
Hardware Acceleration of Large Scale GCN
Inference

Bingyi Zhang, Hanqing Zeng, Viktor Prasanna
University of Southern California, Los Angeles, California

Email: {bingyizh, zengh, prasanna}@usc.edu

Abstract—Graph Convolutional Networks (GCNs) have be-
come state-of-the-art deep learning models for representation
learning on graphs. Hardware acceleration of GCN inference
is challenging due to: 1) massive size of the input graph,
2) heterogeneous workload of the GCN inference that consists of
sparse and dense matrix operations, and 3) irregular information
propagation along the edges during the computation. To address
the above challenges, we propose the algorithm-architecture co-
optimization to accelerate large-scale GCN inference on FPGA.
We first perform data partitioning to fit each partition in the
limited on-chip memory. Then, we use a two-phase preprocessing
algorithm consisting of sparsification and node reordering. The
first phase (sparsification) eliminates edge connections of high-
degree nodes by merging common neighbor nodes. The second
phase (re-ordering) effectively groups adjacent nodes to improve
on-chip data reuse. Incorporating the above algorithmic opti-
mizations, we propose a generic FPGA architecture to pipeline
the two major computational kernels in GCN: aggregation and
transformation. The flexible data path and task scheduling
strategy of our design support various GCN models and lead
to high throughput inference. We evaluate our design on state-
of-the-art FPGA platform using three large scale datasets: Flickr,
Reddit, Yelp. Compared with the state-of-the-art multi-core and
GPU baselines, our design improves the throughput by up to
30× and 2× respectively.

I. INTRODUCTION

Graph Convolutional Network (GCN) is an emerging type

of neural network model, capable of learning features from

unstructured graphs [1]. For the task of inference, the input

is a node-attributed graph. For each node, the output is an

embedding of the node, which is a low-dimensional vector

representation of this node. Node embedding can be used for

various downstream tasks. For example, in citation network

[2], GCN can learn from the labeled nodes and infer the

categories of unlabeled ones. In biochemical analysis [3], GCN

can learn to identify the properties of unknown proteins based

on the existing proteins. In social networks mining [4], GCN

can learn from the archived posts to classify the new posts.

With the deployment of GCNs in many real-life applica-

tions, hardware acceleration of GCN inference is needed. For

example, in the large scale recommendation system used by

Pinterest [5], with the continuously updated attributes of users

and posts, Pinterest needs to quickly generate embeddings

for millions of users to enable real-time recommendations. In

e-commerce system used by Alibaba [6], GCN is required

to perform fast recommendation for hundreds of millions of

users. In traffic network, the GCN is used to predict the future

traffic flows based on the historical traffic flows [7] in real

time.

Essentially, GCN consists of a stack of graph convolution

layers. Each layer performs two major steps [2]: (1) Aggre-
gation: each node aggregates information from its neighbors

and itself; (2) Transformation: the aggregated feature vector

is transformed into another feature space.

While the computational steps of GCN inference are fairly

straightforward, accelerating the GCN inference is challenging

due to (1) Massive input graph size: For GCN inference, the

input is the full graph which can be very large (e.g. Amazon

dataset [8] has millions of nodes and billions of edges). (2)

Heterogeneous workload: GCN inference consists of sparse

and dense matrix operations feature aggregation and weight
transformation which involve intensive tensor operations. (3)

Irregular data access: Unlike traditional convolutional neural

network (CNN) which has regular and predictable memory

access, feature aggregation in GCN leads to irregular data

access and thus limited on-chip data reuse. This can lead to

large overhead of external memory access, and thus inference

performance degradation.

To address these challenges, we propose the algorithm-

architecture co-optimization to accelerate large-scale GCN

inference on FPGA. First, we perform data partitioning to

satisfy the on-chip storage limitation. Then, we develop a

two-phase pre-processing algorithm to reduce computational

complexity and increase the data locality. In hardware design,

we map the key computational kernels on FPGA and their data

communication is through the on-chip memory for pipelined

execution. The data path supports various GCN models and

different computational orders. Our main contributions are as

follows:

• We propose a data partitioning scheme to partition the

input data; Each data partition can fit in FPGA on-chip

memory. We also develop the corresponding scheduling

strategy based on this data partition scheme to facilitate

efficient GCN inference.

• We propose a two-phase graph pre-processing algorithm

to reduce the external memory traffic:

– Graph sparsification: The sparsification phase re-

duces the redundant edge connections by merging

common neighbors. This step reduces the number

of external memory accesses. It also facilitates the

subsequent re-ordering phase by reducing the edge

connections of high-degree nodes.

61

2020 IEEE 31st International Conference on Application-specific Systems, Architectures and Processors (ASAP)

2160-052X/20/$31.00 ©2020 IEEE
DOI 10.1109/ASAP49362.2020.00019

Authorized licensed use limited to: University of Southern California. Downloaded on September 24,2020 at 22:29:16 UTC from IEEE Xplore. Restrictions apply.

– Node re-ordering: Node re-ordering phase groups the

adjacent nodes by re-assigning the node indices, which

increases the data locality and significantly reduces the

number of external memory accesses.

• We develop a hardware architecture which can efficiently

execute GCN inference:

– Pipeline: We build hardware modules for the key

computational kernels: feature aggregation and feature

transformation. Their data communication is through

the on-chip memory of FPGA which enables pipelined

execution.

– Scheduling: Based on our hardware pipeline, we de-

velop a scheduling strategy which efficiently executes

the GCN inference. It also supports the execution of

various GCN models.

– Flexibility: We identify the two computation orders

in GCN inference. Based on that, we build the flexible

data path which supports the two computational orders.

