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Abstract

Theory and experiments indicate that ice–bed separation during glacier slip over 2-D hard beds
causes basal shear stress to reach a maximum at a particular slip velocity and decrease at higher
velocities. We use the sliding theory of Lliboutry (1968) to explore how friction between debris
particles in sliding ice and a rock bed affects this relationship between shear stress and slip vel-
ocity. Particle–bed contact forces and associated debris friction increase with increasing slip vel-
ocity, owing to increased rates of ice convergence with up-glacier facing surfaces. However, debris
friction on diminished areas of the bed counteracts this effect as cavities grow. Thus, friction from
debris alone increases only slightly with slip velocity, and for sediment particles larger than
∼60 mm in diameter, debris friction peaks and decreases with increasing slip velocity. The effect
on the sliding relationship is to steepen its rising limb and shift its shear stress peak to a slightly
higher velocity. These results, which exclude the effect of debris friction on cavity size and debris
concentrations above ∼15%, indicate that the effect of debris in ice is to increase basal shear stress
but not significantly change the form of the sliding relationship.

1. Introduction

The relationship between glacier sliding speed and the shear stress at glacier beds has been a
major uncertainty in efforts to model glacier flow for over 60 years (Weertman, 1957). More
recently, as interest in ice-sheet response to climate warming has mounted, modeling studies
have highlighted the sensitivity of ice loss and sea-level rise projections to the form of the slid-
ing rule (Ritz and others, 2015; Tsai and others, 2015; Brondex and others, 2017; Joughin and
others, 2019).

Of many proposed sliding rules, none has greater potential for contributing to fast glacier
flow than the one first advocated by Lliboutry (1965, 1968, 1979) in which ice can separate
from the lee surfaces of sinusoidal bed undulations. In this case, neglecting regelation, the
shear stress increases with steady sliding speed, reaches a maximum, and then decreases
over a commonly wide range of sliding speed. This decrease in stress with increasing speed,
which we call rate-weakening drag, results from lee side cavities that increase their size with
increasing speed; thus, with increasing speed, diminished zones of ice–bed contact on convex
bumps are inclined up-glacier at smaller angles, decreasing drag. This model is conceptually in
accord with the upper bound on basal shear stress described by Iken (1981) that depends on
the maximum adverse slopes of bumps on the bed and effective pressure. Subsequent analyses
of sliding with ice–bed separation have been more self-consistent and less heuristic (Fowler,
1986, 1987) and have considered more complicated bed undulations (Schoof, 2005;
Gagliardini and others, 2007). These analyses qualitatively affirm the peak in shear stress
and rate weakening of Lliboutry’s (1968) theory. Moreover, results of laboratory ring-shear
experiments with sinusoidal beds demonstrate rate-weakening drag and agree quantitatively
with Lliboutry’s analysis (Zoet and Iverson, 2015).

However, whether rate-weakening drag associated with cavity growth occurs at glacier beds
over length scales large enough to be significant is unknown. Field observations of deglaciated
bedrock demonstrate unequivocally that cavities are ubiquitous on hard beds (Walder and
Hallet, 1979; Hallet and Anderson, 1980). However, Fowler (1987) and Lliboutry (1987)
thought that large bumps on glacier beds not submerged in cavities would prevent rate-
weakening drag. Although Schoof (2005) demonstrated that this viewpoint was not necessarily
true, he nevertheless advocated a simpler sliding rule in which shear stress, normalized by
effective pressure, asymptotically approaches an upper bound without rate weakening.

One motivation for disregarding the rate-weakening drag of sliding theories may come
from debris entrained in the basal ice of glaciers. Friction between this debris and the bed con-
tributes to basal shear stress and depends on particle–bed contact forces. In models of
debris-bed friction with no ice–bed separation (Hallet, 1981; Shoemaker, 1988), particle–
bed contact forces depend on the rate of ice convergence with up-glacier facing (stoss) surfaces
during sliding. The resultant component of ice flow toward the bed past particles causes a
pressure gradient across them with an associated drag that pushes them against the bed,
increasing friction and hence basal shear stress. Ice convergence with surfaces facing up-glacier
also occurs when leeward cavities persist at the bed (Iken, 1981). For increasing sliding speeds
and cavity sizes, rates of ice convergence and contact forces increase. This increase results from
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enhanced rates of basal melting and bed-parallel ice extension,
caused by increasing normal stresses over diminished zones of
ice–bed contact.

