphically smallest f-value of all nodes in the Open list.
Since f1 (1‘1) = f1 (.1‘2), it follows that fg (.731) < fg (l‘g),
which contradicts Lemma 3.

e Node z is not in the Open list when BOA* expands
node x1: BOA* thus generates node xo after it expands
node x;. Thus, there is a node x3 in the Open list
when BOA* expands node z; that is expanded after node
21 (or is equal to it) and before node x5 and becomes
an ancestor node of node x5 in the search tree. Since
the sequence of expanded nodes has monotonically non-
decreasing fi-values (Lemma 2) and f1(z1) = fi(x2),
fi(z1) = fi(zs) = fi(x2). When BOA* expands node
21, node 1 has the lexicographically smallest f-value of
all nodes in the Open list. Since f1(z1) = f1(z3), it fol-
lows that fo(z1) < fo(x3). Since each node has an fo-
value that is no smaller than the fy-values of its ances-
tor nodes (Lemma 1), fo(x3) < fo(22). Combining both
inequalities yields fo(z1) < fao(xa), which contradicts
Lemma 3. O

Lemma 5 Expanded nodes with the same state do not
weakly dominate each other.

Proof Sketch: Assume that BOA* expands node x; with
state s before node x5 with state s. Since the sequence of ex-
panded nodes with the same state has strictly monotonically
decreasing f>-values (Lemma 3), fo(z1) > fo(x2). It fol-
lows that g2 (1) +h(s) = fo(z1) > fo(z2) = ga(z2)+h(s)
and thus ga(z1) > g2(z2). Since the sequence has strictly
monotonically increasing fi-values (Lemma 4), the same
reasoning yields gi(z1) < gi1(z2). According to the two
inequalities, nodes x1 and x2 do not weakly dominate each
other. 0

Lemma 6 If node x1 with state s is weakly dominated by
node xo with state s, then each node with the goal state in
the subtree of the search tree rooted at node x1 is weakly
dominated by a node with the goal state in the subtree rooted
at node x».

Proof Sketch: Since node z; is weakly dominated by node
%2, g1(x2) < g1(x1). Assume that node x3 is a node with
the goal state in the subtree of the search tree rooted at node
x1. Let the sequence of states of the nodes along a branch of
the search tree from the root node to node x; be s1,...,s;
(with 51 = sg4¢ and s; = s), the sequence of states of the
nodes along a branch of the search tree from the root node

to node x5 be s, .. .,s;- (with 8| = Sgtere and s; = 3),
and the sequence of states of the nodes along a branch of
the search tree from node x1 to node z3 be 7 = s;,..., Sk

(with s;; = S40q1). Then, there is a node x4 with the goal
state in the subtree rooted at node 2 such that the sequence
of states of the nodes along a branch of the search tree from
the root node to node x4 is s7,..., 8}, Sit1,..., Sk Since
g1(w2) < g1(z1), it follows that g (x4) = g1 (z2)+c1(m) <
g1(z1) + c1(w) = g1(ws) and thus g1(z4) < g1(x3). The
same proof strategy yields go(x4) < go(23). Combining
both inequalities yields that node x3 is weakly dominated
by node 4. g

Lemma 7 When BOA* prunes a node x1 with state s (on
Line 11 or 22) and this prevents it in the future from adding

a node x5 (with the goal state) to the solution set (on Line
15), then it can still add in the future a node (with the goal
state) that weakly dominates node x5 (on Line 15).

