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Abstract—Graph Convolutional Networks (GCNs) have be-
come state-of-the-art deep learning models for representation
learning on graphs. Hardware acceleration of GCN inference
is challenging due to: 1) massive size of the input graph,
2) heterogeneous workload of the GCN inference that consists of
sparse and dense matrix operations, and 3) irregular information
propagation along the edges during the computation. To address
the above challenges, we propose the algorithm-architecture co-
optimization to accelerate large-scale GCN inference on FPGA.
We first perform data partitioning to fit each partition in the
limited on-chip memory. Then, we use a two-phase preprocessing
algorithm consisting of sparsification and node reordering. The
first phase (sparsification) eliminates edge connections of high-
degree nodes by merging common neighbor nodes. The second
phase (re-ordering) effectively groups adjacent nodes to improve
on-chip data reuse. Incorporating the above algorithmic opti-
mizations, we propose a generic FPGA architecture to pipeline
the two major computational kernels in GCN: aggregation and
transformation. The flexible data path and task scheduling
strategy of our design support various GCN models and lead
to high throughput inference. We evaluate our design on state-
of-the-art FPGA platform using three large scale datasets: Flickr,
Reddit, Yelp. Compared with the state-of-the-art multi-core and
GPU baselines, our design improves the throughput by up to
30x and 2x respectively.

I. INTRODUCTION

Graph Convolutional Network (GCN) is an emerging type
of neural network model, capable of learning features from
unstructured graphs [1]. For the task of inference, the input
is a node-attributed graph. For each node, the output is an
embedding of the node, which is a low-dimensional vector
representation of this node. Node embedding can be used for
various downstream tasks. For example, in citation network
[2], GCN can learn from the labeled nodes and infer the
categories of unlabeled ones. In biochemical analysis [3], GCN
can learn to identify the properties of unknown proteins based
on the existing proteins. In social networks mining [4], GCN
can learn from the archived posts to classify the new posts.

With the deployment of GCNs in many real-life applica-
tions, hardware acceleration of GCN inference is needed. For
example, in the large scale recommendation system used by
Pinterest [5], with the continuously updated attributes of users
and posts, Pinterest needs to quickly generate embeddings
for millions of users to enable real-time recommendations. In
e-commerce system used by Alibaba [6], GCN is required
to perform fast recommendation for hundreds of millions of
users. In traffic network, the GCN is used to predict the future
traffic flows based on the historical traffic flows [7] in real

time.

Essentially, GCN consists of a stack of graph convolution
layers. Each layer performs two major steps [2]: (1) Aggre-
gation: each node aggregates information from its neighbors
and itself; (2) Transformation: the aggregated feature vector
is transformed into another feature space.

While the computational steps of GCN inference are fairly
straightforward, accelerating the GCN inference is challenging
due to (1) Massive input graph size: For GCN inference, the
input is the full graph which can be very large (e.g. Amazon
dataset [8] has millions of nodes and billions of edges). (2)
Heterogeneous workload: GCN inference consists of sparse
and dense matrix operations feature aggregation and weight
transformation which involve intensive tensor operations. (3)
Irregular data access: Unlike traditional convolutional neural
network (CNN) which has regular and predictable memory
access, feature aggregation in GCN leads to irregular data
access and thus limited on-chip data reuse. This can lead to
large overhead of external memory access, and thus inference
performance degradation.

To address these challenges, we propose the algorithm-
architecture co-optimization to accelerate large-scale GCN
inference on FPGA. First, we perform data partitioning to
satisfy the on-chip storage limitation. Then, we develop a
two-phase pre-processing algorithm to reduce computational
complexity and increase the data locality. In hardware design,
we map the key computational kernels on FPGA and their data
communication is through the on-chip memory for pipelined
execution. The data path supports various GCN models and
different computational orders. Our main contributions are as
follows:

o We propose a data partitioning scheme to partition the
input data; Each data partition can fit in FPGA on-chip
memory. We also develop the corresponding scheduling
strategy based on this data partition scheme to facilitate
efficient GCN inference.

« We propose a two-phase graph pre-processing algorithm
to reduce the external memory traffic:

— Graph sparsification: The sparsification phase re-
duces the redundant edge connections by merging
common neighbors. This step reduces the number
of external memory accesses. It also facilitates the
subsequent re-ordering phase by reducing the edge
connections of high-degree nodes.
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— Node re-ordering: Node re-ordering phase groups the
adjacent nodes by re-assigning the node indices, which
increases the data locality and significantly reduces the
number of external memory accesses.

