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Abstract
Control and manipulation are two of the most studied types of attacks on elections. In this
paper,we study the complexity of control attacks on elections inwhich there aremanipulators.
We study both the case where the “chair” who is seeking to control the election is allied
with the manipulators, and the case where the manipulators seek to thwart the chair. In the
latter case, we see that the order of play substantially influences the complexity. We prove
upper bounds, holding over every election system with a polynomial-time winner problem,
for all standard control cases, and some of these bounds are at the second or third level
of the polynomial hierarchy, and we provide matching lower bounds to prove these tight.
Nonetheless, for important natural systems the complexity can be much lower. We prove that
for approval and plurality elections, the complexity of even competitive clashes between a
controller and manipulators falls far below those high bounds, even as low as polynomial
time. Yet for a Borda-voting case we show that such clashes raise the complexity unless
NP = coNP.
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1 Introduction

Elections are an important tool in reaching decisions, in both human and online settings.
Regarding online settings, elections have been proposed in such varied, multiagent-systems
settings as planning, recommender systems/collaborative filtering, and web spam reduction
[18,21,37,58]. With the growing importance of the online world and multiagent systems,
the use of elections in computer-based settings will but increase. Unfortunately, given the
relentless growth in the power of computers, it is natural to worry that computers will also
be increasingly brought to bear in planning manipulative attacks on elections. Indeed, this
is one of the central concerns of the relatively young multiagent systems subarea known as
computational social choice [8,9].

Two of the most computationally studied types of attacks on elections are known as “con-
trol” and “manipulation.” Bartholdi et al. [3] defined the basic (constructive) control types
and initiated their complexity-theoretic study. Manipulation has roots going back long before
the work of Bartholdi, Orlin, Tovey, and Trick, but Bartholdi, Orlin, Tovey, and Trick [1,2]
initiated the complexity-theoretic study ofmanipulation. In control, an agent, usually referred
to as “the chair,” tries to make a given candidate win by adding/deleting/partitioning voters
or candidates. In manipulation, some nonmanipulative voters and a coalition of manipulative
voters vote under some election system, and the manipulative voters seek to make a given
candidate win. Note that both of the problems of control andmanipulation can also be studied
in the so-called destructive case [14,42] where the goal of the chair (or the manipulators) is
to ensure that a despised candidate does not win.

There is a broad literature on the computational complexity of control and manipula-
tion (see, e.g., the surveys [15,23,28,30,45]). However, the present paper considers control
attacks against elections that contain manipulators. We consider both the cooperative and
the competitive cases.

In the cooperative case, the chair is allied with the manipulative coalition. For example,
perhaps during a CS department’s hiring, the department chair, who happens to also be the
senior member of the systems group, is mounting a control by partition of voters attack
(in which he or she is dividing the faculty into two subcommittees, one to decide which
candidates are strong enough teachers to merit further consideration, and the other to decide
which candidates are strong enough researchers to merit further consideration), and also is
able to directly control the votes of every one of his or her fellowmembers of the department’s
systems faculty. The chair’s goal is to make some particular candidate, perhaps Dr. I. M.
Systems, be the one chosen for hiring.

In the even more interesting competitive case, which can be thought of in a certain sense
as control versus manipulation, we will assume that the manipulative coalition’s goal is to
keep the chair from achieving the chair’s goal. For the competitive case, we will look at the
case where the chair acts before the manipulators, and at the case where the manipulators
act before the chair. For control attacks by so-called partition, in which there is a two-round
election, we will consider the case where the manipulators can change their votes in the
second round, and the case where the manipulators cannot change their votes in the second
round.

Our main contributions are as follows.

– Building on the existing notions of control and manipulation, we give natural definitions
that capture our cooperative and competitive notions as problems whose computational
complexity can be studied, and we note how existing hardness results for control and
manipulation are, or are not, inherited by our problems.
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– We prove upper bounds on our problems. For the competitive case, these are as high as
NPNP, coNPNP, and coNPNP

NP
, with the notable exception of the case of deleting voters

in the “chair-first” setting, which is in coDP, i.e., it is the union of an NP set and a coNP
set.

– Despite how high those upper bounds are, we show that there are election systems (having
polynomial-time winner problems) for which most of those high bounds have matching
lower bounds, yielding completeness for those classes.

– For the important election systems approval, Condorcet, and plurality, we show that the
complexity of control in the presence of manipulators, whether cooperative or competi-
tive, can be much lower than those upper bounds, even falling as low as polynomial time.
Many of the proofs of these cases involve interesting approaches that are quite different
from merely seeking to adapt those used in the case of control without manipulators.

– We obtain results, for election systems satisfying versions—called WARP and unique-
WARP—of the weak axiom of revealed preferences, on the complexity of control by
runoff partitioning of candidates.
The general theme of those results is that the combinatorial explosion that causes many
partition-related candidate-control problems to be NP-complete can never exist for elec-
tion systems that satisfy certain nice properties, such as WARP and unique-WARP. In
particular, we will show that such properties can change the challenge facing the chair
(of a control problem) from that of needing to worry about every partition to just that
of checking one very simple partition. From this, polynomial-time control algorithms
immediately follow, as we will see.
The reason that this is interesting is that it is not applying just to one particular system,
but rather is noting that some nice behavioral properties themselves ensure the simplicity
of certain candidate-partition control problems for all systems having the properties.

– We also obtain cases, for veto (Theorem4.12) andBorda (Theorem4.13) elections, where
competitive control-plus-manipulation is variously easier or harder than onemight expect
from the separate control and manipulation cases.

2 Related work

The idea of enhancing control with manipulative voters has been mentioned in the literature,
namely, in a paragraph of Faliszewski et al. [24]. That paper cooperatively integrated with
control, to a certain extent, a different attack type known as bribery [22]. In that paper’s
conclusions and open directions, there is a paragraph suggesting that manipulation could
and should also be integrated into that paper’s “multiprong setting,” and commending such
future study to interested readers. That paragraph was certainly influential in our choice of
this direction. However, it is speaking just of the cooperative case, and provides no results
on this since it is suggesting a direction for study.

The lovely line of work about “possible winners” [49] in the context of adding candidates
might at first seem to be merging manipulation and control. We refer to the line of work
explored in [4,10,11,68]. That work considers an election with an initial set of candidates,
over which all the voters have complete preferences, and a set of additional candidates over
which the voters initially have no preferences, and asks whether, if the entire set of additional
candidates is added, there is some way of extending the initial linear orders to now be over
all the candidates, in such a way that a particular initial candidate becomes a winner of the
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election. Although on its surface thismight feel like a cross betweenmanipulation and control
by adding candidates, in fact, in this interesting problem there is no actual choice regarding
the addition of candidates; all are simply added. Thus this problem is a generalization of
manipulation (as the papers note), that happens to be done in a setting that involves adding
candidates. It is not a generalization of control by adding, or even so-called unlimited adding,
of candidates, as in those the chair must choose what collection of candidates to add. In short,
unlike control and unlike this paper, there is no existentially quantified action by a chair. (An
interesting recent paper of Baumeister et al. [5] uses the term possible winner in a new,
different way, to speak of weights rather than preferences initially being partially unset. That
particular paper’s question, as that paper notes, can be seen as a generalization of control by
adding and deleting voters. However, their notion is not a generalization of manipulation.)

The present paper does combine control and manipulation, with both those playing
active—and sometimes opposing—roles. Manipulation alone has been extensively studied
in a huge number of papers; its complexity-theoretic study started with the seminal work
of Bartholdi et al. [2] (see also [1]), which covered the constructive case. The destructive
cases (i.e., those where the goal is to keep a particular candidate from winning) are due to
Conitzer et al. [14]. Control alone has been extensively studied in many papers. The seminal
control paper is by Bartholdi et al. [3] and covered the constructive case. The destructive
cases were first studied by Hemaspaandra et al. [42]. There has been quite a bit of work on
finding systems for which conducting various types of manipulation is hard, or for which
conducting most types of control attacks is hard, see, e.g., [19,20,27,43,51,52,57] or the
surveys [15,23,28,30].