Proof Sketch: We prove the statement by induction on the
number of pruned nodes so far, including node x;. If the
number of pruned nodes is zero, then the lemma trivially
holds. Now assume that the number of pruned nodes is n+ 1
and the lemma holds for n > 0. We distinguish three cases:

e BOA¥* prunes node x1 on Line 11 because of the (first)
pruning condition go(x;) > ¢3"(s). Then, BOA* has
expanded a node x4 with state s previously such that
g (s) = go(w4) since otherwise gf*™(s) = oo and
the pruning condition could not hold. Combining both
(in)equalities yields go(z1) > g2(x4). Since fi(z1) >
fi(zq) (Lemma 2), g1(21) + h(s) = fi(21) = fi(24) =
g1(z4)+h(s) and thus g1 (z1) > ¢1(x4). Combining both
inequalities yields that node x; is weakly dominated by
node z4 and thus each node with the goal state in the
subtree rooted at node x1, including node x5, is weakly
dominated by a node x5 with the goal state in the subtree
rooted at node x4 (Lemma 6). In case BOA* has pruned
a node that prevents it in the future from adding node x5
to the solution set, then it can still add in the future a node
(with the goal state) that weakly dominates node x5 and
thus also node x5 (induction assumption).

e BOA* prunes node x1 on Line 11 because of the (second)
pruning condition fo(z1) > g5"™(S40ar). Then, BOA* has
expanded a node x4 with the goal state previously such
that g8 (Sgoa1) = go(x4) since otherwise g5 (sgoa) =
oo and the pruning condition could not hold. Combining
both (in)equalities yields that fo(x1) > go(x4). Since
node x7 is an ancestor node of node z5 in the search
tree, fo(xa) > fa(r1) (Lemma 1). Combining both in-
equalities yields ga(x2) = fa(x2) > ga(z4). Since
node x; is an ancestor node of node x5 in the search
tree, g1(x2) = fi(xa) > fi(x1) (Lemma 1). Since
fi(z1) > fi(xz4) (Lemma 2), it follows that g;(z2) >
fi(z1) > fi(z4) = g1(w4). Combining g1 (z2) > g1(w4)
and go(z2) > go(x4) yields that node x5 is weakly domi-
nated by node x4 (with the goal state). In case BOA* has
pruned a node that prevents it in the future from adding
node x4 to the solution set, then it can still add in the fu-
ture a node (with the goal state) that weakly dominates
node x4 and thus also node x5 (induction assumption).

e BOA* prunes node x; on Line 22 because of the prun-
ing condition g>(w1) > ¢5™(s) or fa(w1) > ¢5™(sgoar)-
The proofs of Case (1) or Case (2), respectively, apply un-
changed except that f;(x1) > f1(x4) now holds for a dif-
ferent reason. Let node 3 be the node that BOA* expands
when it executes Line 22. Combining fi(x1) > fi(x3)
(Lemma 1) and fi(xz3) > fi(z4) (Lemma 2) yields

O

Ji(z1) > fi(za).

Theorem 2 BOA* computes a cost-unique Pareto-optimal
solution set.

Proof Sketch: Let the path of a node « (and the solution of
anode x with the goal state) be the sequence of states of the
nodes along a branch of the search tree from the root node to



node z. Then, the g-value of node z is the cost of the path (or
the solution). Since the costs are non-negative and expanded
nodes with the same state do not weakly dominate each other
(Lemma 5), the paths of the expanded nodes are cycle-free.
Since there are only a finite number of cycle-free paths, there
are only a finite number of expanded nodes and thus only a
finite number of generated nodes that are put into the Open
list. Since one node is extracted from the Open list during
each iteration, there are only a finite number of iterations
and BOA* terminates. Now consider any non-empty set X
of all nodes whose solutions are Pareto-optimal solutions of
a given but arbitary cost c. When BOA* is prevented in the
future from adding a node x; € X to the solution set, it
can still add in the future a node xo (with the goal state)
that weakly dominates node x; (Lemma 7). Thus, z2 € X,
which implies that BOA* is never prevented from adding all
nodes in X to the solution set. The computed solution set is
thus a superset of a cost-unique Pareto-optimal solution set
P. Since BOA* can add only expanded nodes to the solution
set and expanded nodes with the goal state do not weakly
dominate each other (Lemma 5), the computed solution set
cannot contain solutions that are not Pareto-optimal or have
the same cost as other solutions in the computed solution set.
Thus, it is exactly the cost-unique Pareto-optimal solution
set P. O

