

We propose Residual Core Maximization (RCM),
a novel algorithm for the anchored k-core problem. RCM
selects anchors based on two measures – Anchor Score

and Residual Degree. If the number of anchors needed to
convert a connected component is more than the anchor
budget available, the anchors are selected based on the
anchor score. Otherwise, the anchor selection depends
on the residual degree.

The contributions of this paper are as follows:
1. We propose Residual Core Maximization, a

novel algorithm for selecting anchor nodes to maxi-
mize the size of the anchored k-core.

2. We demonstrate that across various real social net-
work datasets, RCM outperforms existing algorithms
by finding an average of 1.65 times more followers1,
while also being 500 times faster.

3. We experimentally show that the RCM solutions
values are close to the optimal solution values, while
being multiple orders of magnitude faster.
All datasets used are publicly available, and we

provide source code for RCM.2

2 Related Work

There has been extensive work on characterizing and
analyzing the k-core decomposition of networks. We refer
the reader to [24] for a more detailed survey.

2.1 k-core Decomposition Seidman defined the k-
core of a graph as the maximal connected subgraph
in which each node is connected to at least k other
nodes [26] in the subgraph. The maximum k such that
a node belongs in that k-core is called the coreness or
core number of that node. Matula and Beck proposed a
method for finding the k-cores in a graph [19]. Batagelj
and Zaversnik proposed an efficient algorithm to find
the k-core decomposition, in which nodes of degree less
than k are iteratively removed until none are left [4].

The k-core decomposition has been used in numerous
applications, including network visualization [2, 29, 31],
studying the topology of large networks (such as the
Internet) [3, 7], accelerating community detection [22],
and studying the resilience of communities [10].

Laishram et al. proposed a measure for the resilience
of the k-core structure and a method of inserting edges
to improve the resilience [16]. Medya et al. [20] also
studied the resilience of k-cores from a game-theoritic
perspective. In [27], Shin et al. developed a method
to find anomalous nodes in a social network based on
their coreness and degree. In [1, 15, 18], the k-core

1The followers are the nodes (excluding anchors) that are not
in the k-core originally, but are in the anchored k-core.

2https://github.com/rlaishra/RCM/

decomposition is used to identify influential spreaders in
social networks.

There has been a great deal of interest in k-core
decomposition in large graphs. In [8, 14], researchers
proposed out-of-core algorithms for k-core decomposition
on large graphs, and in [21], distributed algorithms
are introduced. For dynamic graph, various methods of
maintaining the k-core structure in the case of streaming
data has also been proposed [23, 17, 30, 9].

There has been a lot of works on extending the
notion of k-cores to other network settings. Sariyuce et

al. generalized k-cores to higher order structures [25], and
Giatsidis et al. adapted the idea of k-cores to directed
and weighted graphs [11, 12].

2.2 Anchored k-core Problem The anchored k-

core problem was introduced by Bhawalkar et al. in
2012 [5]. The problem was inspired by the observation
that a user in a social network is motivated to stay
only if her neighborhood meets some minimal level of
engagement: in k-core terms, she will stay if k friends
are also in the network. Bhawalkar et al. defined the
anchored k-core as the subgraph that is computed using
the usual k-core decomposition algorithm, but with
the modification that selected ‘anchor’ nodes are not
deleted during the process. These anchored nodes may
represent, for example, nodes that are recruited to remain
active in the network, even if their friends are inactive.
The anchored k-core problem, then, is the problem of
selecting a specified number b anchor nodes such that the
number of nodes in the anchored k-core is maximized.
Bhawalkar et al. showed that for a general graph the
anchored k-core problem is solvable in polynomial time
for k ≤ 2, but is NP-hard for k > 2 [6].

Zhang et al. proposed a greedy algorithm, called
OLAK, for the anchored k-core problem [28]. OLAK oper-
ates over b iterations, where b is the maximum number
of anchor nodes allowed. In each iteration, a node that
is not in the anchored k-core but which would generate
the largest number of followers if anchored is selected as
the next anchor. Because only a single anchor node is
considered at a time, and only nodes from the (k − 1)-
shell3 can become followers when anchoring a single node,
OLAK considers only follower nodes from the anchored
(k − 1)-shell during each iteration.

Zhou et al. [32] studied a problem that is close
to the anchored k-core problem – which edges should
be added to maximize the size of the k-core. However,
this is fundamentally different from the anchored k-core
problem because the graph cannot be modified in the
anchored k-core problem.