• We provide the mathematical analysis of data communi-

cation cost, which accurately models the impact of data

partitioning and two-phase pre-processing algorithm on

the memory traffic of our proposed hardware architecture.

• We evaluate our hardware architecture on three large-

scale datasets. The experimental results show that com-

pared with multi-core CPU and high-end GPU baselines,

our hardware architecture achieves throughput up to 30×
and 2× respectively. The two-phase pre-processing algo-

rithm leads to nearly 30% performance improvement.

II. BACKGROUND

TABLE I
THE STATE-OF-THE-ART GCN MODELS

Approach Forward Rule

Vanilla-GCN [2] Xl+1 = φ(D̂−
1
2 ÂD̂−

1
2 XlW l) †

GraphSAGE [4] Xl+1 = φ(XlW l
self|D−1ÃlX

lW l
neighbor)

‡

GraphSAINT [8], [9] Xl+1 = φ(XlW l
self|D−1AXlW l

neighbor)

FastGCN [10] Xl+1 = φ(D̂−
1
2 ÂD̂−

1
2 XlW l) †

Cluster-GCN [11] Xl+1 = φ((Ā+ λ · diag(Ā))XlW l) ∗
† φ(·) is the activation function. IN +D−

1
2 AD−

1
2 −→ D̂−

1
2 ÂD̂−

1
2

‡ Ãl is the adjacency matrix after edge sampling in GraphSAGE [4].
∗ Ā = (D + I)−1(A+ I)

A. GCN Model

Graph Convolutional Network (GCN) is one of the most

popular types of graph neural networks [1] for data in non-

Euclidean space. The input to the GCN is a node-attributed

graph G (V, E ,X), where V and E denote the set of nodes and

the set of edges respectively. Each node v ∈ V is attributed

by a feature vector of length f , and we use X ∈ R
|V|×f

to denote the feature matrix where each row is the feature

vector of a node. Suppose the GCN has L graph convolution

layers. Then X is the input to the first layer, and we use X l ∈

R
|V|×fl to denote the input to the lth layer (i.e., X1 = X).

The output of Lth layer is XL+1 ∈ R
|V|×fL+1 where each row

is the embedding of a node. Here, we use A to represent the

binary adjacency matrix of G. So Auv = 1 if edge (u, v) ∈ E ,

and Auv = 0 otherwise. D is the diagonal degree matrix of

G. So Dii =
∑|V|

j=1 Aij . Each layer l is parameterized by a

weight matrix W l ∈ R
fl×fl+1 to transform the aggregated

feature vectors. The layer operations of various GCN models

are shown in Table I. Various techniques may use slightly

different formulas to normalize the adjacency matrix. There

are two main computational kernels in GCN models:

• Feature aggregation (FA): AX . Here, we use A to

denote the adjacency matrix or the normalized adjacency

matrix. A row of adjacency matrix can be viewed as

the adjacency list of a node which contains information

of edge connections. In feature aggregation, each node

aggregates the features from its neighbors.

• Feature transformation (FT): XW . In feature transfor-

mation stage, each feature vector in X is multiplied by

the weight matrix W . Papers [4], [9] use the self-weight

W l
self ∈ R

fl× fl+1
2 to transform the original features

and use the neighbor-weight W l
neighbor ∈ R

fl× fl+1
2 to

transform the aggregated features. Both of them belong

to feature transformation.

B. GCN Acceleration

While there exist many CNN/MLP accelerators [12], [13],

few works have been proposed to accelerate GCN inference.

Zeng [9] develops a scalable and efficient framework to accel-

erate GCN training on a multi-core CPU platform. GraphACT

[14] accelerates GCN training on CPU-FPGA heterogeneous

platform. Our work is different from GraphACT in that

1) GraphACT focuses on accelerating one specific GCN train-

ing algorithm–GraphSAINT [15], while our work proposes a

generic method to accelerate GCN inference. 2) GraphACT

targets at GCN training phase which uses mini-batch method.

In each training epoch, a mini-batch subgraph is sampled from

the full graph which can fit FPGA on-chip memory. Our work

targets at GCN inference phase which is performed in full–

batch manner. The input for GCN inference is the full graph,

which can not fit FPGA on-chip memory. 3) The mini-batch

training method used by GraphACT samples subgraph in each

training epoch. The sampled subgraph has significant lower

average degree than the full graph used by GCN inference. In

full graph, the average degree can be significant higher than

the small subgraph and there also exists high-degree nodes,

which leads large overhead of communication cost for feature

aggregation. Our work aims to address these challenges.

III. PROBLEM DEFINITION

Scope The scope of this paper is to accelerate the GCN

models where the feature aggregation AX and feature trans-

formation XW are the key computational kernels as indicated

in Table I.
This paper deals with the large, node-attributed, static graph

G (V, E ,X). Specifically, the size of the graph G can be very

62

Authorized licensed use limited to: University of Southern California. Downloaded on September 24,2020 at 22:29:16 UTC from IEEE Xplore. Restrictions apply.

TABLE II
STATISTICS OF THE DATASET

Dataset Number of Feature Number of Average
nodes |V| length f edges |E| degree d̄

Flickr 89250 500 449878 10.1
Reddit 232965 602 11606919 99.6
Yelp 716847 300 27907940 19.5

large as shown in Table II which exceeds the size of FPGA on-

chip memory. For example, Yelp has 700K nodes and 27M
edges. Static graph G has the property that the features’ values

in X change over time, while the graph topology (i.e., V , E)

is relatively fixed. We assume G is static, because for many

real-life graphs, their graph structures are fixed or relatively

stable compared with node’s attributes. For example, in social

networks, the user activities/posts (encoded as X) are updated

frequently, while the user relationships (represented by E) are

much more stable. In a road network, the traffic condition of

a road changes much more dramatically and frequently than

the connectivity of roads [16]. As a result, the time for pre-

processing the graph is amortized and we do not include the

pre-processing time in the execution time.

