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ABSTRACT

Low-PowerWide-AreaNetworks (LP-WANs) are seeingwide-spread
deployments connecting millions of sensors, each powered by a
ten-year AA battery to radio infrastructure, often miles away. By
design, iteratively querying all sensors in an LP-WANmay take sev-
eral hours or even days, given the stringent battery limits of client
radios. This precludes obtaining even an approximate real-time
view of sensed information across LP-WAN devices over a large
area, say in the event of a disaster, fault or simply for diagnostics.

This paper presents QuAiL1, a system that provides a coarse
aggregate view of sensed data across LP-WAN devices over a wide-
area within a time span of just one LP-WAN packet. QuAiL achieves
this by coordinating multiple LP-WAN radios to transmit their
information synchronously in time and frequency despite their
power constraints. We design each client’s transmission so that the
base station can retrieve an approximate heatmap of sensed data
by exploiting the spatial correlation of this data across clients. We
further show how our system can be optimized for statistical and
machine learning queries, all while maintaining the security and
privacy of sensed data from individual clients. Our deployment over
a 3 sq. km. LP-WAN deployment around CMU campus in Pittsburgh
demonstrates a 4× faster information retrieval versus the state-of-
the-art statistical methods to retrieve the spatial sensor heatmap at
a desired resolution.

CCS CONCEPTS

• Computer systems organization→ Sensor networks; •Net-
works→ Network protocol design.
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Figure 1: QuAiL achieves quick estimation of spatial distri-

bution of sensed data across clients

1 INTRODUCTION

Dost thou love life? Then do not squander time, for that is the stuff

life is made of ś Benjamin Franklin

łHow long does it take to query amillion low-power temperature
sensors during a forest fire to send out real-time evacuation alerts?ž.
Questions like this one pose a challenge for current Low-Power
Wide-Area Networks (LP-WANs), with fast expanding nationwide
deployments in U.S., China and much of Europe [1, 30]. Today’s
LP-WAN radios are designed to transmit at low data-rate to the base
station several miles away, providing up to 10 years of battery life on
a AA battery. The battery constraints of LP-WAN radios necessitate
an extremely slow data rate from sensors they are attached to ś
with each message lasting as long as several seconds [24]. This
means that querying a large number of low-power devices in a
city is a process that can take several hours to days. While this
limitation is reasonable for many common LP-WAN applications
that are latency-insensitive (e.g. monthly metering, infrastructure
monitoring, environmental sensing, etc.), one might occasionally
wish to query the aggregate view of large numbers of LP-WAN
clients in real-time to gather diagnostics, particularly in the event
of a disaster, fault or any rapidly evolving event. In this paper, we
ask: łCan we at least build an approximate view of sensed data of
LP-WAN radios in a city within a deadline of a few seconds ś trading
off resolution and accuracy in favor of latency?ž. As a motivating
example, consider a wide-area deployment of temperature sensors
that wewish tomonitor in real-time during a forest fire ś such as the
recent California wildfires and Australia bushfires. In its simplest
form, we might be interested in short statistical summaries, such
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as the count of number of sensors online, the mean of the sensed
values such as average temperature. More generally, we may seek
a spatial map of the approximate sensed value at different regions
of the environment, say thermal maps. In several instances, these
maps may need to be optimized for machine learning inference
models that operate on the aggregate sensed view, say to declare
different levels of evacuation emergency. Current state-of-the-art
approaches to approximately answer such aggregate queries using
statistical sampling [36] or sparse recovery [14] would still require
us to query individual LP-WAN sensors, effectively taking minutes
to hours, even for a modest numbers of sensors queried [13, 24].

This paper presents QuAiL, a system that responds to aggregate
queries from a large number of LP-WAN nodes with minimal loss
of resolution in a time-span as short as one LP-WAN packet (i.e.,
a few seconds at most). QuAiL enables base stations to simultane-
ously find approximate responses at low latency to several types
of queries on aggregate sensed data such as simple statistics, spa-
tial distributions and machine learning queries. We show how our
techniques are broadly applicable to a variety of popular LP-WAN
technologies ś LoRa andNB-IoT.We implement and evaluate QuAiL
on a 3 sq.km. pilot campus-scale deployment around CMU. Our
experiments reveal a 4× faster information retrieval with 2.36× less
error over sparse sampling solutions for network-scale inference.

QuAiL’s approach is best understood by revisiting our forest fire
example (see Fig. 1). Suppose we wish to quickly query wide-area
LP-WAN enabled temperature sensors to obtain a spatial heatmap
of the current impact of the forest fire. QuAiL relies on the fact
that most sensor heatmaps have a high degree of spatial correlation
and therefore sparse in linear domains such as the Discrete Cosine
Transform ś a principle used in JPEG image compression [4]. QuAiL
then seeks to recover the top-𝑛 most significant non-zero terms
of this linear domain quickly from distributed low-power sensors,
where 𝑛 is the smallest number that can be used to recover an
approximate view of the sensed data at the desired resolution. We
make each sensor locally compute its contribution to each of these
𝑛 terms: (𝑣1, . . . , 𝑣𝑛). Each sensor then concurrently transmits 𝑛
orthogonal codes at powers weighted precisely by (𝑣1, . . . , 𝑣𝑛) at
the same time and frequency. QuAiL then relies on the fact that
wireless signals transmitted concurrently across sensors will add
up linearly at the base station. We invert the linear-transform at
the base station to obtain the approximate spatial heatmap.

The rest of this paper deals with the challenges and opportunities
stemming from the above in the LP-WAN context. On the challenges
front, we first aim to ensure that extremely low-power signals are
synchronized concurrently in time and frequency. We must do
so because the radios are extremely low-power and narrowband,
and therefore inherently prone to such errors. Second, we need to
account for the wireless channels between the clients and the base
station, which could alter the weights with which wireless signals
add up at the base station. We need to do this without requiring
clients to transmit individual preambles for channel equalization,
which is simply too latency-intensive. Third, we must ensure that
our approach can detect failures and has mechanisms to elastically
improve resolution with looser latency constraints. Sec. 4 describes
our approach for synchronized collaborative encoding of LP-WAN
client data, as well as our choice of orthogonal codes compatible
with popular LP-WAN technologies.

Next, Sec. 5 describes the varied opportunities for posing ag-
gregate queries that our design enables by carefully choosing the
linear domain in which the sensed data is expressed by individual
LP-WAN nodes. We show how our system allows for simple statis-
tics such as sum, mean and count of sensors in the network. We also
study system performance with different choices of linear domains
such as DCT, DWT and DFT on different classes of sensed data.
Further, we show how our approach naturally fits to answering
machine learning inference queries for a large class of models that
have a linear initial phase such as SVM and neural networks.

Finally, we demonstrate the attractive security and privacy prop-
erties that can be achieved by randomizing the weights applied by
individual sensors. We show how passive eavesdroppers cannot in-
fer the underlying sensed data without access to these weights. We
also present differential privacy guarantees that limits the extent to
which even the legitimate base station can infer both the location
or specific data of individual sensors by processing the received
linear combination. Sec. 6 describes our approach.
Limitations:We emphasize a few important limitations of QuAiL:
(1) Our approach cannot retrieve measurements from sensors in
deep sleepmodes. However, for those nodes that are able to transmit
and receive on demand, we show significant latency improvements
in aggregate queries over the state-of-the-art. (2) Our approach can
be impacted by noise and interference over a wireless medium. We
therefore develop fall-back mechanisms to detect failure through
custom acknowledgments and checksums. We discuss and evaluate
these limitations in Sec. 7 and Sec. 8.