3The k-shell is the subgraph of the k-core \ (k − 1)-core.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 2 ResidualAnchors()

1: A′ ← ∅
2: T ← V ′

o

3: while T 6= ∅ do
4: v ← argmax

u∈Ca\(Cf∪A′)
|N(u) ∩ T |

5: A′ ← A′ ∪ {v}
6: T ← {u ∈ T : δ′(u,G′) > |N(u) ∩A′|}
7: end while

8: return {(A′, V ′)}

chors needed. Since the nodes in V ′
i already have enough

neighbors in G′, it is enough to consider only V ′
o .

We thus need to select the minimum number of
anchors from Ca \ Cf such that each node v ∈ V ′

o is
connected to at least δ′(v) anchors.

Finding the minimum number of residual anchors
is NP-hard,5 and so we propose a heuristic algorithm
for this task (Algorithm 2). At each step, the algorithm
selects the node from Ca \ (Cf ∪A′) that has the most
neighbors in T , and adds it to A′. Here T is the set of
nodes such that all the nodes in T still requires additional
anchors to become followers.

4.6 Anchor Score based Anchors Selection If
the anchor budget is not enough to convert all the
nodes in G′ to followers, we want to convert as many as
possible. To quantify the quality of a candidate anchor
node with respect to maximizing the number of followers
we propose a node-level measure called the Anchor Score.
Denote all the nodes in G′ by C ′

f , and consider C ′
a such

that C ′
a = {v ∈ Ca : N(v) ∩ C ′

f 6= ∅}.
Then, we define the Anchor Score of v ∈ C ′

f ∪C ′
a as

α (v)
def

= 1 +
∑

u∈Cf∩N(v)

α(u)

δ(u)
.(4.6)

The intuition is that nodes that are connected to
others with high anchor score and low residual degree are
important themselves. If nodes with high anchor scores
are anchored, this helps in converting its neighbors into
followers, which may themselves also be important.

To calculate the anchor scores of all nodes in C ′
f∪C

′
a,

we have |C ′
f ∪ C ′

a| equations:

q = 1+Dq,(4.7)

where q is the vector of anchor scores, 1 is a vector of
1’s, and D is a matrix such that Di,j =

1
δ(j) if edge (i, j)

exist, otherwise 0.
Depending on the membership of a node in C ′

a

and/or C ′
f , we have the following conditions:

5Please refer to the supplementary material for the proof.

Algorithm 3 ASAnchors()

1: A′, F ′, S← ∅, ∅, ∅
2: while |A′| < b do

3: Calculate the Anchor Scores α(∗)
4: v ← argmax

u∈C′

f
∪C′

a

α(u)

5: R← FindResidualCore(A′ ∪ {u})
6: A′ ← A′ ∪ {v}
7: F ′ ← F ′ ∪R

8: S← S ∪ {(A′, F ′)}
9: Remove R and v from C′

a and C′
f

10: Update δ(∗)
11: end while

12: return S

1. v ∈ C ′
f \ C ′

a. Since C ′
f ∩ N(v) = ∅ by definition,

α(v) = 1.
2. v ∈ C ′

f ∩ C ′
a. In this case, α(v) appears on both

sides of equation 4.7.
3. v ∈ C ′

a \ C
′
f . Here, v cannot appear on the right of

the equation. So, α(v) is simple to calculate once
the other two cases have been calculated.
To compute anchor scores, we first set the score

for C ′
f \ C ′

a to 1. We next restrict computation of
Equation (4.7) to only the nodes in C ′

f∩C
′
a, and calculate

the anchor scores. Finally, we calculate the anchor scores
of C ′

a \ C ′
f using Equation (4.6) and the previously

calculated anchor scores.
After calculating the anchor scores, the node with

the highest value is selected as the next anchor. The pro-
cess repeats as long as there is budget left. Algorithm 3
describes this process.

4.7 Residual Core Maximization In this section,
we put together the pieces of our proposed algorithm
Residual Core Maximization (RCM). The main idea of
RCM is to divide the graph into multiple connected
components of Cf , and then to find anchors for these
subgraphs separately depending on β⊤ (G′) (Section 4.4).
Algorithm 4 describes RCM in detail.

The first step is to generate G, the connected
components of the subgraph induced with Cf . RCM

then generates the (anchors, followers) tuples for the
components, denoted by S. This step can be performed
in parallel. Next, we need to find a set A such that,

Ŝ =

{

S
′ ⊆ S :

∣

∣

∣

∣

∣

⋃

S∈S′

S[0]

∣

∣

∣

∣

∣

≤ b

}

S
∗ =argmax

S∈Ŝ

∣

∣

∣

∣

∣

⋃

S∈S

S[1]

∣

∣

∣

∣

∣

,

where S[i] denotes the i-the element in the tuple S. This

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 4 ResidualCoreMaximization()

1: A, S← ∅, ∅
2: Find Ca, Cf and calculate δ(∗)
3: G ← Connected components in Gf

