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Abstract—Hash table is a fundamental data structure for
quick search and retrieval of data. It is a key component in
complex graph analytics and AI/ML applications. State-of-the-art
parallel hash table implementations either make some simplifying
assumptions such as supporting only a subset of hash table
operations or employ optimizations that lead to performance that
is highly data dependent and in the worst case can be similar to a
sequential implementation. In contrast, in this work we develop
a dynamic hash table that supports all the hash table queries
- search, insert, delete, update, while allowing us to support p
parallel queries (p > 1) per clock cycle via p processing engines
(PEs) in the worst case i.e. the performance is data agnostic.
We achieve this by implementing novel XOR based multi-ported
block memories on FPGAs. Additionally, we develop a technique
to optimize the memory requirement of the hash table if the ratio
of search to insert/update/delete queries is known beforehand.
We implement our design on state-of-the-art FPGA devices. Our
design is scalable to 16 PEs and supports throughput up to 5926
MOPS. It matches the throughput of the state-of-the-art hash
table design – FASTHash, which only supports search and insert
operations. Comparing with the best FPGA design that supports
the same set of operations, our hash table achieves up to 12.3×
speedup.

Index Terms—Parallel Hash table; FPGA Acceleration

I. INTRODUCTION

Hash table is a key data structure for applications requiring
quick search and retrieval. Applications such as graph ana-
lytics, AI/ML [1]–[6] widely use hash tables. For example,
the graph sampling operation of Graph Convolution Neural
Network (GCN) uses hash tables to determine whether a
vertex (or edge) currently sampled exists in the sampled set
of not [5]. Similarly, hash tables are used to quickly select the
nearest neighbors in Approximate Nearest Neighbor (ANN)
algorithm [4] and to maintain bag-of-words in text mining
applications [1].

Field Programmable Gate Arrays (FPGA) have found
widespread success in accelerating data and compute intensive
applications due to the availability of fine grained paral-
lelism [7]. They have dense reconfigurable logic elements (up
to 5.5 million) and large on-chip memory (up to 500 Mb)
allowing users to create highly optimized designs to achieve
high performance [8], [9]. FPGAs are widely deployed in high
performance cloud and data-centre platforms [8] as well as in
low-powered edge applications [10].

Several works have focused on increasing the throughput of
hash table implementations by “parallelizing” i.e. by exploit-
ing certain features of the hash table, such as the availability

of multiple partitions [11]. However, the parallelism that can
be obtained using such approaches is highly data dependent
and the worst case performance - for example, when all
queries belong to the same partition - is similar to a serial
implementation.

In [12], we developed a hash table that supports p queries
(p > 1) in each clock cycle, where p is the number of parallel
Processing Engines (PEs), even in the worst case. In other
words, the performance of the hash table is agnostic to the
data. Such a guarantee was obtained by making the assumption
that the application using the hash table requires only search
and insert operations.

In this work, we address the limitations of [12] by com-
pletely redesigning the hash table to support all hash table
operations - search, insert, update and delete. To achieve the
same, we implement XOR based multi-ported block memories
to be used as storage for the hash table, albeit, at the cost
of increased memory requirement. Additionally, we develop
a technique to reduce the memory requirements of the hash
table if the ratio of read-only (search) and read-write (insert,
update, delete) operations are known beforehand. Our hash
table supports the same relaxed consistency semantics as the
design in [12].

The key contributions of the paper are as follows:
• We develop a dynamic parallel hash table table by im-

plementing XOR-based multi-ported block memories.
• Our XOR-based block memories fully utilize the abun-

dant on-chip SRAM to support p queries - search, insert,
update, delete (p > 1) in each clock cycle even in the
worst case.

• Our hash table architecture allows customization if work-
loads’ non-search queries per cycle has an upper-bound,
thereby further reducing the memory resource consump-
tion.

• We implement the hash table on state-of-the-art FPGAs
and show that our hash table supports 16 parallel queries
per cycle reaching a throughput of 5926 million opera-
tions per second at 370 MHz.

