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Abstract—Recent work has demonstrated great potentials of
neural network-inspired analog-to-digital converters (NNADCs)
in many emerging applications. These NNADCs often rely on
resistive random-access memory (RRAM) devices to realize
basic NN operations, and usually need high-precision RRAM
(6~12-bit) to achieve moderate quantization resolutions (4~8-
bit). Such an optimistic assumption of RRAM precision, however,
is not well supported by practical RRAM arrays in large-
scale production process. In this paper, we evaluate two new
designs of NNADC with low-precision RRAM devices. They
take advantage of traditional two-stage/pipelined hardware ar-
chitecture and a custom deep learning-based building block
design methodology. Results obtained from SPICE simulations
demonstrate a robust design of an 8-bit sub-ranging NNADC
using 4-bit RRAM devices, as well as a 14-bit pipelined NNADC
using 3-bit RRAM devices. The evaluations on the two NNADCs
suggest that pipelined architecture is better to achieve higher-
resolution using lower-precision RRAM. We also perform design
space exploration on the building blocks of NNADCs to achieve
a balanced performance trade-off. Comprehensive comparisons
reveal improved power, speed performance, and competitive
figure-of-merits (FoMs) of the pipelined NNADC, compared with
state-of-the-art NNADCs and traditional ADCs. In addition, the
proposed pipelined NNADC can support reconfigurable high-
resolution nonlinear quantization with high conversion speed and
low conversion energy, enabling intelligent analog-to-information
interfaces for near-sensor processing.

Index Terms—High-resolution ADC; Low-precision RRAM;
Neural network; Nonlinear quantization.

I. INTRODUCTION

ANY emerging applications have posed new challenges

to design conventional analog-to-digital (A /D) convert-
ers (ADCs) [1H6]. For example, multi-sensor systems require
nonlinear A/D quantization to maximize the extraction of
useful features from raw analog signals, instead of the linearly
uniform quantization performed by conventional ADCs [3 5],
because the nonlinear quantization scheme can alleviate the
computational burden and reduce the power consumption of
digital backend processing, which is the dominant bottleneck
in intelligent multi-sensor systems. In addition, processing-in-
memory (PIM) using non-volatile memory (NVM) crossbar
arrays desires non-uniform quantization and adaptive tuning
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of ADCs to satisfy the specific bitline computation mecha-
nisms [2l [10]. However, such flexible quantization schemes
are not readily supported by conventional ADCs with fixed
conversion references and thresholds.

To overcome these inherent limitations of conventional
ADCs, recent works have introduced neural network-inspired
ADCs (NNADCs) as a novel approach to designing flexible
and intelligent A/D interfaces [[7H14]. The basic idea behind
NNADC:s is that artificial neural networks (ANNs) can be
trained to approximate the desirable quantization function of
ADCs and these ANNs can be implemented on hardware
circuits in the analog domain. For instance, a learnable 8-
bit NNADC is presented to approximate multiple quanti-
zation schemes where the NN weights are trained off-line
and can be reconfigured by programming the same hardware
substrate [10, [11]. Another example is a 4-bit neuromorphic
ADC proposed for general-purpose data conversion where the
NN weights are on-line trained by leveraging the input sig-
nal amplitude statistics and application sensitivity [9]. These
NNADC:s are often built on resistive random-access memory
(RRAM) crossbar array to realize the basic NN operations,
with the potential to exceed the power-speed-accuracy trade-
off in conventional ADC designs [9].

However, a major challenge to design such NNADCSs is the
limited conductance/resistance precision of the RRAM de-
vices. Although measurement data from realistic RRAM fab-
rication process suggest the actual RRAM precision tends to be
much lower (2~4-bit) [15} [16], these NNADC designs often
optimistically assume the availability of RRAM technology
that can precisely program each cell with 6~12-bit precision
which translates to 2°~2'? distinctive conductance /resistance
levels. In addition, the stochastic variation of RRAM can
affect the NNADC'’s resolution. For example, on average the
resolution of NNADCs degenerates 3-bit with 0.025 lognormal
variation [30} |31] in previous works [[LO} [11]]. Therefore, there
exists a gap between the reality and the assumption of the
RRAM precision, yet lacks a design methodology to build
high-resolution NNADCs with low-precision RRAM devices.

In this paper, we explore to bridge this gap by evaluating
two new designs of NNADC. They are implemented by comb-
ing the advantage of traditional sub-ranging/pipelined hard-
ware architecture and a custom deep learning-based design
methodology. The key idea of a sub-ranging/pipelined hard-
ware architecture is that multiple consecutive low-resolution
quantization stages can be cascaded into a two-stage/chain
structure to obtain higher resolution, as long as the residue part
of the signal can be amplified to full range and fed to the next
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quantization stage. Since each stage now only needs to resolve
low—resolutiorﬂ we can instantiate them on the hardware
substrate with low-precision RRAM devices by accurately
training NNs to approximate the ideal quantization functions
and residue functions. Key innovations and contributions in
this paper are as follow:

o We propose a deep learning-based design methodology to
implement a general analog/mixed signal (AMS) circuit,
which enables robust and efficient design of basic build-
ing blocks (e.g., sub-ADC, mixed-ADC and residue) in
the sub-ranging ADCs and pipelined ADCs.

o We combine the sub-ranging/pipelined hardware archi-
tecture and the deep learning-based design methodology
to achieve two new designs of NNADC: sub-ranging
NNADC and pipelined NNADC. SPICE simulation re-
sults demonstrate that our proposed method enables the
robust design of an 8-bit sub-ranging NNADC and a
14-bit pipelined NNADC using 4-bit RRAM and 3-bit
RRAM, respectively. The evaluations on the two new
designs suggest that the pipelined architecture is superior
to achieve higher-resolution ADCs with lower-precision
RRAM devices.

o We systematically evaluate the impacts of NN size and
RRAM precision on the trained accuracy of the NN-
inspired sub-ADC, mixed-ADC, and residue block, and
perform design space exploration to search for optimal
pipelined stage configuration with balanced trade-off be-
tween speed, area, and power consumption.

o Thorough comparisons among the pipelined NNADC,
state-of-the-art NNADCs and traditional ADCs demon-
strate competitive figure-of-merits (FoMs) of the pro-
posed pipelined NNADC. Our proposed pipelined
NNADC can also support reconfigurable high-resolution
nonlinear quantization with high conversion speed and
low conversion energy.

The rest of this paper is organized as follows. Section
provides preliminary backgrounds and related works on this
research topic. A deep learning-based building block design
methodology is proposed in Section The detailed imple-
mentation of building blocks is presented in Section [[V] The
designs of sub-ranging NNADC and pipelined NNADC are
elaborated in Section E Finally, we introduce the simulation
methodology in Section [VI and show the evaluation results in
Section before concluding the paper in Section

II. BACKGROUND AND RELATED WORK

To provide the background of our work, we first give a
quick overview of the RRAM technology and how its crossbar
architecture enables the efficient implementation of an ANN.
We then briefly introduce some related works that have em-
ployed NN-inspired principles to realize A/D conversion and
summarize the main challenges in current NNADC designs.
Finally, we review some conventional ADCs, such as sub-
ranging ADC and pipelined ADC, that use low-resolution
stages to achieve high-resolution A/D quantization.

~5-bit for each stage in the two-stage architecture and 1~3-bit for each
stage in the pipelined architecture
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Fig. 1: (a) Hardware substrate to perform basic NN operations. The passive
crossbar array composed of two sub-arrays executes VMM. The VTC of
CMOS inverter acts as an NAF. (b) An example of a multi-layer ANN whose
two adjacent layers are connected by weights.