We implement QuAiL in the ISM band on FSK and LoRa radios
due to ready availability of off-the-shelf hardware. We use Semtech
SX1276 clients as the NB-IoT/LoRaWAN clients. We use NI USRP
N210 software radios as our base stations. We deploy 20 clients
moved across an area of 3 sq. km and placed at over 30,000 unique
locations around CMU. We perform real-time feasibility study on
concurrent transmissions of up to 10 clients and emulate collisions
of up to 10,000 client transmissions using traces across our clients
measured at different time instances and locations.We then perform
large scale trace-driven evaluation for forest-fires to test the efficacy
of QuAiL in the motivated example. Finally, we evaluate ability of
QuAiL to compute statistics and machine learning inputs on two
public sensor databases ś Occupancy dataset [8] and Intel-Berkeley
dataset [25]. Our results show:
• A mean accuracy of 96.98% in computing the mean of sensed
data under a 589 ms time constraint.

• A mean latency reduction of 4× in recovering the spatial distri-
bution at a resolution, when compared to individual querying of
sensors, sub-sampled to the same resolution.

• A mean accuracy of 3.49% for inference using neural networks
with associated guarantees on privacy of data.

Contributions: Our main contributions include:

• Amechanism to provide an approximate real-time view of sensed
data within one packet duration in LP-WANs by engineering
specially-designed concurrent transmissions compatible with
common LP-WAN technologies

• A set of system security and differential privacy guarantees.
• A deployment at CMU demonstrating limited loss of resolution
amidst strict latency constraints for varied statistical, spatial
distribution and machine learning inference queries.
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2 RELATED WORK

Related work falls broadly in three categories:

Low-Power WANs: LP-WAN deployments in both licensed (NB-
IoT [3]) and unlicensed (LoRaWAN [24]) frequencies havewitnessed
rapid deployment globally [1, 30]. Recent research efforts on LP-
WANs have developed novel solutions for synchronization [5, 32],
association [13, 22], optimizing power [6, 10], improving scalabil-
ity [11, 34], and client power adaptation [42]. To our best knowledge,
obtaining a low-latency aggregate view across LP-WAN clients is
a problem unaddressed by prior work, and is the focus of this pa-
per. We also highlight how QuAiL can be used complementary to
parallel decoding techniques to improve it’s performance further.

Data Aggregation and Compressive Sensing in Sensor Net-

works: There has been much work on machine learning inference
based on sensed data [15, 18, 28]. Smart cities have deployed city
scale sensing applications such as environmental monitoring [37],
precision irrigation for parks [35], and other participatory sens-
ing applications[17]. Past work has developed rich machine learn-
ing [35, 37] and statistical inference models [14, 36] that operate on
large volumes of aggregate data across sensors. QuAiL complements
these solutions by providing an approximate view of sensed data
for statistical or machine learning inference that can be obtained
without exhaustively and individually querying sensors. Perhaps
closest to QuAiL is prior work that leverages sparse recovery tech-
niques such as compressive sensing in traditional wireless sensor
networks [7] where clients perform pre-processing to reduce com-
municated information. In contrast, QuAiL relies on concurrent
transmissions of low-power radios to recover an approximate view
of sensed information, within the stringent latency constraint of
one LP-WAN packet.

Wireless Network Coding and Analog Video Coding: Analog
coding in the air using wireless signals has been deeply studied
by wireless researchers over multiple decades [33] including lever-
aging multiple-antennas [16, 23]. There has also been extensive
work done on developing novel data accumulation techniques by
clever encoding mechanisms[31] and optimal forwarding to mini-
mize energy expenditure[38]. Other researchers have used various
other lossy coding schemes[43] to optimize for energy by cutting
redundancy. QuAiL is also related to past work [19, 27] that lever-
ages sparsity of video data to code information in analog, albeit
on point-to-point links. While QuAiL builds upon these solutions,
it specifically focuses on aggregation over linear sparse domains
of the underlying phenomenon to reduce the time and bandwidth
required to query LP-WAN clients at scale. To achieve this, QuAiL
solves LP-WAN specific challenges enabling retrieval of linear com-
binations over the air for massive city-scale IoT deployments.

3 QUAIL OVERVIEW

QuAiL’s main task is to get a coarse estimate of spatial distribution
of sensed information in an area at low latency. A key factor in
achieving this is to decode clients’ information at scale within the
stringent time constraint of one packet. The natural approachwould
be to make all the clients transmit at the same time and decode as
many packets as possible from the resulting collisions. Yet colliding
packets suffer incredibly high packet error rates to retrieve any

useful information. Instead, QuAiL aggregates information from
sensors by cleverly encoding sensed information within individual
packets, so that the resulting collision can still be processed to
obtain the spatial distribution of sensed data.

Our approach relies on a very simple principle: at scale, received
signal power from a large number of transmitting nodes would sim-
ply be a linear combination of the transmitted powers of individual
sensors, subject to noise. Let 𝑝𝑖 denote the power of the signal
transmitted by sensor 𝑖 and 𝑤𝑖 denote the power of the wireless
channel between the client and a base station. Then the received
power from a collision of 𝑁 sensors at the base station is simply:

𝑦 =

𝑁∑

𝑖=1

𝑤𝑖𝑝𝑖 + noise

QuAiL’s approach is to design the power of each client 𝑝𝑖 such
that it maximizes the recovery of desired spatial distribution ś de-
noted by𝑌 at the base station. Let us assume the client achieves this
by applying setting 𝑝𝑖 = Φ(𝑥𝑖 ) where 𝑥𝑖 is its sensed data and Φ(.)
is a function known to all sensors and the base station. We then
assume that the base station can recover its desired spatial distri-
bution by applying a different function: 𝑌 = Ω(𝑦). Mathematically,
we write:

𝑌 = Ω(

𝑁∑

𝑖=1

𝑤𝑖Φ(𝑥𝑖 )) + noise

The rest of this paper describes the key challenges in making
such a design practical:

(1) Synchronization: First, the above approach assumes that
transmissions across low-power clients are synchronized in time
and frequency. Yet, low-power clients have large frequency and
timing offsets that would render the linear combination highly
susceptible to errors. Second, the weights 𝑤𝑖 due to the wireless
channels between the clients and base station may not be known
upfront at the base station, and vary rapidly over time. Exhaustively
computing them for each client through a priori beacons would
defeat the strict latency constraints of the system. Third, variation
in noise can lead to incorrect measurements of spatial distribution
based on various wireless impairments such as spurious transmis-
sions, variation in wireless channels, incorrect compensation of
frequency offsets. Finally, many applications might require the lo-
cally computed function Φ to result in negative values of power
which do not make sense. QuAiL’s solutions to the above problems
along with making the system compatible with both NB-IoT and
LoRa are detailed in Sec. 4.

(2) Designing Φ and Ω: Next, we need to design functions Φ and
Ω to retrieve useful information from a large number of sensors.
While statistical inferences require us to identify the right way to
combine client information, more complex inferences over spatial
distributions rely on sparsity in spatial domains. Further, many
machine learning algorithms such as SVMs and neural networks
operating on spatial distributions require weighted aggregation of
pixels of the resultant image. Sec. 5 demonstrates a general frame-
work for encoding nested affine functions on sensed information for
the above applications and analyzes common transform domains.

