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Abstract—Traditional analog-to-digital converters (ADCs)
employ dedicated analog and mixed-signal (AMS) circuits,
requiring time-consuming manual design process. They also
exhibit limited configurability to support diverse quantization
schemes on the same circuitry. In this paper, we propose
NeuADC—an automated design approach to synthesizing an
analog-to-digital (A/D) interface that can approximate the desir-
able quantization function using a neural network (NN) with
a single hidden layer. We leverage the mixed-signal resistive
random-access memory (RRAM) crossbar architecture to design
a novel dual-path configuration for the implementation of the
basic NN operations at the circuit level. We exploit alternative
bits encoding scheme to the conventional binary encoding to
improve the training accuracy. Our method incorporates non-
idealities at the device and circuit level into the training process
to ensure NeuADC’s robustness against variations of process,
supply voltage, and temperature (PVT). Results obtained from
SPICE simulation based on RRAM and standard 130-nm CMOS
technology suggest that not only can NeuADC deliver promising
performance compared to the state-of-the-art ADCs and other
emerging converter designs across comprehensive design met-
rics, but it can also intrinsically support multiple configurable
quantization schemes using the same hardware substrate, paving
ways for future adaptable application-driven signal conversion.
Our systematic evaluations on the proposed NeuADC framework
also quantify the impacts on the ADC quantization quality from
hidden neuron sizes, RRAM resistance imprecision, and PVT
variations, and reveal the design tradeoff between speed, power,
and area in a NeuADC circuit.

Index Terms—Analog-to-digital (A/D) conversion, mixed-signal
computing, multiple quantization schemes, neural network (NN),
resistive random-access memory (RRAM) crossbar, synthesizable.
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I. INTRODUCTION

AS INTEGRATED circuits scale to more advanced tech-
nology with lower supply voltage, many challenges arise

in designing scalable analog and mixed-signal (AMS) cir-
cuits [1]–[5], such as reduced intrinsic device gain, decreased
signal swing, and aggravated device mismatch. As one of
the quintessential examples of AMS circuits, analog-to-digital
converters (ADCs) face similar design challenges when being
ported to smaller highly scaled technology nodes [5], [6].
Traditional ADC circuits often require significant manual
design iterations and respins to meet the desirable performance
specifications in a new process. Previous research has explored
synthesizable and scaling-compatible ADC topologies to
automate this expensive and time-consuming design pro-
cess [5]–[10]. One example is the stochastic flash ADCs that
make use of the intrinsic input offsets of minimum-sized dig-
ital comparators [5], [6]. However, stochastic ADCs require a
large number of hardware resources (∼3840 comparators) and
work only at relatively modest sampling rate (∼8 MS/s) and
resolution (∼5.3 bits). Another example is synthesis-friendly
time-domain delta-sigma ADCs [7], but they still require
manual modifications of a standard cell and designer’s knowl-
edge for floor-planning. Other automated strategies are also
proposed to design successive approximation (SAR) ADCs at
the sub-block level, instead of a holistic automation approach
for the full system [8]–[10]. Despite its crucial role, the lack
of effective design automation severely limits the productiv-
ity improvement and performance enhancement for the AMS
circuits, causing major bottleneck in IC development.

In addition to the design automation challenge, ADCs
also face new demands from many emerging applica-
tions [11]–[19]. For example, in-memory computation (IMC)
using nonvolatile memory (NVM) crossbar arrays has been
proposed for deep learning applications, where ADCs play a
critical role in converting the computed analog signal on the
bitline (BL) of the NVM crossbar array to digital bits for fur-
ther processing [13]–[15]. Due to the specific BL computation
mechanism, nonuniform quantization and adaptive tuning of
the quantization threshold are often required, which is diffi-
cult to achieve by the conventional ADC design with fixed
quantizations and thresholds. Therefore, an ADC design that
intrinsically supports multiple quantization schemes to satisfy
the specifications of the IMC systems is highly desirable. The
ability to support flexible quantization schemes is also a desir-
able property that can benefit a variety of sensor front-end
interfaces where ADCs reside in [11] and [12]. For instance,
image sensors require logarithmic quantizations to realize
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Fig. 1. Standard ADC in image sensor with linear quantization.

uniform distribution of exposure [11], [12]. Traditionally, as
shown in Fig. 1, the logarithmic quantization step is per-
formed in the digital domain by the back-end image signal
processor (ISP) through a specific gamma correction stage,
since the standard ADCs used in the image sensor front-end
only implement normal linear quantization. Therefore, a recon-
figurable front-end ADC supporting different quantization
schemes can obviate the need to perform certain image pro-
cessing steps, such as gamma correction later in the digital
domain, enabling better preservation of useful information, and
improved power saving.

In this paper, we propose NeuADC—a novel design
approach for automatic ADC synthesis that can address
the aforementioned imminent challenges facing the tradi-
tional ADC design paradigm [16]. We term our new design
NeuADC, as it is inspired by neural network (NN). Our
approach is founded on a deep learning framework and
implemented by using mixed-signal resistive random-access
memory (RRAM) crossbar architecture. We consider RRAM,
a promising NVM technology [20], a perfect testbed to demon-
strate the scaling-compatible and portability-friendly features
of our method. Essentially, the proposed NeuADC frame-
work formulates the ADC design as an NN learning problem
with the learning objective of approximating multiple desir-
able quantization functions for A/D conversion. This allows
us to take advantages of many effective training techniques
developed for deep learning and seamlessly incorporate them
into ADC design automation. The following key innovations
and contributions are made in this paper.

1) We propose an NN-inspired design methodology to
model the A/D interfaces and transform the traditional
ADC design problem into a learning problem. Our novel
design approach opens new opportunities to employ
learning techniques in AMS design automation.

2) We propose a new dual-path RRAM crossbar archi-
tecture to facilitate mixed-signal vector matrix
multiplication (VMM) required by NeuADC in a
scaling-compatible manner, along with an inverter
voltage transfer curve (VTC)-based activation function
to implement the nonlinear activation function (NAF).

3) We explore offline training techniques and a smooth-
bit encoding scheme to obtain robust trained weight
parameters that account for device and circuit level
nonidealities, including process, supply voltage, and
temperature (PVT) variations of the CMOS transistors
and the limited resolution of the RRAM devices.

4) We develop a fully automated design flow to synthe-
size the proposed NeuADC circuits and present SPICE
simulation results based on the automatically synthe-
sized netlist. Our SPICE simulation results validate the
competitive performance of the proposed NeuADC and

Fig. 2. (a) Illustration of three-layer NN universal approximator. (b) RRAM
crossbar array with Op-Amps. (c) RRAM crossbar array without Op-Amps.

its ability to support multiple quantization schemes, and
also reveal the impacts on the ADC quantization quality
from the NN-level parameters (i.e., hidden neuron sizes
and the number of output bits) and device-level charac-
teristics, as well as the design tradeoff between speed,
power and area in a NeuADC circuit.

The rest of this paper is organized as follows. Section II
provides the preliminary background and related work on
this topic. An overview of the proposed NeuADC design
methodology is summarized in Section III, and more detailed
implementations of the hardware substrate and the training
framework are described in Sections IV and V, respectively.
Finally, we present the simulation methodology and results
in Sections VI and VII before concluding this paper in
Section VIII.