This effect motivates the hypothesis we wish to test: that higher
particle bed-contact forces at higher slip velocities may lessen or
eliminate the rate-weakening drag of sliding models with ice–
bed separation (e.g. Lliboutry, 1968; Fowler, 1986). We combine
existing theories of clean-ice sliding and of debris-bed friction
without ice–bed separation to estimate total basal shear stress as
a function of sliding speed. We find that debris-bed friction
does not eliminate or significantly reduce rate-weakening drag.

2. Clean ice

In sliding theories, no shear traction acts locally at the bed surface,
owing to the water film that divides wet-based glaciers from their
beds. Ideally, a local shear traction commensurate with debris-bed
friction could be included in such models so that stresses, ice flow
and cavity sizes could reflect that friction. Although aspects of this
problem have been studied with the finite-element method
(Schweizer and Iken, 1992), no analytical model exists that
includes local shear tractions and ice–bed separation. Therefore,
our tactic is to investigate what insights are possible using existing
sliding theory to estimate debris-bed friction, neglecting its feed-
back on ice flow – a reasonable assumption if shear stress from
debris-bed friction is a small fraction of the total basal shear
stress.

To analyze sliding with ice–bed separation, we use the theory
of Lliboutry (1968) because it enables, in an approximate way, use
of a Glen-type, non-linear ice rheology, and because aspects of the
theory have been tested experimentally (Zoet and Iverson, 2015).
Like most other sliding theories that include ice–bed separation,
the theory neglects regelation. This simplification is justifiable
because on stoss surfaces where ice is in contact with rock, glacial
abrasion generally smooths surfaces (e.g. Hooke, 2005), causing
roughness elements as small as the controlling obstacle size (e.g.
Weertman, 1957) to be relatively rare. Slip velocity is imposed
as an independent variable in the far-field above bumps. No
shear traction is allowed locally on the bed surface, owing to
the water film, as noted, and the shear traction between water
in cavities and cavity roofs is negligibly small. All drag therefore,
for the case of clean ice, stems from the distribution of normal
stress on the glacier sole exerted by rock in zones of ice–bed con-
tact and by water under pressure in lee side cavities.

Lliboutry (1968) considered a 2-D, rigid bed with a longitu-
dinal profile,

zb = 1
2
a cos

2px
l

, (1)

where x is measured parallel to average slope of the bed, a is the
bump height from trough to crest, and λ is the wavelength
(Fig. 1a). The roughness is R = a/λ. Making various approxima-
tions, Lliboutry used the bump geometry, slip velocity u, effective
pressure, N and the ice flow law parameters to estimate the cavity
length, Lc (Fig. 2):

Lc = l(1− s), (2)

where s is the fraction of the bed in contact with ice:

s = 1
6pR

aANn

u

( )1/2

. (3)

The flow law of ice is represented by the pre-factor, A, and the
creep exponent n (Cuffey and Paterson, 2010, p. 55). Effective
pressure N = ρgH cos α− pw, where ρ is the ice density, g is the
gravitational acceleration, H is the ice thickness, α is the glacier
surface slope and pw is the cavity water pressure. Neglected in
deriving Eqn (3) is heat dissipated by water flowing through cav-
ities and resultant melting of cavity roofs; such dissipation is
thought to be small in cavities (Walder, 1986). Confidence in
this estimate of cavity size comes from Kamb (1987), who consid-
ered the same bed geometry and ice rheology and arrived at a
similar estimate using a different analysis (Fig. 2).

Also required for estimating basal shear stress is the location, xd,
where the ice detaches from the bed:

xd = l

2p
cot−1 2p(1− s)+ sin (2ps)

1− cos (2ps)

[ ]
(4)

(Lliboutry, 1968), where xd = 0 would correspond to ice detachment
at the bump crest (Fig. 1a). For increasing sliding speeds, the point
of detachment is increasingly close to the bump crest upstream, and
the reattachment point, xr = xd + Lc (Fig. 1a) approaches the down-
stream crest (Fig. 3). These results are qualitatively similar to those
of Fowler (1986) who considered a linear ice rheology, although in

Fig. 1. (a) Model parameters and coordinates for the wavy bed
of Lliboutry (1968). (b) Model parameters and coordinates for a
particle in frictional contact with the bed over the zone of
ice–bed contact, sλ, in panel (a).
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his analysis xd extends slightly up-glacier beyond the bump crest,
and the ice reattachment point extends farther down-glacier for a
given slip velocity scaled by N and R.