A. RRAM Device, Crossbar Array and ANN

1) RRAM device: A RRAM device is a passive two-port
element with variable resistance. It possesses many special
advantages, such as small cell size (4F?%, F is the mini-
mum feature size), excellent scalability (<10nm), and faster
read/write time (< 10ns) and better endurance (~10'° cycles)
than Flash devices [2} [17-19]].

2) RRAM crossbar array: RRAM devices can be organized
into various ultra-dense crossbar array architectures [10} 21].
Fig.[I[(a) shows a passive crossbar array, composed of two sub-
arrays, to realize bipolar weights without using power-hungry
operational-amplifiers (op-amps) [10, [11]. The relationship
between the input voltage “vector” (Vm) and the output voltage
“vector” (17},) can be expressed as follows:

H
Voi = Wi Vik + Verrj, j€{1,2,... M} (D)

Here, k and j are the indices of input ports and output ports
of the crossbar array. The weight W, ; can be represented by
the subtraction of two conductances in upper (U) sub-array
and lower (L) sub-array as

H
Wig=e (98 —gk,), e=1/>_ (9;+95,) @

Therefore, the RRAM crossbar array can perform analog
vector-matrix multiplication (VMM), and the parameters of the
matrix rely on the RRAM resistance states. By configuring the
passive crossbar arrays into a dual-path architecture as demon-
strated in previous work [10} [I1], a pair of complementary
outputs can be obtained to feed as inputs to the next stage.

3) ANN: With the RRAM crossbar array, an ANN shown
in Fig. [[(b) can be implemented on such hardware substrate.
Generally, the ANN processes the data by executing the
following operations layer-wise [34]:

Yir1 = f(Wiig1 - & + giqtl)‘ 3)

Here, ; and ¢, represent the data in the 7*" and (i + 1)*"
layer of the network. W; ;1 is the weight matrix to connect
the layer ¢ and layer (¢ + 1). f(-) is a nonlinear activation
function (NAF). These basic NN operations, e.g., VMM and
NAF, can be mapped to the RRAM crossbar array and CMOS
inverter shown in Fig. [[[(a) as follow

H
Voj = 0w}, Wi Vink + Vett,)- @)
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Fig. 2: Two well-established ADC topologies. (a) General architecture of sub-
ranging ADC. (b) General architecture of pipelined ADC. (c) An example of
the residue function when N; = 1. (d) An example of a 4-bit pipelined ADC
composed of four 1-bit stages.

Here, oyrc(+) is the voltage transfer characteristic (VTC) of the
inverters. It can be used as an NAF [10, [20].

B. NNADCs

Analog-to-digital conversion can be viewed as a special case
of classification problems, which maps a continuous analog
signal to a series of multi-bit digital codes. An ANN can be
trained to learn this input/output relationship, and its hardware
implementation can be instantiated in the AMS domain. This
is the basic idea behind NNADC:s, that is to implement the
learned ANN on a hardware substrate to approximate the
desired quantization functions for data conversion:

Vmin

M—1
. ‘/; _
E 2. D; =round | ———%
i—0 ‘/max

Here, M is the resolution of ADC; Vj, is an analog input
and D; is the it" digital output bit of the digital code; Viin
and V.« are the minimum and maximum values of the
scalar input signal V;,. Since RRAM crossbar array provides
a promising hardware substrate to build NNs, recent work has
demonstrated several NNADCs based on RRAM devices [7-
13]. Although the NN architectures of these NNADCs vary
from Hopfield NN to multi-layer perceptron (MLP), they all
rely on a training process to learn the appropriate NN weights
to accurately approximate flexible quantization schemes.
However, existing NNADCs often exhibit modest conver-
sion resolution (4~8-bit). Even worse, they invariably rely
on optimistic assumption of RRAM precision (6~12-bit) [7-
13]], which is not well substantiated by measurement data
from realistic RRAM fabrication process [15, [16]. This res-
olution limitation severely constrains NNADCs’ applications
in many emerging multi-sensor systems that require >10-
bit A/D interfaces or precise nonlinear conversion of ana-
log signals for feature extraction and analog-to-information
processing [ 3| |5 [36]]. In fact, it has been demonstrated in

previous work [10] that training an A-bit (A < 8) quantization
resolution with moderate conversion speed requires at least
(A + 1)-bit RRAM device. This conclusion suggests a direct
trade-off between achievable ADC resolutions, NN sizes, and
RRAM precisions [10].

C. Sub-ranging ADCs and Pipelined ADCs

The sub-ranging ADC shown in Fig. 2[a), and the pipelined
ADC shown in Fig. Pb) are well-established ADC topologies
to achieve high sampling rate and high resolution with low-
resolution quantization stages [22]. Usually, the sub-ranging
ADCs have a two-stage architecture. Each stage resolves ~5-
bit quantization. The pipelined ADCs preserves a long chain
structure with a significant pipeline delay. Each stage in the
pipelined chain resolves 1~3-bit quantization. Although they
have different numbers of stages, each of these stages shares
the same building blocks, e.g., sub-ADC and residue circuit.

The sub-ADC resolves an N;-bit binary code Dy, from
input residue 7;_;; while the residue part amplifies the sub-
traction between the input residue r;_; and the analog output
of sub-DAC by 277 to generate the output residue r; for next
stage. This process can be expressed as a simple function:

ri = [ric1 = Veet(Dn,)] - 27 (6)

Here, Vier(Dy,) is the analog output of sub-DAC that depends
on Dy,. For example, assuming r;_; € [0, Vpp] and N; = 1,
then Vrer(0) = 0 and Vier(1) = Vbp/2. And the corresponding
residue function is shown in Fig. [2|c). Since each stage succes-
sively converts the analog input into its digital representation,
the final outputs of the sub-ranging ADC and pipelined ADC
are (N + N, )-bit and Zf\il N;-bit digital codes, respectively.
Note that [V; is not necessarily identical in all stages.

To understand the basic working principle of pipelined
ADCs [22], we use a 4-bit pipelined ADC composed of four
1-bit stages as an example and illustrate the quantization steps
in Fig. 2(d). Assuming the initial analog input is 0.7V (Vpp =
1V), then the sub-ADC in the first stage will output “1”—a
digital code, and the residue block will output “0.4V”— an
analog residue according to Eq. (6). The analog residue will
be processed by the following stage in the same way as initial
analog input. Finally, we can obtain 4-bit outputs 1011, which
is the quantization of 0.7V (0.7/1 = 11.2/2* ~ 11/2%). To
understand how residue is amplified in the stage with more
than 1-bit resolution, we would suggest the readers to look at
the Fig. [§]in Section [[V]C.

III. DESIGN METHODOLOGY OF BUILDING BLOCKS

To extend the architectures of sub-ranging ADC/pipelined
ADC into NNADC’s design, we first characterize their distinct
building blocks in this section. We then demonstrate that these
distinct building blocks can be universally described using a
mathematical model of a general analog/mixed signal (AMS)
circuit. Finally, we propose a deep learning-based framework
to design the general AMS circuit, which enables robust and
efficient implementation of basic building blocks in the sub-
ranging ADCs and pipelined ADCs.
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Fig. 3: Proposed deep learning-based design methodology. (a) Distinct building blocks in sub-ranging ADC and pipelined ADC. (b) Hardware substrate for
the general AMS circuit. For simplicity, we do not show the extra input of each layer (extra row connected to Vpp or GND) for bias instantiation [L1].
(c) Proposed training framework takes ground truth datasets as inputs during off-line training to find the optimal set of weights associated with the RRAM
resistances to minimize the cost function and best approximate the ideal quantization function and residue function.