II. BACKGROUND AND RELATED WORK

To provide the background context for this paper, we first
briefly introduce the basic multilayer perceptron (MLP) model
with universal approximation property and then give a quick
overview of the RRAM technology and its crossbar architec-
ture, which is often used to perform efficient VMM step of
the NN operations. Finally, we review the related work that
has explored the possibility of using NN-inspired principles to
realize analog-to-digital (A/D) conversion.

A. Multilayer Perceptron

An MLP is a class of feedforward artificial NN (ANN)
which consists of, at least, three layers of nodes: 1) an input
layer; 2) a hidden layer; and 3) an output layer. Except for
the input nodes, each node is a neuron that uses an NAF. A
simple model of a three-layer feedforward MLP with one hid-
den layer is illustrated in Fig. 2(a). The basic NN operations
between neighbor layers can be expressed as

yj = σj

(
n∑

i=1

(
wij · xi + bj

))
(1)

where xi is the input signal value of node i, i = 1, 2, . . . , n
in the input layer, and yj is the output signal of node j, j =
1, 2, . . . , m in the hidden layer. wij is the weight to connect
input xi and output yj. bj is the offset for jth neuron in the
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hidden layer. σj(x) is the NAF, e.g., a sigmoid function

σj(x) = 1

1 + e−x
. (2)

It has been proven that arbitrary decision regions can be
arbitrarily well approximated by continuous feedforward NN
with a single hidden layer and any continuous sigmoid acti-
vation function [33]. Therefore, if these operations can be
implemented on hardware NN, it is possible to train such NN
to approximate an ADC with different quantization schemes.

B. RRAM Technology for NN Computing

Although originally developed as an NVM technology, the
emerging RRAM has been proposed as a promising technol-
ogy for implementing NN approximate computing engines
and learning accelerators, owing to its crossbar architecture
enabling efficient in-memory matrix multiplication [14], [15].
RRAM is a passive two-terminal device built on TiOx, WOx,
HfOx,1 or other materials with variable resistance proper-
ties [20], and has special advantages in small cell size
(4F2, F is the minimum feature size), excellent scalability
(<10 nm) [20], fast switching time (<10 ns) [20], [27], and
good endurance (up to 1012 cycles) [20]. Another advantage
of RRAM is the CMOS-compatible fabrication process and
monolithic 3-D integration [20]. Therefore, RRAM cells can
be organized into stackable and ultradense crossbar arrays at
no extra area overhead. As the focus of this paper is not
on technology, we use the SPICE model of the RRAM to
simulate, and analyze the performance of circuits [24]–[26].

RRAM crossbar array-based NN computation consists of
two essential functions at its heart: 1) a VMM (1), to associate
network weights with output from previous layer and 2) an
NAF (2), to convert the summation of current layer to the
input of next layer. Fig. 2(b) and (c) illustrates two common
RRAM crossbar arrays to implement VMM on hardware [15],
and the VMM computation between two adjacent layers are
expressed as

Vo,j =
n∑

i=1

cij · Vin,i (3)

where Vin,i is the signal value of input node i, i = 1, 2, . . . , n,
and Vo,j is the signal of output node j, j = 1, 2, . . . , m; cij is the
weight to connect input Vin,i and output Vo,j. In terms of the
crossbar in Fig. 2(b) with operational amplifiers (Op-Amps),
cij is linear with the gij and can be expressed as

cij = −gij

gs
. (4)

While for the crossbar array in Fig. 2(c) without Op-Amps,
the cij can be expressed as

cij = gij

gs + ∑n
k=1 gik

(5)

where gs is the conductance of summation resistor Rs and
the gij is the conductance of memristor in the ith row and
jth column of the crossbar array. After VMM, the output
Vo,j will be fed into an NAF, which usually is realized as
piecewise look-up table (LUT) or customized quasi-sigmoid
function [15], [28], to generate the input for next layer.

1In this paper, we choose HfOx-based RRAM device as the core component
of crossbar array, since it is one of the most mature materials which have been
explored so far.

Both types of the RRAM crossbar arrays are efficient to
realize VMM by reducing the computation complexity from
O(n2) to O(1). However, they cannot be used in our design
because Op-Amps and resistors are not suitable for synthe-
sizable design style. In Section IV, we will illustrate a new
architecture of RRAM crossbar and CMOS inverter-based
neuron to implement the hardware substrate of NeuADC.

C. Related Work

Previous work has explored applying NN principles in
ADC architectures [21]–[23]. For example, 4-bit ADCs based
on either Hopfield NN or T-model NN have been reported
before [22], [23]. They are built on a recurrent architecture
where resistors array are used to implement basic multiplica-
tion operations and inverting amplifiers act as neurons. These
basic proof-of-concept designs are implemented on bread-
boards by fine-tuning the discrete components to show a
sampling rate on the order of 10 S/s. Another example is
a neuromorphic ADC that uses integrate-and-fire neurons as
time or rate encoders of the analog input [21]. The resolu-
tion of the encoding, in both time and amplitude, is increased
by using multiple neurons in parallel. The circuit model of
integrate-and-fire neuron is complicated, which restricts the
speed of ADC. It is also demonstrated on breadboard using off-
the-shelf ICs and discrete components, which is not optimal
for power efficiency or device configuration.

These preliminary work often lacks the specific considera-
tions of large-scale highly integrated circuit implementation,
impact of technology scaling, customization of the training
process, or design automation capabilities. Moreover, their
methods do not exploit the explicit formulation of the A/D
conversion as a learning problem, and hence is fundamentally
different from our proposed work.

III. NEUADC DESIGN METHODOLOGY

In this section, we provide an overview of design method-
ology used in the learning and synthesis of the proposed
NeuADC. In order to build an intuitive understanding of our
novel approach, we first illustrate how an ADC design can be
conceptually mapped to an NN model. We then introduce the
basic steps in the design process to facilitate a fully automated
ADC design flow.

A. Mapping ADCs to NNs

The mapping methodology is inspired by NN’s ability to
closely approximate general nonlinear functions. From a math-
ematical modeling perspective, an ideal ADC converts an
analog-valued input Vin into a digital bit-vector output accord-
ing to the uniform staircase quantization function and the
analytical expression for each bit can be obtained as a highly
nonlinear function. For example, a typical flash ADC shown
in Fig. 3(a) represents the straightforward circuit realization of
the quantization using ideal comparators and a thermometer-
to-binary decoder. Coincidentally, the universal approximation
theorem proves that a feed-forward NN with a single hidden
layer, also known as MLP, can approximate arbitrary complex
functions, given sufficient number of hidden neurons [33].

Based on their respective structures, a straightforward archi-
tectural mapping between a flash ADC in Fig. 3(a) and an
MLP in Fig. 3(c) can be intuitively obtained. A flash ADC
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Fig. 3. Conceptual illustration of the proposed NeuADC design methodology. (a) Conventional flash ADC architecture. (b) Proposed NeuADC hardware
substrate based on RRAM crossbar. (c) Proposed automated design flow that takes ideal quantization datasets as inputs during offline training to find the
optimal set of weights and derive the RRAM resistances in order to minimize the cost function and best approximate the ideal quantization function.

typically consists of three stages—the first input stage takes
analog signal from the previous sampling and holding cir-
cuit (S/H) [35], [36]; the second compare stage employs a
linear resistive voltage ladder to set trip points Vbi for a
string of comparators; and the last decode stage converts the
intermediate thermometer code into binary code. Structurally,
the “input-compare-decode” three-stage architecture in the
flash ADC resembles the “input-hidden-output” three-layer
MLP. Therefore, we conjecture that if a general NN hardware
substrate can be implemented, it is possible to train its weights
parameters offline to approximate the ideal ADC quantization
function.