« We develop a hardware architecture which can efficiently
execute GCN inference:

— Pipeline: We build hardware modules for the key
computational kernels: feature aggregation and feature
transformation. Their data communication is through
the on-chip memory of FPGA which enables pipelined
execution.

— Scheduling: Based on our hardware pipeline, we de-
velop a scheduling strategy which efficiently executes
the GCN inference. It also supports the execution of
various GCN models.

— Flexibility: We identify the two computation orders
in GCN inference. Based on that, we build the flexible
data path which supports the two computational orders.

« We provide the mathematical analysis of data communi-
cation cost, which accurately models the impact of data
partitioning and two-phase pre-processing algorithm on
the memory traffic of our proposed hardware architecture.

o« We evaluate our hardware architecture on three large-
scale datasets. The experimental results show that com-
pared with multi-core CPU and high-end GPU baselines,
our hardware architecture achieves throughput up to 30x
and 2x respectively. The two-phase pre-processing algo-
rithm leads to nearly 30% performance improvement.

II. BACKGROUND

TABLE I
THE STATE-OF-THE-ART GCN MODELS

Approach Forward Rule

XL — ¢(fr%Ab*%XlWl) t
X = (X' WL I DTPA X W)

Vanilla-GCN [2]

GraphSAGE [4]

sel

GraphSAINT [8], [9]  X!*T1 = ¢(X'W]

e

i DTTAX! Wnleighbor)

FastGCN [10] X = (D2 AD 2 X'Wi) t
Cluster-GCN [11] X = p((A 4 X - diag(A) X' W)

t ¢(-) is the activation function. Iy + D 2AD 2 D 2AD 2
b A, is the adjacency matrix after edge sampling in GraphSAGE [4].
*A=(D+I)"1(A+1)

A. GCN Model

Graph Convolutional Network (GCN) is one of the most
popular types of graph neural networks [1] for data in non-
Euclidean space. The input to the GCN is a node-attributed
graph G (V, €, X)), where V and £ denote the set of nodes and
the set of edges respectively. Each node v € V is attributed
by a feature vector of length f, and we use X e RIVIXf
to denote the feature matrix where each row is the feature
vector of a node. Suppose the GCN has L graph convolution
layers. Then X is the input to the first layer, and we use X' €

RIVI*fi to denote the input to the I layer (ie., X! = X).
The output of L™ layer is X “*1 € RIVIXfr+1 where each row
is the embedding of a node. Here, we use A to represent the
binary adjacency matrix of G. So A,, = 1 if edge (u,v) € &,
and A,, = 0 otherwise. D is the diagonal degree matrix of
G.So D;; = Z‘jill A;;. Each layer [ is parameterized by a
weight matrix W' ¢ Rfi*fi+1 to transform the aggregated
feature vectors. The layer operations of various GCN models
are shown in Table I. Various techniques may use slightly
different formulas to normalize the adjacency matrix. There
are two main computational kernels in GCN models:

o Feature aggregation (FA): AX. Here, we use A to
denote the adjacency matrix or the normalized adjacency
matrix. A row of adjacency matrix can be viewed as
the adjacency list of a node which contains information
of edge connections. In feature aggregation, each node
aggregates the features from its neighbors.

o Feature transformation (FT): X W . In feature transfor-
mation stage, each feature vector in X is multiplied by
the weight matrix W. Papers [4], [9] use the self-weight
Wlelf c RAX flz“

N

to transform the original features

o
and use the neighbor-weight Wi, € R/  to
transform the aggregated features. Both of them belong

to feature transformation.
B. GCN Acceleration

While there exist many CNN/MLP accelerators [12], [13],
few works have been proposed to accelerate GCN inference.
Zeng [9] develops a scalable and efficient framework to accel-
erate GCN training on a multi-core CPU platform. GraphACT
[14] accelerates GCN training on CPU-FPGA heterogeneous
platform. Our work is different from GraphACT in that
1) GraphACT focuses on accelerating one specific GCN train-
ing algorithm—GraphSAINT [15], while our work proposes a
generic method to accelerate GCN inference. 2) GraphACT
targets at GCN training phase which uses mini-batch method.
In each training epoch, a mini-batch subgraph is sampled from
the full graph which can fit FPGA on-chip memory. Our work
targets at GCN inference phase which is performed in full-
batch manner. The input for GCN inference is the full graph,
which can not fit FPGA on-chip memory. 3) The mini-batch
training method used by GraphACT samples subgraph in each
training epoch. The sampled subgraph has significant lower
average degree than the full graph used by GCN inference. In
full graph, the average degree can be significant higher than
the small subgraph and there also exists high-degree nodes,
which leads large overhead of communication cost for feature
aggregation. Our work aims to address these challenges.