A. Characterization of Building Blocks

It can be observed in Fig. 2Jb) that each stage (except for
the last stage) in the pipelined ADC consists of two building
blocks: sub-ADC and residue. The sub-ranging ADC has only
two stages. A better way to characterize its distinct blocks
is shown in the red dashed box in Fig. |Zka), which is to
combine the residue in the first stage and the sub-ADC in the
second stage. We name this block mixed-ADC, as it directly
generates digital codes by using mixed signal inputs (initial
analog input and the digital output from the sub-ADC in the
first stage). This characterization has two advantages: 1) only
two hardware NNsﬂ are required to construct a sub-ranging
NNADC instead of using three hardware NNs, saving hard-
ware resources; 2) resolution can be improved compared with
the sub-ranging NNADC constructed using three hardware
NNs. In summary, there are totally three distinct building
blocks in our design: sub-ADC, mixed-ADC, and residue, as
illustrated in Fig. [3[a).

B. Mathematical Formulation of General AMS Circuits

The basic building blocks in Fig. 3[a) belong to a class of
AMS circuit with specific input/output relationship. For ex-
ample, the sub-ADC is an AMS circuit with analog input and
digital output, whose ideal input/output relationship satisfies
Eq. (B). Similarly, the residue block is an AMS circuit with
mixed signal input and digital output, whose ideal input/output
relationship satisfies Eq. (6). All these building blocks can be
represented by a general AMS circuit whose inputs and outputs
can be expressed as a simple mathematical function:

Vour = f(Vin)- @)

Here, Vix = {INa,INp} are the mixed signal inputs of the
circuit; Vour = {OUTA,OUTp} are the mixed signal outputs
of the circuit. Note that the subscript “A” indicates “Analog”,
and “D” indicates “Digital”. For instance, sub-ADC can be
considered as a specific case of this general AMS circuit
without I Np and QU Ty.

2 As discussed in Section each building block is built on a three-layer
hardware substrate.

C. Deep Learning-Based Design Methodology

To evaluate the performance of NNADCs designed with
two-stage and pipelined architecture, the first step is to form
an effective design methodology for this type of general
AMS circuit. Then each building block can be efficiently
implemented as a specific case of the general AMS circuit. The
design methodology contains two steps: hardware substrate
and training framework, which are discussed as follows.

1) Hardware substrate: To implement the general AMS
circuit, we use the RRAM crossbar arrayﬂ and CMOS in-
verter illustrated in Fig. [I(a) as the hardware substrate. The
corresponding hardware architecture is illustrated in Fig. [3(b).
It preserves a three-layer NN architecture, because universal
approximation theorem proves that a feed-forward three-layer
NN with a single hidden layer can approximate arbitrary
functions [25} 26]. As the Fig. Ekb) shows, the general AMS
circuit has (1 + M) input neurons (one analog input and M-
bit digital inputs), and (1 + N) output neurons (one analog
output and N-bit digital outputs). Note that the hardware
substrate can be generalized to both discrete-time systems
and continuous-time systems. For the discrete-time systems,
3-input NAND gates [45] placed in the output layer are used
to perform digitization while the sampling/hold (S/H) circuit
is used as the “place holder” neuron for analog output to drive
the next stage. A CMOS source follower-based S/H buffer
circuit used in our design is shown in the inset of Fig. [3[b).

2) Training framework: We propose a hardware-oriented
training framework for the general AMS circuit. It can ac-
curately capture the circuit-level behavior of the hardware
substrate and learn the associated hardware design param-
eters (e.2. RRAM conductance), to approximate the ideal
input/output relationship of the general AMS circuit. The
training framework possesses one important feature: non-
idealities of devices, such as process, voltage and temperature
(PVT) variations of CMOS device, and the limited precision
of RRAM devices, can be incorporated into training to make
the general AMS circuit robust to these defects [27]. This

3Each weight cell in the RRAM array consists of one transistor and one
memristor (1T1R) and can operate in both compute mode and program mode.
For simplicity, we use 1R cell to represent the practical 1TIR cell in this paper.
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is the advantage of the NN-inspired design of general AMS
circuits over the traditional design of AMS circuits, where,
even with delicate calibration techniques, the non-idealities
cannot be effectively mitigated [24]. The detailed training flow
is shown in Fig. 3] which consists of the following four steps.

(D Learning objective construction: The general AMS hard-
ware substrate in Fig. [3(b) can be modeled as a three-layer NN:

h=Li(Vin;01), h = owc(h), Vour = La(h;02).  (8)

Here, Vi = {INa,INp} are the mixed signal inputs for
the AMS circuit. / denote voltages at the output of the first
crossbar layer. They are modeled as a linear function L; of
Vin with learnable parameters §; = {W;,V;}, corresponding
to the weights and bias associated with the first layer required
to be learned from the training. Each of these voltages is
passed through an inverter, whose input-output relationship is
modeled by a nonlinear function oyr(-), to yield the vector h.
The linear function L, models the second layer of the crossbar.
It produces the output Vour = {OUTx, OUTp } with learnable
parameters 6, = {W,, 15}, corresponding to the weights and
bias associated with the second layer required to be learned
from the training. The learning objective is to find optimal
values for the parameters {6, 6,} (corresponding to RRAM
crossbar array conductances) such that for all values of Viy in
the input range, the circuit yields corresponding output Vour
that are equal or close to the desired “ground truth” Vourgr
in Eq. (7). Towards this goal, we define a cost function to
measure the discrepancy between predicted Voyur and true
Vourgr based on the mean-square loss:

C(Vour, Vourar) = Zj(fdisc(VOUT,GT(j) ~Vour(7)))*. 9
Here, f4sc means various mathematical functions to measure
discrepancy, such as L, norm, and cross-entropy. It is chosen
depends on the practical learning objective.

@ Model hardware constraints: Hardware constraints come
from three aspects: CMOS neuron PVT variations, limited
precision of RRAM device, and passive crossbar array. To
reflect these hardware constraints, we first group all VTCs
obtained by Monte Carlo simulations as Ayrc, using the
technology specification in Section VIl Meanwhile, we control
the precision of weight with Ag-bit during the training. Finally,
we let the summation of all elements (their absolute value) in
each column (“0”) of W; and W, be less than 1:

> (abs(17),0) < 1; > (abs(1W2),0) < 1,

to reflect the weight constraints in Eq. ().

(10)

(B Hardware-oriented training: We initialize the parameters
{6, 0,} randomly, and update them iteratively based on the
gradients computed on the mini-batches of {(Vin, Vourar)}
pairs, which are randomly sampled from the input range. To
incorporate the hardware constraints in step ) into training,
we let each neuron j in Eq. (8) randomly pick up a VTC from
Avyrc during training:

O.\j/:’['(j - AVTC[frandint(NVTC)]aj = 1727 7H (11)

Here, fiangint(Nvrc) is a function to generate a random integer

5

smaller than Nytc. A detailed discussion of incorporating PVT
variations into training can be found in our previous work [[11]].
We then periodically clip all values of W, between [—1/(1 +
M),1/(1 4+ M)] to satisfy Eq. (T0). To make W, satisfy the
constraint in Eq. (I0) as well, corresponding technique will
be applied based on different training objectives. The details
will be discussed in Section

@ Instantiate design parameters: We adopt the same in-
stantiation method in previous work [10], which is proven to
always find a set of equivalent RRAM conductances for the
trained weights. After this, we perturb each resistance R in the
hardware substrate by:

R—R-¢; 6~N(00), (12)

to evaluate the robustness of the NN model towards the
stochastic variation of RRAM resistance [30, [31].

IV. IMPLEMENTATION OF BUILDING BLOCKS

After presenting the NN-inspired design methodology for
the general AMS circuit, in this section, we elaborate how
to implement the different building blocks. We first show the
detailed hardware architecture of each distinct building block
and then present the key training specifications based on their
specific input/output relationship.