The basal drag depends on the normal stress, σn, that ice exerts
on the bed over zones of ice–bed contact. Lliboutry (1968)
assumed that this stress varies symmetrically about the centers
of such zones where the stress reaches a maximum, to arrive at

sn = pw − p N
sin (ps)− ps cos (ps)

cos (ps)+ cos
2p
l

x − xd + xr
2

( )[ ]{ }

(5)

(see his Eqns (10 and 12)). From this stress distribution, he esti-
mated the basal shear stress, τ, for clean ice:

t = 1
2
pRN

[ps− (1/2) sin (2ps)] sin (ps− (2pxd/l))
sin (ps)− ps cos(ps)

{ }
(6)

(Lliboutry, 1968, his Eqns (13 and 14)), where s depends on slid-
ing speed through Eqn (3). The resultant rate-weakening drag
(Fig. 4) is qualitatively similar to that determined in subsequent
analyses (Fowler, 1986; Schoof, 2005; Gagliardini and others,
2007). A drawback of Lliboutry’s model is that he derived separate
relationships for sliding velocities below and above the velocity
value at which ice–bed separation occurs, resulting in a non-
smooth first derivative of the stress relationship at the separation
velocity. Thus, Figures 2–4, with sliding velocity scaled by the sep-
aration velocity, do not include values <1.0. This scaling is accept-
able because we are concerned with the effect of debris on
rate-weakening drag that accompanies cavity growth. The separ-
ation velocity can be found from Eqn (3) by setting s = 1.

3. Debris-bed friction

Lliboutry’s (1968) sliding model allows estimation of rates of ice–
bed convergence with stoss surfaces and cavity size as functions of
slip velocity. The former controls contact forces between particles
and the bed, whereas the latter controls the area of the bed over
which debris-bed friction occurs. We wish to explore how the
tradeoff between these two variables for different cavity sizes
affects the form of the relationship between shear stress and slip
velocity.

A major component of ice–bed convergence on stoss surfaces
is from extension of ice parallel to the bed as ice flows past bumps
(Hallet, 1981). Sliding theory for a sinusoidal bed, in the absence
of ice–bed separation and neglecting regelation, yields a compo-
nent of ice velocity toward the bed everywhere on stoss surfaces
at rates that peak at the point midway up stoss surfaces (Nye,
1969, see his Eqn (32) in the limit of zero regelation past
bumps). Iken’s (1981, her Fig. 6a) numerical calculations of the
velocity field in Newtonian ice near a sinusoidal bed for the
case of steady cavities similarly demonstrate that a streamline
near stoss surfaces converges with the bed and that ice speeds
up as it moves down-glacier along zones of ice–bed contact, indi-
cative of bed-parallel extension on stoss surfaces. These facts are
also confirmed by recent finite-element simulations of the same
process with a Glen-type ice rheology (Helanow and others,
2018). The ubiquity of striations on stoss surfaces (e.g. Hallet,
1979) of large bumps where leeward cavities have been mapped
(e.g. Hallet and Anderson, 1980) provides further confirmation
that extension of ice parallel to the bed during flow past bumps
presses debris particles against stoss surfaces – a process that
was first recognized by Gilbert (1906).