II. RELATED WORK

Several works have focused on FPGA-based high per-
formance hash table implementations. In [13], the authors
proposed a hash table based IP lookup technique that achieves
a lookup throughput of 250 Mops/s. Authors in [14] developed
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a hash table implementation using bloom filter which reduces
unnecessary hash table accesses. In [15], the authors developed
a off-chip DRAM based hash table. To avoid data hazards the
authors developed a forwarding unit for dynamic hash table
updates. Works such as [16] and [11] have developed efficient
hash tables using cuckoo hashing scheme. In [16] the authors
incorporate a decoupled key-value storage to enable parallel
computation of hash values. In [11], the authors developed a
Cuckoo hash table with multiple parallel pipelines with each
pipeline having a different entry point.

The limitation of the current works is as following: (i)
They either focus on improving performance for a single
processing pipeline, which is not sufficient to fully exploit
the high bandwidth on-chip SRAM in state-of-the-art FPGAs.
Examples include [13]–[17] or (ii) their parallelism is hash
table or data dependent. For example, the parallelism of [11]
is limited by both the number of hashing functions in a
given Cuckoo hash table and the data conflicts when keys-
value being accessed by different pipelines fall into the same
partition.

In addition, several works have focus on developing parallel
hash tables for CPU and GPU platforms. On CPU, the focus
has been on developing concurrent and lock-free hash table
through shared memory and message passing [18]–[20]. A
recent work [21] developed a hash table implementation using
SIMD extensions. However, the hash table is only limited to
lookups. On GPU, the focus has been on dividing a hash table
into coarse or fine grained partitions and extracting parallelism
by concurrent processing [22]–[24].

Novelty of Our Work: State-of-the-art works either im-
prove the performance of a single pipeline by increased
pipelining to increase clock frequency or they perform parallel
processing by atomic accesses of hash table partitions. The
former approach is severely limited in achievable throughput
while the latter is highly data dependent. This is because in
the worst case the parallel queries might need to access the
same portion of the hash table leading to serialized processing
within partitions. To address these limitations, in our previous
work [12], we developed a hash table that supports p queries
(p > 1) in each clock cycle via p parallel Processing Engines,
even in the worst case. In other words, the performance of
the hash table is agnostic to the data. Such a guarantee was
obtained by making the assumption that the application using
the hash table requires only search and insert operations. In
this work, we improve upon the design by supporting all
common hash table operations.

III. HASH TABLE DEFINITION AND SUPPORTED
OPERATIONS

Our design is a standard closed addressing hash table. Each
hash table bucket has multiple slots for collision resolution,
each of which can be used to store one key-value pair. A key-
value pair with key x is placed in index h(x), where h(·) is the
hash function used by the hash table. Our hash table supports
the following operations:

• Search (key): Search operation retrieves the value asso-
ciated with key if key exists in the hash table. Otherwise
returns None.

• Insert/Update (key, value): Insert/Update operation first
searches key in the hash table. If key exists already, it
updates the old value with value. Otherwise, a new key-
value pair is inserted into an open slot of the hash table.

• Delete (key): Delete operations removes the key-value
pair from the hash table, and marks the corresponding
slot as open.

In this paper, we refer hash table mutation queries - In-
sert, Update, and Delete - as Non-Search Queries (NSQ). A
parallel hash table is able to process queries concurrently. The
throughput of parallel hash table often suffers from contentions
between concurrent queries. The extent these problems mani-
fest depends on individual design. Previous works often divide
hash table into partitions, and extract parallelism by accessing
each partition concurrently. However, when queries collide and
access the same partition, either fine-grained [23] or coarse-
grained [18], they are intrinsically serialized. Unlike previous
designs, our parallel hash table guarantees p parallel accesses
per cycle in the worst case. We further define NSQ ratio as
follows:

Definition 1: The non-search queries (NSQ) ratio of a
parallel hash table that can process p queries per cycle is
defined as the ratio of the maximum number of NSQ it can
receive in a single cycle – k and the maximum number queries
it can process per cycle – p. Thus, NSQ ratio = k/p.

IV. HASH TABLE ON FPGA

A. Challenges in Parallel Hash Table

The goal of our parallel hash table is to guarantee p search,
insert, update, or delete queries per cycle via p PEs. A parallel
memory with p read ports and p write ports is needed to sustain
the throughput requirements. Since each FPGA SRAM block
only has 1 read and 1 write port, it is non-trivial to support all
the operations without stalling the pipelines. [12] introduces a
parallel architecture that supports search and insert operations
with throughput guarantee. To support update and delete in
their design, it requires re-routing update and delete queries to
the PE which receives the original insert for the corresponding
input key. Besides the extra logic complexity increase (all-
to-all PE connections), throughput of the hash table is no
longer guaranteed, and can drop based on access patterns.
To overcome these challenges, our hash table architecture
utilizes XOR-based block memories to support search, insert,
update and delete queries with p queries per cycle guaranteed
throughput.