4: for G′ in G do

5: if β∗ (G′) > b then

6: continue

7: else if β⊥ (G′) > b then

8: S← S ∪ ASAnchors(G′
)

9: else if β⊥ (G′) ≤ b then

10: S← S ∪ ResidualAnchors(G′
)

11: else

12: S← S∪ ResidualAnchors(G′
)

13: S← S ∪ ASAnchors(G′
)

14: end if

15: end for

16: A←SolutionSelection(S, b)

17: return A

Algorithm 5 SolutionSelection()

1: A,F ← ∅, ∅
2: while |A| < b do

3: S∗ ← argmax
S∈S

|S[1]\F |
|S[0]\A|

4: S.remove(S∗
)

5: if |A ∪ S∗
[0]| ≤ b then

6: A← A ∪ S∗
[0]

7: F ← F ∪ S∗
[1]

8: end if

9: end while

10: return A

problem is close to the set union knapsack problem.6

So, we use a greedy algorithm that selects S∗ ∈ S that

maximizes |S∗[1]\F |
|S∗[0]\A| , where A and F are the sets of

anchors selected so far and the followers as a result. This
is described in Algorithm 5.

After S∗ (or the approximation) is computed, RCM
selects anchors as, A =

⋃

S∈S∗
S[0]. The source code of

RCM is publicly available.7

Running Time: If Efa is the set of edges in the
subgraph induced from G with the nodes Cf ∪ Ca, the
running time of RCM is given by O (|Efa|)

8.

5 Experiments

We evaluate the performance of RCM against various
baselines both in finding followers and efficiency in doing
that. We also compare to the optimal algorithm described
by Bhawalkar et al. [5] for k = 2.

6The set union knapsack problem is a generalization of the
knapsack problem in which the weight is calculated based on
union of sets rather than sum of numbers [13]. In our problem,
the value is also calculated based on set unions.

7https://github.com/rlaishra/RCM
8Please refer to the supplemental material for details.

Table 1 lists the real-world networks used in our
experiments. These datasets are available at Network
Repository9 and SNAP.10 We consider social, web, and
collaboration networks of various sizes – ranging from a
few thousands to more 1 million edges. All the graphs
are treated as undirected. Unless otherwise stated, we
use only the sequential version of RCM in the following
discussion and results.

5.1 Comparison Against Baseline Algorithms

We consider three baseline algorithms for finding anchor
nodes. The first is OLAK, the current state-of-the-art
algorithm for anchor nodes selection [28]. OLAK greedily
selects one anchor node at a time, and recomputes
the anchored k-core decomposition in each step. OLAK
has been demonstrated to work well on a number of
real-world networks. For fair running time comparison,
we implement OLAK in Python. The second baseline is
Maximum Degree (MD) in which a node from Ca that
has the maximum number of neighbors in Cf is selected
as anchor as anchor at each step. The third baseline is
Random (RND), which selects anchors randomly from Cf .
In all baselines, after an anchor node has been selected,
the new anchor and followers are removed from Ca and
Cf . We set k to the median core number of the network
(given in Table 1) and vary the anchor budget from 50
to 250 in increments of 50. Results for different values
of k are included in the supplementary material.

Figure 4a shows the number of followers for varying
budgets for some selected networks and Figure 4b shows
the followers at b = 250 for RCM and the best baseline
on all networks. RCM, shown in red, clearly outperforms
all the baselines. As expected, the results are closer to
OLAK for lower budgets, but the difference increases for
higher budgets. Among the baselines, no single algorithm
is always the best. The results for all baselines are
in the supplementary material. We observe that RCM

outperform the baselines in all the cases considered.
To compare the runtime efficiency of the various

algorithms, we consider the time to find each follower.
Figure 5a shows the time to to find a follower against the
budget and Figure 5b shows the result for RCM and the
best baseline11 for all the network at b = 250. In all the
cases RCM is much faster than all the baselines. Note that
in many algorithms, the average time to find a follower
drops as the budget increases because the size of Ca and
Cf drops (as nodes become followers and anchors).

5.2 Comparison with Optimal Solution In this
section, we compare the performance of RCM against

9http://networkrepository.com
10https://snap.stanford.edu/data/index.html
11Results for all the baselines are in the supplementary material.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

curity CRA), and the Under Secretary of Defense for
Research and Engineering under Air Force Contract No.
FA8702-15-D-0001. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the funding agencies or the U.S.
Government. The U.S. Government is authorized to re-
produce and distribute reprints for Government purposes
not withstanding any copyright notation here on.

References

[1] M. A. Al-garadi, K. D. Varathan, and S. D. Ra-

vana, Identification of influential spreaders in online
social networks using interaction weighted k-core decom-
position method, Physica A, 468 (2017).