This ice extension causes a component of ice velocity toward the
bed that is zero at the bed surface but increases away from the bed
in the zone of extension. To estimate the bed-normal ice velocity
that results from this ice deformation, vd, we consider the more
compressive principal stress, σ11, to be normal to areas of
ice–bed contact, following Lliboutry (1968), so σ11 = σn (Fig. 1a).
A reasonable choice for the less compressive principal stress is
σ22 = pw, the water pressure in cavities, which confines the ice on
each side of the zone of ice–bed contact (Fig. 1a). Making these
assumptions, defining the mean stress as pm = 1/2(σ11 + σ22), and
using Glen’s flow law yields the effective strain rate, 1̇e:

1̇e = A
1


2

√ [(sn − pm)
2 + ( pw − pm)

2]
1/2

{ }n

, (7)

where the term in the outermost brackets is the effective shear
stress, (1/2σijσij)

1/2 (e.g. Hooke, 2005), and sn is the normal stress

Fig. 2. Cavity length, Lc, scaled by the bed wavelength, λ, as a function of slip velocity
scaled by the velocity at which ice separates from lee surfaces, as indicated by the
theories of Lliboutry (1968) and Kamb (1987, see his Eqns (8) and (13)).

Fig. 3. Points of detachment, xd, and reattachment, xr, of ice, as a function of slip
velocity scaled by the velocity at which ice separates from lee surfaces, indicated
by the theories of Lliboutry (1968) and Kamb (1987). Bump crests are at x/λ = 0
and x/λ = 1.0.

Fig. 4. Sliding rule of Lliboutry (1968) for sliding velocities above those required for
ice–bed separation. Shear stress, τ, is scaled following Gagliardini and others (2007)
where C = pR is the maximum slope of the bed. The factor, 1.51, adjusts τ to bring
it into accord with Iken’s (1981) bound. Solving for τ in each of her Eqns (3) and (4)
and dividing the results yields this factor; it reflects different assumptions made by
Lliboutry (1968) and Iken (1981) regarding the distribution of normal stress on
zones of ice–bed contact.
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(Eqn (5)) averaged over the zone of ice–bed contact. We idealize
this strain rate as uniform in the thin zone of ice adjacent to
stoss surfaces where debris particles in contact with the bed reside.
Noting that 1̇e = (1/ 



2
√ )(ė211 + ė222)

1/2 and that for the plane
strain of this problem, continuity requires 1̇11 = −1̇22 (Fig. 1b),
then 1̇e = 1̇11. Integrating 1̇11 from the bed surface along a coord-
inate, ν, normal to the bed indicates that vd = 1̇11ν. The value of vd
that is most relevant to particle–bed contact forces is the velocity at
the midpoint of a particle (Hallet, 1981), which corresponds to its
radius, R (Fig. 1b). Thus, taking ν = R, and using Eqn (7) yields the
component of ice velocity toward the bed due to the bed-parallel
extension of ice:

vd = AR
2n/2

[(sn − pm)
2 + ( pw − pm)

2]n/2. (8)

The other component of bed-normal ice velocity results from
basal melting. The heat flux dissipated by sliding ice is qs = τu.
We assume that all of this heat flux and the geothermal heat
flux, qG, melt ice only along the ice–bed contacts where ice is
coldest, so the rate of basal melting, vm, depends on cavity size
through s:

vm = 1
srL

(qG + tu). (9)

As in the derivation of Eqn (3), heat dissipated by water flowing
through cavities is neglected. Equations (8) and (9) provide the
total bed-normal ice velocity, vn (Fig. 1b) in zones of ice–bed
contact: vn = vd + vm.

Contact force, F, exerted normal to the bed by particles in
zones of ice–bed contact, depends on vn because as ice moves
toward the bed it exerts a bed-normal drag on particles
(Fig. 1b). Watts (1974) determined the drag on an isolated sphere
exerted by temperate ice moving by regelation and enhanced
creep. Hallet (1979, 1981) adapted this result and added to it
the sphere’s buoyant weight in ice to obtain

F = f 4pheR
3

R2∗ + R2
vn + 4

3
pR3g(rr − r) cos u, (10)

where ηe is the effective viscosity of ice, R* is the controlling par-
ticle size, f is an empirical factor >1.0 that accounts for the accen-
tuating effect of the bed proximity on drag, ρr is the particle
density and θ is the angle between the local bed slope and hori-
zontal (Fig. 1b). Particle buoyant weight, as indicated by the right-
hand term, is a significant fraction of F only for R > 0.1 m (Hallet,
1979). Experiments with inclusions in ice in which vn has been
measured indicate that drag indeed depends on vn (Iverson,
1990; Byers and others, 2012), with f≈ 2.0 (Byers and others,
2012). Cavities that form in these spaces between particles and
the bed led Boulton (1974) to suggest that the difference between
the ice pressure and water pressure in these cavities controlled
contact forces. However, water pressure in cavities of steady size
beneath isolated particles on the bed must be at least slightly
higher than the mean ice pressure to enable drainage from cavities
through the water film along the bed surface to ‘connected’ parts
of the subglacial hydraulic system. We thus use Eqn (10) to esti-
mate contact forces but acknowledge that it is contingent on the
assumption that water produced by melting along particle sur-
faces drains through the water film at the ice–rock interface.
Equally important is that Eqn (10) applies only to debris particles
that are sufficiently isolated from each other that their flow fields
do not interact.