III. PROBLEM DEFINITION

Scope The scope of this paper is to accelerate the GCN
models where the feature aggregation AX and feature trans-
formation X W are the key computational kernels as indicated
in Table L.

This paper deals with the large, node-attributed, static graph
G (V,&,X). Specifically, the size of the graph G can be very
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TABLE 1I
STATISTICS OF THE DATASET

Dataset Number of  Feature ~ Number of  Average
nodes |V|  length f edges |£] degree d
Flickr 89250 500 449878 10.1
Reddit 232965 602 11606919 99.6
Yelp 716847 300 27907940 19.5

large as shown in Table II which exceeds the size of FPGA on-
chip memory. For example, Yelp has 700K nodes and 27M
edges. Static graph G has the property that the features’ values
in X change over time, while the graph topology (i.e., V, &)
is relatively fixed. We assume G is static, because for many
real-life graphs, their graph structures are fixed or relatively
stable compared with node’s attributes. For example, in social
networks, the user activities/posts (encoded as X) are updated
frequently, while the user relationships (represented by &) are
much more stable. In a road network, the traffic condition of
a road changes much more dramatically and frequently than
the connectivity of roads [16]. As a result, the time for pre-
processing the graph is amortized and we do not include the
pre-processing time in the execution time.

Metric In graph analytics, the Million Traversed Edges
Per Second (MTEPS) is the measure of the throughput [17].
Similarly, we define the throughput of GCN inference system
as Million Embedded Nodes Per Second (MENPS). MENPS
denotes the number of nodes which are embedded per second.

Objective  Given a large, node-attributed graph G (V, &, X),
a trained GCN model and a target FPGA device, we aim at
increasing the throughput of GCN inference.

Notations We use X (u) to denote the u™ row of X and
X (u : v) denotes the sub-matrix from u® row to v row.
Similarly, X (:,v) denotes the v™ column and X (:,u : v)
denotes the submatrix from u™ column to v™ column. To

simplify notation in the rest of the paper, we let n = |V|.

Data sparsity The sparsity of adjacency matrix denotes
the fraction of non-zero elements. The adjacency matrix A
in GCN can be highly sparse. For example, in Table II,
adjacency matrix of PPI, Flickr, Reddit have the sparsity of
0.5%, 0.2%, 0.2% respectively. The density of the weight
matrix W approximates 100% as indicated in [18]. For the
feature matrix X, we treat it as dense matrix due to 1) the
input feature matrix X' is normally dense. 2) the density of
X! (I > 1) is unpredictable depending on the dataset [18]
which ranges from 1%-60%. 3) According to [1], many GCN
models use LeakyReLU activation function [19] which can
make X dense. Since the density of X highly depends on
GCN model and the input graph, the exploration of the sparsity
in X is not the focus of this paper. We leave it for the future
work.

Approach The key operation to compute a GCN layer is
AX'W' which can be further broken down into C! = AX!
and Z' = C'W. Since the graph is large and sparse, com-

putation of C' incurs large volume of random accesses into
external memory. On the other hand, while the dense matrices
C' and W! lead to high on-chip data reuse and simple
dataflow, the workload to compute Z' is very high. Therefore,
the problem of GCN inference is both computationally and
communicationally intensive.

The key to alleviate the burden of data transfer is to improve
data locality and thus on-chip data reuse. We achieve this
by pre-processing the graph based on its topology G(V, &)
(Section IV). The key to realize the fast execution of intensive
computation workload is to design a pipelined hardware ar-
chitecture by exploiting the parallelism underlying GCN layer
(Section V).

IV. ALGORITHM ANALYSIS AND OPTIMIZATION
A. Partition-based Inference

The computational kernels—AX and X W-need to be
mapped on FPGA. However, for real-world datasets, the
dimension of A and X can be extremely large. As a result, the
A and X can not fit on-chip. Here, we use a data partitioning
scheme for GCN inference. We partition the graph by dividing
the A along the two dimensions. Here, we denote the subma-
trix of A as A;;, which is assigned the block of adjacency
matrix A(ix %:(i+1)x 2 —1,jx2:(G+1)x%—1).
Each of the # X 7 sub-matrices has the size of k x k.
Additionally, we partition X', C', Z' and X'*! into ? equal-
size parts along the row dimension. For example, Xf =
X' (ix % (i4+1)x 2 —1),for0<i<Z. In the partition-