Metric In graph analytics, the Million Traversed Edges

Per Second (MTEPS) is the measure of the throughput [17].

Similarly, we define the throughput of GCN inference system

as Million Embedded Nodes Per Second (MENPS). MENPS

denotes the number of nodes which are embedded per second.

Objective Given a large, node-attributed graph G (V, E ,X),
a trained GCN model and a target FPGA device, we aim at

increasing the throughput of GCN inference.

Notations We use X(u) to denote the uth row of X and

X(u : v) denotes the sub-matrix from uth row to vth row.

Similarly, X(:, v) denotes the vth column and X(:, u : v)
denotes the submatrix from uth column to vth column. To

simplify notation in the rest of the paper, we let n = |V|.
Data sparsity The sparsity of adjacency matrix denotes

the fraction of non-zero elements. The adjacency matrix A
in GCN can be highly sparse. For example, in Table II,

adjacency matrix of PPI, Flickr, Reddit have the sparsity of

0.5%, 0.2%, 0.2% respectively. The density of the weight

matrix W approximates 100% as indicated in [18]. For the

feature matrix X , we treat it as dense matrix due to 1) the

input feature matrix X1 is normally dense. 2) the density of

X l (l > 1) is unpredictable depending on the dataset [18]

which ranges from 1%-60%. 3) According to [1], many GCN

models use LeakyReLU activation function [19] which can

make X dense. Since the density of X highly depends on

GCN model and the input graph, the exploration of the sparsity

in X is not the focus of this paper. We leave it for the future

work.

Approach The key operation to compute a GCN layer is

AX lW l, which can be further broken down into Cl = AX l

and Zl = ClW l. Since the graph is large and sparse, com-

putation of Cl incurs large volume of random accesses into

external memory. On the other hand, while the dense matrices

Cl and W l lead to high on-chip data reuse and simple

dataflow, the workload to compute Zl is very high. Therefore,

the problem of GCN inference is both computationally and

communicationally intensive.

The key to alleviate the burden of data transfer is to improve

data locality and thus on-chip data reuse. We achieve this

by pre-processing the graph based on its topology G(V, E)
(Section IV). The key to realize the fast execution of intensive

computation workload is to design a pipelined hardware ar-

chitecture by exploiting the parallelism underlying GCN layer

(Section V).

IV. ALGORITHM ANALYSIS AND OPTIMIZATION

A. Partition-based Inference

The computational kernels–AX and XW –need to be

mapped on FPGA. However, for real-world datasets, the

dimension of A and X can be extremely large. As a result, the

A and X can not fit on-chip. Here, we use a data partitioning

scheme for GCN inference. We partition the graph by dividing

the A along the two dimensions. Here, we denote the subma-

trix of A as Aij , which is assigned the block of adjacency

matrix A
(
i× n

k : (i+ 1)× n
k − 1, j × n

k : (j + 1)× n
k − 1

)
.

Each of the n
k × n

k sub-matrices has the size of k × k.

Additionally, we partition X l,Cl,Zl and X l+1 into n
k equal-

size parts along the row dimension. For example, X l
i =

X l
(
i× n

k : (i+ 1)× n
k − 1

)
, for 0 � i < n

k . In the partition-

aggregation transformation
࡭

݂௟ܺ ௟(0: 2)

:௟(0ܥ 2)

ܺ௟(3: 5)

:௟(0ܥ 2)
݂௟ାଵݓ௟݂௟ ݂௟ାଵ

ܼ௟(0: 2)
ܺ௟ାଵ(0: 2)

round1 round2

Fig. 1. Partition-based inference.

based inference, calculating the final output X l+1 is by

sequentially calculating the block {X l+1
0 , X l+1

1 , X l+1
2 , ...}.

Calculating X l+1
i requires the following consecutive steps:

1 Cl
i =

n
k−1∑

j=0

AijX
l
j

2 Zl
i = Cl

iW
l 3 X l+1

i = σ
(
Zl

i

) (1)

Figure 1 visualizes the computation of equation (1). The

adjacency matrix A is partitioned into 4 sub-matrices (i.e.,

n = 6, k = 3). Non-zero elements of A are highlighted

in color. The aggregation step generates Cl
0 = Cl (0 : 2)

after two rounds. Then the transformation step multiplies

Cl (0 : 2) by W l to generate Zl
0 = Zl (0 : 2). Note that

the row partitioning of A controls the size of Cl
i and Zl

i , so

that the hardware design can satisfy the constraint of on-chip

memory. The row partitioning breaks down the aggregation of

63

Authorized licensed use limited to: University of Southern California. Downloaded on September 24,2020 at 22:29:16 UTC from IEEE Xplore. Restrictions apply.

X l into blocks, so that we can pipeline the loading of X l
i and

computation of X l
i−1. Details of the hardware design under

such 2D partitioning is shown in Section V.

1

6

5

4
3

2

௔ܩ
1

6

5

4
3

2

ܩ
1
2
3
4
5
6

654321

ܣ

1

65

4
3

2

′ܩ
1
2
3
4
5
6

654321 ݒݑ

’ܣ

4

56

3
2

1

′′ܩ
1
2
3
4
5
6

654321 ݒݑ

′′ܣ
1 4

5 6 ݑ
ݒ

M node(M)

Graph Sparsification Node Reorderingݒ
ݑ

ݒ
ݑ

Fig. 2. An example of two-phase pre-processing. The adjacency matrix is
partitioned into submatrix of size 3 × 3 or 3 × 2. Therefore, the original
memory traffic is 2 + 3 + 3 + 3 = 11. The memory traffic after graph
sparsification is 2 + 1 + 1 + 3 + 2 = 9. The memmory traffic after node
rordering is 3 + 1 + 1 + 1 + 2 = 8.