Owing to the power-law rheology of ice, ηe and R* in Eqn (10)
depend on vn. The effective viscosity depends on the flow-law
parameters:

he =
1̇(1/n−1)
rn

2A1/n
, (11)

where r is the distance from particle centers parallel to the local
bed slope and remembering that ν is the coordinate perpendicular
to the local bed slope (Fig. 1b). Approximating ηe therefore
requires choosing a reference value of the shear strain rate, 1̇rn.
Neglecting bed-normal gradients in velocity parallel to the local
bed slope, 1̇rn = (1/2)( dvn/dr). The radial variation in bed-
normal velocity, δvn, is at most vn. Taking δvn = vn, and choosing
δr as the particle diameter, 2R, then yields

1̇rn = vn
4R

. (12)

The resultant value of effective viscosity from Eqn (11) deter-
mines in Eqn (10) the value of R*:

R∗ = 3heCmK
rL

( )1/2

, (13)

where Cm is the melting point depression with pressure, and K is a
bulk thermal conductivity of particles and ice (Watts, 1974).

From the contact force, F, and fractional area of ice–bed con-
tact, s, the component of bed shear stress due to debris-bed fric-
tion, τd, is

td = sCmF cos u, (14)

where C is the concentration of particles in contact with the bed
(particle number per unit area), μ is the coefficient friction
between rock particles and the bed and cos θ isolates the compo-
nent of stress parallel to the average bed slope, assumed to be zero.
Eqn (14) may overestimate τd because particles may rotate in ice
under a torque smaller than the torque, μFR, caused by full mobil-
ization of clast-bed friction. We neglect this complication to
maximize the possible effect of debris-bed friction on the sliding
rule. For the same reason we consider only maximum values of C,
limited by the requirement that debris particles be widely enough
spaced so that flow fields around them do not interact. Velocity
distributions in ice during its power-law flow past an isolated
sphere (Lliboutry and Ritz, 1978) indicate that particles separated
by at least ∼1.5 particle diameters satisfy this criterion. This spa-
cing of particles at the bed surface implies that the number of par-
ticles per unit area of the bed is

C = 1
6.25pR2

. (15)

If the same particle spacing applies normal to the bed, then the
associated concentration of debris in ice by mass is ∼15%.

Equations (3–5) and (8–13) allow estimation of contact forces
and areas of ice–bed contact as a function of sliding speed, and
Eqn (14) provides the resulting estimate of debris-bed friction,
maximized for each particle size through Eqn (15). Table 1
shows relevant parameter values.

4. Results

The bed-normal component of ice velocity, vn, in zones of ice–bed
contact – the driver for particle–bed contact forces – increases
with increasing velocity and cavity size but at a decreasing rate
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for various particle sizes (Fig. 5a). The normal stress on the bed
(Eqn (5)) and the associated rate of ice extension on stoss surfaces
are largely responsible for this variation, which reflects cavity
growth rate decreasing with increasing slip velocity (Fig. 2).
Large particles extend higher in the ice and thus are subjected
to larger values of ice–bed convergence from ice extension than
smaller particles (Fig. 5a). Contact forces (Eqn (10)) increase
similarly with slip velocity (Fig. 5b), but contact forces vary
orders-of-magnitude more with particle size than do bed-normal
ice velocities. This large variation reflects little drag on small par-
ticles due to the efficiency of regelation and much larger drags on
larger particles closer to the controlling particle size (R* = 0.03–
0.15 m, depending on vn and R, Eqns (11–13)). The effect of a
given particle size on debris-bed friction also depends, however,
on the particle concentration in ice, which is larger for smaller
particles (Eqn (15)). Considering the product, CF, of the particle
concentration and contact force indicates that larger particles,

nevertheless, have a significantly larger effect on total contact
forces than smaller particles (Fig. 6a).