X'(0:2) X'(3:5)

| L ¥ 41
R Tt
e 2 = -
A roundl CZ(O: 2) round2 Cl(O: 2)
aggregation

transformation
Fig. 1. Partition-based inference.

based inference, calculating the final output X'*! is by
sequentially calculating the block {X(l)"'l, X {“, Xé“, oot
Calculating X f“ requires the following consecutive steps:

n_q

(DHCl=> A;Xx]|
j=0

(1
@ zi=CiW' 3) X;"' =0 (Z])

Figure 1 visualizes the computation of equation (1). The
adjacency matrix A is partitioned into 4 sub-matrices (i.e.,
n = 6, k = 3). Non-zero elements of A are highlighted
in color. The aggregation step generates C(l) = C! (0:2)
after two rounds. Then the transformation step multiplies
C'(0:2) by W! to generate Z, = Z'(0:2). Note that
the row partitioning of A controls the size of C! and Z!, so
that the hardware design can satisfy the constraint of on-chip
memory. The row partitioning breaks down the aggregation of
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X! into blocks, so that we can pipeline the loading of X! and
computation of X! ;. Details of the hardware design under
such 2D partitioning is shown in Section V.

Graph Sparsification Node Reordering

i
A o e | eu®
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Fig. 2. An example of two-phase pre-processing. The adjacency matrix is
partitioned into submatrix of size 3 X 3 or 3 x 2. Therefore, the original
memory traffic is 2 + 3 + 3 + 3 = 11. The memory traffic after graph
sparsification is 2 4+ 1+ 1 + 3 + 2 = 9. The memmory traffic after node
rordering is 3+ 14+ 1+1+2=28.

B. Graph Sparsification

In aggregation stage, the memory traffic is related to the
number of edges. Intuitively, a graph with more edges requires
more memory accesses. Here, we perform graph sparsification
by eliminating the “redundant” edges in the graph, without
changing the aggregation result, C'. Here, we use the re-
dundancy reduction [14] to eliminate this redundancy. A toy
example is indicated in Figure 2. For input graph G, we
enumerate the neighbor pairs of each node. For example, node
1 has neighbors 4,5,6. Enumerating all the neighborhood
pairs of node 1 gives (4,5), (4,6) and (5, 6). Note that (5, 6)
is a common pair of neighbors shared by nodes 1 and 4.
We identify two common pairs (1,4), (5,6) in G. Replace
the common pairs with new nodes u, v. Attach u, v with
feature vectors 3 (X (5) + X (6)) and % (X (1) + X (4)).
Then, incorporating the new nodes, we delete the redundant
edges and construct reduced graph G’. We can do this process
for several iterations to further reduce the redundancy.

Compared with its original usage in mini-batch GCN train-
ing [14], redundancy reduction brings more benefits to GCN
inference: (1) Full graph has more redundancy than the mini-
batch subgraph, so that it can reduce considerable number of
‘redundant’ edges. (2) Sparsification can significantly reduce
the edge connections of high degree nodes. This facilitates the
node reordering step to be discussed next.

C. Node Reordering

GCN inference has intensive memory traffic due to the ran-
domized data layout, resulting in limited data reuse. Suppose
we can increase the data reuse in each submatrix A;;, the total
external memory access can be reduced. To do this, we change
the data layout of the adjacency matrix. Originally, indices of
nodes v; € V are assigned randomly. Since in aggregation
stage, nodes need to aggregate information from the neighbors,
we consider changing the node order by grouping the adjacent
nodes together. Using Figure 2 as the example, in G’, due to the
randomized node order, nodes 2, 3,4, which form a complete
subgraph, fall into different partitions of A. This results in

extra memory accesses when processing Agg and Ajg. The
cost of processing Apg and A1y does not decrease after the
sparsification phase. After reordering, the nodes 2,3,4 in G’
now become nodes 1,2, 3 in G”. Now, the feature propagation
and aggregation among the three nodes require processing of a
single submatrix Agg. For this purpose, we use the bandwidth
reduction (BR) algorithm proposed in [20] which is a well-
known technique to reduce the bandwidth of the matrix by
node permutation.

The node reordering algorithm has two properties desirable
for GCN inference. Firstly, it increases the data locality by
grouping the adjacent nodes together. Thus, data on-chip have
higher reuse and accesses to external memroy are reduced.
Secondly, it works well with the sparsification phase. We
observe that reducing the number of high-degree nodes helps
improve the reordering quality. Thus, sparsification can also
be considered as a pre-processing step of reordering.