In the present paper, we will see that who goes first, the chair or the manipulators, is
important in determiningwhat complexity upper bounds apply. Order has also been seen to be
important in the study of so-called online control attacks [46,47], and of online manipulation
attacks [44]. However, the papers just mentioned are separately about control, and about
manipulation. In contrast we are mostly interested in when both are occurring, and especially
when the two attacks are in conflict with each other.

Recent papers by Yin et al. [71] and Elkind et al. [17] each study control scenarios
in settings where there is an “attacker” seeking to modify the election to attain his or her
preferred outcome and a “defender”whose goal is to preserve the original outcome. However,
this attacker–defender setting is essentially a competitive version of control in the case of
Yin et al. and of bribery in the case of Elkind et al., and both cases are quite different from
our model of control-plus-manipulation.

The present paper also looks at how revoting affects the complexity of elections that
involve both control and manipulation. It is important to mention that, for the case of just
manipulation, Narodytska andWalsh [54,55] (see also [35]) have recently discussed revoting,
and give an example that shows that revoting can sometimes be a valuable tool for the
manipulator.

3 Preliminaries

An election system (a.k.a. a social choice correspondence) maps from a finite candidate setC
and a finite vote collection V to a set, W ⊆ C , called thewinner(s) [62]. Candidates each have
a corresponding name, and these names play an important role in some of our results. Voters
come without names, and the votes are input as a list, i.e., as ballots. For approval elections,
each ballot is a length-‖C‖ 0-1 vector indicating whether each candidate is disapproved or
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approved. The candidate getting the most approvals is the winner (or winners if candidates
tie for most). For all other systems we discuss, each ballot is a tie-free linear ordering of the
candidates. For plurality elections, each voter gives one point to his or her top choice and zero
to the rest. For veto elections, each voter gives zero points to his or her bottom choice and
one to the rest. For Borda elections, each voter gives zero points to his or her bottom choice,
one point to his or her next to bottom choice, and so on through giving ‖C‖ − 1 points to
his or her top choice. In the three systems just mentioned, the winner is the candidate(s) who
receives the most total points. We also consider the Condorcet election system. Bartholdi
et al. [3] recast the notion of a Condorcet winner [12] into an election system, and used it as
one of their focus cases in their seminal control study. A candidate p is a Condorcet winner
exactly if for each other candidate b it holds that strictly more than half the votes cast prefer
p to b. Unlike the systems mentioned earlier in this paragraph, Condorcet elections on some
inputs may have no winners.

An election system E is said to have a polynomial-time winner problem if there is a
polynomial-time algorithm that on input C , V , and p ∈ C , determines whether p is a winner
under E of the election over C with the votes being V .

We assume the reader is aware of the NP, coNPNP, NPNP, and coNPNP
NP

levels of the
polynomial hierarchy (the “exponentiation” notation denotes oracle class, informally put,
having unit-cost access to a set of one’s choice from the given class) [53,63]. DP is the class
of languages that are the difference of two languages in NP [56]. We assume that the reader
is familiar with many-one reductions (which here always means polynomial-time many-one
reductions). As is standard, we use ≤p

m to denote many-one reductions. There are far fewer
completeness results for levels of the hierarchy beyondNP, such as the abovementioned ones,
than there are for NP; a collection of and discussion of such results can be found in Schaefer
and Umans [60,61]. Completeness and hardness here are always with respect to many-one
reductions.

For proofs of hardness for higher levels of the polynomial hierarchy we reduce from
Quantified Boolean Formulas (QBF)where formulas are restricted to k alternating quantifiers
where each quantifier quantifies over a list of boolean variables. The problemQBFk is the case
of k alternating quantifiers beginning with ∃ and similarly ˜QBFk is the case of k alternating
quantifiers beginning with ∀; QBF2 is NPNP-hard, ˜QBF2 is coNPNP-hard, and ˜QBF3 is
coNPNP

NP
-hard [64,67]. In all our proofs using QBFk or ˜QBFk we assume without loss of

generality that the same number of variables are bound to each quantifier.
Our hardness results are worst-case results. However, it is known that if there exists even

one set that is hard forNP (and note that all sets hard for coNPNP,NPNP, or coNPNP
NP

are hard
for NP) and has a (deterministic) heuristic algorithm whose asymptotic error rate is subexpo-
nential, then the polynomial hierarchy collapses. See Hemaspaandra and Williams [48] for
a discussion of that, and an attempt to reconcile that with the fact that in practice heuristics
often do seem to do well, including for some cases related to elections, see, e.g., Walsh [66].

The reader may wonder why we seek to obtain completeness results for these problems,
given that the completeness results are for quite “hard” classes such as NPNP, coDP, etc.—
classes that are known to contain NP, which itself is already believed to be intractable. The
answer is that completeness results pinpoint the nature and source of a problem’s hardness.
For example, NPNP is known to capture the power of computation that can be characterized
by the quantifier pattern ∃∀ (see [64,67]) and coDP is capturing the power of sets that can
be described as the union of an NP set and a coNP set. By obtaining a completeness result
for a problem, we clearly frame the problem’s nature. Also, although the just-mentioned
classes each are included in P if and only if NP is included in P, that kind of stand-or-fall-
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together result is not currently known to hold regarding certain other modes of computation.
For example, it is an open question whether NP ⊆ R (randomized polynomial time [38])
implies that coDP ⊆ R. And so proving that a set is coDP-hard rather than merely NP-hard
does provide a potentially heightened level of evidence that the set is not likely to be in R.
Similarly, regarding UP (unambiguous polynomial time [65]), it is not known that NP ⊆ UP
implies coDP ⊆ UP. Thus a coDP-hardness lower bound may be an improvement over an
NP-hardness lower bound in terms of providing evidence that a given problem is not solvable
by unambiguous nondeterminism.We refer the reader to thework ofHemaspaandra et al. [41]
for more discussion—there in the context of the issue of NP-hardness versus hardness for
so-called parallelized access to NP—of such cross-model issues. In addition to the above,
we mention that a particularly interesting consequence of proving completeness for a quite
“hard” class such as NPNP is that it changes the go-to set of tools that one might use to
heuristically approach the set. For example, if a set is NP-complete, SAT solvers may well
be an excellent approach; but in contrast if a set is known to be NPNP-complete, SAT solvers
likelywould not be a productive approach, and onemight instead consider usingASP (answer
set programming) solvers [16]. Indeed, an ASP-solver approach has recently been used on
NPNP-complete control problems in voting [36].

3.1 Types of electoral control

We now briefly define all standard control types. For a more formal description we refer
the reader to the detailed definitions given in Faliszewski et al. [27]. Given as input an
election, (C, V ), a distinguished (preferred or despised) candidate p ∈ C , and an integer
k ≥ 0, the constructive (respectively, destructive) control by deleting voters—for short CCDV
(respectively, DCDV)—problem for an election system E asks whether there is some choice
of at most k voters such that if they are removed, p is a winner (respectively, is not a winner)
of the given election under E . We are in the so-called nonunique-winner model, and so we
ask about making p “a winner” rather than “the one and only winner,” which is the so-
called unique-winner model. Each of those problems has an adding voters (AV) analogue, in
which one has a collection of registered voters, and has a collection of “unregistered” voters,
and the question is whether there is some choice of at most k voters from the collection of
unregistered voters such that if they are added, the goal is met. These types of control are
motivated by issues ranging from voter suppression to targeted phone calls to get-out-the-
vote drives. There are the natural analogous types for adding and deleting candidates, AC
and DC (note: in the destructive control by deleting candidates case—DCDC—deleting p is
not allowed [42]).