B. XOR-based Block Memory

LaForest et al [25] introduced XOR-based multi-ported
memory using FPGA on-chip SRAM blocks (BRAM, URAM,
M20K). The key property of XOR is that using the XOR value
of A and B, one can recover A by XOR this value with B.
As a result, each SRAM block inside an XOR-based multi-
ported memory stores the XOR’ed data, instead of the actual
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data. It is shown that XOR-based memory can efficiently
scale to large number of read and write ports on FPGA,
yet doesn’t incur significant logic complexity as the other
approaches [25]. Figure 1(a) shows an example with 2R2W
XOR-based memory. To perform a read, data in each SRAM
block (third shadowed column) is read out and XOR’ed. For
write, the new data needs to be XOR’ed with the data in the
SRAM block first (a read followed by XOR), then the XOR’ed
data can be written to each SRAM block. More details on this
technique can be found in [25], [26].
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Fig. 1: An example design of a 2R2W XOR-based memory.
(a): Original design in [25]. (b): Design used in our architec-
ture.

A drawback of the XOR-based approach is that it consumes
extra SRAM resources – a mRnW XOR-based memory re-
quires n×(n-1+m) SRAM blocks [25]. To reduce memory
resource consumption, read and write operations of the XOR-
based memory in our design share the same read ports.
As a result, the memory requirement is reduced to m×n.
Figure 1(b) shows our memory design for 2R2W.

C. Hash Table Architecture

Our proposed design is composed by an array of processing
engines (PEs). A hash table is replicated p times, and each PE
holds one replica. Inside each PE, key-value pairs are stored
as XOR-encoded data across k Partial XOR Store, where k
is the max number of non-search queries the architecture can
handle per cycle. To handle hash table collision, each Partial
XOR Store has multiple slots (2 - 4 being the common case),
and each slot stores one key-value pair.

1) Query Dataflow: NSQ initiated by one replica need to
be updated by all the other replicas in order to ensure data
consistency. To enable conflict-free synchronization between
replicas, we design a special component called Partial XOR
Store (M). This component only exists in PEs that can process
hash table mutation operations (insert, update, and delete).
It is the initiation point where mutation operations start and
connects to Partial XOR Store in the other PEs as a pipeline.
With this component, our architecture guarantees mutations
performed by one PE never have conflict with other PEs.

The query flow of our hash table, i.e. mapping of search, in-
sert, update, and delete operations to our parallel architecture,
is as follows:
Search: Once a PE receives search query, it first calculates

the bucket index using a predefined hash function. Then, PE
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Fig. 2: Query dataflow of a 4 PEs design. (a): A configuration
that supports up to 100% non-search queries per cycle. (b): A
configuration that supports up to 50% non-search queries per
cycle.

initiates read to all the Partial XOR Store in parallel using
the calculated index. If all partial stores indicate valid data,
an XOR operation is performed to recover the original key-
value pair by XOR’ing the data from each Partial XOR Store
together. PE returns the key-value pair back to the application
when there is a match.
Insert/Update: Insert/Update queries first go through the

same dataflow as Search queries to decide if the key-value
pair exists or not. Following that, PE generates the XOR-
encoded data, which will be written to the Partial XOR Store
(M) first. For new key-value pair, the encoded data is the same
as the original data; for updates, PE generates encoded data by
XORing the incoming key-value pair with existing data from
each Partial XOR Store (note that this excludes the encoded-
data in Partial XOR Store (M)). New key-value pair also needs
to have an open slot in order to proceed (collision handling).
After that, p subsequent writes with the same encoded data is
sent to remote PEs via inter-PE communication.
Delete: Delete queries also go through the same data flow

as Search queries first. If there is a match to the input key,
PE sets the invalid bit in the corresponding location in Partial
XOR Store (M). This invalidation also propagates to other PEs
like Insert/Update queries.