B. Design Methodology Overview

Fig. 3 provides the conceptual overview of our design
methodology founded on the aforementioned mapping
between ADCs and NNs. The proposed NeuADC consists
of two integrated elements—a general NN hardware substrate
and a hardware-oriented training framework, as illustrated in
Fig. 3(b) and (c), respectively. We choose RRAM crossbar
array and inverter as the hardware substrate to perform gen-
eral NN operations, such as VMM and NAF. This hardware
substrate operates in the mixed-signal domain to map the input
analog signal to the output digital bits, which is different from
existing NN accelerators [14], [15] that deal exclusively with
digital inputs and outputs. The offline training framework can
learn the appropriate design parameters for the NN hardware
substrate to approximate the specific quantization behavior of
an ADC. The overall design process can be summarized in
four steps.

1) The behavior of the RRAM crossbar array-based hard-
ware substrate in Fig. 3(b) is modeled as an MLP, as
indicated in Fig. 3(c).

2) The training datasets based on the desirable ideal quan-
tization function are fed to the optimization algorithm,
along with customized objective functions and con-
straints to accurately reflect the hardware characteristics
of the underlying circuits.

3) The weights of the NN are iteratively trained through
back-propagating the output errors.

4) The offline-trained weights are used to instantiate
the corresponding design parameters in the hardware
substrate.

In this paper, we show successful training for three different
quantization schemes (linear uniform encoding, logarithmic
encoding, and square root encoding) using the same offline
training framework. For each encoding scheme, a group of
corresponding offline-trained weights can be obtained. These
weights are then used to configure different RRAM resis-
tance values to realize multiple signal quantization schemes
on the same NeuADC hardware substrate. We will delve into
the design of the hardware substrate and the development of
the training framework later sections.

IV. HARDWARE SUBSTRATE

In this section, we describe the circuit-level design of the
hardware substrate. We first present the overall circuit architec-
ture and the implementation of the RRAM crossbar arrays, and
then introduce a new dual-path configuration of the crossbar
array to facilitate the realization of negative weights. Finally,
a scaling-compatible implementation of the NAF based on the
native VTC of CMOS logic circuits is presented.

A. NeuADC Circuit Architecture

The overall circuit architecture of the proposed NeuADC
that realizes a three-layer MLP is illustrated in Fig. 4(a). We
use RRAM crossbar arrays and inverter circuits at each layer
to perform the basic NN operations (VMM and NAF) in the
analog domain. The input analog signal represents the single
“place holder” neuron in MLP’s input layer. Hence, the weight
matrix dimensions are 1×H between the input and the hidden
layer and H × M between the hidden and the output layer,
assuming there are H and M neurons in the hidden and output
layers. In order to accommodate negative weights, we propose
a new dual-path configuration such that each NN layer consists
of a positive path and a negative path and each path requires
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Fig. 4. NeuADC hardware implementation. (a) Dual-path architecture of
NeuADC. (b) Zoomed-in RRAM H × M subarray. (c) Inverter VTC.

two RRAM subarrays, which are called the upper and the
lower subarray. The operation of this dual-path configuration
is explained later, but essentially the dual paths allow us to
generate a pair of complementary voltage signals to represent
the output of the VMM computation in the analog domain
from the complementary input voltages.

B. RRAM Crossbar Array

A zoomed-in RRAM crossbar array working in compute
mode is illustrated in Fig. 4(b). The 1 × H complementary
input vector represented by input voltages Vin,1 to Vin,H are
fed to each source line (SL) of the RRAM array, and each
element in the weight matrix is stored as the conductance of
the RRAM device in each weight cell. The computed VMM
output vector appears as voltages at each column on the BLs.
The weight cell consisting of one transistor and one RRAM
device (1T1R) can operate in both compute mode and program
mode. In the compute mode, the transistors in each 1T1R cells
are turned on to select all the cells to compute in the analog
domain by summing currents on BLs simultaneously. In the
program mode, the RRAM device can be programmed to the
desirable conductance by the programming circuits (PCs) and
the address decoders (AD-DECs) shown in Fig. 4(b). In this
mode, the access transistor plays a role in isolating individ-
ual cell for weight programming to prevent the sneak path.
The area and power overheads of the access transistors are
accounted for in Table III. We adopt the tuning mechanism of
the program-and-verify (P&V) method to significantly reduce
power consumption and improve the tuning resolution [32].
The proposed RRAM crossbar implementation differs from
previous work introduced in Section II, as it obviates the use
of analog-style circuits, such as Op-Amps and analog inverters,
hence is much more scaling-compatible and synthesis-friendly.

C. Dual-Path Configuration

One critical difficulty of using RRAM crossbar as ana-
log VMM is its inability to support negative weights, since
the BL currents can only be added but not subtracted. Prior
work proposes the use of analog inverters to circumvent this
problem, but does not offer circuit implementation details [15].
We propose a new dual-path configuration that uses a pair of

complementary voltage signals with opposite polarity and two
signal paths, each consisting of two RRAM crossbar subar-
rays to overcome the negative weight challenge. To explain
the dual-path operation and derive the voltage signal expres-
sion, we use the positive path crossbar shown in Fig. 4(b) as
an example. First, assume there are H pairs of complementary
inputs

VP
in,k = Vin,k, VN

in,k = VDD − Vin,k (6)

where VDD is the power supply, k = 1, 2, . . . , H. We represent
the output voltages at the crossbar BL on the positive path as
VP

o,j, and on the negative path as VN
o,j. Hence, there are M

pairs of outputs as j = 1, 2, . . . , M. Each of VP
in,k and VN

in,k
contributes to the output VP

o,j separately. Applying Thevenin
theorem, the contribution of each pair of inputs superimposes
to obtain the output BL voltages

VP
o,j =

H∑
k=1

(
WPP

kj · VP
in,k + WPN

kj · VN
in,k

)
(7)

where WPP
kj = gU

kj ·ε, WPN
kj = gL

kj ·ε, and ε = 1/
∑H

l=1(g
U
lj +gL

lj).
The first superscript of WPP

kj denotes which path the weight
belongs to and the second superscript denotes which com-
plementary input the weight acts upon. The superscript of gU

kj
denotes which subarray the conductance belongs to. By replac-
ing VP

in,k and VN
in,k with (6), the output voltage VP

o,j of the posi-

tive path in (7) can be derived as VP
o,j = ∑H

k=1 WP
kj·Vin,k+VP

off,j.
Here

WP
kj = WPP

kj − WPN
kj =

(
gU

kj − gL
kj

)
· ε (8)

and VP
off,j = ε · ∑H

k=1 WPN
kj · VDD. It shows that thanks to

the complementary voltage inputs that act on the subarrays,
the effective weight WP

kj is a subtraction of two conductances
and thus can be negative. To make the proposed conductance
subtraction scheme work properly, VN

o,j, the complementary
version of VP

o,j, need to be generated, and it is achieved by
incorporating the negative path where the polarity of input
voltage pair is flipped. Thus, the expression of VN

o,j can be

similarly derived as VN
o,j = ∑H

k=1 WN
kj · Vin,k + VN

off,j. Here

WN
kj = WPN

kj − WPP
kj =

(
gL

kj − gU
kj

)
· ε (9)

and VN
off,j = ε · ∑H

k=1 WPP
kj · VDD. As Fig. 4(a) illustrates, our

NeuADC implementation does not require the negative path
at the output layer. Therefore, the negative path of the output
layer is grayed out.