The partition types are called runoff partition of candidates (RPC), partition of candi-
dates (PC), and partition of voters (PV). In each of the three partition control types, the
input is (C, V ) and p ∈ C , and a two-stage election is performed. In RPC, the constructive
(destructive) question is whether there exists a partition of C into C1 and C2 such that two
initial elections are held, (C1, V ) and (C2, V ) with winner sets W1 and W2, respectively, and
p is (is not) a winner of the runoff election (W1 ∪ W2, V ). (Though we write “V ” for the
voter set in each subelection, that implicitly means V masked down just to the candidates
at hand in the subelection; the analogous issue holds regarding the DC case; and in the AC
case, the voters’ preferences are over the set of all registered and unregistered candidates
and are also similarly masked down when called upon.) Here, there are two models for what
“survive” means. In the ties eliminate (TE) model, to move forward one must uniquely win a
first-round election; in the ties promote (TP) model, it suffices to be a winner of a first-round
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election. The PC case is similar, but the winners of the election (C1, V ) move on to a runoff
with all the candidates in C2.1 In PV, we instead consider a partition of the collection of
voters V into V1 and V2 where the runoff consists of the candidates that survive at least one
of the elections (C, V1) and (C, V2).

3.2 Manipulation

As to manipulation, the constructive (destructive) unweighted coalitional manipulation
CUCM (DUCM) problem under election system E has as input (C, V ), p ∈ C , and a col-
lection of manipulator voters (coming in as blank slates, e.g., input as a string 1 j to indicate
there are j of them), and the question is whether there is some way of setting the votes of the
manipulative coalition so that p is (is not) a winner of the resulting election under system E
with those votes and the nonmanipulative votes both being cast.

3.3 Control-plus-manipulation

Our model of allowing control in the presence of manipulators varies the standard control
definitions to allow some of the voters to be manipulators, and thus to come in as blank
slates. We mention that for AV, it is legal to have manipulators among the registered and/or
the unregistered voters. For the cooperative cases, the question iswhether the chair can choose
preferences for the manipulators such that, along with using his or her legal control-decision
ability for that control type, p can be made (precluded from being) a winner. We denote these
types by adding in an “M+,” e.g., plurality-M+CCAV. For the competitive cases, we can
look at the case where the manipulative coalition sets its votes and then the chair chooses a
control action, and we call that MF for “manipulators first.” Or we can have the chair control
first and then the manipulators set their votes, which we call CF for “chair first.” Since the
manipulators seek to thwart the chair, the case Borda-CCAV-MF, for example, asks whether
under Borda, no matter how the manipulative voters, moving first, set their votes, there will
exist some choice of at most k unregistered voters that the chair can add so that p is a winner.
For partition cases, we add the string “-revoting” to indicate that after the first-round elections
occur, the manipulators can change their votes in the runoff. Notice that for a given control
action (and a given election system E), the CF case (viewed as a set, i.e., the set of all inputs
where the chair is successful) is a subset of the MF case (similarly viewed as a set), since if
there exists a control action such that for all manipulations the chair is successful, then the
chair is successful with this same control action when the manipulators go first.

Below, we formally state the control plus manipulation action of constructive control by
deleting voters (CCDV) for the collaborative (M+), chair-first (CF), and manipulator-first
(MF) cases.

Name: E-M+CCDV/E-CCDV-CF/E-CCDV-MF
Given: An election (C, V ∪ W ) (where V and W denote the nonmanipulative

and manipulative voters respectively), a preferred candidate p ∈ C , and
a delete limit k ∈ N.

1 Work byHemaspaandra, Hemaspaandra, andMenton has shown that in the nonuniquewinnermodel some of
the seemingly different standard control problems in fact are identical, as to when the given type of control can
be successfully accomplished. In particular, Hemaspaandra et al. [40] have proven that for each election system
E , and for each given election (C, V ) and each candidate p ∈ C , p can be made a nonwinner by partitioning
of candidates in the TE model (respectively, the TP model) if and only if p can be made a nonwinner by runoff
partitioning of candidates in the TE model (respectively, the TP model) [40].
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Question (M+): Does there exist a subcollection V ′ ⊆ (V ∪ W ) such that ‖V ′‖ ≤ k, and
a way to set the votes of the manipulators, such that p is a winner of
(C, (V ∪ W ) − V ′) the election with candidate set C and the votes2 of
(V ∪ W ) − V ′, under election system E?

Question (CF): Does there exist a subcollection V ′ ⊆ (V ∪ W ) such that ‖V ′‖ ≤ k, so
that regardless of how the manipulators set their votes, p is a winner of
(C, (V ∪ W ) − V ′) under election system E?

Question (MF): Regardless of how the manipulators set their votes, does there exist a
subcollection V ′ ⊆ (V ∪ W ) such that ‖V ′‖ ≤ k, and p is a winner of
(C, (V ∪ W ) − V ′) under election system E?

The formal definitions of the other cases are analogous, keeping inmind that for the adding
voters (AV) cases it is legal to havemanipulators among the registered and/or the unregistered
voters.

To allow many things to be spoken of compactly, we use “stacked” notation to indicate
every possible string one gets by reading across and taking one choice from each bracket one

encounters on one’s path across the expression. So, for example, CC

[
A

D

]
V-

[
CF

MF

]
refers to

four control types, not just two, and

[
C

D

]
C

⎡
⎢⎢⎢⎢⎣

[
A

D

][
C

V

]
[ PC

RPC

PV

]
-

[
TE

TP

]
⎤
⎥⎥⎥⎥⎦ refers to 2( 2∗2+ 3∗2 ) = 20

control types.
Notice that for our competitive setting, we seem to be asymmetrically focusing on things

from the perspective of the chair. That is, regardless ofwhether the chairmovesfirst orwhether
themanipulatorsmovefirst, our problems are always posed in terms of the chair’s constructive
or destructive goal regarding the candidate p. It would be natural to ask—and indeed, a
conference referee asked us to address the issue of—whether one can study the competitive
problem from the perspective of the manipulators rather than that of the chair. That is, in the
MF case for example, one would ask whether the manipulators can act so as to achieve or
block victory for p, regardless of the actions of the chair that follow. And one could similarly
look at the CF case from themanipulators’ perspective. After all, in many real-world settings,
what one cares about may well be the perspective of the manipulators. Thus being able to
address this issue would itself be an additional motivation for our paper. Fortunately, in the
competitive case—and this holds in both the nonunique-winner model and the unique-winner
model, and holds for all types of constructive and destructive attacks discussed here—the
chair achieving his or her goal in the model where we view things from the perspective of the
chair is precisely the same as the manipulators failing to meet their goal in the model where
we view things from the perspective of the manipulators (i.e., the problems have the same set
of yes instances). This follows from the definitions.3 Thus this paper is implicitly handling the
case of the manipulators’ perspective: For all our competitive cases, studying a constructive
(respectively, destructive) attack problem from the perspective of the manipulators is exactly

2 In a slight abuse of notation, we here are using the W in (C, (V ∪W )−V ′) to denote the votes that W—which
came in as a collection of blank slates—was as assigned by the quantification in the just-prior statement. The
same holds also in the next two parts of this definition.
3 To be clear, we now give in full the definitions of E- DCDV-CF-ManipulatorFocus and E- DCDV-MF-
ManipulatorFocus (in particular, in the nonunique-winner model that is the model of this paper). In
each case, the definition is what one would naturally expect, namely, for the given problem and for the
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the same as studying the complement of the destructive (respectively, constructive) version
of the same problem in the model of this paper, that is, from the perspective of the chair.
For example, the sets E- DCDV-CF-ManipulatorFocus and E- CCDV-CF-ChairFocus are the
same on all syntactically legal inputs (and they will of course differ on all syntactically illegal
inputs). (We will not use “focus” suffixes in this paper except in the previous sentence, since
in this paper all our problems will implicitly be “-ChairFocus.”) We caution that the above
discussion should not be interpreted as saying that the constructive and destructive problems
are each other’s opposites (i.e., each other’s complement on syntactically legal inputs). That is,
we are not claiming, for example that it holds that the sets E- DCDV-CF-ManipulatorFocus
and E- CCDV-CF-ManipulatorFocus are the same on all syntactically legal inputs; that is
not in general true. (However, we mention in passing that the discussion in footnote 5 of
Hemaspaandra et al. [42] presents a partial connection between constructive and destructive
cases.)