Workloads Specific Customization: The memory require-
ments of our architecture increases as p and k increase. Our
design allows customization when non-search query (NSQ)
per cycle of a workload has an upper-bound. Search-only PEs
without hash table mutation capability will be used to save
memory resource consumption. The key difference between
search-only PEs and full PEs is that there is no Partial XOR
Store (M)) component in search-only PEs (details in next
subsection). As an example, Figure 2(a) shows 4 PEs query
dataflow with p=4 and k=4. Figure 2(b) illustrates a design
with p=4 and k=2.

2) Processing Engine Design: Figure 3(a) shows the
pipeline of our PE with full processing capability. The key
components are hashing unit, Partial XOR Store, XOR reduc-
tion tree, and result resolution unit. Each component processes
query in one or more cycles. Hashing unit receives queries and
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calculate bucket index. We use the Class H3 [27] hashing,
which has been demonstrated to be effective on distributing
keys randomly among hash table entries. The hash function is
defined as follows [28]:

Definition 1: For key of bitwidth i and hash index of
bitwidth j, let Q denote a i × j Boolean matrix. For a given
q ∈ Q, let q(m) be the bit string of the mth row of Q, and
let x(m) denote the mth bit of input key. The hash function
is: h(x) = (x(1) · q(1)) ⊕ (x(2) · q(2)) ⊕ ... ⊕ (x(i) · q(i)).

As discussed in query dataflow, once the bucket index is
calculated, PE initiates read operation to each Partial XOR
Store in parallel. The XOR-encoded data are read out and fed
into two XOR reduction trees. The first XOR reduction tree
is to recover the original key-value pair. The second XOR
reduction tree is only active for non-search queries and is used
to produce new encoded data.

Result resolution unit collects the decoded key-value pair
from XOR reduction tree, and route query to the next hop
based on operation type and query dataflow. It also performs
collision resolution by probing each slot in parallel and finding
the first open slot.
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Fig. 3: Architecture of PEs in an 8-PE design that supports up
to 50% non-search query per cycle. (a) PE 3 can process all
types of queries. (b) PE 4 can only process search queries.

Our flexible architecture allows customization for workloads
with known NSQ ratio to reduce SRAM resource consump-
tion. Figure 3(b) depicts the architecture of PE that only
support search queries. Both Partial XOR Store (M) and Non-
Search XOR tree are removed as they are designed to enable
non-search queries processing capability.

3) Inter-PE Communication: Inter-PE data communication
plays an important role for the consistency of hash table
replicas. It is a pipeline across different PEs – NSQ from
one PE takes p cycles to fully propagates to all other PEs.
As illustrated in Figure 2, all hash table mutations starts from
Partial XOR Store (M). Since each PE has at most one Partial
XOR Store (M) and they do not share common datapath. This
communication mechanism ensures mutations initiated by one
PE never collide with mutations initiated from other PEs.

D. Analysis of Memory Requirements
On-chip SRAM block is the main resource consumption

for our architecture, due to the hash table replications and
XOR-encoded data store. Multiple factors can influence the
SRAM consumption: 1) Target throughput or the number of
PEs. 2) Max NSQ per cycle of an implementation. 3) Key-
value pair size 4) Collision handling capability or slots per
hash table entry. Hence, an optimal design should consider all
these factors, as well as workload characteristics and device
resource availability.

Figure 4 illustrates the SRAM resource requirements for
a hash table with 50K entries and 2 slots per entry. The
key and value sizes are both 4 bytes. Given different hash
table configurations (number of PEs, ratio defined as k/p), the
SRAM requirements diff significantly, ranging from less than 2
MB to more than 100 MB. As a reference point, SOTA FPGAs
such as Xilinx U250 has around 50 MB on-chip SRAM [8].
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Fig. 4: Memory requirements for different PE configurations.
Hash table capacity is fixed at 50k entries and 2 slots per entry.

E. Hash Table Consistency Model
As described in Section III, a new key is not seen by all the

PEs for up to p + t0 cycles. t0 includes hashing calculation,
partial XOR read, and result resolution. It is a constant because
our design performs parallel read to all the blocks. In addition,
p cycles is needed to perform hash table mutation to all the
PEs through Inter-PE communication.