D. Optimization Workflow

We integrate the above two-phase optimizations as a com-

plete pre-processing algorithm. We first run graph sparsifica-
tion for S iterations. Then, we reorder nodes to increase the
data locality. An example is shown in Figure 2. Total number
of memory accesses reduces from 11 to 9, and further to 8§,
after the two-phase preprocessing.
Complexity analysis As explained in Section III, the topol-
ogy of the static graph is relatively stable compared with the
node attributes, the one-shot execution of our pre-processing
can benefit many runs of the subsequent GCN inference. For
example, in the graph of traffic prediction, the node attributes
change over time, but the graph structure is relatively stable.
Thus, it is not a critical issue to accelerate pre-processing
considering that its cost can be amortized. Nevertheless, to
support large-scale graphs, we still require the pre-processing
to be computationally tractable. In the following, we analyze
the pre-processing complexity. Graph sparsification using the
redundant reduction algorithm in [14] has the complexity of
(@] (S n- cp) where d is the average degree of the graph.
Node reordering using Reversed Cuthill-McKee algorithm
[20] has complexity of O (nlog(n)). In summary, the two-
phase pre-processing can be efficiently and effectively per-
formed.

V. HARDWARE ARCHITECTURE

After the algorithmic optimization, we perform data parti-
tioning on G and A. Selecting the appropriate partition size,
the on-chip memory can store A;;, X} and C} to minimize
external memory accesses. In this section, we present an inte-
grated FPGA architecture for GCN inference. Figure 3 shows
the overall hardware architecture. The Aggregation, Activation
and Transformation modules form a computation pipeline.
The Aggregation and Transformation modules consume the
majority of the on-chip resources. When the Aggregation
module generates C!, the results C! can be directly forwarded
to the Transformation or Activation modules depending on the
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Fig. 3. Hardware Architecture with two execution modes.

operation modes (see Section V-D for details). At the same
time, the Aggregation module starts to generate C' L1

A. Aggregation Module

In the Aggregation module, the Submatrix Loader loads
partitions A;; from external memory. Each A;; is stored as
compressed sparse row (CSR) format. The Scheduler assigns
the indice array, indptr array and value array of the submatrix
into their respective buffers. The Source Address Generator
and Destination Address Generator read indice and indptr
to locate data in the Source Buffer (storing X]l») and the
Destination Buffer (storing C!). To generate C!, the submatrix
A, Ai1, Ao, ..., Ai% are loaded onto on-chip memory se-
quentially. After finishing the feature aggregation of submatrix
A;j, the feature aggregation of A;(; 1) starts. For submatrix
A;j;, feature matrix X jl needs to be loaded on-chip. Note that
we do not need to load all the rows of X Jl Only the rows
which have corresponding non-zero element in A;; need to
be loaded, as shown in Figure 1. We use the double-buffering
technique for hiding the memory latency. The Norm modules
do element-wised multiplication for diagonal matrix (e.g. D!
or D*%) to support the subtle variants of normalization.

To parallelize FA, we can accumulate features of multiple
neighbor nodes simultaneously (node-level parallelism), or
process multiple elements of a single neighbor feature each
clock cycle (feature-level parallelism). Node-level parallelism
may result in memory bank conflicts, such multiple nodes
can access sample memory bank. Feature-level parallelism
leads to regular memory accesses and can always keep the
pipeline busy (since we can sequentially traverse the neighbor
lists of A;;). However, this parallelism is limited by the
feature vector length f. We exploit both parallelism in the
Aggregation module. Note that dual-port BRAM supports two-
way concurrent read and concurrent write (CRCW). The two
Vector Accumulators in Figure 3 can thus read features of any
two nodes in the same cycle. Within each Vector Accumula-
tor, only feature-level parallelism is exploited. Therefore, the
Aggregation module supports parallelism of up to 2 f, where f
is the length of each feature vector. Papers [4], [8], [10], [11]

65

shows that the feature length of GCN layer can be 128-1024
which is sufficient to support feature-level parallelism.