4 Results

4.1 Inheritance

Each control type many-one reduces to each of its cooperative and to each of its com-
petitive control-plus-manipulation variants, because for those variants the zero-manipulator
cases degenerate to the pure control case. For example, E- CCDV ≤p

m E-M+CCDV and
E- CCDV ≤p

m E- CCDV-MF. In particular, NP-hardness results for control inherit upward
to each related cooperative and competitive case.

For manipulation, the inheritance behavior is not as broad, since partition control cannot
necessarily be “canceled out” by setting a parameter to zero, as partition doesn’t have an
explicit numerical parameter. Nonpartition control types do display inheritance, but for the
competitive cases there is some “flipping” of the type of control and the set involved. For each
constructive (respectively, destructive) control type regarding adding or deleting candidates
or voters, destructive (respectively, constructive) manipulationmany-one reduces to the com-
plement of the set capturing the competitive case of the constructive (respectively, destructive)
control type combined with manipulation. For example, E-CUCM ≤p

m E- DCAC-CF and
E-DUCM ≤p

m E- CCDV-MF. For the cooperative cases there is no “flipping.” For each
constructive or destructive control type regarding adding or deleting candidates or voters,
manipulation many-one reduces to the cooperative case of that control type combined with
manipulation. For example, E-CUCM ≤p

m E-M+CCAC and E-DUCM ≤p
m E-M+DCAC.

Footnote 3 continued
given ordering of the chair and the manipulators, the definitions are capturing whether the manipulators can
assure that the candidate p can be made, or blocked from being, a winner.

Name: E-CCDV-CF-ManipulatorFocus/E-CCDV-MF-ManipulatorFocus
Given: An election (C, V ∪ W ) (where V and W denote the nonmanipulative and

manipulative voters respectively), a preferred candidate p ∈ C , and a delete
limit k ∈ N.

Question
(CF-ManipulatorFocus):

Does it hold that for each subcollection V ′ ⊆ (V ∪ W ) satisfying ‖V ′‖ ≤ k,
there exists a way for the manipulators to set their votes such that p is a winner
of (C, (V ∪ W ) − V ′) under election system E?

Question
(MF-ManipulatorFocus):

Does there exists a way that the manipulators can set their votes so that for
each subcollection V ′ ⊆ (V ∪ W ) satisfying that ‖V ′‖ ≤ k, it holds that p is
a winner of (C, (V ∪ W ) − V ′) under election system E?
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Table 1 Upper bounds

Problem CF CF-revoting MF MF-revoting

E -

[
C

D

]
C

[
A

D

][
C

V

]
NPNP (coDP for DV) N/A coNPNP N/A

E -

[
C

D

]
C

[
PC

RPC

PV

]
-

[
TE

TP

]
NPNP NPNP coNPNP coNPNP (TE)

coNPNP
NP

(TP)

To make easily available within this table what the table’s two “Problem” entries are speaking of, we mention
that if the notations were expanded for clarity, then

(a) E -

[
C

D

]
C

[
A

D

][
C

V

]
would be E -

[
Constructive

Destructive

]
Control by

[
Adding

Deleting

] [
Candidates

Voters

]
, and

(b) E -

[
C

D

]
C

[
PC

RPC

PV

]
-

[
TE

TP

]
would be

E -

[
Constructive

Destructive

]
Control by

[
Partition of Candidates

Runoff Partition of Candidates

Partition of Voters

]
-

[
Ties Eliminate

Ties Promote

]
.

Also, in the cells where the table states N/A (not applicable), the nonrevoting bounds just to the left of the
cell technically still hold; we write N/A to be clear that revoting cannot even take place in nonpartition cases,
since there is no second round

4.2 General upper bounds andmatching lower bounds

For election systems with polynomial-time winner problems, all the cooperative cases
clearly have NP upper bounds. But the upper bounds for the competitive cases are far higher,
falling in the second and third levels of the polynomial hierarchy, as described by the following
theorem.

Theorem 4.1 For each election system E having a polynomial-time winner problem, the
bounds of Table 1 hold.

The table’s general upper bounds clearly follow from the structure of the problem. For the
nonrevoting cases upper bounds of NPNP for the “CF” cases and coNPNP for the “MF” cases
clearly hold, and these are the bounds that were stated in early versions [31,32,34]. However,
the “CF” cases of control by deleting voters exhibit a different behavior, since the chair can
delete the manipulator. In fact, for every election system E with a polynomial-time winner
problem, E-CCDV-CF and E-DCDV-CF are in coDP (and so are not NPNP-complete unless
the polynomial hierarchy collapses).

Theorem 4.2 For every election system E with a polynomial-time winner problem,
E-CCDV-CF and E-DCDV-CF are in coDP.

Proof It is easy to see that it is always at least as good for the chair to delete amanipulator as it
is to delete a nonmanipulator (though note that because the election system can be anything,
deleting as many manipulators as possible may not be best; for example, if we want to make
p a winner and our election system has all candidates as winners if there are four voters and
no winners if there are fewer voters, we do not want to delete manipulators if there are four
voters). So we have that p can be made a winner (not a winner) by deleting at most k voters
if and only if there exists a k′ ≤ k such that (letting m be the number of manipulators):
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1. k′ ≤ m and after deleting k′ manipulators the remaining m − k′ manipulators cannot
preclude p from winning (not winning), or

2. k′ > m and after deleting all manipulators the chair can make p win (not win) by deleting
at most k′ − m voters.

We can check if there exists a k′ such that we are in case 1 in coNP and we can check if there
exists a k′ such that we are in case 2 in NP, and so we can write our languages as the union
of a coNP set and an NP set. �


The bounds presented in Table 1 are very high. It is natural to ask: Can they be improved
by some cleverer approach? Or are there systems with polynomial-time winner problems
that show the bounds to be tight? The following result establishes that the latter holds; each
of the cells in the table is tight for at least some (and sometimes for all) cases.

Theorem 4.3 1. For each of the eight problems on the top line of Table 1, and each of the
columns on that line, there exists an election systemE , which has a polynomial-time winner
problem, for which the named problem is complete for the named complexity class.

2. For each of CCPV-TP and CCPV-TE, and each of the CF, CF-revoting, and MF columns
of Table 1, and each of the columns on that line, there exists an election system E , which
has a polynomial-time winner problem, for which the named problem is complete for the
named complexity class.

3. There exists an election system E , which has a polynomial-time winner problem, for
which CCPV-TP-MF-revoting is coNPNP

NP
-complete, and there exists an election sys-

tem E , which has a polynomial-time winner problem, for which CCPV-TE-MF-revoting
is coNPNP-complete.

The above result says that the upper bounds are not needlessly high. They are truly needed,
at least for some systems. However, the constructions proving the lower bounds are artificial
and the construction involving the third level of the polynomial hierarchy is lengthy and dif-
ficult.4 In particular, this leaves completely open the possibility that for particular, important
real-world systems, even the competitive cases may be far simpler than those bounds suggest.
In the coming section, we will see that indeed for some of the most important real-world
systems, even in the presence of manipulators, the control problem is just as computationally
easy as when there are no manipulators.

We now present the proof of the CCAC-CF case of Theorem 4.3, which illustrates the
general arguments used in the proof of this theorem. The proofs of the other cases use similar
approaches and can be found in the technical-report version of this paper [33].