D. VTC-Based Activation Function

Past implementations of hardware NN circuits often use
digital LUT or custom-designed analog neurons [15], [28]
to approximate the ideal sigmoid function. However, mod-
ern deep learning techniques have shown that many different
forms of NAF can result in successfully trained NN [29].
Therefore, we leverage the native VTC curve of CMOS logic
circuits [46] to perform the NAF function in the NN hardware
substrate, which effectively reduces the hardware complex-
ity compared to traditional neurons [15], [28]. As depicted in
Fig. 4(c), VTC exhibits saturation at both ends of the input
range, and can be considered as a flipped-and-shifted version
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of a general S-shaped curve, similar to the commonly used
sigmoid function. To provide flexibility to the training pro-
cess, current-starved inverters are used as the NAF in the
hidden layer, because it allows the VTC curve to float in
a range defined by VH and VL. Here, VH and VL are the
highest and lowest voltage of VTC. The synthesizable com-
parators implemented with a three-input NAND gate [5], [6]
are used in the output layer, since final digitization of out-
put has to be performed. Both the inverter and the three-input
NAND comparator-based neuron implementations are scaling-
compatible and synthesis-friendly, thus significantly reduce the
circuit complexity.

V. TRAINING FRAMEWORK

After designing the hardware substrate to express a general
class of NN functions, we now introduce an offline train-
ing procedure that can automatically discover the circuit-level
design parameters—the RRAM conductances, so that the cir-
cuit instantiates a function that well approximates the ideal
quantization, to convert the input analog voltage to the correct
output digital codes. To do this, we first define an NN model
that corresponds to our hardware substrate, and identify the
associated feasibility constraints on the NN weights to ensure
they can be translated to a physically realizable circuit. We
then introduce and discuss a new bit-encoding scheme that
allows our hardware substrate to achieve finer quantization
levels with alleviated circuit complexity. Next, we describe a
method for optimizing these weights using a largely standard
approach to gradient descent-based learning, but with mod-
ifications to enforce the feasibility constraints unique to our
setting. We also incorporate nonidealities of devices into train-
ing to make NeuADC robust to PVT. Finally, we present how
to instantiate RRAM conductance from the trained parameters.

A. Learning Objective

We model the input-output relationship of the NeuADC
hardware substrate as a three-layer MLP with a single hidden
layer

h̃ = L1(Vin; θ1), h = σVTC

(
h̃
)

b̃ = L2(h; θ2), b = b̃ > 0. (10)

Here, Vin is the scalar input signal and b is the final vector
of output bits; h̃ denotes voltages at the output of the first
crossbar layer, and modeled as a linear function L1 of Vin with
parameters θ1 which corresponds to crossbar conductances.
Each of these voltages is passed through an inverter, whose
input-output relationship is modeled by the nonlinear function
σVTC(·), to yield the vector h. The linear function L2 models
the second layer of the crossbar to produce another vector b̃,
of size equal to the number of output bits. The final output
bit-vector b is obtained by thresholding: yielding 0 for each
element of b̃ that is below 0 and 1 otherwise.

The learning objective is to find optimal θ1 and θ2 such
that for all values of Vin in the input range, NeuADC yields
the corresponding bit-vectors b equal or close to the desired
“ground-truth” vectors bGT. We define a cost function that mea-
sures the discrepancy between predicted b and true bGT. Note
that the hard-thresholding to yield b from b̃ in (10) is non-
differentiable, and this prevents propagating gradients to the

parameters θ1 and θ2. Therefore, we use a differentiable cost
C(b̃, bGT) defined in terms of the unthresholded bit-vector b̃.
Now, given a set {Vt

in, bt
GT}t of pairs of signal and bit-vector

values, the goal of training can be formally stated as solving
the following optimization problem:[

θ1,2
] = arg min

∑
t

C
(
L2

(
σVTC

(
L1

(
Vt

in, θ1
))

, θ2
)
, bt

GT

)
.

(11)

B. Circuit Model for Training

After sketching out the learning objective, we now provide
details of the model in (10) to accurately reflect the hard-
ware substrate described in Section IV. The first layer in our
crossbar model has dual-path, each with H outputs. We denote
these outputs as vectors p̃ and ñ, with h̃ = [p̃T , ñT ]T being a
2H dimensional vector. Then, we define the linear relationship
L1 between these outputs as p̃ = W1 · Vin + V1, ñ = VDD − p̃,
which is equivalent to

p̃ = max(0, W1) · Vin + max(0,−W1) · (VDD − Vin)

+ (V1 − max(0,−W1) · VDD)

ñ = max(0,−W1) · Vin + max(0, W1) · (VDD − Vin)

+ (VDD − V1 − max(0, W1) · VDD) (12)

for the dual-path crossbar model in Section IV-C. Here, the
learnable parameters are θ1 = {W1, V1}, where W1 and V1 are
both H-dimensional vectors. Additionally, since these models
will be instantiated using the RRAM crossbar array, it has the
following practical feasibility constraints on W1 and V1:

0 ≤ V1 − max(0,−W1) · VDD

≤ VDD · (1. − abs(W1))

0 ≤ VDD − V1 − max(0, W1) · VDD

≤ VDD · (1. − abs(W1)). (13)

To obtain a high-fidelity VTC that matches well with the
circuit-level behavior of the inverter, we perform a SPICE
simulation at finely sampled input voltages.2 We then for-
mulate the function σVTC through linear interpolation between
these sampled points, which ensures that we have both a
value and a gradient for any input to the function. The
final output function L2 simply maps the inverter outputs
p = σVTC(p̃) and n = σVTC(ñ) to the unthresholded bit vector b̃
as b̃ = max(0, W2)(p−Vcm,o)+max(0,−W2)(n−Vcm,o)+V2,
with learnable parameters θ2 = {W2, V2}. Here, W2 is an M×H
matrix and V2 is an M-dimensional vector, with M the num-
ber of output bits. Note that we define these parameters with
respect to the hidden activations p and n after subtracting the
mid-point voltage Vcm,o of the inverter output range, because
this leads to more stable convergence during training.

C. Bits Encoding and Decoding Scheme

Our investigation suggests that the encoding scheme plays
an important role in determining the convergence of the train-
ing process and ultimately the quantization quality of the
NeuADC circuits. In this paper, bits encoding and decoding
refer to the mapping of the analog input voltage levels to a
specific digital code and converting it back to an analog value.