A. Hardware Implementation of Building Blocks

All distinct building blocks preserve a similar three-layer
NN architecture and are implemented with the RRAM crossbar
array and CMOS inverter illustrated in Fig. [Ia). Minor
difference exists between different building blocks in NN size
and the types of input/output neurons.

1) Sub-ADC: For sub-ADC, the input analog signal repre-
sents the single “place holder” neuron in MLP’s input layer.
Therefore, the weight matrix dimensions are Hp; x 1 between
the hidden and input layer, and Hr; X S; between the hidden
and output layer, assuming there are Hp, and S; neurons
in the hidden and output layer, respectively. Here, we use a
redundant “smooth” S; — N, encoding method to replace
the standard [V;-bit binary encoding with S; bits (S; > N;)
according to our previous work [10], as it improves the
training accuracy and reduces hidden layer size of the sub-
ADC. To help the readers understand the concept of smooth
encoding, we briefly re-clarify its definition here. The readers
can refer our previous work [[11]] for details. Smooth codes
represent each of the 2™Vi levels binary codes with S;-bit
unique codewords, adhering to two important principles. First,
only one bit changes its value between two consecutive levels,
a property similar to “Gray codes”. Second, each bit in .S;-
bit unique codewords (2%Vi levels) flips a minimum number
of times. Given a group of parameters NV; and S;, the S;-bit
codewords start with an all-zero bits codeword for the lowest
level in the 2%V unique levels, and then flip the bit that was
least recently flipped for each subsequent level. For example,
we use 3 — 2 smooth encoding to train a 2-bit sub-ADC
with 3-bit smooth codes as output in Fig. [5(a). A one-to-one
mapping between a 3-bit smooth code and a 2-bit binary code
is “000 — 007, “001 — 017, “011 — 10, and “111 — 11”.
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2) Mixed-ADC: For mixed-ADC, there are (1 + S)) input
neurons (one analog input and S| digital inputs), and .S, output
neurons. Therefore, the weight matrix dimensions are H, X
(1 +5)) between the hidden and input layer and H, x S
between the hidden and output layer, assuming H, hidden
neurons. Note that the digital output S, is also a smooth code.

3) Residue: For residue, there are (1 + S;) input neurons
(one for analog input and S; for digital inputs), and only one
analog output neuron. Therefore, the weight matrix dimensions
are Hp; x (1+.5;) between the hidden and input layer, and
Hp ; x 1 between the hidden and output layer, assuming there
are Hp; hidden neurons. Note that since the op-amps and
comparators in Fig. [2] are eliminated in the NN-inspired design
of sub-ADC, mixed-ADC and residue, considerable power
saving can be obtained from each stage.

B. Training of Building Blocks

We focus on describing some key specifications for training
mixed-ADC and residue, as similar strategies for training sub-
ADCs have been elaborated in previous work [10]. The main
procedures to train a mixed-ADC and a residue follow the
steps in Section but have some modifications in step (D
and step Q) based on different learning objectives.

1) Mixed-ADC: For mixed-ADC, its output is an S,-bit
smooth digital code; therefore, its hardware substrate can be
modeled by adapting Eq. (8) as follows:

h= Ll(Vina Dsl;el)a h = UVTC(B)>

. X (13)
DSz = Lz(h; 02), DSz = 1)52 > 0.

Here, Dg, indicates the digital output from the sub-ADC in
previous stage (“1” means Vpp, and “0” means GND). The
final output bit-vector Dg, is obtained by thresholding: yield-
ing O for each element of D52 that is below 0, and yielding 1
otherwise. The learning objective is to find optimal values of
parameters {6y, 6,} such that for all values of {(Vi,, Dg,)} in
the input range, the circuit yields corresponding digital output
Dg, that are equal or close to the desired “ground truth” D,
in Eq. (8). To achieve this aim, the cost function in Eq. (9)
can be adapted using the following cross-entropy loss:

M
C(Ds,, Der) = Y [Derilog(1 + e~ P52 )+
i=1
(1 = Der) log(1 + eP524)2,
To make the second layer weight W, satisfy the constraint
in Eq. (I0), we first normalize both W, (and proportionally

V5) such that the sum of all the elements (their absolute value)
across the same column is less than magnitude 1:

Wy =Wa/a, Vi="V/a.

(14)

(15)

Here, @ = (- > (abs(W3),0) is a normalization coefficient.
>~ (abs(1¥3), 0) represents the summation of all elements (their
absolute value) in the same column. 3 > 1 is a scaling factor.
2) Residue: For residue block, its output is an analog value;
therefore, the hardware substrate can be modeled as

hi = Li(ri_1,Ds;;601.4), hi = ovie(hs),

16
ri = Lo(hy; 02,). (16)

6

Here, 4 is the index of stage-i (i € {1,..., M}); Dg, indicates
the digital output of the sub-ADC; r;_; is the scalar residue
input of stage-i. The learning objective is to find optimal
values for {6 ;,6,,;} such that for all r;_, in the input range,
the circuit yields corresponding residue r; that are equal or
close to the desired “ground-truth” rq; in Eq. (6). To achieve
this aim, the cost function in Eq. (9) can be adapted as

C(ri,ra) = Zj [rer(5) — 7"1(])]2

We find that when N; = 1,2, the residue function can be
trained to the full range by periodically clipping all values of
W, between [—1/Hp ;, 1/Hp ] to satisfy Eq. (I0). However,
the same method is invalid when applied to train the residue
function of N; = 3. As the last row of Fig. [5{b) shows, the
residue function of N; = 3 is highly nonlinear which is hard to
be accurately approximated by training a moderate size NN
with constrained W,. Therefore, during the training, we do
not put any constraints on W, such that a moderate size NN
can be trained to accurately approximate the residue function.
After training, we use the same method shown in Eq. to
normalize the trained W, to make it satisfy Eq. (I0). Although
this method also results in the scaled predicted residue rang
the following sub-ADC can be accurately trained to quantize
this analog signal with scaled range. The last row of Fig. [3]
gives an example that even with an input dynamic range as
low as ~0.1V, the NN can still yield 3-bit quantization.

a7

C. Examples of Trained Building Blocks

During the training, we tried to train various pairs of sub-
ADC and mixed-ADC for sub-ranging NNADC, and different
pairs of sub-ADC and residue for pipelined NNADC. We find
that, the mixed-ADC can be trained to accurately approximate
a maximum 3-bit resolution with a moderate size NN. In
addition, residue is hard to be accurately trained using a
moderate size NN when N; > 4. Here, we show three
pairs of sub-ADC and mixed-ADC with different resolutions
(N1 =3,4,5, and N, = 2,2,3), and three pairs of sub-ADC
and residue block with different resolutions (N; = 1,2,3)
using the simulation methodology described in Section [VI}

Since our designs are based on a dual-path architecture
to perform “pseudo differential” operation, we evaluate the
trained performance of building blocks by using the input
ranges when the positive input voltage is higher than the
negative one. Fig. [ illustrates the SPICE simulation of dif-
ferent trained pairs in sub-ranging NNADC. The sub-ADCs
in Fig. Elka) are trained through a 1 x4 x 4, 1 x 10 x §,
and 1 x 10 x 10 NN, respectively; while the mixed-ADCs in
Fig. b) are trained through a 5 X 6 x 3, 9 x 10 x 4, and
11 x 12 x 6 NN, respectively. In both figures, we use 4-bit
RRAM device and set o = 0.05 in Eq. (I2) for evaluation.
Note that we only show a small fraction ([0,1/2™M]), N} =
3,4,5) of the reconstructed signal in the full input rang

“The dynamic range of the predicted residue function changes from [0, Vpp)]
to [VDD/2 - V])])/(Za)7 VDD/2 + VDD/(206)}~

SFor each fraction [j/2N1,(j + 1)/2™M], where N} = 3,4,5;5 =
0,1,2,...,2N1 — 1, in the full range of the input signal, the reconstructed
signal shows almost the same shape. We just show the reconstructed signal
in [0, 1/2N1] as an example.
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Fig. 4: Illustrations of trained sub-ADC and mixed-ADC with different
resolutions in sub-ranging NNADC. (a) Sub-ADC (N; = 3,4,5). (b) Mixed-
ADC (N, =2,2,3).