Theorem 4.4 There exists an election system, E , with a polynomial-time winner problem,
such that E-CCAC-CF is NPNP-complete.

Proof Let E be defined in the following way. Given an election (C, V ), if ‖V ‖ = 1, ‖C‖ ≥ 1
and the candidates in C listed in increasing lexicographic order are c0, c1, . . . , c�, and c0

4 The third-level case has to overcome the specific, and as far as we know new, worry that in the second round,
the first-round vote of the manipulators is no longer available. Yet in a “∀∃∀” context (which is the quantifier
structure that models coNPNP

NP
), a particular existential choice has to handle only a particular value of the

first ∀. So to make the construction work, we need to in some sense have the first-round votes, which are no
longer available, still cast a clear and usable shadow forward into the second round, at least in certain cases
in the image of the reduction. We achieve this, in particular by shaping the election system itself carefully to
help realize this unusual effect. Otherwise, we would not be capturing the right quantifier structure.

123



   52 Page 12 of 32 Autonomous Agents and Multi-Agent Systems            (2020) 34:52 

encodes5 a boolean formulaψ(x1, . . . , x2�), then do the following. For each i , 1 ≤ i ≤ �, set
xi to true if the lowest-order bit of ci is 1 and otherwise set xi to false. For each i , 1 ≤ i ≤ �,
set x�+i to true if the voter states ci > c0 and otherwise set x�+i to false. If this is a satisfying
assignment for ψ then everyone wins. In all other cases everyone loses. That completes the
specification of E .

Clearly E has a polynomial-time winner problem, and by Theorem 4.1 we know that
E-CCAC-CF is in NPNP. So what is left is to show that E-CCAC-CF is NPNP-hard.

Let (∃x1, . . . , x�)(∀x�+1, . . . , x2�)[ψ(x1, . . . , x2�)] be an instance of QBF2.We construct
an instance ofE-CCAC-CF in the followingway.Let the candidate setC consist of p encoding
the boolean formula ψ , and let there be zero nonmanipulators and one manipulator. Let the
set of unregistered candidates contain � pairs where for each i , 1 ≤ i ≤ �, there is a candidate
p · ibinary · 0 and a candidate p · ibinary · 1. (where · denotes concatenation and ibinary denotes
i encoded in binary). Let the add limit k = 2�.6

If (∃x1, . . . , x�)(∀x�+1, . . . , x2�)[ψ(x1, . . . , x2�)] ∈ QBF2, fix an assignment to x1, . . . ,
x� such that (∀x�+1, . . . , x2�)[ψ(x1, . . . , x2�)] is true. For each i , 1 ≤ i ≤ �, the chair adds
the candidate, call it ci , from the i th pair whose last bit corresponds to the value of xi in
this assignment. Note that p, c1, . . . , c� are in increasing lexicographic order. Then nomatter
what assignment to x�+1, . . . , x2� is induced by the manipulator’s vote, formulaψ is satisfied
and so p will win.

Conversely, if the chair makes p a winner, then the chair adds exactly � candidates whose
lowest-order bits give an assignment to x1, . . . , x� such that (∀x�+1, . . . , x2�)[ψ(x1, . . . , x2�)]
is true. �


4.3 Specific systems

This section looks at control in the presence of manipulators, for the case of certain concrete
systems.

Section 4.3.1 is in the model we have been using so far in this paper, namely, the voters
are not weighted.

Section 4.3.2 looks at a different case, namely, the case of weighted voters, a model that
better captures cases such as stockholder elections (in which each voter’s vote is weighted
by the number of shares the voter owns of that stock) and the Electoral College that is used
in the United States to select the president. Starting in 1866, Sweden even started weighting
voter’s votes based on wealth, with some voters having their votes amplified by factors of up
to 5000, though the system was discontinued [13, chapter 14]. Weighted manipulation (not
in the presence of control) was introduced by Conitzer et al. [14], and weighted control (not
in the presence of manipulators) was extensively studied by Faliszewski et al. [26].

5 We are using here the fact that a boolean formula can in a straightforward way be represented as a string
and encoded in the name of candidate c0.
6 We set k = 2� instead of the obvious choice of � since then the same proof can be used for the similar cases
that appear in the technical report [33], and this also nicely handles the case of “control by unlimited adding
of candidates.”
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4.3.1 Unweighted voters

Plurality is certainly one of the most important election systems, and approval is also an
important system. Plurality, approval, and Condorcet elections each have easy manipulation
problems, and their complexity for every standard control type is known [3,42]. For each of
these election systems, we will show that all the “M+,” “CF,” and “MF” cases whose control
type is classified as P (i.e., as a “V” or “I” in the original notation of the 2007 table that we are
about to mention) in the with-no-manipulators table of complexities for that election system
in [42, p. 258] are in P for all our cooperative and competitive cases.

Theorem 4.5 Each problem contained in

–

[
approval

Condorcet

plurality

]
-M+

[
C

D

]
C

⎡
⎢⎢⎢⎢⎣

[
A

D

][
C

V

]
[ PC

RPC

PV

]
-

[
TE

TP

]
⎤
⎥⎥⎥⎥⎦,

–

[
approval

Condorcet

plurality

]
-

[
C

D

]
C

⎡
⎢⎢⎢⎢⎣

[
A

D

][
C

V

]
[ PC

RPC

PV

]
-

[
TE

TP

]
⎤
⎥⎥⎥⎥⎦-CF, or

–

[
approval

Condorcet

plurality

]
-

[
C

D

]
C

⎡
⎢⎢⎢⎢⎣

[
A

D

][
C

V

]
[ PC

RPC

PV

]
-

[
TE

TP

]
⎤
⎥⎥⎥⎥⎦-MF,

whose corresponding control type is in P in Table 1 of page 258 of [42],7 is in P.

The proofs ofmany of these cases will utilize the polynomial-time algorithms for thewithout-
manipulators versions of the control cases. The well-known polynomial-time results from

7 So that the reader has it easily at hand while viewing Theorem 4.5, we include here the central content of
that table (each of whose results is from Bartholdi et al. [3] or Hemaspaandra et al. [42]):

Plurality Condorcet Approval
Control by Constr. Destr. Constr. Destr. Constr. Destr.

Adding candidates NPC NPC P P P P
Deleting candidates NPC NPC P P P P
Adding voters P P NPC P NPC P
Deleting voters P P NPC P NPC P
Partitioning candidates TE: NPC TE: NPC TE: P TE: P TE: P TE: P

TP: NPC TP: NPC TE: P TE: P TP: P TP: P
Runoff partitioning candidates TE: NPC TE: NPC TE: P TE: P TE: P TE: P

TP: NPC TP: NPC TE: P TE: P TP: P TP: P
Partitioning voters TE: P TE: P TE: NPC TE: P TE: NPC TE: P

TP: NPC TP: NPC TE: NPC TE: P TP: NPC TP: P

We mention that our theorem’s claim holds despite the fact that this table of [42] is about the unique-winner
case, and despite the fact that the AC/Adding Candidates case of the table refers to so-called unlimited adding
and (as is now standard) we use AC/Adding Candidates to refer to (limited) adding.
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Bartholdi et al. [3] and Hemaspaandra et al. [42] are both for the unique-winner model.
The following observation, Observation 4.6, states that the results from those papers men-
tioned in [42, Table 1]—which is essentially reproduced in footnote 7—carry over to the
nonunique-winner model (some of the cases were previously noted in Faliszewski et al. [25]
and Hemaspaandra et al. [47]).

Observation 4.6 The complexities of each of the standard control problems shown in
Bartholdi et al. [3] and Hemaspaandra et al. [42] for the unique-winner model hold also for
the nonunique-winner model.