2Our approach to accounting for the effect of loading effects is described
later in Section V-D.
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1) Binary Encoding: Standard binary encoding is a
straightforward way to define the ground-truth vectors bGT

M∑
i=1

2i−1 · bGTi = round

(
Vin − Vmin

Vmax − Vmin
× (

2M − 1
))

(14)

where Vin is the encoded form of input signal; Vmin and Vmax
are the minimum and maximum values of the scalar encoded
input signal Vin. A naive way to train the network is to interpret
this as a classification task, and use a cross-entropy loss (i.e.,
interpret b̃ as logits and maximize log-likelihood) as

C
(

b̃, bGT

)
=

M∑
i=1

bGTi log
(

1 + e−b̃i
)

+ (1 − bGTi) log
(

1 + eb̃i
)
. (15)

However, this ignores the fact that we desire an accurate recon-
struction of Vin as (14), and the accuracy of different weights
have different effect on this accuracy. Based on this, we define
two modified versions of the loss. The first simply weights
each element of the standard loss by the contribution to the
reconstruction of Vin

C1

(
b̃, bGT

)
=

∑
i

2i−1
[
bGTi log

(
1 + e−b̃i

)

+ (1 − bGTi) log
(

1 + eb̃i
)]

. (16)

The second accounts for the fact that for some signal Vin, if
a higher significant bit is incorrect and can not be corrected,
flipping the values of the lower significant bits may lead to a
better approximation [e.g., for ideal bGT =1000 and the most
significant bits (MSBs) of b stuck at 0, it is better to produce
0111 than 0000]. This effect is defined as Ei(b̃, Vin) = |V̂in −
b/i − 2i−1| − |V̂in − b/i − 2i−1|, where

V̂in =
(

Vin − Vmin

Vmax − Vmin
× 2B

)
− 0.5

b/i =
∑
i′ �=i

2i′−1
(

b̃i > 0
)
. (17)

Then, we define the second loss on b̃ as

C2

(
b̃, Vin

)
=

∑
i

[
max

(
0,−Ei

(
b̃, Vin

))2
log

(
1 + e−b̃i

)

+ max
(

0, Ei

(
b̃, Vin

))2
log

)
1 + e−b̃i

)]
.

(18)

Note that this second loss is defined in terms of the true sig-
nal Vin and not its binary encoding bGT, although it implicitly
assumes that b represents a binary encoding of Vin. In this
setting, we train the network to minimize a weighted sum of
the two losses (α · C1 + C2), with more weight placed on
the second loss (α < 1), while the first loss mainly serves
to guide training in initial iterations. However, we find that
although the modified cost function modestly improves the
training, it remains quite hard to find a good approximation to
this mapping (from Vin to its binary encoding vector) using a
circuit with a limited number of hidden units. This is because,
as depicted in Fig. 5(a), the binary encoding corresponds
to a high-frequency target function for the least significant

Fig. 5. (a) Transition of different bits in a binary code as its digital
value changes. (b) Example of reconstructed waveform from NeuADC out-
puts trained with binary bits encoding. (c) Transition of different bits in our
proposed smooth code. (d) Example of reconstructed waveform from NeuADC
outputs trained with smooth-bit encoding.

bits (LSBs), which must change signs 2M times in the input
range. Moreover, small errors in any of the more significant
bits can cause large deviations in the reconstructed analog
value.

2) Smooth Encoding: Accordingly, we propose the use of
“smooth” A → B codes that replace an A-bit binary encod-
ing with B > A bits. These codes represent each of the 2A

levels with B-bit unique codewords that have the following
two properties: 1) only one bit changes between subsequent
levels (this property is similar to those of “Gray codes”) and
2) each bit flips a minimum number of times. Given parame-
ters A and B, these codewords are automatically constructed by
beginning with an all-zero codeword for the lowest level, and
then for each subsequent level, choosing to flip the bit that was
least recently flipped. This leads to smoother bit functions with
fewer transitions as shown in Fig. 5(c). Fig. 5(b) and (d) shows
some example of reconstructed waveforms of an input sinu-
soidal signal by the circuits learned with binary and smooth
codes, respectively. We find that the binary encoding is able to
achieve reasonable but mediocre reconstructions with a large
number of hidden units (∼256), whereas given a wide-enough
bit-vector, smooth encoding can accurately reconstruct with
far fewer hidden units (∼48). We train this encoding with the
simple cross-entropy loss defined in (15), although we use a
squared version (after summing over bits) to emphasize the
penalty for multiple errors in the same sample.

3) Decoding Scheme: Given a trained circuit that produces
bit-vectors b for different inputs Vin, we use a simple decod-
ing scheme that constructs an LUT to find the corresponding
analog value of each possible bit-vector. We use an 8-bit ADC
to explain the concept and the proposed decoding scheme, as
illustrated in Fig. 6. First, we use the final learned parameters
to compute the sets {Vin, b} for a finely sampled set of values
Vin. In terms of an 8-bit ADC, there are 256 distinct bit-vectors
b[i], i = 0, 1, 2, . . . , 255 in b, and each b[i] corresponds
to Ni finely sampled analog input Vin(tj), j = 1, 2, . . . , Ni.
Therefore, the corresponding analog value of bt

[i] can be cal-

culated as V ′
b,i = ∑Ni

j=1 Vin(tj)/Ni. We then repeat the same
procedure to all the bt

[i] to construct the LUT {V ′
b, b} for

each b[i] in b. We apply this for circuits trained with both
encoding schemes, as it helps calibrate for deviations in the
learned mapping.
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Fig. 6. Illustration of decoding scheme and the rule of constructing an LUT.

D. Hardware-Oriented Training

Having defined the mapping from Vin to the circuit out-
put b̃, and a differentiable cost C(b̃, bGT) on these outputs, we
are now able to train the parameters using stochastic gradient
descent [34]. We initialize the parameters θ1 and θ2 randomly,
and update them iteratively based on gradients computed on
mini-batches of {(Vin, bGT)} pairs randomly sampled from the
input range. However, this standard approach to NN training
does not account for the feasibility constraints on θ1 in (13).
To enforce these constraints, we apply the following steps. In
each iteration of training, we clip the positive and negative path
biases [the third term in (12)] to match (13) such that the final
layer does not learn to depend on an infeasible combination
of inputs. Further, we also periodically (every 256 iterations)
clip the parameters themselves to the feasible set, by clipping
W1 between [−0.5, 0.5] and scaling V1 accordingly.

The other issue we need to deal with is that the input-output
relationship of the inverters depends on its loading impedance,
which is determined by the conductances of the second layer.
In other words, the exact curve of the σVTC function differs
as the values of θ2 vary, and this can only be determined
through SPICE simulations. To deal with it, we first obtain
σVTC assuming no loading impedance, and then train the circuit
with a fixed σVTC. We then update σVTC by performing a second
SPICE simulation, this time based on the current values of the
learned parameters θ2. We then continue training the network
for a few more iterations, using the updated σVTC. We find
that two rounds of this iteration are sufficient to yield circuit
parameters that perform well with actual loading effect.

E. Variation-Aware Retraining

So far, we build an ideal training framework without
accounting for the nonidealities of devices such as the varia-
tion effects. PVT variations can degrade the performance of
CMOS devices. In this part, we focus on how to improve the
robustness of NeuADC by incorporating the PVT variations of
CMOS devices and the limited resolution of RRAM resistance
into training. It allows us to obtain a group of robust trained
parameters to design a hardware substrate that is immune to
variations.

1) CMOS PVT Variations: In reality, neurons on the same
hardware substrate experience different PVT variations, which
makes the practical VMM computation on the hardware sub-
strate mismatched with the simulation results of offline NN
model and eventually leads to wrongly flipped digital bits in
the output layer. To overcome such effects, a naive way is to
incorporate all possible VTCs into training, covering all the
process corners as illustrated in Fig. 7(a). Namely, we let each
neuron in (10) randomly pick up a VTC from VTC group
AVTC (obtained by global Monte Carlo simulations) during

Fig. 7. (a) Conceptual illustration of the feasible region to cover all five
process corners variation in corner plane. (b) Variation of VTC at VDD =
[1.17 V, 1.23 V], T = [−40 ◦C, 80 ◦C] under all five process corners by using
100 times Monte Carlo simulation. (c) Proposed method to cover most region
in the corner plane. (d) Variation of VTC at VDD = [1.17 V, 1.23 V], T =
[−40 ◦C, 80 ◦C] under TT corner by using 100 times Monte Carlo simulation.
The simulation of (b) and (d) is based on 130-nm CMOS technology.

each training epoch

σ i
VTC = AVTC[rand int(N)], i = 1, 2, . . . , H. (19)

However, we find it hard to achieve a good training
performance with a reasonable size of NN. As Fig. 7(b) shows,
the variation of VTC’s switching threshold is more than 70 mV
under a moderate global Monte Carlo simulation. Overcoming
such variations requires a huge number of hidden neurons.