Fig. [§] illustrates the SPICE simulation of different trained
pairs of pipelined NNADC. The sub-ADCs in Fig. [5[a) are
trained through a 1 X 3 x 2, 1 x4 x 3, and 1 x 4 x 4 NN,
respectively; while the residue blocks in Fig. [5(b) are trained
through a3 x5x1,4x7x 1, and 5x7x 1 NN, respectively. In
both figures, we use 3-bit RRAM device and set ¢ = 0.05 in
Eq. for evaluation. The comparison between the trained
function and the ideal function shows that each pair with low-
precision RRAM can accurately approximate the ideal stage
function with the aid of the proposed design methodology.
Note that: 1) the signal reconstructions of sub-ADC and
mixed-ADC are based the method proposed in our previous
work [11]]; 2) the reconstructed signal of sub-ADC is not
applied as Vrer(Dy,) in Eq. (6).

V. IMPLEMENTATION OF NN-INSPIRED ADCS

In this section, we employ the NN-inspired building
blocks implemented in previous section into the traditional
two-stage /pipelined architecture to construct the sub-ranging
NNADC and the pipelined NNADC. We first introduce the
system level hardware architecture of these NNADCs. Then,
we show some system level training strategies to improve
the performance of these NNADCs. Finally, we present the
advantages of co-design that combines NN-inspired design
methodology with traditional two-stage/pipelined architecture.

A. Hardware Architecture of Full NNADCs

The hardware architecture of the proposed sub-ranging
NNADC is presented in Fig. [6[a), where two three-layer NNs
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Fig. 5: Illustrations of trained sub-ADC and residue functions for a pipeline
stage with different resolutions. (a) Sub-ADC (N; = 1,2,3). (b) Residue
(N; =1,2,3).

are adopted in the full NNADC design, and each of them can
be mapped into the corresponding sub-ADC and mixed-ADC
shown in Fig. [J[(a). Similarly, the overall architecture of the
proposed pipelined NNADC is presented in Fig. [f[b), where a
pipelined architecture of cascaded conversion stages is adopted
in the design. For stage-¢ in the proposed pipelined NNADC,
we use two three-layer NNs to implement it, and each of them
can be mapped into the corresponding sub-ADC and residue
block shown in Fig. J[b). A digital combiner designed by
simple sequential circuits is used to synchronize each blocks’
output to achieve the total resolution for the proposed sub-
ranging NNADC and pipelined NNADC.

B. Training Strategy of Full NNADCs

To improve the performance of full NNADCs, an important
technique used in our design is the collaborative (end-to-
end) training of building blocks. For the sub-ranging NNADC,
as illustrated in Fig. Ba), the inputs of mixed-ADC include
the original analog signal Vix and the N-bit digital outputs
from the previous sub-ADC. Therefore, the sub-ADC is first
trained to approximate the ideal quantization function with
high-fidelity, then its digital outputs and original analog inputs
are used as ground truth data to train mixed-ADC. Similarly,
for each stage in the pipelined NNADC, the sub-ADC is
initially trained to approximate the ideal quantization function
with high-fidelity, then its digital outputs and original analog
inputs are directly used as ground truth data to train residue
block. Compared with the independent design of building
blocks in traditional ADCs, the collaborative training flow can
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Fig. 6: Hardware architectures of the proposed NNADCs. (a) Sub-ranging NNADC. (b) Pipelined NNADC. For simplicity, we do not show the extra input of

each layer (extra row connected to Vpp or GND) for bias instantiation [11].

effectively minimize the discrepancy between the training or
circuit artifacts and the ideal conversion at each stage.

C. Co-design Analysis

The co-design of combining two-stage/pipelined architec-
ture and deep learning-based design methodology brings two
direct benefits. First, each stage in the proposed NNADCs
now only needs to resolve low-resolution quantization (~5-
bit for each stage in sub-ranging NNADC, and 1~3-bit for
each stage in pipelined NNADC), which can be well achieved
within the precision limit of current RRAM fabrication pro-
cess [15, [16]]. With the aid of the training framework in
Section we can also automatically derive the optimal
design of the low-resolution stages [10]. Second, although
many cascading stages are needed in the pipelined NNADC,
there only exist three distinct low-resolution configurations to
choose for each stage, namely N; = 1,2,3. This allows us
to simplify the design process by focusing on optimizing the
sub-blocks of each stage. The full pipelined system can then
be assembled by iterating through different combinations of
the building blocks with different resolution configurations.

VI. SIMULATION METHODOLOGY

In this section, we present the detailed methodology used in
our simulation setup to train, design, and evaluate the proposed
NNADCs. We first summarize the configurations used in our
training setup, and then present the technology model to design
the hardware substrate. Finally, we introduce the metrics to
evaluate the trained accuracy of each building blocks.

A. Training Configuration

We set Ny = 3,4,5 and N, = 2,2,3 to get three pairs of
sub-ADC and mixed-ADC for sub-ranging NNADC, and set
N; = 1,2, 3 to get three pairs of sub-ADC and residue for each
stage in pipelined NNADC. For each pairs, we train different
NN models. Each NN model is trained via stochastic gradient
descent with Adam optimizer [28] using TensorFlow [29].
The moderate size (Niy X Ng X Np) of each NN model is

constrained by Ny < 12, Ny < 12, and Np < 10 based on
previous work [2]. We incorporate both CMOS PVT variations
and the limited precision Agx of RRAM device into training.
The weight precision Ag during training is set to be 1~7-
bit [42]. The batch size is 4096, and the projection step is
performed every 256 iterations on W,;,¢ = 1,2. We train
a total of 2x10* iterations for each sub-ADC, mixed-ADC,
and residue model, varying the learning rate from 1073 to
10~* across the iterations. The training time for each block is
generally less than 10 minutes on a single TITAN GPU.

B. Technology Model

We use the HfO,-based RRAM device model to simulate
the crossbar array [32 33]]. Since we use the passive crossbar
array [10] to achieve VMM, and the input analog signal
has small amplitude, the voltage drop across the device is
small; therefore, the I—V relationship of the RRAM can be
considered as linear in our WOI‘kﬂ We use non-overlapping
linearly spaced RRAM conductance to build each weight cell.
We choose a moderate variation o = 0.05 in our evaluation
from a broad range of RRAM literature [27, 134, 35, 40, 411,
which is equivalent to £15% in 30 range. RRAM endurance
can be up to 10'° according to previous works [2, [17HI19].
Although the retention time of different RRAM devices can
vary from hundreds of ms to years [46453] especially under
extreme operating temperatures, most state-of-the-art works
[48H52] show that they can ensure 10-year retention without
conductance drifting at 85°C. Therefore, the NNADC is able
to handle typical applications over a long period and can also
be calibrated by reprogramming the device as long as the
endurance is still in its working range in spite of any long-
term drifts. The transistor model is based on a standard 130nm
CMOS technology. The inverters, output comparators, and
transistor switches in the RRAM crossbars are simulated with
the 130nm model using Cadence Spectre. The VTC group

5The nonlinearity of RRAM due to large crossing voltage will result in
the computation error of RRAM crossbar array, degenerating the resolution
of NNADC. One can replicate more devices in each cell and connect them
serially to reduce the voltage drop of each RRAM.
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TABLE I: Simulation configuration parameters.