One might wonder why Theorem 4.5 speaks only of showing that the P boxes from the
table remain P cases in the corresponding case within our theorem. The reason is that, due to
our inheritance results, for the NP-completeness cases of the table getting a P result in our
corresponding case is not possible (unless P = NP). Regarding this claim, one might worry
as to the two NP-completeness cases regarding the “Adding Candidates” table line, since
(see footnote 7) the corresponding case in our theorem is about limited adding of candidates
yet the table is about the unlimited adding of candidates model. However, that in fact is not
a problem, since if the limited adding of candidates case is in P for a given election system,
then the unlimited adding of candidates case for that same election system is also in P.

As an illustration as to provingTheorem4.5,wepresent the proof of plurality-M+CCPV-TE
∈ P here. The proofs of the remaining cases of Theorem 4.5 can be found in Appendix A.

Proof In some cases, there are possible partitions by the chair such that if one simply has
all the manipulators vote for p we don’t achieve our goal yet there is a different action
by the manipulators under that same partition that would achieve our goal. For example,
if the candidates are a, b, and p, and the chair partitions the voters such that one of the
subelections contains a voter voting p > a > b (the “>” denotes strict preference), and the
other subelection contains 100 voters voting a > b > p, 101 voters voting b > a > p, and
one manipulator, the manipulator should vote for a, so that a and b are tied in the second
subelection and neither goes through to the second round. In particular, we will show that
if a partition of the voters and a manipulation of the manipulators exist such that p wins
the election, then there exists a partition such that p wins when all manipulators vote for
p. It follows that we can check if p can be made a winner by first having all manipulators
vote for p and then running the polynomial-time algorithm for plurality-CCPV-TE from
Hemaspaandra et al. [42] (modified in the obvious way for the nonunique-winner case).

So, suppose that a manipulation and a partition (V1, V2) exist such that p is a winner of the
election.Without loss of generality, suppose p is the unique winner of (C, V1). Then p is also
the unique winner of (C, V1) if all manipulators in V1 vote for p, so have all manipulators
in V1 vote for p. Now consider (C, V2). As explained in the previous paragraph, simply
changing the manipulators’ votes to p could have bad effects. Instead, we do the following.
While manipulators remain in V2 whose first-choice candidate is not p, choose one of them,
v, let a be v’s first-choice candidate, and do the following.

1. Change v’s vote from a to p and move v to V1.
2. For each candidate b �= a, move a current V2 voter for b (if any exists) from V2 to V1 and

if it is a manipulator, change its vote to p.

Since in each iteration of the above loop we add at least one vote for p to V1, p will remain
the unique winner of (C, V1). If after the loop (C, V2) does not have a unique winner or has
p as the unique winner it is immediate that p wins the runoff. The only remaining case is
that after the loop (C, V2) has a unique winner c �= p. Note that in each iteration we keep
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the same set of winners in (C, V2) unless V2 becomes empty in which case all candidates
become winners in (C, V2). This implies that c is the unique winner of (C, V2) before the
loop and thus c does not beat p in the runoff before the loop. Since the only votes that are
changed in the loop are manipulator votes changed to p, after the loop p clearly is a winner
of the runoff. �


Wenowwill seem to change directions, andwill briefly study “standard” control problems,
i.e., ones not in the presence of manipulators. However, we do so in service of the goals of this
paper. The results we will obtain below will be crucially used to prove parts of Theorem 4.5,
though the proofs that do so are found not in the body of the paper but in four proofs
in Appendix A that draw on the results below.

Belowwe state general results on election systems satisfying theWeakAxiom of Revealed
Preferences (WARP) and its corresponding unique version (unique-WARP). An election
system satisfies WARP if whenever a candidate is a winner among a set of candidates (under
a vote set V ; as always, we assume that V is masked down to the candidates at hand in the
given election) then that candidate is also a winner among every subset of those candidates
that includes him or her (under that same vote set V ; as always, we assume that V is masked
down to the candidates at hand in the given election). Similarly, an election system satisfies
unique-WARP if whenever a candidate is a unique winner among a set of candidates then
that candidate is also a unique winner among every subset of those candidates that includes
him or her.8 It is easy to see that approval and Condorcet elections satisfy both WARP and
unique-WARP [42].

8 We here and in many other places write the somewhat strange, awkward phrase “a unique winner” rather
than the seemingly more natural phrase “the unique winner.” We do so to avoid giving the impression that
there necessarily is a unique winner—as opposed for example to perhaps having no winners or perhaps having
multiple winners.
We mention in passing that WARP itself is very closely connected to immunity to destructive control by
deleting candidates (DCDC); in particular, they are the same. To see this, we need to discuss a notion from the
literature: immunity. An election system is said to be immune to destructive control by deleting candidates if
for every election instance (C, V ) and every candidate c ∈ C it holds that: If c is a winner in that election
instance, then for every candidate set C ′ satisfying {c} ⊆ C ′ ⊆ C it holds that c is a winner in the election
with candidate set C and vote set V (masked down to the candidates in C ′). This notion, destructive control
by deleting candidates, is due to the seminal control paper of Bartholdi et al. [3], except their paper is in the
unique-winner model and our paper is in the nonunique-winner model. Yang [69] has observed that WARP
implies, in the nonunique-winner model, immunity to destructive control by deleting candidates. We here add
the observation that the converse also holds, since the definitions of the two concepts are in fact the same.
Thus the following holds.

An election system E satisfies WARP if and only if E is immune to DCDC (destructive control by deleting
candidates).

Again, like all the results in this paper, the above if and only if statement is with respect to the nonunique-
winner model. We mention, for context, that in the unique-winner model (which is not the model we are using
in this paper), the analogous result holds if one looks instead at unique-WARP, namely, we have the following
result.

An election system E satisfies unique-WARP if and only if E is, in the unique-winner model, immune to
DCDC (destructive control by deleting candidates).

This result’s “only if” direction is stated in [42] and this result’s “if” direction clearly also holds, again as the
definitions of the two notions in fact are the same. Finally, Yang [69] (respectively, Hemaspaandra et al. [42])
states that in the nonunique-winner model (respectively, unique-winner model), that WARP (respectively,
unique-WARP) implies immunity to constructive control by adding candidates. We observe that the converse
directions for each of those claims hold, for the same reasons as mentioned above for the DCDC cases, thus
yielding two additional if and only if results.
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Though as mentioned above these results are rather crucially used as tools within our
proofs about control in the presence of manipulators, we feel they are of interest in their
own right. Let us take as an example the coming Theorem 4.7, which loosely put says that
for every election system satisfying unique-WARP, and for each instance of CCRPC-TE, it
holds that the partition whose parts are “all candidates other than p” and “p” will cause p to
win if and only if the chair has any partition choice that will cause p to win.

The result is interesting because it is directly attackingwhat is the heart of the complexity of
partition problems: combinatorial explosion, i.e., the fact that there are an enormous number
of partitions and the chair must determine whether any one of them makes p a winner. This
is precisely why such problems so often turn out to be NP-hard. However, Theorem 4.7 says
that for systems obeying the unique-WARP axiom, that potential complexity is completely
side-stepped: There is a single partition that is the only one that needs to be examined.
This immediately shows that the control type is of polynomial-time complexity for systems
satisfying unique-WARP.

Viewed more broadly, by linking the complexity of control to social-choice properties,
this part of our work is trying to take a step away from analyzing systems one at a time,
and is trying to more generally determine what it is that can yield computational simplicity.
Work having that goal is most typically done by studying the class of so-called scoring
systems, each of which is defined by a so-called scoring vector, and finding some simple
property of the scoring vector that determines the complexity of various manipulative attacks
on elections. To give as an example just one family of such results, we mention the line
doing this regarding manipulation of elections in the general case and in the so-called single-
peaked case [7,14,29,39,59]. However, that work focuses on the direct definitions of the
election systems, and our work in contrast is focusing on how possession of an axiomatic
property can itself force simplicity. We mention in passing that Yang and Guo [70], in the
context of parameterized complexity, presentedfixed-parameter tractability results for control
by adding/deleting voters for systems satisfying the Smith-IIA property.