B. Graph Sparsification

In aggregation stage, the memory traffic is related to the

number of edges. Intuitively, a graph with more edges requires

more memory accesses. Here, we perform graph sparsification

by eliminating the “redundant” edges in the graph, without

changing the aggregation result, Cl. Here, we use the re-

dundancy reduction [14] to eliminate this redundancy. A toy

example is indicated in Figure 2. For input graph G, we

enumerate the neighbor pairs of each node. For example, node

1 has neighbors 4, 5, 6. Enumerating all the neighborhood

pairs of node 1 gives (4, 5), (4, 6) and (5, 6). Note that (5, 6)
is a common pair of neighbors shared by nodes 1 and 4.

We identify two common pairs (1, 4), (5, 6) in G. Replace

the common pairs with new nodes u, v. Attach u, v with

feature vectors 1
2 (X (5) +X (6)) and 1

2 (X (1) +X (4)).
Then, incorporating the new nodes, we delete the redundant

edges and construct reduced graph G′. We can do this process

for several iterations to further reduce the redundancy.

Compared with its original usage in mini-batch GCN train-

ing [14], redundancy reduction brings more benefits to GCN

inference: (1) Full graph has more redundancy than the mini-

batch subgraph, so that it can reduce considerable number of

’redundant’ edges. (2) Sparsification can significantly reduce

the edge connections of high degree nodes. This facilitates the

node reordering step to be discussed next.

C. Node Reordering

GCN inference has intensive memory traffic due to the ran-

domized data layout, resulting in limited data reuse. Suppose

we can increase the data reuse in each submatrix Aij , the total

external memory access can be reduced. To do this, we change

the data layout of the adjacency matrix. Originally, indices of

nodes vi ∈ V are assigned randomly. Since in aggregation

stage, nodes need to aggregate information from the neighbors,

we consider changing the node order by grouping the adjacent

nodes together. Using Figure 2 as the example, in G′, due to the

randomized node order, nodes 2, 3, 4, which form a complete

subgraph, fall into different partitions of A. This results in

extra memory accesses when processing A00 and A10. The

cost of processing A00 and A10 does not decrease after the

sparsification phase. After reordering, the nodes 2, 3, 4 in G′
now become nodes 1, 2, 3 in G′′. Now, the feature propagation

and aggregation among the three nodes require processing of a

single submatrix A00. For this purpose, we use the bandwidth

reduction (BR) algorithm proposed in [20] which is a well-

known technique to reduce the bandwidth of the matrix by

node permutation.

The node reordering algorithm has two properties desirable

for GCN inference. Firstly, it increases the data locality by

grouping the adjacent nodes together. Thus, data on-chip have

higher reuse and accesses to external memroy are reduced.

Secondly, it works well with the sparsification phase. We

observe that reducing the number of high-degree nodes helps

improve the reordering quality. Thus, sparsification can also

be considered as a pre-processing step of reordering.

D. Optimization Workflow

We integrate the above two-phase optimizations as a com-

plete pre-processing algorithm. We first run graph sparsifica-

tion for S iterations. Then, we reorder nodes to increase the

data locality. An example is shown in Figure 2. Total number

of memory accesses reduces from 11 to 9, and further to 8,

after the two-phase preprocessing.

Complexity analysis As explained in Section III, the topol-

ogy of the static graph is relatively stable compared with the

node attributes, the one-shot execution of our pre-processing

can benefit many runs of the subsequent GCN inference. For

example, in the graph of traffic prediction, the node attributes

change over time, but the graph structure is relatively stable.

Thus, it is not a critical issue to accelerate pre-processing

considering that its cost can be amortized. Nevertheless, to

support large-scale graphs, we still require the pre-processing

to be computationally tractable. In the following, we analyze

the pre-processing complexity. Graph sparsification using the

redundant reduction algorithm in [14] has the complexity of

O (
S · n · d̄2) where d̄ is the average degree of the graph.

Node reordering using Reversed Cuthill–McKee algorithm

[20] has complexity of O (n log(n)). In summary, the two-

phase pre-processing can be efficiently and effectively per-

formed.

V. HARDWARE ARCHITECTURE

After the algorithmic optimization, we perform data parti-

tioning on G and A. Selecting the appropriate partition size,

the on-chip memory can store Aij , X l
j and Cl

i to minimize

external memory accesses. In this section, we present an inte-

grated FPGA architecture for GCN inference. Figure 3 shows

the overall hardware architecture. The Aggregation, Activation

and Transformation modules form a computation pipeline.

The Aggregation and Transformation modules consume the

majority of the on-chip resources. When the Aggregation

module generates Cl
i , the results Cl

i can be directly forwarded

to the Transformation or Activation modules depending on the

64

Authorized licensed use limited to: University of Southern California. Downloaded on September 24,2020 at 22:29:16 UTC from IEEE Xplore. Restrictions apply.