Training Parameters Description
Optimizer Adam
Batch size 4096
Projection step 256
Number of iterations 2x 107
Learning rate [1073,107%]
AR (RRAM precision) 1~7-bit
N (bits) 3,4,5
N, (bits) 2,2,3
N; (bits) 1,2,3
Technology Parameters Description
CMOS technology (nm) CMOS 130nm
Process variation ss/tt/ff/st/fs
Voltage variation 147V ~ 1.53V
Temperature variation —40°C ~ 80°C
RRAM technology HfOz-based RRAM
RRAM tunneling gap (nm) 0.2~1.9
RRAM resistance range 290€2 ~ 500kS2
RRAM resistance variation (o) 0.05

Avytc is obtained by running Monte Carlo simulations 100
times using the methodology in our previous work [11]. Due to
the small size of RRAM crossbar array and the short distance
of the connection between layers, the wire parasitic resistance
is negligible and can be reasonably ignored. We perform
extensive SPICE simulations to determine the optimal inverter
sizing to ensure sufficient driving strength under the worst-
case loading effect from the subsequent layer. Configuration
parameters from both the training setup and the technology
model are summarized in Table [II

C. Metric of Trained Accuracy

The accuracy of sub-ADC, mixed-ADC and NNADC is rep-
resented by the effective number of bit (ENOB)—a metric to
evaluate the effective resolution of an ADC. We report ENOB
based on its standard definition ENOB = (SNDR—1.76)/6.02,
where the signal to noise and distortion ratio (SNDR) is
calculated from the following equation:

ZiL ()’ y
SN (Vin(ti) = Veee(t:))”

Here, Vi is the original input signal; Vg is the reconstructed
signal based on the digital bits from SPICE simulation; and
the samples are performed across multiple clock periods.
The trained accuracy of the residue block is represented by
the mean-square error (MSE) between the predicted residue
function and ideal residue function. We report the MSE based
on 2048 uniform sampling points in the full range of input. The
power, differential non-linearity (DNL), integral non-linearity
(INL), and max conversion speed are obtained from the SPICE
simulation. Specially, the INL and DNL are calculated based
on the simulation data according to their standard definitions.

SNDR = 10 - log,, ( (18)

VII. EVALUATION RESULTS

In this section, we perform comprehensive evaluations on
sub-ranging NNADC and pipelined NNADC. We start to com-
pare the building blocks of two NNADCs. We then perform
design space exploration to find optimal stage configuration
in each NNADC with balanced trade-off between speed, area,
and power consumption, based on which we also investigate

the trade-off between these two NNADCs. Since pipelined
NNADC has greater potential to achieve higher-resolution with
lower-precision RRAM, we finally evaluate the performance of
the proposed pipelined NNADC with various state-of-the-art
ADCs, such as NNADCs, nonlinear ADCs, and conventional
pipelined ADCs.

A. Block-level Comparisons

We first investigate the relationship between the trained
accuracy and RRAM precision of each building block with
different NN sizes. In these simulations, we incorporate both
CMOS PVT variations and limited precision of RRAM device
into training, and then instantiate several batches of 100-run
Monte Carlo simulations with a resistance variation o = 0.05
in Eq. (12), and finally compute the median trained accuracy
of each model.

We plot such trends for the building blocks of two NNADCs
in Fig. [7) and Fig. [8] respectively. Generally, an (NN} + 1)-bit
((N2+1)-bit) RRAM precision is enough to accurately train an
NN model to approximate an N;-bit sub-ADC (V,-bit mixed-
ADC) in sub-ranging NNADC, which conforms with the
conclusion in previous work [10]. Particularly, larger size NN
models with more hidden layer neurons and output neurons
can even accurately approximate an N;-bit sub-ADC (N,-bit
mixed-ADC) with N;-bit (N,-bit) RRAM precision. Similar
conclusions can also be made from the trained accuracy of
building blocks in pipelined NNADC. As the Fig. |8/ shows, an
(N; + 1)-bit ((N; +2)-bit) RRAM precision is enough to train
an NN model to accurately approximate an N;-bit sub-ADC
(residue block). Moreover, a larger size NN with more hidden
layer neurons can accurately approximate the residue circuit
of N;-bit stage with (IV; 4+ 1)-bit RRAM.

However, the comparison between the sub-ADC of sub-
ranging NNADC and the sub-ADC of pipelined NNADC
shows that training >4-bit sub-ADC with low-precision
RRAM requires a larger size NN. The reason is that the
non-linearity of the quantization function (Eq. (8)) becomes
more eviden{’] as the resolution of sub-ADC increases. To
approximate such highly nonlinear functions, a larger size NN
with more neurons is required. It can also be observed that the
mixed-ADC following the sub-ADC can resolve only 2~3-bit
quantization even with a large size NN. This is because mixed-
ADC actually includes two functions (e.g., residue function
and sub-ADC quantization function). It can achieve only low
resolutions even if a large size NN is applied to approximate
such complex functions. However, it is worth noting that
when N;<3, both the sub-ADC and the following mixed-
ADC can be accurately approximated with small size NNs and
low precision RRAM (3-bit), which indicates that a two-stage
architecture of sub-ranging ADC is better to achieve <5-bit
NNADCs with fewer stages and simpler hardware structure.

Previous works [7H14] show that the total units of an
NNADC with the size of 1 x (Nyg X No scale with the
targeted resolution N in a cubic trend (Ny x No) ~ N?).
Here, Ny is the number of hidden units, which is usually

7Least significant bit (LSB) of sub-ADC will flip 2 times according to
Eq. (®) during the total quantization levels.
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Fig. 7: Building block training performance using different NN models and Fig. 8: Building block training performance using different NN models and
RRAM precision at a fixed stochastic variation o = 0.05 in sub-ranging RRAM precision at a fixed stochastic variation o = 0.05 in pipelined

NNADC. Note that each row is a pair. (a) The trend between ENOB and
RRAM precision of sub-ADC under different NN models, where the N; =
3,4,5. (b) The trend between ENOB and RRAM precision of mixed-ADC
under different NN models, where the N, = 2,2, 3.

proportional to N2; and N is the number of output neurons.
The similar trends can also be observed from the building
blocks shown in Fig. [7] and Fig. [8] where the size of sub-
ADC and residue cubically scales with the resolution. Such a
relationship provides a first order estimation for the required
total units (Typ;s) to achieve an N-bit NNADC:

TUnits ~ Zi]\il(Ni)Sv
(19)
N=YY N,

Here, M is the number of stages required for the pipelined
NNADC and N; is the resolution of each stage.

B. Design Exploration

1) Design Trade-off of Building Blocks: Based on the study
of building blocks in Section we can design high-
fidelity low-resolution stages with small size NNs to achieve:
1) a moderate resolution sub-ranging NNADC in a two-stage
architecture, and 2) a high-resolution pipelined NNADC by
combining different low-resolution stages in a pipelined chain.
However, each stage-i has design trade-off among power
consumption P;, sampling rate fg; and area A, ;. A completed
design space exploration involves the searching of different
NN sizes of each building block in stage-i, RRAM precision
and stochastic variations. Here, we use one pair of building
blocks in the first row of Fig. [/} and three pairs of building
blocks in Fig. [§] as an example to illustrate the design trade-
off. Note that each of them (highlighted in red solid boxes)

NNADC. Note that each row is a pair. (a) The trend between ENOB and
RRAM precision of sub-ADC under different NN models, where the N; is
set as 1, 2, 3. (b) The trend between MSE and RRAM precision of residue
circuit under different NN models, where the IV; is set as 1, 2, 3.

shows enough accuracy and robustness with no more than 4-bit
RRAM precision. For the sub-ranging NNADC, each building
block is a distinct stage which has resolution N; = 3 and
N, = 2 respectively. For the pipelined NNADC, we combine
each pair of building blocks in Fig. [§] to form three distinct
stages with resolution N; = 1,2, 3, respectively. During the
simulation, we fix the precision of RRAM device at 3-bit for
all building blocks except for the residue in N; = 3 stage,
where a 4-bit RRAM is used. We finally study the relationship
between the power (E), speed (f), and area (A) of each distinct
stage of two NNADCs by simulating the minimum power
consumption/area of each distinct stage that works well at
different sampling rates.