It turns out that in practice, it is relatively easy to figure
out which process corner each chip belongs to through post-
fabrication binning [40], [41]. Based on this fact, we propose
a more efficient way to find several local optima to overcome
the PVT variations with much less hardware resources and
shorter training time. For example, given that the chip is in
TT (typical nMOS and typical pMOS) corner, we first use
local Monte Carlo simulation to find all possible VTCs and
then incorporate them into training using the procedure in (19).
Since the switching threshold variation of VTCs at TT corner
is only 4.5 mV as shown in Fig. 7(d), it is easier to find a
group of local optimal design parameters with much less size
and shorter training time. We repeat the same procedure for
the local region under each process corners in Fig. 7(c), and
it is observed that only five LUTs are needed to cover the
regions across all process corners.

2) RRAM Variations: The limited RRAM resistance resolu-
tion corresponds to the limited resolution of weights. We solve
this issue by constraining the resolution of weight in N-bit
together with incorporating VTC variations during retraining.
Regarding the issue of RRAM process variations [31], we
look at the median ENOB of different retrained NeuADC cir-
cuits after perturbing their conductances with log-normal noise
of different standard deviations σ—i.e., multiplying them by
exp(ε) where ε ∼ N (0, σ 2). The corresponding performance
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Fig. 8. Hardware model to map with the training model. Crossbar array of
positive path for the (a) first layer and (b) second layer. Note that the 1R cell
is the simplified representation of 1T1R cell.

degradation for different NeuADC designs is evaluated later
in Section VII-C.

F. Conductance Instantiation

After learning the optimal parameters θ1 and θ2 through
the hardware-oriented training process, we translate them into
RRAM conductance. In addition to the weights, precisely-
trained biases need to be realized. We tackle this by adding
an extra row in the RRAM crossbar in both the hidden layer
and the output layer as illustrated in Fig. 8. We instantiate
the biases in (12) by providing the supply voltage VDD as
an input, in addition to the signal inputs Vin and VDD − Vin.
As an example, we begin by considering the first layer. For
each output of the positive path, i.e., p̃i, i ∈ {1, . . . , H}, we
denote gU

s,i, gL
s,i, gU

b,i, and gL
b,i as the conductances connecting

the output to Vin, VDD − Vin, the supply VDD and ground as
illustrated in Fig. 8(a). After accounting for this modification
to the original crossbar, (7) can be rewritten as

VP
1o,j = WPP

j · Vin + WPN
j · (VDD − Vin) + Wb

j · VDD. (20)

Here, WPP
j = gU

s,j/C1, WPN
j = gL

s,j/C1, Wb
j = gU

b,j/C1, and
C1 = gU

s,j + gL
s,j + gU

b,j + gL
b,j. Combine (12) and (20),

these conductances can be related to the learned weights
W1 and V1 as

gU
s,j = C1 × max

(
0, W1,j

)
gL

s,j = C1 × max
(
0,−W1,j

)
gU

b,j = C1 × (V1 − max(0,−W1) × VDD)/VDD

gL
b,j = C1 − gU

s,j − gL
s,j − gU

b,j. (21)

Since C1 is a scaling factor, it should be chosen to ensure the
RRAM conductances fall into a reasonable range. The same
process can be repeated to instantiate the conductances for the
negative path in the first layer. For the second layer, we adopt
a similar strategy, but first normalize both W2 (and proportion-
ally V2) such that the sum of the positive and negative values
across all columns is less than magnitude 1

W ′
2 = W2

β · ∑
(abs(W2), 0)

, V ′
2 = V2

β · ∑
(abs(W2), 0)

(22)

where
∑

(abs(W2), 0) means the summation of all the ele-
ments (their absolute value) in the same column; β is a scaling
factor large than 1. The second layer conductances can then

TABLE I
SIMULATION CONFIGURATION PARAMETERS

be computed as

gU
s,kj = C2 × max

(
0, W ′

2,kj

)
gL

s,kj = C2 × max
(

0,−W ′
2,kj

)

gU
b,j =

C2 ×
(
−∑

k

(
W ′

2,kj × Vcm,o

)
+ V ′

2,j + Vcm,i

)
VDD

gL
b,j = C2 − gU

s,kj − gL
s,kj − gU

b,j (23)

where Vcm,i and Vcm,o are input and output mid-point voltage
of the inverter input and output range, respectively. C2 is also
a scaling factor chosen to ensure the RRAM conductances fall
into a reasonable range.

G. Quantization Schemes

We have successfully formulated the NeuADC design
as a learning problem. The same training framework can
be extended beyond the normal linear uniform quantization
scheme to learn parameters for other quantization schemes
tailored to the desired precision requirements for specific
applications. To accommodate alternative schemes, the only
update needed is changing the definition of bGT in (14) by
using a function of Vin instead of Vin itself. For logarithmic
encoding, Vin is defined as

Vin,log = c · log2(a · Vin + b) + d (24)

whereas for the square root encoding, Vin is defined as

Vin,sq = c ·√a · Vin + b + d. (25)

Here, a, b, c, and d are the quantization encoding coefficients.
The detailed value of these coefficients for different encoding
schemes are listed in Table I.

VI. SIMULATION METHODOLOGY

In this section, we present the detailed methodology used
in our simulation setup to design, train/synthesize, and eval-
uate the proposed NeuADC circuits. We first summarize the
automated design flow enabled by our novel NeuADC design
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Fig. 9. Design automation flow.

approach. We then present the configurations used in our train-
ing setup. Finally, we show the technology model for the
simulation infrastructure.

A. NeuADC Design Flow

The fully automated design flow based on the NeuADC
design approach is presented in Fig. 9, which consists of three
phases—characterization, training, and verification.

1) Characterization Phase: Once the RRAM device model
and CMOS device model are prepared, basic characteri-
zation at device and circuit level is first performed on
commercial SPICE simulator (e.g., Cadence Spectre). By
SPICE simulation, the characterization data, such as RRAM
conductance/resistance precision and CMOS inverter VTCs
with variation, are extracted. The RRAM resistance resolu-
tion is set between 5 and 10 bits, with 1-bit step. VTCs
are obtained by running 1000 times Monto Carlo simulation
with supply voltage VDD = [1.17 V, 1.23 V] and temperature
T = [−40 ◦C, 80 ◦C] for each process corner. Then, these
characterization data are fed to the training framework. During
the training, VTCs are utilized as the NAF, while the RRAM
conductance/resistance precision is applied to constraint the
precision of weights.