Buffer A Buffer B

Destination Ping-Pong Buffer

Buffer A Buffer B

Source Ping-Pong BufferSource Address
Generator

Destination
Address Generator

Aggregation Module

Vector Acc 1 Vector Acc 2Submatrix
Loader

W
ei

gh
t B

uf
fe

r

Feature Buffer

Output Buffer

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Transformation Module

Activation

PE
PE

PE
PE

PE

Activation
Module

Interaction
with DRAM

Scheduler

Buffer A

Buffer B

Mode 1

Mode 1

Mode 2 Mode 2

Mode 1

Mode 2

Buffer A

Buffer B

Indptr Buffer

Indice Buffer

Norm
Module

Norm
Module

FA (݈ − 1)

FT (݈ − 1)

Activation

FA (݈)
FT (݈)

Activation

FA (݈ + 1)

FT (݈ + 1)

Activation

FA (݈ − 1)

FT (݈ − 1)

Activation

FA (݈)FT (݈)
Activation

FA (݈ + 1)

FT (݈ + 1)

Activation

FA (݈)
FT (݈) Feature aggregation of ݈௧௛ layer

Feature transformation of ݈௧௛ layer

Tasks in this box are working
concurrently

Mode 2Mode 1

Fig. 3. Hardware Architecture with two execution modes.

operation modes (see Section V-D for details). At the same

time, the Aggregation module starts to generate Cl
i+1.

A. Aggregation Module

In the Aggregation module, the Submatrix Loader loads

partitions Aij from external memory. Each Aij is stored as

compressed sparse row (CSR) format. The Scheduler assigns

the indice array, indptr array and value array of the submatrix

into their respective buffers. The Source Address Generator

and Destination Address Generator read indice and indptr

to locate data in the Source Buffer (storing X l
j) and the

Destination Buffer (storing Cl
i). To generate Cl

i , the submatrix

Ai0, Ai1, Ai2, ..., Ain
k

are loaded onto on-chip memory se-

quentially. After finishing the feature aggregation of submatrix

Aij , the feature aggregation of Ai(j+1) starts. For submatrix

Aij , feature matrix X l
j needs to be loaded on-chip. Note that

we do not need to load all the rows of X l
j . Only the rows

which have corresponding non-zero element in Aij need to

be loaded, as shown in Figure 1. We use the double-buffering

technique for hiding the memory latency. The Norm modules

do element-wised multiplication for diagonal matrix (e.g. D−1

or D− 1
2) to support the subtle variants of normalization.

To parallelize FA, we can accumulate features of multiple

neighbor nodes simultaneously (node-level parallelism), or

process multiple elements of a single neighbor feature each

clock cycle (feature-level parallelism). Node-level parallelism

may result in memory bank conflicts, such multiple nodes

can access sample memory bank. Feature-level parallelism

leads to regular memory accesses and can always keep the

pipeline busy (since we can sequentially traverse the neighbor

lists of Aij). However, this parallelism is limited by the

feature vector length f . We exploit both parallelism in the

Aggregation module. Note that dual-port BRAM supports two-

way concurrent read and concurrent write (CRCW). The two

Vector Accumulators in Figure 3 can thus read features of any
two nodes in the same cycle. Within each Vector Accumula-

tor, only feature-level parallelism is exploited. Therefore, the

Aggregation module supports parallelism of up to 2f , where f
is the length of each feature vector. Papers [4], [8], [10], [11]

shows that the feature length of GCN layer can be 128-1024
which is sufficient to support feature-level parallelism.

B. Weight Transformation Module

This module performs weight transformation of node feature

vector. The input Cl
i to the Transformation module comes

from the Destination Buffer fed by the Aggregation module.

Since double-buffering is used in the Aggregation module,

when the Transformation module accesses Cl
i from one of the

Destination Buffers, the Aggregation module computes next

block Cl
i+1 and stores the result into the other Destination

Buffer. A two dimensional systolic array is used to effectively

compute the matrix multiplication between the feature matrix

and weight matrix, Cl
iW

l. The systolic array has total paral-

lelism of psys×psys. Recall that Cl
i ∈ R

k×f and W l ∈ R
f×f .

To fit the dimension psys, we further partition Cl
i along the

rows into tiles of size psys × f , and partition W l along the

columns into tiles of size f ×psys. Clearly, there are k
psys
× f

psys

pairs of such tiles. Each pairs requires f + psys − 1 clock

cycles of computation. The pipelined computation of all the

tile pairs takes approximately k
psys
× f

psys
× f clock cycles. To

stream data into the systolic array, we use a Weight Buffer

of width psys · dtype (where dtype is the data width) to store

all the weights of the GCN layer. We use a Feature Buffer of

width psys·dtype bits to load the tiles of Cl
i from the Destination

Buffer. The Output Buffer is a small FIFO to cache the outputs

of the systolic array.

C. Scheduling for GCN variants

As indicated in Table I, there are two types of forward rules:

1) ÂX lW l, where W ∈ R
fl×fl+1 . 2) XWself|ÂXWneighbor,

where Wself,Wneighbor ∈ R
fl× fl+1

2 . For the same feature

length setting (fl, fl+1), the two forward rules have the same

computational workload in terms of FA and FT. Using the

second type, the transformation weight is divided into self

weight Wself and neighbor weight Wneighbor. To support the

two types, we use the scheduling which indicated in Figure

4. For both of the two types, the FA and FT of the same

layer are calculated concurrently. In the second type, the

65

Authorized licensed use limited to: University of Southern California. Downloaded on September 24,2020 at 22:29:16 UTC from IEEE Xplore. Restrictions apply.

FT using self weight XW l
self and the FT using neighbor

weight (ÂX)Wneighbor are calculated alternatively within each

data partition. The Transformation module calculates Cl
iW

l
self

first and then calculates X l
iW

l
neighbor. Because the two types

of rules have the same computational workload, under this

scheduling, their execution time are the same.