[2] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat,

and A. Vespignani, Large scale networks fingerprinting
and visualization using the k-core decomposition, in
NIPS, 2005.

[3] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat,

and A. Vespignani, K-core decomposition of Internet
graphs: hierarchies, self-similarity and measurement
biases, Networks and Heterogeneous Media, 3 (2008).

[4] V. Batagelj and M. Zaversnik, An o(m) algorithm
for cores decomposition of networks, Tech. Report
cs/0310049, Arxiv, 2003.

[5] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Rough-

garden, and A. Sharma, Preventing unraveling in
social networks: the anchored k-core problem, in ICLAP,
2012.

[6] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Rough-

garden, and A. Sharma, Preventing unraveling in
social networks: the anchored k-core problem, SIDMA,
29 (2015).

[7] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt,

and E. Shir, A model of internet topology using k-shell
decomposition, PNAS, 104 (2007), pp. 11150–11154.

[8] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu, Efficient
core decomposition in massive networks, in ICDE, 2011.

[9] H. Esfandiari, S. Lattanzi, and V. S. Mirrokni,
Parallel and streaming algorithms for k-core decomposi-
tion, in ICML, 2018.

[10] D. Garcia, P. Mavrodiev, and F. Schweitzer,
Social resilience in online communities: The autopsy
of friendster, in COSN, 2013.

[11] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis,
Evaluating cooperation in communities with the k-core
structure, in ASONAM, 2011.

[12] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis,
D-cores: measuring collaboration of directed graphs based
on degeneracy, KAIS, 35 (2013).

[13] O. Goldschmidt, D. Nehme, and G. Yu, Note:
On the set-union knapsack problem, Naval Research
Logistics (NRL), 41 (1994).

[14] W. Khaouid, M. Barsky, V. Srinivasan, and

A. Thomo, K-core decomposition of large networks on
a single pc, PVLDB, 9 (2015).

[15] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros,

L. Muchnik, H. E. Stanley, and H. A. Makse, Iden-
tification of influential spreaders in complex networks,
Nature physics, 6 (2010).

[16] R. Laishram, A. E. Sariyüce, T. Eliassi-Rad,

A. Pinar, and S. Soundarajan, Measuring and
improving the core resilience of networks, in WWW,
2018.

[17] R.-H. Li, J. X. Yu, and R. Mao, Efficient core
maintenance in large dynamic graphs, TKDE, 26 (2014).

[18] Y. Liu, M. Tang, T. Zhou, and Y. Do, Core-like
groups result in invalidation of identifying super-spreader
by k-shell decomposition, Scientific reports, 5 (2015).

[19] D. Matula and L. Beck, Smallest-last ordering and
clustering and graph coloring algorithms, JACM, 30
(1983).

[20] S. Medya, T. Ma, A. Silva, and A. Singh, K-core
minimization: A game theoretic approach, arXiv preprint
arXiv:1901.02166, (2019).

[21] A. Montresor, F. De Pellegrini, and D. Miorandi,
Distributed k-core decomposition, TPDS, 24 (2013).

[22] C. Peng, T. G. Kolda, and A. Pinar, Accelerating
community detection by using k-core subgraphs, arXiv
preprint arXiv:1403.2226, (2014).

[23] A. E. Sarıyüce, B. Gedik, G. Jacques-Silva, K.-L.

Wu, and Ü. V. Çatalyürek, Streaming algorithms
for k-core decomposition, PVLDB, 6 (2013).

[24] A. E. Sariyüce and A. Pinar, Fast hierarchy con-
struction for dense subgraphs, PVLDB, 10 (2016).

[25] A. E. Sariyuce, C. Seshadhri, A. Pinar, and U. V.

Catalyurek, Finding the hierarchy of dense subgraphs
using nucleus decompositions, in WWW, 2015.

[26] S. B. Seidman, Network structure and minimum degree,
Social networks, 5 (1983).

[27] K. Shin, T. Eliassi-Rad, and C. Faloutsos,
Corescope: Graph mining using k-core analysis - pat-
terns, anomalies and algorithms, in ICDM, 2016.

[28] F. Zhang, W. Zhang, Y. Zhang, L. Qin, and X. Lin,
Olak: an efficient algorithm to prevent unraveling in
social networks, PVLDB, 10 (2017).

[29] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin,
Finding critical users for social network engagement:
The collapsed k-core problem, in AAAI, 2017.

[30] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin, A fast
order-based approach for core maintenance, in ICDE,
2017.

[31] F. Zhao and A. K. Tung, Large scale cohesive
subgraphs discovery for social network visual analysis,
PVLDB, 6 (2012).

[32] Z. Zhou, F. Zhang, X. Lin, W. Zhang, and C. Chen,
K-core maximization: An edge addition approach, in
AAAI, 2019.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