2) Training Phase: Given the desired ADC goals, the NN
model of the NeuADC circuit can be fully captured by a
group of hyper-parameters based on the proposed NN-inspired
realization of A/D converters. For binary-encoding, the hyper-
parameters are (H, NB, and α). For smooth-encoding, the
hyper-parameters are (H, NB, and NS). Here, H denotes the
number of hidden neurons; NB and NS denotes the number of
binary bits and the number of smooth bits, and α is training
constant for binary-encoding. The ground-truth datasets can be
generated according to the desirable A/D quantization with a
resolution of 1/2NB . The offline training framework then uses
the datasets together with the device variation statistics to train
the MLP network that models the behavior of the NeuADC
circuit for each quantization scheme. During the training, the
VTC of each neuron is randomly picked in each epoch. The
training iterations are monitored to ensure the convergence of
the learning. The reconstruction quality is verified at the end
of each training. If the reconstructed signals match well with
the labeled ground-truth signals, the trained model parameters
(W1, V1, W2, V2) are saved for later verification using SPICE
simulation. Otherwise, updated hyper-parameters will be used
to train a new model until satisfactory performance is met.

3) Verification Phase: After training, the trained model
parameters (W1, V1, W2, and V2) are fed into the synthesis
script. Then the synthesis script instantiates the device/circuit
design parameters, such as RRAM conductance and inverter
sizes based on the device SPICE template, so that the SPICE
netlist of NeuADC is automatically synthesized. The synthe-
sized netlist allows us to perform a comprehensive sets of
circuit analysis using SPICE simulator to rigorously evalu-
ate and verify the performance of the NeuADC circuits. In
our simulations, we first evaluate the reconfigurable quanti-
zation schemes of NeuADC. Then, the typical ADC metrics,
such as effective number of bits (ENOB), differential nonlin-
earity (DNL), integral nonlinearity (INL), frequency spectrum
analysis, and signal to noise and distortion ratio (SNDR)
are evaluated. Third, we assess the robustness of NeuADC
against device nonidealities, such as PVT variations and lim-
ited RRAM precision. Finally, these simulation metrics are
compared with initial design goals to help us optimize design
parameters.

B. Training and Simulation Configurations

1) Training Setup: We use TensorFlow for the NN train-
ing. The NeuADC NN model is trained via stochastic gradient
descent with the Adam optimizer [34]. We choose a batch-size
of 4096 samples, and apply the projection step performed on
the weights W1 and V1 every 256 iterations. We train for a
total of 5.12 × 104 iterations (except for certain smooth code
NeuADC models that converge much faster), varying the learn-
ing rate from 10−3 to 10−4 across iterations. For the binary
encoding models, we train three versions of each NeuADC
circuit with α = 0.125, 0.25, and 0.5, and choose the one that
yields the best results. Encoding coefficients for logarithmic
encoding are set as a = b = c = 1 and d = 0, while for
square-root encoding, the coefficients are set as a = c = 1
and b = d = 0.

2) Technology Model: RRAM and CMOS transistors are
the two device elements used in our NeuADC hardware sub-
strate. We use HfOx-based RRAM device model [15], [20] to
implement the crossbar array. The transistor model is based on
a 130-nm CMOS technology. The inverters, the output com-
parators, and the transistor switches in the RRAM crossbars
are all simulated with the 130-nm transistor model in Cadence
Spectre. CMOS and RRAM device resolution and variation
are included into training. We choose a moderate variation
range [0, 0.1] in our evaluation from a broad range of RRAM
literature [42]–[44]. Configuration parameters from both the
training setup and the technology model are summarized in
Table I. All the simulation results are presented in Section VII.

VII. SIMULATION RESULTS

We perform a comprehensive set of simulations using the
simulation methodology explained in Section VI to thoroughly
evaluate the performance of our proposed NeuADC design
approach. The results discussed in this section are based on
SPICE-level circuit simulations using 130-nm CMOS technol-
ogy. Note that the simulations in Sections VII-A and VII-B
are performed considering only PVT condition (TT, 1.2 V,
27 ◦C) with fixed RRAM resolution (9 bits) and minor
RRAM stochastic variation, whereas the robustness evalua-
tion in Section VII-C look at the performance spread under
all PVT conditions at fixed TT process corner.
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(a) (b) (c) (d) (e)

Fig. 10. (a) 6→8 bits, 12 hidden units NeuADC multiquantization example. (b)–(d) Simulated metrics of 8→16 bits, 48 hidden units NeuADC. (b) DNL
and INL. (c) Output spectrum with a −0.5 dBFS, 76.33-MHz input, and 303.1-MHz sampling rate. (d) Linear SNDR trend with increasing input amplitudes.
(e) SNDR and SFDR trend with increasing input frequency.

TABLE II
LEARNED PERFORMANCE OF NEUADC WITH BINARY AND SMOOTH

ENCODINGS MEASURED BY ENOB

A. Signal Reconstruction Validation

We first exhibit the reconstruction ability of NeuADC under
three different quantization schemes and illustrate the recon-
structed signals in Fig. 10(a). We pick a specific NeuADC
model (6→8 bits, 12 hidden units) and train it with the
three groups of ground-truth data in Fig. 3(c). For each quan-
tization scheme, we then reconstruct the signal using the
decoding scheme in Section V-C. The reconstructed signals
(labeled as linear, square root, and log, respectively) match
well with the original signal (labeled as original) shown in
yellow under different schemes, demonstrating that NeuADC
can perform high-fidelity signal reconstruction with multiple
reconfigurable quantization support using exactly the same
hardware substrate.

Then, we demonstrate the reconstruction of NeuADC based
on the reconstruction V ′

b of a sinusoidal input signal Vin in lin-
ear uniform encoding at 100-KHz frequency. We report ENOB
of the reconstructed waveform using its standard definition
ENOB = (SNDR−1.76)/6.02, where SNDR is obtained from
analyzing NeuADC’s output spectrum with fast Fourier trans-
form (FFT). Table II lists the quantization quality measured by
ENOB of several NeuADC designs with different number of
output bits and hidden neurons using both binary and smooth
codes.

The advantage of smooth encoding is clearly shown in
Table II. Binary code requires a large number of hidden
neurons and its ENOB plateaus around 5.74 even when the
hidden neuron size is increased to 256 for 8-bit digital out-
puts. Despite its coding redundancy, smooth code can achieve
much better ENOB with much fewer number of hidden neu-
rons. For example, the 7→12 smooth code model with 12
hidden neurons exhibits an ENOB of 5.21. However, as the
output neurons increase to 15, the ENOB increases rapidly to
6.91, and further increasing the hidden neurons to 16 could

TABLE III
PERFORMANCE COMPARISON

recover the ENOB fully to its theoretical upper bound of 7
for a 7-bit ADC. It suggests there exists an interesting rela-
tionship between the encoding redundancy, the number of
hidden neurons, and the total size of the NN models employed
by NeuADC, which plays a critical role in alleviating the
exponential increase of hardware complexity as observed in
conventional flash ADCs.

B. ADC Metric Evaluation

Classic ADC designs are evaluated for a number of differ-
ent metrics. In this evaluation step, we measure our NeuADC
circuits against many established ADC metrics to demon-
strate its practical value. We choose a specific NeuADC model
(8→16 bits, 48 hidden units) as an example for evaluation.
DNL and INL are typically used to characterize ADC’s static
performance. Fig. 10(b) shows the DNL and INL of our
proposed NeuADC based on SPICE simulation. The worst
DNL and INL are −0.42LSB and −0.81LSB, respectively,
well within the range of conventional linearity requirements.
The simulated output spectrum is then used to characterize
the dynamic performance of the ADC. Fig. 10(c) shows a
−0.5 dB to full scale (dBFS) of a 76.33-MHz input. The
SNDR is 49.02 dB. The trend of SNDR with changing input
amplitude is plotted in Fig. 10(d) and follows a linear rela-
tionship. To evaluate the input bandwidth (BW) of NeuADC,
we apply sinusoidal input signals with different frequencies
to the NeuADC circuit. The trend is shown in Fig. 10(e).
At 150 MHz, the SNDR experiences slight degradation of
0.22 dB, but remains acceptable at 49.7 dB, which translates
to an ENOB of 7.96 bits. We therefore report this number
as the BW of our design in Table III, which corresponds to
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(a) (b) (c) (d) (e)

Fig. 11. (a) ENOB distribution comparison between with and without incorporating PVT variation into training by taking 6→8 bits, 12 hidden units NeuADC
model at TT corner as an example. (b)–(d) Performance degradation for different NeuADC designs with decreasing RRAM resistance precision. (b) 6-bit
models. (c) 7-bit models. (d) 8-bit models. (e) Performance degradation for different NeuADC designs with increasing log-normal noise at fixed RRAM
resistance resolution of 9 bits.