FT(࢒ − ૚)

FA (࢒ − ૚) FA (࢒)
FT(࢒) FT(࢒ + ૚)

FA (࢒ + ૚)

time

space Feature Aggregation
Feature Transformation ࢒ࢃ࢒࡯

OR࢒࢘࢕࢈ࢎࢍ࢏ࢋ࢔ࢃ࢒࡯ ࢒ࢌ࢒ࢋ࢙ࢃ࢒ࢄ

For ෡࢒ࢃ࢒ࢄ࡭

For ࢒ࢌ࢒ࢋ࢙ࢃ࢒ࢄ |෡࢒࢒࢘࢕࢈ࢎࢍ࢏ࢋ࢔ࢃ࢒ࢄ࡭ − ૚ ࢎ࢚ layer ࢎ࢚࢒ layer ࢒) + ૚)࢚ࢎ layer

Fig. 4. Scheduling for different GCN variants.

D. Execution Modes

The product AX lW l can be computed in two different

modes 1)
(
AX l

)
W l which has computation complexity of

O (|E| · f l + |V| · f l · ff+1
)
, or 2) A

(
X lW l

)
which has

computation complexity of O (|E| · f l+1 + |V| · f l · ff+1
)
.

When the next layer has shorter feature length (f l+1 < f l),

mode 2 leads to lower computation load than mode 1. When

f l+1 > f l, mode 1 is more desirable. To support the two

computation orders, we implement two dataflows, as labeled

by Mode 1 or Mode 2 in Figure 3. Mode 1 performs

σ
((
AXl

)
W l

)
. So AlX l is performed first, followed by

weight transformation, and further followed by activation. In

Mode 2, we interleave the computation of two consecutive

layers:
((
σ(A

(
XlW l

))
W l+1

)
. Assume that the transfor-

mation X lW l of previous layer has already been performed.

Then, we perform aggregation and calculate the activation

of the previous layer. Next, we perform the transformation

X l+1W l+1 of the current layer.

VI. ANALYSIS OF COMPUTATION AND COMMUNICATION

To simplify the performance analysis, we assume f l = f ,

∀ 1 � l � L. L is the number of layers. So, the weight matrix

W l ∈ R
f×f . We specify the hardware parameters as follows:

The block size (adjacency submatrix) is k. The parallelism

of a single Vector Accumulator is pva. The parallelism of the

systolic array is psys × psys. Regarding the parameters of the

graph, we define the average degree of G as d̄. As for the

hardware resources on FPGA, we assume the number of DSP

is RDSP, the external memory bandwidth is B, the frequency

of the FPGA is F . What’s more, we denote the data width as

dtype. For example, dtype of float32 is 4 Byte.

A. Computation

Computation time of one GCN layer equals:

1 T comp
agg =

n× d̄× f

2× pva ×F 2 T comp
trans =

n× f × f

psys × psys ×F
(2)

where 2pva + p2sys � RDSP and pva � f . The DSP resources

can be assigned based on the workload of aggregation and

transformation. Ideally, if the system is bounded by computa-

tion and there is no load imbalance, we can let T comp
agg = T comp

trans

to decide the parameters pva and psys. However, in practice,

the aggregation time can be bounded by the external memory

access, and load imbalance within the aggregation module may

further affect the execution time. So, we set pva 2× or 3× than

needed in implementation.

B. External Memory Accesses

Aggregation module loads X l
j from external memory into

the on-chip memory, which we define as input memory

accesses Din. After the transformation, the results are written

back to the external memory. We define Dout as the number of

output memory accesses. For each layer, Dout = n×f ×dtype.

The input memory access depends on block size k and locality

of G. Here we use �z
Aij

to denote whether the zth column of

Aij has non-zero elements. If there is any non-zero element

in zth column of Aij , �z
Aij

= 1, otherwise �
z
Aij

= 0. Using

this notation, we can drive the expression for the number of

input memory accesses per GCN layer:

Din =

n
k−1∑

i=0

n
k−1∑

j=0

k−1∑

z=0

�
z
Aij

× f × dtype (3)

Here, we define a memory access factor Lj
i =

∑k−1
z=0 �

z
Aij

to

denote the input memory access for each submatrix Aij . Let

L =
∑n

k−1
i=0

∑n
k−1
j=0 Lj

i . Using Din and Dout, we can drive

the expression of communication time: T comm = Din+Dout

B
which denotes the time for memory access given the mem-

ory bandwidth. Using practical graph and GCN models, the

performance of the system can be bounded by the data

communications (Section VII-D). So, given an input graph, the

two-phase algorithm optimization can significantly reduce the

factor L. As a result, communication time T comm is reduced.

Here, we do not consider the memory traffic of loading weights

(Dweight = f2, f << n << L) because it is negligible

compared with the memory traffic of loading input features

and output features.

VII. EVALUATION

A. Experimental Setting

We implement our design in verilog-HDL and use the Xilinx

Alveo U200 accelerator card as the platform for evaluation.

The acceleration card has 64 GB off-chip DRAM (77 GB/s

bandwidth), 1182k Look-up tables (LUTs), 6840 DSPs, 2160

36k BRAM and 960 288k Ultra RAM. We use the Float32

as the default word length to represent weights and features.

Vivado 2018.03 is used for synthesis 1.

For evaluation purpose, we use the three widely used

datasets Reddit, Yelp, Flickr [10], [21], [4], [22] as the input

graph. The details of the datasets are shown in Table II. We

store all the data in the off-chip DRAM. The node order of

the original dataset is randomized in order to evaluate the

1https://github.com/GraphSAINT/GNN-ARCH

66

Authorized licensed use limited to: University of Southern California. Downloaded on September 24,2020 at 22:29:16 UTC from IEEE Xplore. Restrictions apply.