Experimental Results

Setup: We compare Bi-Objective A* (BOA¥),
NAMOA*dr (Pulido, Mandow, and Pérez-de-la-Cruz
2015), BOA* with standard linear-time dominance check-
ing (sBOA¥*), Bi-Objective Dijkstra (BDijkstra), and
Bidirectional Bi-Objective Dijkstra (BBDijkstra) (Sedefio-
Noda and Colebrook 2019). We use the C implementations
provided by the authors for BBDijkstra and BDijkstra
(Sedeno-Noda and Colebrook 2019). We implement BOA*,
sBOA*, and NAMOA*dr from scratch in C using a stan-
dard binary heap for the Open list. We use the BOA*
implementation for the other implementations as well. We
run all experiments on a 2.20GHz Intel(R) Xeon(R) CPU
Linux machine with 128GB of RAM. We use road maps
from the 9th DIMACS Implementation Challenge: Shortest
Path?. The cost components represent travel distances (c1)
and times (c3). The h-values are the exact travel distances
and times to the goal state, computed with Dijkstra’s
algorithm. It takes 75 milliseconds to compute the h-values
for the largest road map. The reported runtimes include this
computation. All algorithms obtain the same number of
solutions for all instances used in the experiments, implying
that no two Pareto-optimal solutions have the same cost.

Results: We compare the runtimes of the five algorithms
on 50 instances each of 4 road maps from the USA used by
Machuca and Mandow (2012). Table 2 shows the name of
the road map, the number of states and edges of the map, and
the average number of Pareto-optimal solutions. For each al-
gorithm, it shows the number of instances solved within a

*http://users.diag.uniromal .it/challenge9/download.shtml

New York City (NY)
264,346 states, 730,100 edges, |sols| = 199 on average
Solved  Average Max Min
NAMOA* 50/50 157.17  1,936.36 0.02
sBOA* 50/50 9.75 148.65 0.10
NAMOA*dr | 50/50 0.65 4.99 0.11
BOA* 50/50 0.32 1.95 0.11
BBDijkstra 50/50 1.94 2343 0.26
BDijkstra 50/50 2.55 21.16 0.17
San Francisco Bay (BAY)
321,270 states, 794,830 edges, |sols| = 119 on average
Solved  Average Max Min
NAMOA* 50/50 58.87 1,474.76 0.02
sBOA* 50/50 3.38 120.57 0.12
NAMOA*dr | 50/50 0.38 6.08 0.12
BOA* 50/50 0.29 4.17 0.12
BBDijkstra 50/50 0.87 9.61 0.28
BDijkstra 50/50 1.83 33.39 0.22
Colorado (COL)
435,600 states, 1,042,400 edges, |sols| = 427 on average
Solved  Average Max Min
NAMOA* 48/50 47626  3,551.32 0.08
sBOA* 50/50 38.88  1,141.78 0.17
NAMOA*dr | 50/50 2.16 57.40 0.17
BOA* 50/50 0.79 15.26 0.17
BBDijkstra 50/50 4.79 83.07 0.41
BDijkstra 50/50 7.78 135.24 0.29
Florida (FL)
1,070,376 states, 2,712,798 edges, |sols| = 739 on average
Solved  Average Max Min
NAMOA* 43/50 812.48  3,298.90 1.42
sBOA* 46/50 349.64 1,238.25 0.43
NAMOA*dr | 50/50 19.66 329.79 043
BOA* 50/50 4.59 60.54 043
BBDijkstra 50/50 91.36 1,772.48 1.11
BDijkstra 50/50 158.33  2,722.69 0.77

Table 2: Runtime (in seconds) on 50 instances of the speci-
fied road map. When an algorithm times out after 3,600 sec-
onds, we use 3,600 seconds in the calculation of the average.