(3) Security and Privacy: A key problem of encoding information
in transmitted power would be security as any malicious adversary
would be able to snoop over a client’s data. Thus, there remains a
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necessity to obfuscate client information from the malicious adver-
sary without affecting the quality at the base station. Towards this
end, QuAiL shows how by randomly spreading energy across the
available bandwidth, we can provide security of client information
and ensure anonymization and privacy of client’s data (Sec. 6).

4 SYNCHRONOUS COLLABORATIVE
ENCODING

In this section, we will describe how we can efficiently and robustly
acquire linear combinations of client sensed data encoded in power
in a sparse domain by tackling wireless impairments such as the
wireless channel, timing and frequency offsets, noise at the clients
and preserve compatibility with both commonly used LP-WAN
technologies, namely NB-IoT and LoRa.

4.1 Compensating for the Wireless Channel
and Hardware Impediments

At the base station, our objective is to obtain the accurate sum
of the transmit powers of individual clients, as they transmit syn-
chronously in time and frequency. Yet, in practice, signals from
individual clients are weighted by the unknown wireless channel
between the client and base station. Further, transmissions may not
be perfectly synchronized in time and frequency. In this section,
we describe our approach to mitigate both of these challenges.

Channel Compensation: A strawman approach to channel com-
pensation is to simply ask each client to send a short preamble to
the base station to calibrate for wireless channels up-front. How-
ever, doing so would entail long overall latency, particularly given
that LP-WAN symbols are long and channel feedback would need to
be done on a per-client basis. In contrast, QuAiL leverages a simple
concept: channel reciprocity. Prior to synchronized transmissions
by clients, the base station broadcasts a short beacon listened to by
all clients. The clients estimate the received power of this transmis-
sion and calibrate their transmit power.

An important challenge in achieving this design is that common
LP-WAN hardware may not provide the ability to manipulate trans-
mit powers at fine-granularity. To put this in perspective, consider
SX1276, a common LoRaWAN chipset that allows manipulating
transmit powers only in steps of 1 dB, limiting the resolution at
which sensed data can be sent. As a result, instead of encoding
information in signal power, we instead manipulate the duration
of the signal. This duration can be manipulated at much finer gran-
ularity enabling clients to communicate sensed information at fine-
granularity. At the base station, we then measure the total power
received over a specific time window to glean the total received
power across clients(Fig. 2). Mathematically, let say the client needs
to reduce it’s transmit power by [x].{y}dB for compensation of
wireless channel and T is the time of the known signal. Then the
transmit power (𝑃𝑇𝑋 ) and transmit duration (𝑇𝑇𝑋 ) can be selected
as follows: 𝑃𝑇𝑋 = 𝑃𝑇𝑋 − 𝑥 𝑇𝑇𝑋 = 𝑇 /10

𝑦

10

A second key challenge is how do the clients know what energy
to transmit based on the downlink channel. First, the clients nor-
malize their sensed value between 0 and 1. They then encode their
energy onto the symbol using the same mechanism as above. They,
then reduce their power to such a level so that it’s received power

Figure 2: Channel Compensation inQuAiL

Figure 3: Timing Compensation inQuAiL

Figure 4: Thicker correlation preambles allow for small fre-

quency and timing offsets inQuAiL

at the base station is same as the client at farthest location transmit-
ting at maximum power. This allows all signals to be above noise
as well as of equal power. Another problem is that uplink channels
in cellular are different from downlink channels. Thus, QuAiL uses
a discrete time Markov chain to model the uplink channel based
on previous downlink and uplink channel measurements. Indeed,
the uplink channel measurements will be known at only a few fre-
quencies (via feedback sent in NB-IoT packets), while the downlink
channel can be only measured from the base station’s broadcast
channel. Our model relies on a key assumption that holds for a
narrowband channel: While the phase across subcarriers changes
even across small bandwidth, the absolute value of the channel
response is relatively flat across a bandwidth of 200KHz [13].

Impact of Offsets: QuAiL synchronizes clients in time by sched-
uling client transmissions at a fixed interval following the query
beacon transmitted by the base station. Yet, this approach is sus-
ceptible to timing offsets owing to the differences in clocks and
detection times between low-power clients. Further, clients may be
at different distances relative to the base station, causing differences
in propagation delay as well. However, QuAiL’s approach to rely
on average power of the received signal over a time window makes
it naturally robust to timing offsets across clients. Specifically, we
design QuAiL to average signal power from clients at the base sta-
tion over a time window of 8.192 ms. We design this window to
be significantly higher than the timing jitter of clients of popular
LP-WAN technologies (see Sec. 8.1). We also compensate for the
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Figure 5:QuAiL’s approach to achieve robustness in presence

of noise

propagation delays of LP-WAN clients by delaying response from
closer packets as shown in Fig. 3.

The main source of frequency offsets are the inaccurate client
clocks causing a center frequency drift across time. Normally, NB-
IoT and LoRa clients use offset-resilient hopping and chirp codes
for base station to be able to decode them at significant distances.
QuAiL’s architecture requires significantlymore accurate frequency
synchronization to achieve addition of powers. Prior approaches
have relied on one way communication using specialized client
devices[9] to frequency synchronize clients over large distances.
However, LP-WAN clients are not designed to correct their own
frequency offsets (instead their modulation are precisely designed
to avoid it!). Thus as SNR degrades, we lose some signal quality
leading to errors as shown in Sec. 8.2.

4.2 Robustness to Noise

A key challenge in our approach is to ascertain whether the received
linear combination at the base station is accurate, despite noise
and any errors in channel or frequency offset estimation. With all
the clients transmitting simultaneously, it would be impossible to
ascertain the effect of a single client independently. Thus, there is a
need for the base station to be able to validate the accuracy of our
solution amidst noise, interference and estimation errors.

Traditional wireless protocols communicating over point-to-
point links send a CRC which allows the base station to detect
the presence of packet errors and require retransmission. Clearly,
sending individual CRCs or checksums in our context would revert
to simply querying every client and is therefore infeasible.

Instead, QuAiL designs a distributed error detection code, an
analog CRC, that allows the base station to ascertain the correctness
of the received information. Indeed, as the information we are
trying to retrieve is the distribution of sensed value and not the
individual values, our CRC should operate on the distribution. We
encode a known distribution in the clients during their initialization
phase to enable the CRC. To illustrate, let us suppose we want to

compute 𝑌 = Ω(
∑𝑁
𝑖=1𝑤𝑖Φ(𝑥𝑖 )) where 𝑋 = {𝑥1 . . . 𝑥𝑁 } are the

sensed values of clients. We can then require the clients to first
transmit X=Awhere𝐴 = {𝑎1 . . . 𝑎𝑁 } is a knownmatrix. This would
lead to a deterministic value at the base station which can be used
to verify whether the clients were able to compensate for the above
offsets. For every unknown block of information (red in Fig. 5),
the base station would verify the adjacent CRC blocks (green in
Fig. 5). If either of the CRC blocks have an error beyond a fixed
threshold, the query is retransmitted. The approach for detection
and retransmission is shown in Fig. 5.

4.3 Compatibility with LoRa and NB-IoT

In this section, we design mechanisms to make QuAiL compatible
with common LP-WAN protocols: LoRa and NB-IoT, without client
hardware modification.