The trends are plotted in Fig.[9] which shows clear trade-offs
between speed and power consumption, as well as speed and
area, for each distinct stage. In order to make each building
block work well under faster speed, we need to increase the
driven strength of the neurons by sizing up the inverters,
which results in an increase of power consumption and area
of each stage. A further comparison shows that at the same
resolution, the distinct stage of sub-ranging NNADC is more
energy-efficient and has smaller area than the distinct stage
of pipelined NNADC. The benefits come from the simpler
implementation of each stage in the sub-ranging NNADC,
where the residue is not required to be approximated.

2) NNADCs design trade-off: Sub-ranging NNADC has
fewer stages and simpler implementation of each stage.
Pipelined NNADC has more stages and more complex im-
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Fig. 9: Design trade-offs of three distinct stages (IN; = 1,2, 3) in pipelined
NNADC and two stages (/N; = 3 and N, = 2) in sub-ranging NNADC. (a)
Power VS speed. (c) Area VS speed.

plementation of each stage. Therefore, there exists trade-off
between these two NNADCs. To make a fair comparison, we
first fix the precision of RRAM device at 3-bit. Under this
condition, the sub-ranging NNADC can achieve a maximum
5-bit resolution by cascading the 3-bit sub-ADC and 2-bit
mixed-ADC shown in Fig.[/| We find that to achieve the same
5-bit resolution, sub-ranging NNADC is more energy-efficient
and has smaller area no matter how the pipelined NNADC
combines its low-resolution stages. We then relax the the
precision of RRAM device to 4-bit and explore the maximum
resolution that sub-ranging NNADC can achieve. Our SPICE
simulations show that an 8-bit sub-ranging NNADC with 7.3
bits ENOB can be achieved by combining the 5-bit sub-ADC
and 3-bit mixed-ADC (highlighted in red solid box) shown in
Fig. [/l Conversely, although each stage of pipelined NNADC
resolves only 1~3-bit quantization, it can achieve a much
higher resolution by cascading many lower-resolution stages.
As shown in Section we can achieve a 14-bit pipelined
NNADC by cascading nine 1-bit stages, one 2-bit stage and
one 3-bit sub-ADC and using 3-bit RRAM.

In conclusion, with 3-bit RRAM, sub-ranging NNADC has
higher energy-efficiency and smaller area to achieve a low-
resolution (<5-bit) NNADC, while pipelined NNADC is a
better architecture to achieve high-resolution (>6-bit) NNADC
whose maximum resolution is 14-bit by cascading more low-
resolution stages. In the following sections, we focus on
evaluating the pipelined NNADC due to its higher-resolution.

3) Design optimization: Based on the exploration of dif-
ferent building block configurations, an optimal design for the
proposed pipelined NNADC with a given resolution can be
derived by solving the following optimization problem:

min (1) FoMy = P/(2P°NP . f);  (2) Aapc.
ENOB<YM N, N e{1,2,3},
P=y P P e {E, BB}, (20)
St fo = 1$i<r}w{fs’i} fsi € {fi, fo. f5}s

Aapc = Zf\il Agi  Asie{A, Ay, Az}

Here, the first optimal objective FoMy (fJ/c) is a standard
figure-of-merit (FoM) that describes the energy consumption
of one conversion for an ADC; and the second optimal objec-
tive Aapc is the area of the proposed ADC. We set F'oMyy as
the main optimal objective, since energy efficiency usually is
the most important consideration for most applications. In this
way, as shown in Fig. we can obtain an optimal design
for a maximum 14-bit pipelined NNADC with 12.5 bits of
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Fig. 10: (a) Reconstruction of a 14-bit pipelined NNADC with 3-bit RRAM
whose pipelined chain consists of eleven stages: nine 1-bit stages, one 2-bit
stage and one 3-bit sub-ADC. (b) SNDR trend of the proposed NNADC.

ENOB, 11.6fJ/c of FoMy working at 1GS/s. It showcases
the advantages of our proposed co-design methodology that
by incorporating the consideration of many circuit-level non-
idealities in the training process, it allows us to realize a robust
design cascading up to eleven stages, a level often unattainable
with traditional pipelined ADCs.

C. Full Pipelined NNADC Evaluation

We chose the three distinct stages (highlighted in the red
solid boxes) in Fig. [§] to evaluate the quantization ability of
the proposed full pipelined NNADC. We find that although the
NN-inspired design methodology can help us to train a low-
resolution stage to approximate the ideal quantization function
and residue function with high-fidelity, the minor discrepancy
between the trained stage and ideal stage will propagate and
aggregate along the pipeline and finally results in a wrong
quantization; therefore, the pipelined stages cannot be infinite
in a practical design.

Our simulations based on various combinations of differ-
ent pipeline stages show that a maximum 14-bit pipelined
NNADC working at 1GS/s can be achieved by cascading
nine 1-bit stages, one 2-bit stage and one 3-bit sub-ADC
with 3-bit RRAM precision. Note that the last stage of the
14-bit pipelined NNADC does not need to generate residue.
The reconstructed signal of this 14-bit ADC is shown in
Fig.[I0(a), where the ENOB is 12.5 bits under 1GHz sampling
frequency. We then show the SNDR trend with input signal
frequency in Fig. [I0(b). The SNDR begins to degenerate
after the input frequency goes beyond 0.5GHz, verifying the
sampling frequency (x2 of input signal frequency) of the 14-
bit NNADC is well above 1GHz. We also report the differ-
ential non-linearity (DNL) and integral non-linearity (INL)
of the proposed NNADC. It is simulated at a typical-typical
CMOS process corner after one-time instantiation on RRAM
substrate with a fixed lognormal variation o0 = 0.05. The
DNL is +0.71/—0.42LSB (least significant bit) and the INL
is +0.98/—0.25LSB, in the normal range of the traditional
ADCs (e.g., DNLe [—1,1]LSB, INLe [—1, 1]LSB). To show
its robust performance, we perform 100 Monte Carlo simu-
lations on the proposed 14-bit NNADC by setting o = 0.05.
The median ENOB we are able to obtain is ~12.1-bit. We
also perform extensive Monte Carlo simulations to capture
the PVT effects from the CMOS devices and compensate its
negative impact using variation-aware training [[11]. The result
indicates an ENOB centered around 12 bits can be achieved
by the proposed NNADC with high robustness.
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Fig. 11: A 10-bit logarithmic NNADC with ten 1-bit stages.

Finally, we train a nonlinear ADC based on the same
methodology proposed in previous work [[11] using a logarith-
mic encoding on the input signal by replacing Vi, in Eq. ()
with Vinjog = log,(a+1) (a € [0, 1]) to train a 1-bit stage. We
find that a 10-bit logarithmic ADC with 9.1-bit ENOB working
at 1GS/s sampling rate can be achieved by cascading ten such
1-bit stages. The reconstructed signal of this 10-bit ADC is
illustrated in Fig. Note that other quantization mechanisms
can also be achieved based on previous work [11].