B. Weight Transformation Module

This module performs weight transformation of node feature
vector. The input C! to the Transformation module comes
from the Destination Buffer fed by the Aggregation module.
Since double-buffering is used in the Aggregation module,
when the Transformation module accesses C! from one of the
Destination Buffers, the Aggregation module computes next
block C! 41 and stores the result into the other Destination
Buffer. A two dimensional systolic array is used to effectively
compute the matrix multiplication between the feature matrix
and weight matrix, Cle. The systolic array has total paral-
lelism of pgys X psys. Recall that Cf € R**f and W' e RF*/,
To fit the dimension pyy, we further partition C! along the
rows into tiles of size pyys X f, and partition W' along the
columns into tiles of size f x pyy. Clearly, there are % X %
pairs of such tiles. Each pairs requires f + pgys — 1 clock
cycles of computation. The pipelined computation of all the
tile pairs takes approximately % X % x f clock cycles. To
stream data into the systolic array, we use a Weight Buffer
of width pgy - diype (Where dyype is the data width) to store
all the weights of the GCN layer. We use a Feature Buffer of
width pgy,- diype bits to load the tiles of Cﬁ from the Destination
Buffer. The Output Buffer is a small FIFO to cache the outputs
of the systolic array.

C. Scheduling for GCN variants

As indicated in Table I, there are two types of forward rules:
1) AX'W!, where W € Rft*fi+1.2) X Wiei| AX Weighbors

LES
where Weir, Wheighvor € Rfi*~2" . For the same feature

length setting (f;, fi+1), the two forward rules have the same
computational workload in terms of FA and FT. Using the
second type, the transformation weight is divided into self
weight Wr and neighbor weight Wcighbor. To support the
two types, we use the scheduling which indicated in Figure
4. For both of the two types, the FA and FT of the same
layer are calculated concurrently. In the second type, the
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FT using self weight XW/. and the FT using neighbor
weight (AX) Wicighvor are calculated alternatively within each
data partition. The Transformation module calculates C! W,
first and then calculates X! Wnleighbor. Because the two types
of rules have the same computational workload, under this

scheduling, their execution time are the same.

i For AX'w!
[ Feature Aggregation 4

B et Trans o

OR

space

Xwl
FA(L+1) [ ;
v

For X'W, 1 |AX'Wheighpor

A(l)

FA(L— 1)

time
(L + 1)t layer

1th

(- 1) layer layer

Fig. 4. Scheduling for different GCN variants.

D. Execution Modes

The product AX'W' can be computed in two different
modes 1) (AX l) W' which has computation complexity of
O(IE]- fr4+ V|- f1- f7+1), or 2) A(X'W') which has
computation complexity of O (|€]- f+ 4 V|- f- fIT1).
When the next layer has shorter feature length (f'™! < f9),
mode 2 leads to lower computation load than mode 1. When
f*1 > £ mode 1 is more desirable. To support the two
computation orders, we implement two dataflows, as labeled
by Mode 1 or Mode 2 in Figure 3. Mode 1 performs
o ((AX") W'). So A'X" is performed first, followed by
weight transformation, and further followed by activation. In
Mode 2, we interleave the computation of two consecutive
layers: ((o(A (X'W')) Wit1). Assume that the transfor-
mation X'W' of previous layer has already been performed.
Then, we perform aggregation and calculate the activation
of the previous layer. Next, we perform the transformation
XMW of the current layer.

VI. ANALYSIS OF COMPUTATION AND COMMUNICATION

To simplify the performance analysis, we assume f' = f,
V 1 <1< L. Lis the number of layers. So, the weight matrix
W' c Rf*f. We specify the hardware parameters as follows:
The block size (adjacency submatrix) is k. The parallelism
of a single Vector Accumulator is py,. The parallelism of the
systolic array iS psys X Dsys. Regarding the parameters of the
graph, we define the average degree of G as d. As for the
hardware resources on FPGA, we assume the number of DSP
is Rpsp, the external memory bandwidth is B, the frequency
of the FPGA is /. What’s more, we denote the data width as
diype- For example, dype of float32 is 4 Byte.

A. Computation

Computation time of one GCN layer equals:

@ nxdxf @ nxfxf

2 X pya X F Dsys X Psys X F
2

eomp

comp __
agg 1

trans
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where 2py, + pfys < Rpsp and py, < f. The DSP resources
can be assigned based on the workload of aggregation and
transformation. Ideally, if the system is bounded by computa-
tion and there is no load imbalance, we can let Thgy © = Tyons
to decide the parameters py, and pgys. However, in practice,
the aggregation time can be bounded by the external memory
access, and load imbalance within the aggregation module may
further affect the execution time. So, we set py, 2% or 3x than

needed in implementation.
B. External Memory Accesses

Aggregation module loads X ]’ from external memory into
the on-chip memory, which we define as input memory
accesses D;,. After the transformation, the results are written
back to the external memory. We define D, as the number of
output memory accesses. For each layer, Doy = 1 X f X diype.
The input memory access depends on block size k and locality
of G. Here we use 1% = to denote whether the 2" column of
A;j has non-zero elements If there is any non-zero element
in 2™ column of Aj, ]lA = 1, otherwise 1% = 0. Using
this notation, we can drive the expression for the number of
input memory accesses per GCN layer:

F-13-1k—1

D=2 3 D Vi, x f x duge ®
i=0 j=0 z=0
Here, we define a memory access factor L:J Zk ! 15, to

denote the input memory access for each submatrix A” Let
L= 1= 01
the expression of communication time: 7°°™" =
which denotes the time for memory access given the mem-
ory bandwidth. Using practical graph and GCN models, the
performance of the system can be bounded by the data
communications (Section VII-D). So, given an input graph, the
two-phase algorithm optimization can significantly reduce the
factor £. As a result, communication time 7°°°™ jis reduced.
Here, we do not consider the memory traffic of loading weights
(Dyweight = %, f << n << L) because it is negligible
compared with the memory traffic of loading input features
and output features.

J 0 £J Using Di, and Dy, we can drive
Din+Dou
B

VII. EVALUATION

A. Experimental Setting

We implement our design in verilog-HDL and use the Xilinx
Alveo U200 accelerator card as the platform for evaluation.
The acceleration card has 64 GB off-chip DRAM (77 GB/s
bandwidth), 1182k Look-up tables (LUTs), 6840 DSPs, 2160
36k BRAM and 960 288k Ultra RAM. We use the Float32
as the default word length to represent weights and features.
Vivado 2018.03 is used for synthesis !

For evaluation purpose, we use the three widely used
datasets Reddit, Yelp, Flickr [10], [21], [4], [22] as the input
graph. The details of the datasets are shown in Table II. We
store all the data in the off-chip DRAM. The node order of
the original dataset is randomized in order to evaluate the

Thttps://github.com/GraphSAINT/GNN-ARCH
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Fig. 5. Dj, of Flikr (a), Reddit (b), Yelp (c) for various partition size k.

TABLE III
CROSS PLATFORM COMPARISON OF THROUGHPUT (MENPS). THERE ARE TWO NUMBERS IN EACH CELL OF THE TABLE. THE NUMBER ON THE LEFT IS
THE THROUGHPUT USING THE UN-PRE-PROCESSED DATASET. THE NUMBER ON THE RIGHT IS THE THROUGHPUT USING THE DATASET AFTER
TWO-PHASE PRE-PROCESSING.

Dataset Tensorflow Hand-written code Xiline Alveo U200 (k = 1024)
CPU (56 threads)  GPU (Titan-Xp)  CPU (56 threads)  GPU (Titan-Xp) ‘
Flikr 0.213 / 0.226 0.829 / 0.844 0.129 /7 0.159 2.985 / 3.030 2.076 / 2.452 (pya = 128, psys = 24)
f =128 Reddit 0.032 / 0.034 0.116 / 0.120 0.096 / 0.099 1.253 7/ 1.294 1.021 / 1.641 (pya = 128, psys = 24)
Yelp 0.112 / 0.121 0.338 / 0.349 0.157 7 0.168 2.542 7/ 2.610 2.743 / 3.854 (pya = 128, psys = 24)
Flikr 0.139 / 0.147 0.702 / 0.708 0.048 7 0.051 0.572 7 0.577 0.941 / 1.065 (pya = 64, psys = 24)
f =256 Reddit 0.018 / 0.016 0.086 / 0.087 0.037 / 0.039 0.434 7 0.440 0.506 / 0.815 (pya = 256, psys = 24)
Yelp 0.091 7 0.097 0.317 7/ 0.323 0.050 7 0.052 0.642 7 0.648 0.711 7 0.956 (pva = 128, psys = 24)
k and data locality. The experimental results are shown in
TABLE IV Figure 5. As k increases, external memory access decreases.

THE IMPACT OF TWO-PHASE PREPROCESSING ALGORITHM ON THE
THROUGHPUT (MENPS).