Let us now turn to our results of this type.
We in the following and elsewhere will say that “control is possible” as a shorthand way

of saying that there exists a control action of the given type that achieves the goal (e.g., if it
is a constructive control type, then making p be a winner, and if it is a destructive control
type, making p not be a winner).

Theorem 4.7 For every election system E satisfying unique-WARP, and for each instance of
the CCRPC-TE problem, it holds that control is possible if and only if the preferred candidate
p is an overall winner using the partition (C − {p}, {p}).
Proof Given an election system satisfying unique-WARP, an election (C, V ), and a candidate
p ∈ C , we do the following.

If p is an overall winner using partition (C − {p}, {p}) then clearly control is possible.
Conversely, if p is not an overall winner using partition (C −{p}, {p}) then we will show

that control is not possible. There are two cases.

1. If under our set of votes (masked down to the candidates in the election at hand in each
case, of course) p does not win in the election where p is the sole candidate, then by
unique-WARP p will not be a unique winner in any subelection it is part of, and so can
never survive the first round, and so can never become an overall winner.

2. On the other hand, if under our set of votes (masked down to the candidates in the election
at hand in each case, of course) p wins in the election where p is the sole candidate, then
p in the partition (C − {p}, {p}) clearly will survive the first round.
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Since we are in the TE model, either zero candidates or one candidate will survive the
C − {p} first-round subelection.
But if zero survive, then the second-round election involves just p, who we already, in
our current case, have assumed wins under the votes masked down to it, so it will in fact
be an overall winner (in fact, it will be the only overall winner).
On the other hand, if one candidate, call it r , survives the C −{p} first-round subelection,
note that since we assumed that p is not an overall winner, it must be the case that in the
election between r and p (with the votes as always masked down to the candidates in the
election), p is not a winner. So, can there be any partition, (C − A, A), under the given
votes, that will ensure that p is an overall winner? Without loss of generality, assume
p ∈ A. If r ∈ A, then p cannot move forward, since to do that (as we are in the TEmodel)
p would have to be a unique winner within A, and since {p, r} ⊆ A, by unique-WARP
it would have been impossible for p to fail to beat r in the second-round election under
partition (C − {p}, {p}) in our original setting, yet that is precisely what happened in our
current case’s assumptions. On the other hand, if r /∈ A, then given that C − A ⊆ C −{p},
by unique-WARP we have that r wins the subelection (C − A, V ), and so faces p in the
runoff, and we already know that in that case p will not be a winner of that contest.

By the above case analysis, we have shown that control is not possible, thus completing this
second direction of the proof. �

Corollary 4.8 For every election system E that satisfies unique-WARP and has a polynomial-
time winner problem, E-CCRPC-TE is in P.

Theorem 4.7 does not hold for CCPC-TE. For example, in the election system where all
candidates are winners if there are at least two candidates, and no candidates win if there is
at most one candidate (note that this system vacuously satisfies unique-WARP), an election
with candidates {a, b} has no winners using partition ({a}, {p}), but all candidates win using
partition (∅, {a, p}).

Nonetheless, we have proven an analogue of Theorem 4.7 for the CCPC-TE case. Our
analogue, however, applies to election systems that satisfy both WARP and unique-WARP.9

Theorem 4.9 For every election system satisfying both WARP and unique-WARP, and for
each instance of the CCPC-TE problem, it holds that control is possible if and only if the
preferred candidate p is an overall winner using the partition (C − {p}, {p}).
Proof Given an election system satisfying bothWARPandunique-WARP, an election (C, V ),
and a candidate p ∈ C , we do the following.

If p is an overall winner using partition (C − {p}, {p}) then clearly control is possible.
Conversely, if p is not an overall winner using partition (C −{p}, {p}) then we will show

that control is not possible. There are two cases.

9 Is it going unnaturally far to study systems that satisfy both WARP and unique-WARP? We do not think
so. Indeed, to put our use of two properties in context, we mention that even combined they are a weaker
assumption about the election system than is even a certain different version of WARP that is sometimes used.
The version of WARP that we are using here is precisely that found for example in Baumeister and Rothe’s
survey of preference aggregation [6]. This version focuses on the individual candidate and what happens
when other candidates are removed, namely, that winning does not turn into not winning for any unremoved
candidate. The other version, and to avoid confusion let us refer to it as WARP′, focuses on whether when one
removes candidates the winner set is always exactly the previous winner set intersected with the remaining set
of candidates. WARP′ clearly implies both WARP and unique-WARP. And so Theorem 4.9 would certainly
remain true if in it one were to replace the phrase “both WARP and unique-WARP” with simply “WARP′”.
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1. If under our set of votes (masked down to the candidates in the election at hand in each
case, of course) p does not win in the election where p is the sole candidate, then by
WARP p will not be a winner in any larger subelection that contains him or her, and so
can never be an overall winner.

2. If under our set of votes (masked down to the candidates in the election at hand in each
case, of course) p wins the election where p is the sole candidate then since p is not the
overall winner using partition (C − {p}, {p}) and we are in the TE model, there exists a
candidate r ∈ C −{p} such that r is the unique winner of the subelection (C −{p}, V ) and
p does not win the runoff election ({p, r}, V ). Since the given election system satisfies
unique-WARP and r is the unique winner of (C −{p}, V ), r will be the unique winner of
every subelection that does not involve p. And since the given election satisfies WARP
and p does not win ({p, r}, V ), p is not a winner in any subelection that r participates
in. Notice that p participates in the runoff only if r also participates in the runoff. So it is
clear to see that control is not possible. �


Corollary 4.10 For every election system E that satisfies both WARP and unique-WARP and
has a polynomial-time winner problem, E-CCPC-TE is in P.

Corollary 4.11 For every election system E satisfying both WARP and unique-WARP,
E-CCPC-TE = E-CCRPC-TE.

What equality means, in Corollary 4.11 and elsewhere when used on election problems,
is as follows, using the above as an example. Each of E- CCPC-TE and E- CCRPC-TE is a
set, and by speaking of them being equal, we mean the sets are equal, i.e., no string is in
exactly one of the two sets.

4.3.2 Weighted voters

We now give results for veto and Borda, including, for the latter, an interesting increase in
complexity.

In weighted elections every voter has a positive integer weight, and a voter with weight w
counts asw voters. In weighted voter control cases, the addition/deletion limit still pertains to
the number of voters that can be added or deleted. Consider the case of 3-candidate weighted
veto elections. The known results on this are that constructive coalitional manipulation is
NP-complete [14], destructive coalitional manipulation is in P [14], and CCAV and CCDV

are both in P [26]. The following result shows that for this system CC

[
A

D

]
V-

[
CF

MF

]
are all

in P—not NP-complete.

Theorem 4.12 For 3-candidate weighted veto elections, the following hold.

1. M+CC

[
A

D

]
V are both NP-complete.

2. CC

[
A

D

]
V-

[
CF

MF

]
are each in P.

Proof The first case follows directly from the fact that constructive coalitional manipula-
tion for weighted veto elections is NP-complete [14] and the inheritance observations from
Sect. 4.1 (as the relevant result there holds even for the weighted case).
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For the competitive cases, note that the only action that makes sense for the manipulators
is to veto p. This holds regardless of whether the manipulators or the chair goes first. So,
we let the manipulators veto p and then run the polynomial-time algorithm for CCAV and
CCDV from Faliszewski et al. [26]. �


An increase in complexity is shown by 3-candidate weighted Borda elections. The known
results for this system are that constructive coalitional manipulation is NP-complete [14],
destructive coalitional manipulation is in P [14], and CCAV and CCDV are both NP-
complete [26] and thus all these problems are in NP. Yet we show that CCAV-MF is
coNP-hard, and so cannot be in NP unless the polynomial hierarchy collapses to NP∩ coNP.