In [12], authors define the notion of relaxing the consistency
of hash table. The key idea is that by not using complicated
forwarding units to address RAW and WAW hazards, incon-
sistency in hash table may occur when: (i) a NSQ for a key u
is received by one PE; and (ii) another query for the same key
u is received by another PE while the first one is still being
processed. However, the maximum number of such erroneous
queries nerr is bounded, as each cycle the architecture can
process p queries, and the latency for each query type is within
p + t0 cycles. Therefore, following the same proof as [12]
(omitted due to space limitation), our hash table architecture
has the following consistency guarantee:

Theorem 1. Number of queries incorrectly served due to
relaxed consistency is given by P (nerr ≥ θ) ≤ p2+pt0

θ .

V. EXPERIMENTAL EVALUATION

A. Experimental Setup
We implemented the hash table design on the Xilinx Alveo

U250 [8] as well as on the Intel Stratix 10 GX1800 FPGA [29]
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using Verilog HDL. The Xilinx device has 1,728,000 LUTs,
3,456,000 Flip-Flops, and 360 Mb of URAM memory, while
the Intel device has 933,120 ALMs, 3,732,480 ALM registers,
and 229 Mb of M20K memory. Post-place-and-route simula-
tions were performed using Xilinx Vivado Design Suite 2018.3
and Intel Quartus Prime 19.4, respectively.

Our modular design and flexible configurability give users
a wide range of design options based on application re-
quirements and available FPGA resources. We evaluated its
performance and resource utilization by increasing the number
of PEs for different non-search queries per cycle ratios and
varying the total number of hash entries as well as key-value
lengths (k/v lengths). The key/value sizes in our experiments
were 32, 64, and 128 bits. These numbers cover the most
configurations in graph analytics and AI applications. We
generated uniformly distributed access patterns, which include
both the operation types and the hash keys, as our stimulus.
We used million operations per second (MOPS) as the metric
to calculate the throughput of the above configurations. The
utilization of FPGA resources is reported in terms of percent
usage of LUTs (ALMs), and on-chip memory (SRAM).

B. Evaluation on Xilinx Alveo U250 FPGA

Fig. 5: Evaluation of hash table on Xilinx device (64-bit key
& value in size)

Figure 5 shows the maximum achievable throughput for
various PE counts in the Xilinx Alveo 250U FPGA. The results
verify the scalability of our design with the number of PEs.
The design’s clock rate is in the range of 286 MHz – 400
MHz. We observed high clock frequencies even in a large
number of PEs when the design parameters (k/v size, NSQ
ratio) well fit on chip even though the pressure on the place
and route increases with the number of PEs. Insert latency is
higher than search latency due to the extra clock cycles that
are spent writing a new key-value pair to all PEs. The search
operation and the insert operation can be completed within 14
ns and 54 ns with 16 PEs.

Figure 6 shows the fluctuation of the maximum hash table
size - the number of entries that can be implemented on
the Xilinx U250 FPGA, with 64-bit key and value sizes as
the number of PEs increases. We observe the impact of the
number of NSQ-supported PEs on the number of entries. The
total number of plausible entries drops as the NSQ-supported
PEs increased because NSQ-supported PEs utilize twice the
URAMs compared to a typical PE.

The resource utilization of a hash table implementation is
reported in Table 1. The number of entries in a hash table

(a) 2 Slots per Entry

(b) 4 Slots per Entry

Fig. 6: Max hash table sizes supported on Xilinx U250 FPGA
(k/v size = 64-bit)

varies from 16K – 128K for different NSQ ratios. Further,
they include 4 slots per entry with the k/v length of 64-bit.
We make heavy use of URAM for the on-chip hash table store.

TABLE 1: Resource Utilization of Dynamic Hash Table on
Xilinx U250 FPGA (Number of Slots = 4)

# of Entries # of PEs NSQ PE ratio LUT (%) URAM (%)
128K 4 2/4 < 1% 80%
64K 8 2/8 < 1% 80%
32K 16 2/16 < 1% 80%
16K 7 8/8 < 1% 80%

Figure 7 shows the effect of the supported non-search
queries per cycle on maximum throughput. For the same
number of PEs, some configurations show high throughput
as their arrangement fits well on the FPGA, which leads to
high clock frequency.