Engineering Collisions and Designing Codes: Our first chal-
lenge is that LP-WAN technologies are designed to specifically
avoid collisions. While engineering collisions in LoRa is relatively
simple, given that it operates on shared unlicensed spectrum where
collisions are common, doing so for NB-IoT where collisions are
explicitly scheduled to be avoided is much more challenging

However, there exists a set of frequencies where even NB-IoT
clients can collide ś the random access channel (RACH). Indeed,
it is in this channel that clients vie for the spectrum resources to
communicate. Further, the RACH channel allows clients to choose
between specific well-defined codes (frequency hopping patterns)
that are mutually orthogonal. This allows QuAiL to transmit multi-
ple linear combinations simultaneously within one symbol. We note
that QuAiL can similarly transmit multiple linear combinations in
parallel in the LoRa context by choosing different frequencies of
operation within the unlicensed band. The limit of number of codes
that can be fit within 180kHz wide band is evaluated in Sec. 8.3.

Negative Powers: In our discussion so far, we have only allowed a
mechanism to add up power linearly across clients. However, there
is a key problem with this assumption: Most useful weighted linear
combinations have negative weights, sometimes requiring us to
measure a negative quantity. Yet, powers are positive numbers, and
therefore always add up ś not subtract out. Our solution to this
leverages the fact that we can send independent linear combinations
simultaneously through code or frequency division multiplexing.
Our solution chooses to divide the available codes into two groups:
one half for positive weights and one for negative weights. The base
station can then subtract energies received along the negative code
from the positive code to retrieve the required linear combination.

To illustrate this mathematically in the NB-IoT context, let us
divide the 𝑛 available codes of the RACH into two equal sets: 𝑛/2
positive codes ś {𝑐 𝑗 , 𝑗 = 1, . . . , 𝑛/2} and 𝑛/2 negative codes ś
{𝑐 𝑗 , 𝑗 = 𝑛/2 + 1, . . . , 𝑛}. Let us assume 𝑙𝑖 𝑗 are the set of weights
from clients 𝑖 = 1, . . . ,𝑚 and up to 𝑛/2 target linear combinations
𝑗 = 1, . . . , 𝑛/2. Then we can set:

𝑤𝑖 𝑗 =




𝑙𝑖 𝑗 , 𝑙𝑖 𝑗 ≥ 0 and 𝑗 ≤ 𝑛/2

−𝑙𝑖 ( 𝑗−𝑛/2) , 𝑙𝑖 ( 𝑗−𝑛/2) < 0 and 𝑗 > 𝑛/2

0, otherwise
(1)

5 ENABLING APPLICATIONS USING QUAIL

In this section, we describe howwe can compute various aggregates
required by many applications such as statistics, spatial distribu-
tions and weighted linear combinations for machine learning.

5.1 Statistics, Percentiles and Histograms

Traditional statistics can be typically be divided into 3 categories:
single measured quantities, percentiles and distributions. Single
measured quantities typically can be analyzed as map-reduce func-
tions of sensed information with the constraint that reduce uses a
sum. For example, a client can individually compute it’s own aver-
age temperature, pressure and current consumption. Then, it can
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communicate it to the base station where it can compute the com-
bined average of the ensemble of sensors. Table 1 shows the client
and server side functions for various commonly measured aggre-
gates. In QuAiL’s architecture, we can replace the . . .𝑤𝑖Φ(𝑥𝑖 ) with

client-side functions and the Ω(
∑𝑁
𝑖=1 . . . with server side functions

above to compute the statistics.
Percentiles and histograms pose an interesting challenge as the

clients don’t know where they lie in the group of clients being
queried. A näive approach would be to keep querying clients greater
than a certain measured value until you converge. However, this
remains too latency intensive to fit in our architecture. Instead,
we fill the available bandwidth with a large number of thin codes,
more susceptible to frequency offsets yet expressing information
in higher granularity. We can then ask clients to communicate in
code j out of N codes as follows:

Ω = 𝐼 ;𝑤𝑖 = 1;Φ𝑗 =

{
𝐼 , 𝑥𝑖 ∈ 𝐻 𝑗

0, otherwise
(2)

where 𝐻 𝑗 is the j
𝑡ℎ bin of a histogram. The above will allow an user

to compute histogram as well as search for percentiles with high
accuracy at low latency.

5.2 Spatial Distributions

Many inference tasks such as estimating location of a forest fire
or tagging locations require spatial distribution of sensed informa-
tion such as pollutant content and temperature. With large number
of clients the underlying spatial information will be highly fine-
grained and accurate. However, even if we assume the clients know
their locations, it remains a challenging task to retrieve this infor-
mation required to estimate such distributions due to scale.

A näive approach to model it in QuAiL’s architecture would be
to map each code 𝑐 𝑗 to one pixel and retrieve information from
all clients in that pixel at that code. However, to even retrieve a
256× 256 image, this would require 65536 codes compressed into
a narrow bandwidth. To reduce the number of codes required, we
borrow from existing image compression literature. Most com-
monly used image compression algorithms like Discrete Cosine
Transform (DCT) and Discrete Wavelet Transform (DWT) are both
linear[40, 41]. Further, we assume that clients know their relative
location in the grid and can therefore choose appropriate weights
to emulate the the above transforms. Let’s say 𝑥𝑖, 𝑗 are the pixels
of the image with 𝑥 ′

𝑘
a MN×1 linearized version of the image. For

example, the DCT of an image M×N is simply:

𝐷𝐶𝑇𝑚,𝑛 =

𝑀∑

𝑖=1

𝑁∑

𝑗=1

𝑥𝑖, 𝑗𝑐𝑜𝑠
( 𝜋
𝑀

(𝑖 +
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)

This can also be represented as

𝐷𝐶𝑇𝑚,𝑛 = 𝐷𝐶𝑇𝑀𝐴𝑇 (𝑚,𝑛)1×𝑀𝑁 𝑥 ′𝑀𝑁×1

Note that clients could be provided information on grid size and
their location either through calibration from the base station, or
as measured from the base station. Remember that the knowledge
of physical location is required due to the fact the sparse domain of

Function Client Side Server Side QuAiL

eligible?

Mean Data energy Divide energy by Yes
in one code number of clients

Median Histogram Estimate median Maybe
Mode Histogram Estimate mode Maybe

Variance Send |𝑥 |2 and |𝑥 | Compute |𝑥 |2 − |𝑥 |
2

Yes
in two codes

Sum |x| in one code Total Energy Yes
Count |1| in one code Total Energy Yes

Table 1:QuAiL’s approach to calculate statistics

Figure 6: Convolution Filters used in image processing

our choice relies on relative location of clients. Thus, there might
exist sparse domains that may work even without this knowledge.
Convolution Filters: To process spatial data, akin to images, one
often relies on some form of filtering. Indeed, the ability of convolu-
tion filters to detect edges, prominent features and gradients across
directions have seen them being widely used in image processing
and an initial step for a whole class of machine learning algorithms:
Convolutional Neural Networks (CNNs). Fig. 6 shows some of the
common filters used for identifying various features.