runtime limit of 3,600 seconds as well as the average, max-
imum, and minimum runtimes (in seconds). We include the
results for NAMOA* reported by Machuca and Mandow
(2012) as a reference. We observe that SBOA* can be an
order-of-magnitude faster than NAMOA*, and NAMOA*dr
can be an order-of-magnitude faster than SBOA*. BOA* can
be several times faster than NAMOA*dr, especially on in-
stances with large numbers of Pareto-optimal solutions. For
example, BOA* is 4.3 times faster than NAMOA*dr on FL
(with 739 Pareto-optimal solutions on average), while BOA*
is only 1.3 times faster than NAMOA*dr on BAY (with 119
Pareto-optimal solutions on average). BOA* can also be an
order-of-magnitude faster than BBDijkstra and BDijkstra.

We now compare the runtimes of the two fastest algo-
rithms, BOA* and NAMOA#*dr, as a function of the dif-
ficulty of the instances on a large road map, namely the
Great Lakes (LKS) map with 2,758,119 states and 6,885,658



[ #] Start Goal [[sols] (1) (2) (3) ]
1941792 785069 27 097 1.02 1.0

#
1
2 207871 3619 419 096 124 137
3
4

1137220 991262 | 1947 096 4.11 239
1836318 1792612 | 4072 096 839 437

Table 3: Four instances of LKS. (1) Ratio of gener-
ated nodes (NAMOA*dr/BOA*). (2) Ratio of runtimes
(NAMOA*dr/BOA*). (3) Number of op-pruning operations
per generated node for NAMOA *dr.

[sols| = 3,876 on average

Solved  Average  Max Min
BOA* (f1, f2) | 91/100 478.72 2,505 1.30
BOA* (fo2, f1) | 93/100  383.79 2,059 1.26

Table 4: Runtime (in seconds) on 100 instances of LKS.
When an algorithm times out after 3,600 seconds, we use
3,600 seconds in the calculation of the average.

edges. We include BDijkstra in the experiment. Figure 2
shows the runtimes (in seconds) of BOA*, NAMOA *dr, and
BDijkstra on the 74 instances from Sedefio-Noda and Cole-
brook (2019) that BDijkstra solves within a runtime limit of
3,600 seconds. The instances are ordered in increasing num-
bers of their Pareto-optimal solutions (|sols|). When |sols|
is small, the runtimes of the algorithms are similar. When
|sols| increases, the runtimes of the algorithms increase.
The runtime of BOA* increases smoothly and becomes or-
ders of magnitude smaller than the ones of NAMOA*dr
and BDijkstra. Figure 3 provides a different view of the
results. It shows the cumulative runtimes (in seconds) of
BOA*, NAMOA*dr, and BDijkstra. The instances are or-
dered in increasing runtime of BOA*. For instances where
BOA* has small cumulative runtimes, the cumulative run-
times of the algorithms are similar. When the cumulative
runtime of BOA* increases, it increases less than the ones
of NAMOA*dr and BDijkstra.

We now compare the number of op-pruning operations®
of BOA* and NAMOA*dr for the dominance checks on
G- Table 3 shows the number of Pareto-optimal solutions,
the ratio of generated nodes and the ratio of runtimes of
NAMOA*dr and BOA*, and the number of op-pruning op-
erations per generated node for NAMOA*dr on four LKS
instances. BOA* generates around 1.04 times more nodes
than NAMOA*dr. For Instance 1, NAMOA*dr and BOA*
run about equally fast. However, for the other instances,
BOA¥* runs faster because NAMOA*dr performs the more
op-pruning operations the larger |sols| is, which demon-
strates the advantage of BOA*, whose dominance checks
run in constant time, over NAMOA*dr, whose dominance
checks on G, run only in linear time.