82.4% 81.8% 83.9% 87.4%
78.8%

71.8% 72.8% 75.0% 78.6%
73.7%

k = 128 k= 256 k = 512 k = 1024 k = 2048
Partition Size

Flikr
Baseline Sparsification Sparsification + Node reordering

the ratio compared with the baseline

(a)

91.6% 92.3%
93.5%

95.7%
99.6%

66.8%
63.6% 61.8%

61.6%
63.5%

k = 128 k = 256 k = 512 k = 1024 k = 2048
Partition Size

Reddit

(b)

81.6% 78.4% 80.1% 82.4% 87.7%69.1% 67.9% 67.8% 67.1% 66.1%

k = 128 k = 256 k = 512 k = 1024 k = 2048
Partition Size

Yelp

(c)

Fig. 5. Din of Flikr (a), Reddit (b), Yelp (c) for various partition size k.

TABLE III
CROSS PLATFORM COMPARISON OF THROUGHPUT (MENPS). THERE ARE TWO NUMBERS IN EACH CELL OF THE TABLE. THE NUMBER ON THE LEFT IS

THE THROUGHPUT USING THE UN-PRE-PROCESSED DATASET. THE NUMBER ON THE RIGHT IS THE THROUGHPUT USING THE DATASET AFTER

TWO-PHASE PRE-PROCESSING.

Dataset Tensorflow Hand-written code Xiline Alveo U200 (k = 1024)
CPU (56 threads) GPU (Titan-Xp) CPU (56 threads) GPU (Titan-Xp)

f = 128
Flikr 0.213 / 0.226 0.829 / 0.844 0.129 / 0.159 2.985 / 3.030 2.076 / 2.452 (pva = 128, psys = 24)

Reddit 0.032 / 0.034 0.116 / 0.120 0.096 / 0.099 1.253 / 1.294 1.021 / 1.641 (pva = 128, psys = 24)
Yelp 0.112 / 0.121 0.338 / 0.349 0.157 / 0.168 2.542 / 2.610 2.743 / 3.854 (pva = 128, psys = 24)

f = 256
Flikr 0.139 / 0.147 0.702 / 0.708 0.048 / 0.051 0.572 / 0.577 0.941 / 1.065 (pva = 64, psys = 24)

Reddit 0.018 / 0.016 0.086 / 0.087 0.037 / 0.039 0.434 / 0.440 0.506 / 0.815 (pva = 256, psys = 24)
Yelp 0.091 / 0.097 0.317 / 0.323 0.050 / 0.052 0.642 / 0.648 0.711 / 0.956 (pva = 128, psys = 24)

TABLE IV
THE IMPACT OF TWO-PHASE PREPROCESSING ALGORITHM ON THE

THROUGHPUT (MENPS).

Feature
Length

Hardware
Configuration Baseline Sparsi. Sparsi. +

Rordering

Flikr
f = 128

pva = 128
psys = 24

2.076 2.336 2.452

f = 256
pva = 64
psys = 24

1.021 1.050 1.065

Reddit
f = 128

pva = 128
psys = 24

1.021 1.059 1.641

f = 256
pva = 256
psys = 24

0.506 0.529 0.815

Yelp
f = 128

pva = 128
psys = 24

2.743 2.914 3.854

f = 256
pva = 128
psys = 24

0.711 0.747 0.956

impact of our pre-processing algorithm. The implementation

of Reverse Cuthill-McKee algorithm uses the build-in function

in scipy. For all the three datasets, following the setting in

papers [10], [21], [4], [22], we use a two-layer GCN model.

The feature length is set as f l = 128, 256 (0 � l < L) and

L = 2. We use the forward rule ÂX lW l, since ÂX lW l and

XWself|ÂXWneighbor have the same execution time using our

scheduling method (Section V-C). We do not include the time

for data pre-possessing as explained in Section III and IV-D.

B. External Memory Accesses

Since L >> n, Dout is negligible compared with Din, Dout

is ignored for evaluation. Din is related to the block size

k and data locality. The experimental results are shown in

Figure 5. As k increases, external memory access decreases.

Using larger block size k, larger submatrix can be loaded

on-chip, leading to the increased data reuse. Suppose k is

large enough to store the entire graph, the input graph only

needs to be loaded once. Using the two-phase pre-processing

algorithm, the first sparsification phase can reduce the external

memory access by 17.5%-21.2%, 1%-8%, 12.3%-18.4% for

Flikr, Reddit, Yelp respectively. Incorporating the node re-

ordering, the external memory access can be further reduced

by 26.3%-28.2%, 33.2%-39%, 30.9%-33.9% for Flikr, Reddit,

Yelp respectively. The experimental results confirm that our

two-phase preprocessing algorithm can effectively reduce the

external memory access, which can alleviate the bottleneck of

memory bandwidth.

C. Cross-platform Comparison

We compare our FPGA implementation with the baseline

implementations using Tensorflow (version 2.0.0) and our

optimized hand-written C++ code. Both of the baseline im-

plementations have two versions running on multi-core CPU

platform with 56 threads (Intel Xeon 5120 @ 2.20 GHZ) and

high end GPU platform (Titan-Xp) respectively. For multi-core

CPU platform, Tensoflow CPU version is used and our hand-

written C++ code uses the Pthread library. For GPU platform,

Tensorflow GPU version is used and our hand-written C++

code uses Cuda 10.0 library. For cross-platform comparison,

we use the unpre-processed dataset and the pre-processed

dataset using two-phase algorithm. For FPGA implementation,

the block size k is set as 1024 to fit the FPGA on-chip memory.