A key advantage of QuAiL’s architecture is that we can compute
approximates of these convolutions as well in one go. There are
two ways we can achieve this. First way would be to estimate the
the underlying image in a sparse domain and then performing
the convolution manually. Yet many filters rely on fine grained
information of slopes and edges which is typically lost in sparse
approximations. Instead, QuAiL takes a different approach. Observe
that convolution filters are simply linear combinations of pixels
across locations. This allows us to formulate the convolution with
matrix F as:

𝑍 = 𝐹𝑀𝐴𝑇𝑀𝑁×𝑀𝑁 𝑥 ′𝑀𝑁×1

Rewriting the DCT of above matrix multiplication, we get

𝐷𝐶𝑇𝑀𝐴𝑇 (𝑚,𝑛)1×𝑀𝑁 𝐹𝑀𝐴𝑇𝑀𝑁×𝑀𝑁 𝑥𝑀𝑁×1
=

𝑘∈𝑀×𝑁∑

𝑘=1

Φ
′
𝑚,𝑛 (𝑥

′
𝑘
)

Thus, QuAiL allows sparse retrieval of convolutions of underly-
ing distribution of sensed data within a single query.

5.3 Machine Learning Algorithms

In this section, we describe how QuAiL can enable various machine
learning algorithms on the sensed information of the clients even
without relying on their data sparsity. A key aspect of QuAiL is
that it can readily obtain linear combinations of the clients’ sensed
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information at low latency. In this regard, we make the key obser-
vation that most supervised machine learning algorithms ś the first
layer is a weighted linear combination of sensed information.

By modelling the first layer of machine learning algorithms,
we can enable base stations to compute the required inferences.
Most machine learning algorithms rely on the fact that the input
vector is synchronous, or in simpler words, the underlying sparse
field does not change drastically over the duration of retrieving the
information from the clients. While this quasi-static assumption
is true for most conventional wired and wireless sensors, a base
station may require a few minutes to hours for querying a large
number of sensors. QuAiL breaks this bottleneck by measuring
quasi-static aggregates of large scale LP-WAN deployments within
the duration of a few packets. Further, QuAiL enables client data
and location privacy by a special mechanism detailed in Sec. 6.

Modelling amachine learning algorithm:Theweights to clients
can be sent over the air during their usual uplink communication
(latency of doing this is discussed in Sec. 7). These weights can be
then used during QuAiL queries to get the required linear com-
bination. For example, let’s say a neuron (𝜂𝑖 ) in the first hidden
layer, the smallest unit in a neural network, requires a weighted
sum as follows:𝑤𝑖𝑥𝑖 +𝑏𝑖 . We first identify the positive and negative
weights.

Φ
+
𝑖 =

{
𝐼 , 𝑤𝑖 > 0

0, otherwise
Φ
−
𝑖 =

{
𝐼 , 𝑤𝑖 < 0

0, otherwise
(3)

Then, the base station can perform two queries to retrieve𝑤𝑖Φ
+
𝑖 (𝑥𝑖 )

and𝑤𝑖Φ
−
𝑖 (𝑥𝑖 ) which in turn can be subtracted to retrieve𝑤𝑖𝑥𝑖 . The

bias (𝑏𝑖 ) can be added at the base station.

Learning the weights for machine learning: A key component
of any machine learning algorithm relies on learning the weights
of it’s various layers on test data and changing them over time. Yet,
performing such an latency-intensive task would be too power and
time-consuming for clients. This raises an important question of
training an machine learning algorithm catering to LP-WAN tasks.

While real-time training is a daunting task, remember that as
clients last multiple years, we would likely have large traces of
historical data available for training. This can allow offline training
of machine learning algorithms for catering to LP-WAN clients.
Indeed, latency is most often a problem only when performing
machine learning inference and not during training.

Importance of regularization: Learning on large swaths of data
may lead to highly variable weights leading to vastly different
contributions from multiple clients. This may thus lead to high vari-
ation in power across time leading to ADC saturation. We present
in Sec. 7 a mechanism that allows us to avoid it. Traditionally, ma-
chine learning algorithms are also regularized to avoid overfitting
on the training data. Specifically, they do so by not allowing the
weights to take unnaturally large values. This ensures that behavior
of noisy input is not misclassified by the ML. This is done by an
additional factor(𝜆) in the convex optimization function:

𝑤∗
= 𝑎𝑟𝑔min

𝑤

𝑁∑

𝑖

| |𝑦𝑖 − 𝑓 (𝑥𝑖 ) | |
2
2 + 𝜆

∑

𝑖, 𝑗

𝑤2
𝑖 𝑗

6 SECURITY AND PRIVACY VIA QUAIL

In this section, we will describe how we can provide security and
privacy bounds for urban scenarios for client data. Security and
privacy of data is required by many applications such as statistics,
spatial distributions and weighted linear combinations for machine
learning. For the sake of simplicity, we will restrict our discussion
to retrieving weighted linear combinations of sensed information.

6.1 Security

We define security in QuAiL’s architecture as the ability of the base
station or a malicious adversary to measure a different weighted
linear combination from a given weighted linear combination. We
consider a passive adversary close to the base station that receives
signals over the air at high fidelity. We assume that all base station
queries are encrypted and the adversary has no access to private
information of clients and base stations. We also assume that the
number of clients far exceeds the number of codes and the fractional
power received from a single client on a given code relative to the
total power received on the code is negligible.

QuAiL’s security properties stem from a randomized matrix
𝑀𝑛×𝑛 applied to the set of weights𝑊𝑛×𝑚 . This matrix is initialized
by using a known seed at both clients and base station. Let’s say
QuAiL deployment has𝑚 sensors then the weight applied by the
sensors is MW. Remember that a matrix with random values is
almost always full-rank [12]. This randomization matrix provides
two benefits: (1) Security of client information by only allowing
the base station with the knowledge of M to decode the aggregates.
(2) Another attractive property of this randomization is it’s ability
to spread energy across the codes being used to communicate. As
described in Sec. 7, this improves the performance of QuAiL in
presence of base stations with ADC constraints.

Recall that for any sensed input 𝑥𝑚×1, an adversary perceives
the matrix𝑀𝑊𝑥 . Note that for all our applications, 𝑛 < 𝑚. In this
context, it is easy to see that our system is secure provided the
adversary cannot infer 𝑅𝑥 for some known rank-𝑛 matrix 𝑅𝑛×𝑚 ,
given𝑀𝑊𝑥 and no prior information on𝑀 and𝑊 , provided 𝑅 and
𝑀𝑊 are not equivalent. Below, we show a fundamental reason why
this holds: because𝑚 > 𝑛, there exists an infinite number of values
of 𝑥 that produce the same𝑀𝑊𝑥 . We prove the following theorem:

Theorem 6.1. For a fixed𝑊 , 𝑅 (rank-n) and 𝑥 , there is no func-

tion that uniquely maps 𝑀𝑊𝑠 to 𝑅𝑥 , provided 𝑅 and 𝑀𝑊 are not

equivalent and𝑀𝑊 ≠ 0.

Proof. It suffices to prove that for any 𝑅𝑥 , there is a 𝑥 ′ ≠ 𝑥 such
that 𝑅𝑥 ′ ≠ 𝑅𝑥 but 𝑀𝑊𝑥 = 𝑀𝑊𝑥 ′. Let us denote 𝑀𝑊 = 𝑄 . Since
𝑄 is an imbalanced 𝑛 ×𝑚 matrix, where 𝑛 < 𝑚, there exists a non-
zero null-space matrix 𝑄̃ of rank 𝑛 −𝑚 and dimensions (𝑛 −𝑚) ×𝑛

such that 𝑄𝑄̃ = 0. Let z be an arbitrary𝑚 × 1 vector. We define

𝑥 ′ = 𝑥 + 𝑄̃𝑧. Clearly 𝑥 ′ ≠ 𝑥 since 𝑄 is non-zero. It is easy to see

that 𝑅𝑥 ′ ≠ 𝑅𝑥 since 𝑅𝑄̃ ≠ 0 given that 𝑅 and 𝑄 are not equivalent.