Debris-bed friction, therefore, increases with increasing par-
ticle size (Fig. 6b). Regardless of particle size, the sensitivity of
debris-bed friction to slip velocity is small, owing to growth of
cavities with increasing slip velocity, as factored into Eqn (14)
through the fractional area of ice–bed contact, s. Interestingly,
debris-bed friction does not monotonically increase with slip vel-
ocity for all particle sizes. For the two largest particle sizes consid-
ered, at a sufficiently high slip velocity debris-bed friction reaches
a maximum and declines at still higher slip velocities. This behav-
ior reflects the rapid decrease in the rate at which CF increases
with slip velocity for larger particles (Fig. 6a), causing high sensi-
tivity of debris-bed friction to changing cavity size that reverses
the slope of the relationship for larger particles.

However, apart from increasing the magnitude of the basal
shear stress, the overall effect of debris-bed friction on the form
of the sliding rule is small (Fig. 7). Debris-bed friction steepens
the ascending limb of the sliding rule and slightly increases the
threshold slip velocity at which the peak shear stress occurs,
thus reducing the propensity for rate-weakening drag. These
effects are minor, however, because decreases in ice–bed contact
area with cavity growth mute or reverse the effect of increases
in debris-bed friction from increased contact forces. Note that
in Figure 7 drag depends on chosen values of bed roughness
(0.1) and effective pressure (500 kPa). Although the shear stress
scaling for clean ice is independent of these variables (Fig. 4),
in Figure 7 we do not use this scaling because it is inappropriate
when shear stress depends, in part, on debris friction.

Table 1. Parameter values

Symbol Parameter Valuea

A Pre-factor of ice flow law 2.41 × 10−24 Pa−3 s−1

Cm Melting point depression with pressure 7.4 × 10−8 K Pa−1

f Drag enhancement factor for particles on bed 2.0
K Bulk thermal conductivity of particles and ice 5.6 W m−1 K−1 b

L Latent heat of fusion of ice 3.34 × 105 J kg−1

μ Particle–bed coefficient of friction 0.6c

n Creep exponent of ice flow law 3.0
qG Geothermal heat flux 0.065 W m−2 d

ρ Density of ice 900 kg m−3

ρr Density of rock 2700 kg m−3 c

aValues from Cuffey and Paterson (2010) unless noted otherwise here or in the text.
bWatts (1974).
cJaeger and Cook (1979).
dPollack and others (1993).

Fig. 5. (a) Convergence velocity, vn, and (b) contact force, F, for different particle radii,
R. Bed roughness, R = 0.1 and effective pressure, N = 500 kPa. This value of N, for the
case of basal water pressure at 80% of the ice overburden pressure, corresponds to a
glacier ∼280 m thick.

Fig. 6. (a) The product of contact force, F, and debris concentration, C (in particles
per m2), and (b) the shear stress caused by debris-bed friction, for different particle
radii, R. Bed roughness, R = 0.1, and effective pressure, N = 500 kPa.
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Dependencies of the friction-influenced sliding rule on bed
roughness and effective pressure, shown in plots in which both
shear stress and slip velocity are unscaled (Figs 8 and 9), further
illustrate the importance of cavity size. Smaller bed roughness
(Fig. 8), in addition to decreasing the peak stress and the magni-
tude and velocity range of rate-weakening drag, increases the
component of stress due to debris-bed friction. This reflects smal-
ler cavities and larger areas of the bed of over which debris-bed
friction acts if roughness is low. For the same reason, debris-bed
friction increases with increasing effective pressure (Fig. 9), which
reduces cavity size. For small but reasonable values of effective
pressure (e.g. 300 kPa), threshold slip velocities for ice–bed separ-
ation can be extremely low, and rate-weakening drag can occur
over nearly the full range of possible slip velocity. Debris-bed fric-
tion does little to alter this effect (Fig. 9).