Each processing element in vector Accumulator consumes 5

67

Authorized licensed use limited to: University of Southern California. Downloaded on September 24,2020 at 22:29:16 UTC from IEEE Xplore. Restrictions apply.

DSPs and each processing element in systolic array consumes

7 DSPs. The frequency can reach nearly 300 MHZ and we set

250 MHZ for the implementation.
The comparsion results are shown in Table III. Compared

with the two CPU baselines, we achieve 10× to 30× higher

throughput. Compared with the GPU implementation, we

achieve 2× to 10× speed. Compared with CPU and GPU

implementation, our FPGA implementation is more efficient

because 1) FPGA has larger on-chip memory and it can be

used to store larger data partition, which leads to more data

reuse. Due to the capacity to store larger data partition, FPGA

implementation benefits more from the two-phase pre-process-

ing algorithm. CPU and GPU implementations mainly benefit

from graph sparsification, which eliminates the edge con-

nections. 2) The communication between two computational

kernels–FA and FT–are through the FPGA on-chip memory

which is more efficient than communicating through external

memory.

D. Impact of Two-phase Algorithm

In Table IV, we show the impact of two-phase pre-

processing algorithm on the inference throughput (MNEPS).

The baseline uses the input graph without pre-processing. We

measure the throughput after each phase of the pre-processing.

With proposed algorithm, we improve the throughput by

15%, 37.7%, 29% on Flikr, Reddit, Yelp respectively. The

increased performance is because aggregation has intensive

external memory access which limits the performance. Using

the two-phase pre-processing, we increase the data reuse in

each partition Aij which greatly reduce the external memory

access.
In our experiments, we notice that memory bottleneck is

more severe for input graphs with high average degree like

Reddit. Because with more average degree, more external

memory access is needed for feature aggregation. In practice,

graphs with high average degree is common. For example, in

social networks, users may have hundreds of links with other

users on the average. In e-commerce system [6], customers

may go through hundreds of products on the average. Our

two-phase preprocessing algorithm can potentially improve the

performance caused by the memory traffic bottleneck.

VIII. CONCLUSION

In this paper, we proposed the algorithm-architecture co-

optimization to accelerate GCN inference on FPGA. The

hardware used pipelined implementation of aggregation and

transformation to achieve high-throughput inference. The two-

phase preprocessing algorithm further improved the through-

put by optimizing the external memory access. In the future,

we intend to apply our proposed method to other types of

graph neural network.

ACKNOWLEDGMENT

This work was partially supported by the US NSF under

grant No. CCF-1919289 and No. OAC-1911229, Intel Strate-

gic Research Alliance and the Defense Advanced Research

Projects Agency under contract No. FA8750-17-C-0086.

REFERENCES

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” arXiv:1901.00596,
2019.

[2] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[3] M. Zitnik and J. Leskovec, “Predicting multicellular function through
multi-layer tissue networks,” Bioinformatics, 2017.

[4] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, 2017, pp. 1024–1034.

[5] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” CoRR, vol. abs/1806.01973, 2018.

[6] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and
J. Zhou, “Aligraph: a comprehensive graph neural network platform,”
Proceedings of the VLDB Endowment, vol. 12, no. 12, 2019.

[7] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional re-
current neural network: Data-driven traffic forecasting,” arXiv preprint
arXiv:1707.01926, 2017.

[8] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
SAINT: Graph sampling based inductive learning method,” in Interna-
tional Conference on Learning Representations, 2020.

[9] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V.P., “Accurate,
efficient and scalable graph embedding,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2019,
pp. 462–471.

[10] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph
convolutional networks via importance sampling,” arXiv preprint
arXiv:1801.10247, 2018.

[11] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks,” arXiv preprint arXiv:1905.07953, 2019.

[12] Y. Meng, S. Kuppannagari, and V. Prasanna, “Accelerating proximal
policy optimization on cpu-fpga heterogeneous platforms,” in 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2020, pp. 19–27.

[13] B. Zhang, J. Han, Z. Huang, J. Yang, and X. Zeng, “A real-time
and hardware-efficient processor for skeleton-based action recognition
with lightweight convolutional neural network,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 66, no. 12, pp. 2052–2056,
2019.

[14] H. Zeng and V. Prasanna, “Graphact: Accelerating gcn training on cpu-
fpga heterogeneous platforms,” in The 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2020, pp. 255–265.

[15] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
saint: Graph sampling based inductive learning method,” arXiv preprint
arXiv:1907.04931, 2019.

[16] X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, and Y. Liu,
“Spatiotemporal multi-graph convolution network for ride-hailing de-
mand forecasting,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2019.

[17] S. Zhou, R. Kannan, V. K. Prasanna, G. Seetharaman, and Q. Wu,
“Hitgraph: High-throughput graph processing framework on fpga,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 10, 2019.

[18] T. Geng, A. Li, T. Wang, C. Wu, Y. Li, A. Tumeo, and
M. Herbordt, “Uwb-gcn: Hardware acceleration of graph-convolution-
network through runtime workload rebalancing,” arXiv preprint
arXiv:1908.10834, 2019.

[19] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, 2013.

[20] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” in Proceedings of the 1969 24th national conference. ACM,
1969, pp. 157–172.

[21] J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convolutional
networks with variance reduction,” arXiv preprint:1710.10568, 2017.

[22] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling towards
fast graph representation learning,” in Advances in Neural Information
Processing Systems, 2018, pp. 4558–4567.

68

Authorized licensed use limited to: University of Southern California. Downloaded on September 24,2020 at 22:29:16 UTC from IEEE Xplore. Restrictions apply.