It is also easy to see that 𝑄𝑥 = 𝑄𝑥 ′ since 𝑄𝑄̃ = 0. Given that there
are infinite ways to choose 𝑧 and therefore 𝑥 ′ and 𝑅𝑥 ′, it follows
that it is impossible to map 𝑄𝑥 uniquely to 𝑅𝑥 . □

6.2 Privacy

We define privacy as the inability of the base station to infer the
sensed value of a specific user with high probability, even with
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Figure 7: Evaluation Testbed : Channels were collected over

an 3 km2 area. Paths show the client location and Dot repre-

sents the base station location

complete knowledge of the weights. Our definition follows the
Fair Information principles [29] which emphasize minimization of
data collected beyond the purpose to which it is collected. We are
specifically interested in differential privacy [26], which states that
a change in sensed value of one client imposes a negligible change
in the distribution of powers perceived at the base station.

Mathematically, let𝑀𝑊𝑥 be received amidst additive Gaussian
noise with standard deviation 𝜎 and written as: 𝑅(𝑥, 𝜎) = 𝑀𝑊𝑥 +

N(0, 𝜎2)𝑛 . The base station has full knowledge of both𝑀 and𝑊 .
Let us define C as a set of possible values𝑀𝑛×𝑛𝑊𝑛×𝑚𝑥𝑚×1. Let us
assume 𝑥1 and 𝑥2 are two vectors of sensed inputs that differ in one
entry (one client). We define (𝜖, 𝛿)-differential privacy as [21, 26]:

𝑃𝑟 [𝑅(𝑥1, 𝜎) ∈ C] ≤ 𝑒𝜖𝑃𝑟 [𝑅(𝑥2, 𝜎) ∈ C] + 𝛿

The following theorem states that QuAiL’s approach is (𝜖, 𝛿)-
differentially private.

Theorem 6.2. The function 𝑅(𝑥, 𝜎) = 𝑀𝑊𝑥 + N(0, 𝜎2)𝑛 ,

where N(0, 𝜎2)𝑛 is (𝜖, 𝛿)-differentially private provided:

𝜎 ≥ ||𝑊 | |2
√
2 ln (2/𝛿)/𝜖

Proof. The proof follows directly from differential privacy liter-
ature ś Proposition-5 in [21], assuming that the noise distribution is
Gaussian with standard deviation 𝜎 and𝑀𝑊 is a 𝑛 ×𝑚 matrix. □

7 DISCUSSION AND LIMITATIONS

In this section, we discuss some of the key issues one may face
while deploying QuAiL with current infrastructure and some of the
solutions for mitigating them.

Base station ADC saturation: The first obvious issue QuAiLmay
encounter is that fact that receiving codes with such wide range of
powers might overwhelm the ADC. Indeed, even powerful SDRs
have ADCs which span across just 16dB of SNR. Thus, it is imper-
ative for QuAiL to normalize the powers or equalize the energy
distribution for base stations to even register the received power.

QuAiL resolves this problem by using the randomization matrix
M described in Sec. 6.1. Indeed, along with providing exciting se-
curity properties, the randomization matrix spreads energy across
the codes to retrieve the linear combinations. This leads more com-
parable powers Yet, powers across codes is also governed by the

clients data. With the correct skew of data, one may observe large
changes in power which must be handled via smart dynamic AGCs.

Parallel Decoding for LP-WANs: Recent work has exploited the

orthogonality of LP-WAN codes to decode multiple packets out of a
collision of multiple packets. One such approach Choir[11] shows
6× throughput improvement over conventional LoRaWAN trans-
missions. QuAiL presents an interesting opportunity in leveraging
these approaches to retrieve more accurate and richer aggregate
estimates. QuAiL can require clients to encode their energy in fre-
quency shifted codes that can be decoded parallely using above
approaches. This will allow QuAiL to retrieve multiple aggregates
within the duration of a single packet. Results in Sec.8.3 demon-
strate how QuAiL can be actively combined with Choir to achieve
superior performance to either scheme individually.

Impact on client battery life: One would think that QuAiL’s ap-

proach would drain the client battery life due to every client trans-
mitting for every query. Yet, this is not true. QuAiL’s approach
does not claim to sacrifice the attractive properties of long battery
lives provided by LP-WANs in lieu of achieving high latency aggre-
gation. Instead, QuAiL intends to provide an approach which can
enable a complimentary ability to query massive number of clients
at low-latency with high fidelity to current LP-WAN standards. As
the frequency of such queries will be small, the effect on battery
life of clients will be marginal.

However, one can make QuAiL more power efficient by asking
the clients to reduce their transmit power equally. However, this
will make QuAiL more susceptible to spurious noise providing
the ability to trade-off accuracy for battery life. Results in Sec. 8.2
demonstrate the resilience of QuAiL in presence of noise.

Impact of errors: QuAiL’s approach to recover spatial distribu-

tions incurs small errors in estimating individual sensed values.
One may wonder how this compares to normal sparse sampling.
For example, consider a flooding example. While QuAiL might be a
better approach to detect areas which are flooded, one may need to
query individual sensors to retrieve the amount of exact flooding
in a specific area. Thus, it is recommended to use QuAiL only to
recover a coarse view of the underlying sparse distribution. Yet,
QuAiL’s approach remains useful to get a coarse estimate of an area
even with an inoperational sensor from nearby areas’ information.

Limitations: While QuAiL presents a complimentary solution to
current LP-WAN protocols for massive aggregate queries over large
number of clients, QuAiL has the following limitations:
• Co-existing with non-QuAiL clients, noise and interfer-

ence: While results in Sec. 8.2 demonstrate resilience to spurious
noise and interference, QuAiL errors do grow with interference
and noise beyond a limit. While LP-WAN transmissions are inher-
ently resilient to collisions [11], a non-QuAiL transmission in the
same time and frequency can interfere with QuAiL performance.
We rely on higher-layer MAC protocols (e.g. ARQ and exponen-
tial backoff) to minimize impact of such collisions. While QuAiL
may suffer from dynamic channels causing large errors due to
mobility, QuAiL’s analog CRC will allow QuAiL to identify if the
effect on result will be significant. Same holds true even when a
client goes to sleep or another client joins the base station.

• Synchronizing queries and communicating weights:

Our approach, understandably, can only retrieve measurements



Quick (and Dirty) Aggregate Queries on Low-Power WANs

(a) (b) (c)

Figure 8: Microbenchmarks: (a) Average processing and timing jitter of various LP-WAN clients (b) Received Power (in dB)

with QuAiL deployment of 10 clients (c) Received Power (in dB) for large number of clients using trace-driven emulation

from sensors that are currently not in deep sleep modes, where
their RF frontends are switched off until a scheduled future time.
Clients will need to be told a rough estimate of time of QuAiL
queries and the weights to use for various different applications
operating on them . This fundamentally limits the number of
different queries that a client can respond to. Instead, we rely
on the fact that the client can infer the weights of most non-
ML queries by just using their location and received RSSI. This
will significantly lower the problem for storing the weights yet
remains a critical problem for evolving ML solutions.