We now determine the runtime of BOA* as a function of
the lexicographic ordering used for the Open list, namely
either (fi, f2) or (fa, f1). Table 4 shows the runtime (in
seconds) of BOA* with both the (f1, f2) and (f2, f1) or-

350 named by PMP: the number of nodes checked on G, when
anode is generated.
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Figure 2: Runtime on 74 LKS instances. The instances on

the x-axis are ordered in increasing numbers of their Pareto-
optimal solutions.
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Figure 3: Cumulative runtime on 74 LKS instances. The in-
stances on the x-axis are ordered in increasing runtime of
BOA*.

derings of the Open list on 100 LKS instances. BOA* is
faster when its Open list is ordered lexicographically ac-
cording to (fa, f1) instead of (f1, f2). In particular, it solves
2 more instances and has smaller average, maximum, and
minimum runtimes because it generates 10 percent fewer
nodes (and, consequently, also performs fewer heap percola-
tions). We conclude that the ordering of the cost components
has a strongly influence on the runtime of BOA*.

Conclusions and Future Work

We have presented Bi-Objective A* (BOA*), a simple and
fast best-first bi-objective search algorithm. BOA* improves
the efficiency of the dominance checks substantially, which
is key to improving the efficiency of the search. The domi-
nance checks of BOA* require only constant time, while the
ones of existing bi- and multi-objective search algorithms



require linear time. Our experimental evaluation shows
that BOA* can run an one order of magnitude (or more)
faster than state-of-the-art algorithms such as NAMOA*,
NAMOA*dr, Bi-Objective Dijkstra, and Bidirectional Bi-
Objective Dijkstra. We intend to improve and extend BOA*
in future work as follows:

Speeding up BOA*:  The cost of a solution is a pair
(c1,¢2). The ¢q-values of solutions found by BOA* are
strictly monotonically increasing in time, and the co-values
are strictly monotonically decreasing in time. Thus, the first
solution found by BOA* has the smallest c;-value, and the
last solution has the smallest cy-value. If BOA* orders the
Open list lexicographically according to (f2, f1) instead of
(f1, f2), the opposite happens. Thus, BOA* might run faster
if it runs two BOA¥* instantiations in parallel, one for each
ordering, and terminates when both instantiations find a so-
lution of the same cost.

Selecting Solutions with BOA*:  Several of our instances
have thousands of Pareto-optimal solutions. For example,
one of the LKS instances has 17,606 solutions. Many of the
Pareto-optimal solutions are very similar in that they con-
tain almost the same edges. We plan to extend BOA* so that
it finds a subset of the cost-unique optimal solutions on the
Pareto frontier that contains solutions that are sufficiently
different from each other and thus good representatives of
the Pareto frontier. Such an approach is especially benefi-
cial when solutions need to be presented to human users for
evaluation or selection.

Finding Bounded-Suboptimal Solutions: BOA* might
be able to use weights, like Weighted A* (Pohl 1970), to
obtain the Pareto frontier of all bounded-suboptimal solu-
tions rather than the one of all optimal solutions. Our pre-
liminary experiments show an impressive speed-up when
weight w = 1.2 is used in the calculation of f;. For ex-
ample, BOA* found 3,686 optimal solutions in 175 seconds
for the LKS instance with start state 2,258,596 and goal state
2,042,316, and Weighted BOA* found 4,023 solutions in 2.3
seconds. Our main challenge is to prove that the solutions set
found by Weighted BOA* contains exactly all cost-unique
w-suboptimal solutions on the Pareto frontier.

Using More Than Two Objective Functions: BOA*
might be able to find all cost-unique Pareto-optimal solu-
tions for cost functions with more than two components if it
runs several times for different permutations of the compo-
nents. For example, BOA* might find a subset of the Pareto-
optimal solutions if it orders the Open list lexicographically
according to some ordering of the components. Other order-
ings might result in different subsets. Our main challenge is
to prove that the union of all such subsets contains exactly
all cost-unique optimal solutions on the Pareto frontier.
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