{eature Hardwar'e Baseline  Sparsi. Sparsi.. +
ength Configuration Rordering
Fike S = 128 1;’;;5::1222 2.076 2.336 2452

f =256 ;’”y“ ::62‘2 1.021 1.050 1.065
Reddit =128 1;225221222 1.021 1.059 1.641

f =256 Z“;Zf:z;’g 0.506 0.529 0.815
vep =128 1;22311222 2743 2914 3854

f =256 1;1;;11225 0711 0.747 0.956

impact of our pre-processing algorithm. The implementation
of Reverse Cuthill-McKee algorithm uses the build-in function
in scipy. For all the three datasets, following the setting in
papers [10], [21], [4], [22], we use a two-layer GCN model.
The feature length is set as f! = 128,256 (0 < [ < L) and
L = 2. We use the forward rule AXlWl, since AX'W! and
X Wse]f|AX W eighbor have the same execution time using our
scheduling method (Section V-C). We do not include the time
for data pre-possessing as explained in Section III and IV-D.

B. External Memory Accesses

Since £ >> n, Dy is negligible compared with Dy, Doy
is ignored for evaluation. Dy, is related to the block size

Using larger block size k, larger submatrix can be loaded
on-chip, leading to the increased data reuse. Suppose k is
large enough to store the entire graph, the input graph only
needs to be loaded once. Using the two-phase pre-processing
algorithm, the first sparsification phase can reduce the external
memory access by 17.5%-21.2%, 1%-8%, 12.3%-18.4% for
Flikr, Reddit, Yelp respectively. Incorporating the node re-
ordering, the external memory access can be further reduced
by 26.3%-28.2%, 33.2%-39%, 30.9%-33.9% for Flikr, Reddit,
Yelp respectively. The experimental results confirm that our
two-phase preprocessing algorithm can effectively reduce the
external memory access, which can alleviate the bottleneck of
memory bandwidth.

C. Cross-platform Comparison

We compare our FPGA implementation with the baseline
implementations using Tensorflow (version 2.0.0) and our
optimized hand-written C++ code. Both of the baseline im-
plementations have two versions running on multi-core CPU
platform with 56 threads (Intel Xeon 5120 @ 2.20 GHZ) and
high end GPU platform (Titan-Xp) respectively. For multi-core
CPU platform, Tensoflow CPU version is used and our hand-
written C++ code uses the Pthread library. For GPU platform,
Tensorflow GPU version is used and our hand-written C++
code uses Cuda 10.0 library. For cross-platform comparison,
we use the unpre-processed dataset and the pre-processed
dataset using two-phase algorithm. For FPGA implementation,
the block size k is set as 1024 to fit the FPGA on-chip memory.
Each processing element in vector Accumulator consumes 5
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DSPs and each processing element in systolic array consumes
7 DSPs. The frequency can reach nearly 300 MHZ and we set
250 MHZ for the implementation.

The comparsion results are shown in Table III. Compared
with the two CPU baselines, we achieve 10x to 30x higher
throughput. Compared with the GPU implementation, we
achieve 2x to 10x speed. Compared with CPU and GPU
implementation, our FPGA implementation is more efficient
because 1) FPGA has larger on-chip memory and it can be
used to store larger data partition, which leads to more data
reuse. Due to the capacity to store larger data partition, FPGA
implementation benefits more from the two-phase pre-process-
ing algorithm. CPU and GPU implementations mainly benefit
from graph sparsification, which eliminates the edge con-
nections. 2) The communication between two computational
kernels—FA and FT-are through the FPGA on-chip memory
which is more efficient than communicating through external
memory.

D. Impact of Two-phase Algorithm

In Table IV, we show the impact of two-phase pre-
processing algorithm on the inference throughput (MNEPS).
The baseline uses the input graph without pre-processing. We
measure the throughput after each phase of the pre-processing.
With proposed algorithm, we improve the throughput by
15%, 37.7%, 29% on Flikr, Reddit, Yelp respectively. The
increased performance is because aggregation has intensive
external memory access which limits the performance. Using
the two-phase pre-processing, we increase the data reuse in
each partition A,; which greatly reduce the external memory
access.

In our experiments, we notice that memory bottleneck is
more severe for input graphs with high average degree like
Reddit. Because with more average degree, more external
memory access is needed for feature aggregation. In practice,
graphs with high average degree is common. For example, in
social networks, users may have hundreds of links with other
users on the average. In e-commerce system [6], customers
may go through hundreds of products on the average. Our
two-phase preprocessing algorithm can potentially improve the
performance caused by the memory traffic bottleneck.

VIII. CONCLUSION

In this paper, we proposed the algorithm-architecture co-
optimization to accelerate GCN inference on FPGA. The
hardware used pipelined implementation of aggregation and
transformation to achieve high-throughput inference. The two-
phase preprocessing algorithm further improved the through-
put by optimizing the external memory access. In the future,
we intend to apply our proposed method to other types of
graph neural network.
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