300-MHz sampling frequency according to Nyquist–Shannon
sampling theorem.

C. Robustness Against Devices Nonidealities

We first examine the performance of NeuADC with the
ENOB metric under CMOS PVT variations. We compare
the ENOB with and without incorporating PVT variations
into training by selecting the 6→8 bits, 12 hidden units
NeuADC model at TT corner for illustration. The compar-
ison is illustrated in Fig. 11(a). Without incorporating PVT
variations into training, the distribution of ENOB under 1000
Monte Carlo simulation runs centers around 2.82 with a large
standard deviation of 0.92, resulting in poor quantization
performance. After incorporating PVT variations of VTC into
training, the distribution of ENOB under 1000 Monte Carlo
runs is much more narrowly centered around 5.81 with merely
0.075 standard variation. The striking contrast shows that our
variation-aware retraining can greatly improve the robustness
of NeuADC.

We then evaluate the performance of the NeuADC
given realistic considerations of RRAM device nonidealities.
Previous work has employed 6–12-bit RRAM precision for
RRAM-based NN computation [14], [15], [38], [45]. Since
RRAM is still an emerging device with many active research
and development efforts, we choose the RRAM resistance
precision to be 5–10-bit in our evaluation. The ENOB versus
RRAM precision curves are presented in Fig. 11(b) and (d).
Each point shown in the figure is obtained from 1000 Monte
Carlo simulation runs. We observe that to achieve a target
resolution of A-bit (6 ≤ A ≤ 8) in NeuADC, an (A + 1)-bit
RRAM resistance precision is usually sufficient. Lower RRAM
precision can degrade the resolution of the quantization and
result in the use of unfavorably large NN size to compensate
for the precision loss.

Finally, to examine the stochastic variation of RRAM, we
look at the median ENOB of different NeuADC models with
fixed RRAM precision (9 bits) after perturbing their resistance
with log-normal noise in different standard deviations [30].
The results are presented in Fig. 11(e). For these experiments,
we first incorporate both CMOS PVT variations and RRAM
limited resistance resolution into training and then instantiate
several batches of 100-run Monte Carlo simulations with dif-
ferent level of resistance variations as modeled by the standard
deviation of the log-normal distribution (σ ) and compute the
median ENOB of each. We find that in general the learned

Fig. 12. Design tradeoff of NeuADC by taking 6-bit NeuADC model
for example. (a) Hidden layer neuron number (H) versus output bits (NS).
(b) Power versus BW. (c) Normalized area versus BW.

NeuADC continues to perform reasonably well at moderate
levels of noise, demonstrating robustness against the nonide-
alities in both CMOS and RRAM devices. Moreover, among
two NeuADC designs that have similar performance with pro-
cess variation, the one that uses more output bits or hidden
units tends to exhibit more robustness against variation.

D. NeuADC Design Tradeoffs

We explore the design tradeoffs of NeuADC by taking 6-
bit A/D as an example. As Fig. 12(a) shows, given a specific
resolution of RRAM, there exists a lower bound combination
of hyper-parameters (H, NS) that converges to an ideal ENOB
during training. However, the lower bound shifts toward up
right as the resolution of RRAM decreases. This is because
increasing the size of NN can improve the robustness of
NeuADC performance. There also exist tradeoffs between BW
and power consumption, as well as BW and area, as displayed
in Fig. 12(b) and (c). As the BW increases, the power con-
sumption of each model rises. The reason is that a wider BW
means decreasing the RRAM resistance in the crossbar array,
which results in increased power consumption. Also, in order
to increase the BW, we need to strengthen the driving ability
of neurons by sizing up the inverters. Therefore, the area of
the NeuADC circuit increases with the BW. The area shown
in Fig. 12(c) is normalized to a 6→8 bits, 12 hidden units
NeuADC working at 0.1-GHz input signal frequency.

E. Comparison and Discussion

Finally, we compare the 6-bit (6→8 bits, 12 hid-
den units) and 8-bit (8→16 bits, 48 hidden units) NeuADC
design with both the state-of-the-art manually designed ADC
(ISSCC14’ [37]) and other novel ADC architectures (Sto1 [5]
and Sto2 [6]). ISSCC14’ is a typical flash ADC that works
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at a high sampling rate and achieves the state-of-the-art
figure-of-merit (FoM). However, it is neither synthesiable
nor configurable. Sto1 [5] and Sto2 [6] are the two repre-
sentative synthesizable flash ADCs, but they still lack the
reconfigurability to realize different quantization schemes.
What is more, neither yields competitive advantages in FoM.
The proposed 6-bit NeuADC can work at 1-GS/s sampling
rate and achieve 291-fJ/c FoMW and 141.8-dB FoMS. The
proposed 8-bit NeuADC can work at 0.3-GS/s sampling rate
and achieve 401-fJ/c FoMW and 149-dB FoMS. The detailed
comparisons are summarized in Table III. It demonstrates
that NeuADC can deliver significantly superior performance
(higher sampling frequency fS, smaller FoMW , and higher
FoMS) compared with alternative novel synthesizable ADC
architectures (Sto1 [5] and Sto2 [6]). And its automated design
flow can also achieve reasonable FoMs comparable to those of
the state-of-the-art manually designed ADC (ISSCC14’ [37]).
Moreover, NeuADC can achieve reconfigurable quantization
schemes. Please note that ISSCC14’ [37], Sto1 [5], and
Sto2 [6] are based on the measured results, while our results
are obtained through simulation by using 130-nm CMOS
technology. Our initial results suggest that further power sav-
ing and area reduction are feasible by scaling to smaller
technology nodes.

VIII. CONCLUSION

We present NeuADC—a novel automated design approach
for synthesizable A/D conversion with reconfigurable quanti-
zation support using the same hardware substrate. Inspired by
NN, NeuADC is built upon a general NN hardware substrate
enabled by a novel dual-path mixed-signal RRAM cross-
bar architecture and CMOS inverter as neuron. The design
parameters are “learned” through NN training. We exploit
a new smooth-bit encoding scheme to improve the training
accuracy and develop hardware-oriented circuit models and
constraint formulations in the training process. We also incor-
porate the nonidealities of devices into training to improve
the robustness of NeuADC. The entire synthesis process of
NeuADC can be automated without human designers in the
loop. Comprehensive ADC performance metrics are evaluated
using circuit-level SPICE simulation. Results demonstrate that
our automatically synthesized NeuADC can indeed be recon-
figured for different quantization schemes with high-fidelity
reconstruction accuracy and achieve performance compara-
ble to state-of-the-art ADCs despite limited RRAM resistance
precision.
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