Fig. 7: Maximum throughput fluctuation w.r.t NSQ ratio

C. Evaluation on Intel Stratix 10 FPGA

TABLE 2: Resource Utilization of Dynamic Hash Table on
Stratix 10 FPGA (Number of Slots = 4 and 64-bit key &
value in size)

# of Entries # of PEs NSQ PE ratio LUT (%) URAM (%)
128K 2 2/2 < 1% 57%
64K 4 2/4 1% 56%
32K 6 2/6 1% 42%
16K 8 4/8 1% 56%

We also implemented our hash table on Intel Stratix 10
GX2800 FPGA. We used 32-bit and 64-bit as k/v size and used
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TABLE 3: Existing hash table implementations compared to proposed design

Metric This work Yang [12] Pontarelli [11] Ashkiani [23] Awad [30]
Technology FPGA FPGA FPGA GPU GPU

Max. Throughput 5926 5360 480 937 1015
(Search MOPS) (Normalized Fmax)

Supported Queries1 S, I, U, D S, I S, I, U, D S, I, U, D S, I, U, D

2/4 slots per entry. Figure 8 shows the maximum achievable
throughput for various PE counts in the Intel Stratix 10 FPGA.
The result indicates that our architecture is designed as a
general solution to work with various FPGA devices. This
design can process up to 2208 MOPS with 8 PEs. The number
of PEs affects the max clock rate; the achieved throughput does
not scale linearly.

Fig. 8: Evaluation of hash table on Intel device (64-bit key &
value in size)

From Table 2, we can see that the usage of ALMs and
registers is low, while the utilization of M20K depends on the
hash table capacity and number of PEs. Figure 9 shows the
fluctuations of the maximum hash table size - the number of
entries that can be implemented on Intel Stratix 10 FPGA,
with 32-bit k/v sizes as the number of PEs increases.

(a) 2 Slots per Entry

(b) 4 Slots per Entry

Fig. 9: Max hash table sizes supported on Intel Stratix 10
FPGA (k/v size = 32-bit)

D. Comparison with state-of-the-art (SOTA)

We compare the performance of our 16-PE hash table
implementation on Xilinx U250 FPGA with state-of-the-art
GPU and FPGA designs. The performance metric is in terms
of throughput - MOPS.

The implementation of Yang et al. [12] uses the same
FPGA, namely, the Xilinx Alveo U250. Their implementation

operates at 335 MHz with 16 PEs. Pontarelli et al. [11]
propose a parallel Cuckoo hashing on FPGA. The hash table
is stored completely on chip. The target FPGA device is the
Xilinx Virtex5 XC5VLX155T. Their implementation operates
at 156.25 MHz. Awad et al. [30] is implemented on the
NVIDIA Titan V (Volta) GPU. This GPU has 5120 CUDA
cores that operate at 1455 MHz. In Ashkiani et al. [23], the
design is implemented on the NVIDIA Tesla K40c GPU. It
has 2880 CUDA cores and operates at 745 MHz.

Table 3 summarizes the SOTA designs, and their perfor-
mance with respect to our work1. Similar to Ashkiani et
al. [23], we used a 32-bit key/value size and random traffic
patterns in the comparison. Compared with the SOTA GPU
work, we observe a speedup of 5.8x even while running with
3.8x less clock frequency. Compared with the SOTA FPGA
work, our design achieves up to 1.1x and 12.3x speedup. Note
that although the max throughput is only 10% higher than
Yang et al [12], our architecture supports all four common
query types with worst-case throughput guarantee. Further,
the latency of our design is significantly lower than Yang et
al. [12], as shown in Figure 10.

Fig. 10: Latency comparison with SOTA [Lower the better]

VI. CONCLUSION

In this paper, we proposed a high throughput parallel hash
table using XOR-based memory. It supports all common hash
table operations – search, insert, update, and delete, while
still guarantees a throughput of p queries per cycle in the
worst case. We further optimized our hash table architecture
to reduce SRAM resource consumption for workloads with
different NSQ ratio. Our hash table uses novel query flow
and inter-PE communication to ensure data consistency. We
implement our design on SOTA FPGA devices, experimental
results show that our architecture is flexible and scalable with
respect to number of PEs, key/value sizes, number of slots
per entry, as well as hash table capacity. Our design achieves
up to 5926 MOPS throughput with 16 PEs, matching the
throughput of the SOTA hash table design – FASTHash, which
only supports search and insert operations (1.1× speedup).
Comparing with the best FPGA design that supports the same
set of operations, our hash table achieves up to 12.3× speedup.

1For supported queries, S: Search, I: Insert, U: Update, D: Delete.
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