D. Performance Comparisons

1) Comparison with existing NNADCs: We first design
an optimal 8-bit NNADC by cascading eight 1-bit stages
(highlighted in the red solid boxes) in Fig. [§] and compare
it with previous NNADCs [9, [10]. The comparative data are
summarized in the left columns of Table NNADCI1 [10],
NNADC2 [9] are two representative NNADCs. Compared
with them, the proposed 8-bit NNADC can achieve the same
resolution with extremely low precision RRAM devices (3-
bit) and high energy efficiency. Both NNADC1 and NNADC2
adopt a typical NN (MLP for NNADCI1, and Hopfield for
NNADC?2) architecture to directly train an 8-bit ADC without
the optimization of architecture; therefore, they needs high-
precision RRAM to achieve the targeted resolution of ADC.
NNADCI uses a large size (1 x 48 x 16) three-layer MLP
as the circuits model, where parasitic aggregations on the
large size crossbar array degenerates the conversion speed. In
addition, more hidden neurons are used in NNADC1 which
consume more energy. NNADC2 uses 1 x W x N size
to achieve an NN-bit ADC. Since each stage in the proposed
8-bit NNADC resolves only 1-bit and has very small size
(1 x3 x2 for sub-ADC and 3 x 5 x 1 for residue block), it can
achieve faster conversion speed with higher energy-efficiency,
and high-resolution with low-precision RRAM devices. Since
each stage in the proposed 8-bit NNADC resolves only 1-bit
and has a very small size, it can achieve faster conversion
speed with higher energy-efficiency, and high-resolution with
low-precision RRAM devices. Please note that the FoMy,
reported in NNADC?2 is based on sampling a low frequency
(44KHz) input signal at high frequency (1.66GHz). Therefore,
it is considered outside the scope of a Nyquist ADC, and
cannot be compared directly with our work on the same
FoMyy, basis.

2) Comparison with traditional nonlinear ADCs and non-
linear NNADC: We then compare the 10-bit logarithmic
ADC trained using our proposed method and presented
in Section with state-of-the-art traditional nonlinear
ADCs [3, 23]]. The comparative data are summarized in the
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middle columns of Table [[I} Compared with state-of-the-art
nonlinear ADCs, the proposed 10-bit logarithmic ADC has
competitive advantages in area, sampling rate, and energy
efficiency. JSSCO09’ 23] uses a pipelined architecture to imple-
ment an 8-bit logarithmic ADC. Due to the devices mismatch
of switched-capacitors, the ENOB of [23|] degenerates 2.3
bits from the targeted resolution. JSSC18’ [3] requires >10-
bit capacitive DAC to achieve a configurable 10-bit nonlinear
quantization resolution; therefore, it can achieve high ENOB
but only works at ~KHz with significant area overhead. Since
we adopt the proposed training framework to directly train
a log-encoding signal considering small-sized NN models
and incorporating device non-idealities, we can achieve a
logarithmic ADC with small area, high sampling rate and
high ENOB. NNADC3 [43] is a recent work by dedicating
the RRAM conductance to realize logarithmic quantization
function. Compared with this work, our proposed NNADC
can achieve higher resolution using lower-precision devices
with improved performance.

3) Comparison with traditional uniform pipelined ADC and
pipelined NNADC: We also compare the 14-bit uniform ADC
in Section[VII-C] with state-of-the-art traditional uniform ADC.
The comparative data are summarized in the right columns
of Table Compared with JSSC15’ [24], the proposed 14-
bit NNADC has competitive advantages in sampling rate,
ENOB, and energy efficiency. JSSC15” uses power hungry
op-amps and dedicated calibration techniques, resulting in
the overhead of power consumption and degeneration of
conversion speed. NNADC4 [44] is a recent work which uses
two-stage architecture to achieve a pipelined ADC. It can
achieve 7.6 bits EONB with 6-bit RRAM. The proposed 14-
bit NNADC uses low-resolution stages with very small NN
size, enabling faster conversion speed with higher energy-
efficiency. The slight ENOB degeneration of the proposed
ADC is caused by the discrepancy (between the trained stage
and ideal stage) propagation along the pipeline stages. Also
note that the performance of the proposed NNADCs and the
performance of previous NNADCs are based on simulations,
while the performance of the traditional nonlinear ADCs and
uniform ADC are based on measurements.

4) Special 1-bit example: Finally, since RRAM is still an
emerging device with many active research and development
efforts, we would like to provide a projection here by studying
the performance of NNADCs with pure 1-bit RRAM in the
design. We choose the two-stage architecture to design a 5-
bit sub-ranging NNADC whose performance is listed in the
fifth column of Table It shows that even with a pure 1-
bit RRAM, we still can achieve an accurate NNADC with
moderate performance.

In summary, by taking the advantages of traditional
pipelined architecture and the NN-inspired design method-
ology, we can not only use low-resolution RRAM devices
to achieve high-resolution NNADCs whose performance are
superior to state-of-the-art ADCs, but also can realize versatile
quantization schemes on the same hardware substrate which
can be easily configured for different applications, such as
near sensing data processing, in-memory computing bases on
NVM crossbar array.
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TABLE II: Performance comparison with different types of ADCs.
ADC types NNADC* Nonlinear ADC Uniform ADC
Work NNADC1 NNADC2 This | Special 1-bit | JSSC09” | JSSC18 | NNADC3 | This | JSSCI5’ | NNADC4 | This
[10] 2] workd|  example® 1231° 13je [43)2 work| 24 4472 work?d

Technology (nm) 130 180 130 130 180 90 180 130 65 180 130
Power supply (V) 1.2 1.8 1.5 1.5 1.62 1.2 1.8 1.5 1.2 1.8 1.5
Area (mm?) 0.2 0.0049/0.01 0.02 0.18 0.56 1.54 N/A 0.03 0.594 N/A 0.1
Power (mW) 30 0.1/0.65 25 24 2.54 0.0063 0.045 31.3 49.7 0.272 67.5
fs (S/s) 0.3G 1.66/0.74G 1G 0.4G 22M 33K 100K 1G 0.25G 1.66G 1G
Resolution (bits) 8 4/8 8 5 8 10 3 10 12 8 14
ENOB (bits) 7.96 3.7/(N/A) 8 491 5.68 9.5 2.55 9.1 10.6 7.6 12.5
FoMyy (fJ/c) 401 8.25/7.5 97.7 1.996 x 10° 2380 263 77.2x10° 57 108.5 0.97 11.6

RRAM precision 9 6/12 3 1 N/A N/A 6 3 N/A 6 3
Configurable ? Yes Yes Yes Yes No Yes Yes Yes No Yes Yes

4 The results are shown based on simulation.

b The sub-ADC is trained via a 1 X 12 X 9 NN which has 3-bit quantization resolution. The mixed-ADC is trained via a 10 X 10 X 8 NN which has 2-bit quantization resolution.

€ The results are based on measurement.

9 The area of the proposed NNADCs does not include peripheral circuits whose area overhead can be mitigated through sharing among all devices {38]. The programming power is not counted in our evaluation, either.

€ Note that the proposed NNADC is based on eight-stage pipelined architecture, which has 8 cycles of latency.

VIII. CONCLUSION

In this paper, we combine the sub-ranging/pipelined hard-
ware architecture and the deep learning-based building block
design methodology to achieve two new designs of NNADC.
A systematic design exploration is also performed to search
the design space of building blocks to achieve a balanced
trade-off between speed, area, and power consumption of each
distinct low-resolution stages for the NNADCs. The evalua-
tions between the two new designs of NNADC suggest that
pipelined architecture is superior to achieve higher-resolution
with lower-precision RRAM. We also evaluate our design
based on various ADC metrics and perform a comprehensive
comparison of our work with different types of state-of-the-
art ADCs. The comparison results demonstrate the compelling
advantages of the proposed NN-inspired ADC with pipelined
architecture. This work opens a new avenue to enable future
intelligent analog-to-information interfaces for near-sensor an-
alytics and processing using NN-inspired design methodology.
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