5. Discussion and conclusions

Increasing cavity size with increasing slip velocity has two oppos-
ing effects on debris-bed friction. Larger cavities increase normal
stresses on zones of ice–bed contact, with associated higher rates
of ice-convergence and contact forces. Larger cavities also,

however, reduce the area over which debris-bed friction acts.
For all particle sizes, the combination of these effects at low slip
velocities causes debris-bed friction to increase with increasing
velocity. For sufficiently large particles, debris-bed friction
peaks, with rate-weakening friction at higher velocities (Fig. 6).
The effect of debris-bed friction on basal shear stress is to steepen
the rising limb of the sliding rule and shift the peak in drag to a
slightly larger slip velocity (Fig. 7). However, the overall sensitivity
of debris-bed friction to sliding speed is sufficiently small that
these effects on the form of the sliding rule are minor.

In principle, debris can substantially increase the peak stress
(Fig. 7), but accurately estimating this stress has not been our
goal. We have maximized debris concentrations without specify-
ing reasonable ranges of particle size. For example, a collection of
grapefruit-sized clasts (R = 60 mm, Figs 5–7) with 3R spacing
(Eqn (15)) at the bed is unlike any grain-size distribution
observed in the basal ice of a glacier. Rather, our goal has been
to ask, with debris-bed friction maximized, whether it can have
a significant effect on the form of the sliding rule. The answer,
within the limitations of the analysis, is no, and that answer
should also apply to realistic grain-size distributions in which
large particles are few relative to small particles.

Limitations of the analysis include neglecting the effect of deb-
ris friction on sliding speed and cavity size and neglecting debris
concentrations in ice sufficiently large so that ice flow fields
around particles interact. The former is neglected because no ana-
lytical model of sliding with ice–bed separation exists for the case
of a non-zero shear traction applied at the bed surface, although
Morland (1976) considered this problem. Including this effect
might influence the tradeoff between contact forces and cavity
size with sliding speed. Dense concentrations of debris particles
in ice are not common but sometimes observed. A speculation,
based on one set of laboratory experiments with dense debris in
temperate ice (Iverson, 1993), is that micro-cavities beneath adja-
cent particles merge so that an irregular water layer, much thicker
than the normal water film, exists at the bed surface. If this layer
were hydraulically transmissive enough for water pressure within
it to be controlled by the pressure in the subglacial hydraulic sys-
tem, effective pressure could become the dominant control vari-
able for contact forces. In this case, particle–bed contact forces
could be much higher than for the case of sparse debris.

These results indicate that debris-bed friction does not elimin-
ate or significantly lessen rate-weakening drag indicated by

Fig. 7. Sum of shear stress with clean ice, τ, and with debris-bed friction, τd, for dif-
ferent particle radii, R. Bed roughness, R = 0.1 and effective pressure, N = 500 kPa.

Fig. 8. Sum of shear stress with clean ice, τ, and shear stress from debris-bed friction,
τd, for two values of bed roughness, R. Particle radius, R = 10 mm, and effective pres-
sure N = 500 kPa.

Fig. 9. Sum of shear stress with clean ice, τ, and shear stress from debris-bed friction,
τd, for two values of effective pressure, N. Particle radius, R = 10 mm, and bed rough-
ness, R = 0.1.

6 Neal R. Iverson and others



idealized theories and experiments, leaving open the major ques-
tion of how actual hard beds may suppress rate weakening. One
possibility is that some bumps on glacier beds may be both
large enough to remain unsubmerged in cavities and have stoss
faces that are steeper than those already submerged (Schoof,
2005). Alternatively, on actual glacier beds bump crests may
align too poorly along a flowline for cavities to submerge stoss
surfaces sufficiently under the operative range of sliding speed
(Zoet and Iverson, 2016). Also, the degree of convexity of
stoss surfaces in contact with ice could be important.
Development of sliding theory for realistic, 3-D bedrock sur-
faces, therefore, might allow the physics of hard-bedded sliding
to be reconciled with large-scale glacier flow models that neglect
rate-weakening drag.

Alternatively, such theory might show that rate-weakening
drag on actual hard beds is not suppressed and so point to a
major inadequacy in how the basal boundary condition in glacier
flow models is handled. As discussed previously (Lliboutry, 1968;
Fowler, 1987; Schoof, 2005), a glacier with a bed that effectively
becomes slipperier with increasing slip velocity would be inher-
ently prone to fast flow and associated mass losses.
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