8 IMPLEMENTATION AND EVALUATION

We implement QuAiL using FSK and LoRa radios on Semtech
SX1276 radios to communicate with an Ettus USRP N210 emu-
lating the base station. We collect more than 150,000 GPS-location
and time stamped channel measurements across 3 km2 area includ-
ing geographical obstacles such as large buildings, hills, rivers in
Pittsburgh. We then emulate collisions using the collected channels
to evaluate our system at scale.

We build a light-weight NB-IoT and LoRa QuAiLstack including
the NP-RACH in C++/Gnuradio on the USRP base station. Our
experiments first train weights (𝑤𝑖 𝑗 ) of the machine learning model
under consideration based on raw data. These weights are then pro-
vided to the clients for transmitting the appropriate energy across
codes. The base station receives the signals at the base stations and
measures the power for all the codes to decode them. This decoded
vector is used by the neural network for performing the desired in-
ference task. We measure three quantities of interest: (1) Quality of
the solution against the ground-truth (pre-labeled data); (2) Latency
of communication (3) Benefit over sparse sampling approaches.
Error bars in all experiments represent one standard deviation.
Real-time vs. Emulation at Scale: All of our experiments with
up to 10 nodes engineer collisions in real-time. Collisions of a larger
size (up to 10,000) are emulated using real-channel measurements
of our 10 nodes available across 30,000 GPS locations at 5 different
frequencies across time stamps2. Note that we store the raw I/Q
samples which preserve all radio offsets of both the client and the
receiver. We add measurements of channels concurrently across
devices while preserving radio offsets and adding additive white
Gaussian noise to the result based on observed noise distributions
at the base station. We consider 20 orthogonal RACH codes and

2Data and Code is available at [2]

180 kHz of bandwidth for NB-IoT and 125 kHz of bandwidth for Lo-
RaWAN clients unless specified otherwise. To ensure repeatability,
each client transmits sensed data from public datasets (see below).

8.1 Micro-Evaluation
In this section, we evaluate how QuAiL operates with 10 clients
simultaneously communicating with the base station.

Timing Jitter: It is a critical assumption in QuAiL that clients are

able to compute time with a high enough accuracy in the presence
of frequency offsets. Indeed, our channel estimation and timing
offset correction abilities rely on the ability of clients to measure
time correctly. We evaluate 3 of the popular LoRaWAN clients being
widely used by users. Note that our evaluation of NB-IoT clients
also uses the SemTech SX1276 chip in FSK mode. We use the sample
Ping-Pong code in each client to evaluate the randomness in delay
of transmission. We plot this as the processing jitter. We then make
one of clients add a known increasing delay across packets and
measure the ability of clients to measure time. We measure the
average error and it’s standard deviation.
Result: One sample at 125 KHz bandwidth is approximately repre-
sentative of 8𝜇𝑠 or 2.4km of distance travelled. We oversample the
signal at 10 MHz to detect the variance in the delay received. As
we can see in Fig 8a, for 2 of the popular chips the delay is within
a limit of 1 sample. However, Adafruit Feather board had a large
variance in timing of the signal. We surmise this could be either be
due to faults in the specific boards or due to some intrinsic compo-
nent being less capable. This shows how our correlation preambles
(Fig. 4) would be able to capture all the signals.

Powers adding up: The most important result to verify the oper-

ation of QuAiL was to verify upon compensating for channels and
timing offsets whether clients signals do really add up. We used 10
SX1276 clients in FSK mode sending energy in one NB-IoT subcar-
rier. Each client attempts to synchronize it’s transmit power using
approach presented in Sec. 4.1, lowering it to make client signal
reach base station at power 3dB less than query signal. We then
make the clients join the network one by one across queries.We
run these experiments 100 times each. We also use our 150,000
collected channels from 30,000 GPS tagged locations to emulate
client collisions upto 10,000 clients.
Results: As you can see in Fig. 8b, the powers of the added up
signals add up linearly in received power.While the effect of powers
adding up linearly is indeed being followed, we see how that effect is
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Figure 9: Forest Fire Case Study: (a) Error in information recovered across number of queries (b) Number of queries required

to recover certain percentile of information (c) Evaluation ofQuAiL across various SNRs

randomized at low number of clients (law of large numbers helps).
As we use the collected channel data for collisions, we see the
randomized effect start to be marginalized and linear adding up of
powers takes the precedent as shown in Fig. 8b.

8.2 Case study: Forest Fires
The key motivation for QuAiL was to help detect real-time disaster
events such as forest fires, flooding and earthquakes. Yet, there does
not exist any deployment that leverages large number of clients
to sense information regarding such events (satellite images and
specialized instruments are preferred). However, there has been
plethora of work on predicting spread of forest fires. In fact, there
is a widely accepted model that relies on fractal spreading of fire
across large areas. We thus rely on this model[39] to emulate a
10km×10km area with 10,000 clients, each client occupying a cell of
100m×100m. All experiments are repeated over 1,000 times using
different channels for each client from our collected channel dataset.
Our aim is to retrieve the underlying distribution of burnt, burning
and green areas during forest fire. We specifically assign the sensed
values as follows: 0 → 𝐵𝑢𝑟𝑛𝑡 ; 1 → 𝐵𝑢𝑟𝑛𝑖𝑛𝑔; 0.5 → 𝐹𝑜𝑟𝑒𝑠𝑡 . The
valueswere assigned, assuming a client senses temperature, burning
trees will have a higher temperature while clients in far away forest
will function normally. Of course, burnt clients cannot transmit.
We use two baselines for evaluation: (a) ideal scheme where the
base station knows all the DCT components; (b) sparse sampling

scheme where the base station queries one client every query and
interpolates the field. Error is measured as every cell predicted
incorrectly, normalized over the 10000 cells. Note that ideal scheme
also has error bars since the results were averaged across various
runs of the forest fire model.

Note that this scenario is particularly designed to favor sparse
sampling technique baseline where it can query clients one by
one. It simply has to luck out to estimate a burning area. We even
allowed it to detect burnt clients as absence of signal. Despite these
benefits, a key result of our case study shows that linear sparse
aggregates obtained by QuAiL always perform significantly better

than individual sparse sampling.

Spatial Distribution Error: The first component to evaluate is

the ability of approaches to estimate the underlying distribution of
the area with fire spread of 3 hours. we evaluate the ability of QuAiL
to estimate the underlying spatial field using the DCT domain. We

compare QuAiL’s performance in computing and retrieving the
sparse distribution with the two baselines.
Result: We see in Fig. 9a, that across experiments, as we increase
the number of queries the error in estimation of the underlying
field decreases for all three approaches. However, the error is still
2.36× worse for sparse sampling over QuAiL due to the constraint
of querying individual client. Indeed, upon further investigation,
we see that the majority of excess error in sparse sampling is due
to over or under-estimation of the fire spread.

Latency of Detection: Another key benefit of QuAiL is that of

finding anomalous behaviour in a sparse field faster than sampling
individual clients. However, it is critical to get the last 10% of in-
formation from the sparse field to detect these forest fires. As we
saw in the previous results, it is these last shreds of information
that can aid prevention services to reach the affected area. We thus
evaluate the ability of the three approaches to be able to retrieve
90%, 95% and 97.5% of information of burnt areas.
Result: Fig. 9b shows that retrieving the bottom 90% of informa-
tion from a sparse domain was relatively easy for each approach
while remaining useless for the application at hand. As we move
to retrieving more fine-grained information, we see that QuAiL
can give 97.5% information upto 4x faster. Note again, this is the
best case scenario for individual sparse sampling. This shows the
benefit of QuAiL to rely on linear sparse domains to completely
outclass sparse sampling in retrieving sparse spatial distributions.
Robustness to Noise: Another key factor that affects most wire-
less systems is the presence of interference and spurious noise. We
add additional spurious noise to the received signal to identify the
performance of QuAiL in such spurious noise scenarios. We have
also highlighted some limitations regarding this in Sec. 7. Our SNR
is measured such that at 0 dB SNR the farthest client transmission
at highest transmit power will be just about decoded under noise.
We measure the error in recovered information after 10 queries.
Result:We can observe in Fig. 9c that as the SNR worsens, much
of the information for clients with frequency offsets which did not
add up with the ensemble is lost. Despite these losses, we can still
retrieve upto 88-90% of the underlying spatial information. Remem-
ber that the noise is so high that the base station will not be able to
listen to a normal client in such a circumstance. The performance
drastically improves as the noise is lowered, QuAiL reaches al-
most ideal performance. This shows the benefit of QuAiL’s signals’
powers adding up enabling even to tackle spurious noise.
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Figure 10: Applications: (a) Effect of sparsity on QuAiL’s performance (b) Comparison of QuAiL’s performance with parallel

decoding technique Choir[11] (c) Scatter plot ofQuAiL’s ability to compute approximate convolutions on [20]

8.3 Applications and Limits
Here, we will discuss the ability of QuAiL to operate in various
sparsity scenarios, compute convolution filters and statistics, and
limits of squeezing orthogonal codes in NB-IoT RACH.

Importance of Sparsity: QuAiL relies on the underlying sparsity

of information. Yet, not all fields are sparse to extract information
from just a few queries. We evaluate this by first testing the capa-
bilities of QuAiL vs. the ideal and sparse sampling approach over a
uncorrelated set of random values assigned to each sensor. Next, we
evaluate a sparse domain whose underlying sparse domain may be
unknown to us yet exists. Finally, we evaluate QuAiL on a domain
whose sparse information is known to the algorithm. We measure
the normalized error across queries.
Result: Fig. 10a shows that in a dense domain all the three ap-
proaches perform miserably with each pixel retrieving only one
pixels information. This shows that in a dense domain there does
not exist any solution other than querying every client. Next, we see
that QuAiL is able to extract more information without necessarily
the optimum information per query despite the sparse domain be-
ing unknown. Finally, with the knowledge of sparse domain, we see
that QuAiL achieves almost optimum performance as achievable
by oracle knowledge of sparse domains.
Comparison with Parallel Decoding Techniques:Recentwork

has proposed novel approaches to detect and decode multiple pack-
ets from collided packets. To demonstrate the scalability of QuAiL
as well how it can be applied complementary to those approaches,
we present a comparison with Choir[11] to identify the scale at
which QuAiL performs better. In fact, if clients were to commu-
nicate with knowledge of these offsets we can implement QuAiL
complementary to Choir as well. We measure the normalized error
across queries for identifying the mean and standard deviation of
uniform and normal distributed data. We allow only one query for
mean and two queries for standard deviation.
Result: Fig. 10b shows that the number of clients at which QuAiL
performs better than Choir depends on the distribution of the data
as well as the computed aggregate. Our evaluation demonstrates
that, with 99% confidence, QuAiL will outperform Choir when there
exist more than 57 clients in all four cases. Further, using QuAiL
complementary to Choir, outperforms both of the above approaches
demonstrating the promise of QuAiL’s approach.

Convolution Filters:We described in Sec. 5.2 the importance of
convolution for various image processing and machine learning
tasks on spatial information. We go back to the first paper[20] that
used these filters to bring the accuracy of number text accuracy
to 96%. When we train the convolutional neural network, we pick
out the first layer of convolutions applied on the data sets. We then
apply these convolutions along with DCT as described in Sec. 5.2
to evaluate the ability of QuAiL to retrieve sparse representations
of the convolution. Each input is a 784 pixel image, and we enable
100 queries to estimate the convolution of the underlying image.
Result: We see that the median error across the 8 convolutions
chosen is about 0.059% (Fig. 10c). Firstly, this shows that even con-
volutions have a underlying sparse image. Next, this highlights
the ability of QuAiL to quickly get great estimates of convolution
on sparse distributions without the overhead of missing out on
fine-grained information. Finally, this shows the promise of QuAiL
in enabling ML solutions on spatial distributions being sensed.
Statistics: Another benefit of QuAiL is the ability to estimate vari-
ous statistics on the sensed information across clients in a single
query. To get data for various clients, we sample client data from
[25] dataset, where each of our client chooses one vector of the
data. Then, compute the statistics as described in Sec. 5.1 to evalu-
ate QuAiL’s ability. We also enable the randomization matrix M to
study the excess error caused due to inversion at the base station.
Result: We see in Fig. 11a that we can compute most statistics
within an error bound of 5%. While this may seem excessive, re-
member that we are computing the exact value of a quantity. This
leads to even small errors leading to high normalized error. These
bounds are only for a single query. With more number of queries,
we can reduce this bound significantly by repeating and randomiz-
ing queries differently.
NB-IoT code limits for QuAiL: Finally, we evaluate how finely

can we divide the RACH spectrum in NB-IoT into various codes.
Currently, RACH spectrum is divided into 48 parallel frequency
bands and these operate in highly frequency synchronized clients.
We evaluate QuAiL on estimating the average occupancy of building
by sampling client data for each room from [8] dataset. We build a
neural network whose input vector is 40000 sized and use various
number of first hidden layer neurons as codes available. Typically,
more neurons lead to higher accuracy.
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Figure 11: Limits: (a) Error in estimating statistics on [25]

using QuAiL (b) Performance of QuAiL across number of or-

thogonal NB-IoT codes within 200KHz

Result: As described in Fig. 11b, we see that the accuracy increases
as we increase the number of orthogonal codes. This is expected as
the number of hidden neurons also increased. Yet as we increase
the number of neurons further we reach a bottleneck as clients’
frequency offsets start placing them in incorrect frequency bins.
This shows the fundamental limit on orthogonal NB-IoT codes that
can be squeezed in the available RACH spectrum.

9 CONCLUSION

The paper present, QuAiL, an LP-WAN solution for retrieving ag-
gregate queries on thousands of clients within the duration of a
single packet. QuAiL’s approach relies on linear addition of pow-
ers of phase-asynchronous channels in the air to program these
queries. QuAiL achieves this without modifying clients and is yet
compatible to both major LP-WAN technologies, LoRa and NB-IoT.
QuAiL achieves 4× faster aggregation of representation of forest
fire maps and 2.36× lower error when the same number of queries
are used over individual sparse sampling.

QuAiL’s approach opens a interesting opportunity ś how do you
design LP-WANs where aggregate information is more useful than
individual information. While individual information is important
for parking and electricity meters, there is a massive untapped
opportunity for LP-WANs to empower smart cities via aggregate
queries detecting epicenters of earthquakes, flooding maps, forest
fires faster and being able to diffuse such situations faster.
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