Theorem 4.13 For 3-candidate weighted Borda elections, the following hold.

1. M+CC

[
A

D

]
V are both NP-complete.

2. CC

⎡
⎢⎣

AV-CF

DV-

[
CF

MF

]⎤
⎥⎦ are each NP-hard.

3. CCAV-MF is NP-hard and coNP-hard.

4. CC

[
A

D

]
V-CF are both NP-complete.

Proof The first case follows directly from the fact that manipulation is NP-complete [14]
and the inheritance observations from Sect. 4.1 (as the relevant result there holds even for
the weighted case).

The remainingNP-hardness results follow from theNP-completeness ofCCAVandCCDV
and the inheritance observations from Sect. 4.1.

Let a denote one of the candidates other than p (either one, but which one it is will now
be fixed for the rest of this proof), and let b denote the remaining candidate (the one that
is neither a nor p). To show that CCAV-CF is in NP, guess a set of voters to add, and then
check that the manipulators can’t make p not win. We do this by setting all manipulators to
a > b > p, checking that p is a winner, and then setting all manipulators to b > a > p, and
checking that p is a winner. A similar argument shows that CCDV-CF is in NP.

It remains to show that CCAV-MF is coNP-hard, i.e., that the complement of CCAV-MF
is NP-hard. Partition is the set of all nonempty sequences of positive integers k1, . . . , kt

such that the sequence sums to 2K for some integer K and there exists a partition (i.e., a
subsequence of k1, . . . , kt ) that sums to K ; this set is well-known to be NP-complete (see
[50]; from the NP-completeness of its version of Partition, the above version is easily seen to
be NP-complete, since empty lists are not a substantive case and 0s do not change the total
of a sum). We will reduce from Partition. Given a nonempty sequence of positive integers
k1, . . . , kt that sums to 2K , we will construct an election such that there is a partition (i.e., a
subsequence of k1, . . . , kt that sums to K ) if and only if the manipulators can vote in such a
way that the chair won’t be able to make p a winner.

We construct the following election: We have manipulators with weights k1, . . . , kt . The
manipulators are registered voters.We have two unregistered voters, bothwithweight 3K −1.
One of these voters votes p > a > b and one votes p > b > a. We have addition limit one,
i.e., the chair can add at most one voter.

If there is a partition, then the manipulators vote so that a total of K vote weight casts the
vote a > b > p and a total of K vote weight casts the vote b > a > p. So, the scores of p,
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a, and b are 0, 3K , and 3K , respectively. There is no way for the chair to make p a winner
by adding at most one voter. If the chair adds the weight 3K − 1 voter voting p > a > b,
the score of p is 6K − 2 and the score of a is 3K + (3K − 1) = 6K − 1 and so p is not a
winner. Adding the other voter gives a score of 6K − 2 for p and a score of 6K − 1 for b
and again p is not a winner.

Now consider the case that there is no partition, i.e., there is no subsequence of k1, . . . , kt

that sums to K . Look at the scores of the candidates after the manipulators have voted.
Without loss of generality, assume that score(a) ≤ score(b). Then score(a) ≤ 3K − 1
(since there is no partition) and score(b) ≤ 4K . Now the chair adds the weight 3K − 1
voter voting p > a > b. After adding that voter, p’s score is 6K − 2, a’s score is at most
(3K − 1) + (3K − 1) and b’s score is at most 4K . It follows that p is a winner. �


5 Conclusions and open directions

We have established general inheritance results and complexity upper bounds for control in
the presence of manipulators, for both cooperative and competitive settings. For the upper
bounds we provided matching lower bounds, but also showed that for many natural systems
the complexity is far lower than the general upper bounds.

Many open directions remain. For example, regarding 3-candidate weighted Borda
elections, we have shown that CCAV-MF is NP-hard and coNP-hard, and although our upper-
bound theorem is not explicitly about weighted cases, clearly this problem, for exactly the
same reason as in our upper-bound theorem, is in coNPNP. But precisely where within that
range does it fall? Also, what happens for real-world election systems that themselves are
complex to manipulate and/or control, such as Llull, Copeland, fallback, sincere-preference
approval, and Schulze elections? Do some of these systems themselves provide natural sys-
tems thatmight for our competitive cases be complete for some of the high complexity classes
given in Table 1?

Acknowledgements Earlier versions of this paper appeared in IJCAI-2013 [31] and COMSOC-2014 [34].We
are extremely grateful to the anonymous conference and journal referees, whose comments and suggestions
much improved this paper. This work was supported in part by NSF Graduate Research Fellowship DGE-
1102937 andbyNSFGrantsCCF-0915792,CCF-1101452,CCF-1101479,DUE-1819546, andCCF-2006496.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

A Specific systems

In some of the proofs in this section, we use the notation score(C,V )(a) to denote the score
of candidate a in election (C, V ). When it is clear from context, we may leave out C , V , or
both.

A.1 Plurality

In this subsection we prove the remaining plurality cases of Theorem 4.5.

Theorem A.1 For plurality elections, the following hold.
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1. M+

[
C

D

]
C

[
A

D

]
V are each in P.

2.

[
C

D

]
C

[
A

D

]
V-

[
CF

MF

]
are each in P.

Proof For the constructive cooperative and the destructive competitive cases it is clear that
the manipulators should all vote for p.

For the destructive cooperative and the constructive competitive cases the optimal action
for the manipulators is to all vote for the same highest-scoring candidate in C − {p}.

In all cases we can determine if the chair can be successful by assuming the manipula-
tors vote as above and using the corresponding polynomial-time algorithm for control from
Bartholdi et al. [3] (for the constructive cases) or from Hemaspaandra et al. [42] (for the
destructive cases), modified in the obvious way for the nonunique-winner case (see Obser-
vation 4.6). �


For the remaining proofs in this section, given an election (C, V ) containing k manip-
ulators, we say that a candidate r is a rival of p if r can beat p pairwise, i.e., if
score{p,r}(r) + k > score{p,r}(p). Recall that the manipulators come in without votes (i.e.,
as blank slates), and so score{p,r}(r) and score{p,r}(p) denote the scores of r and p in the
election comprised of the candidates p and r , and the nonmanipulators in V .

Lemma A.2 If there exists a partition of voters such that p is an overall winner in the “TE”
model when all manipulators vote for the same highest-scoring rival r , then there exists a
partition such that p is always (i.e., regardless of the votes of the manipulators) an overall
winner.

Proof Given an election (C, V ) where V contains k manipulators, a candidate p ∈ C , and a
highest-scoring rival r , we do the following.

Let (V1, V2) be a partition such that p is an overall winner when all manipulators vote
for r . Let k1 be the number of manipulators in V1, let k2 be the number of manipulators in
V2, let �1 be the number of nonmanipulator votes for r in V1, and let �2 be the number of
nonmanipulator votes for r in V2. Without loss of generality assume that p is the unique
winner of (C, V1) when all manipulators vote for r . Since we can exchange a manipulator in
V2 that votes for r with a nonmanipulator in V1 that votes for r without changing the outcome
of the election, we can assume that there are no manipulators in V2 (i.e., k2 = 0) or that there
are no nonmanipulators voting for r in V1 (i.e., �1 = 0).

We first consider the case where k2 = 0. We will construct a new partition (V̂1, V̂2) that
will work regardless of how the manipulators vote. Let V̂2 consist of �2 nonmanipulator votes
for r , scoreV2(p) nonmanipulator votes for p, for every rival r̂ �= r , min(�2, score(̂r)) votes
for r̂ , and for every nonrival c �= p all the nonmanipulator votes for c. Let V̂1 = V − V̂2.

We first show that p is always the unique winner of (C, V̂1). We know that scoreV1(r) +
k1 = �1 + k1 < scoreV1(p) = scoreV̂1

(p). Since there are k1 manipulators in V̂1, it suffices
to show that for all c �= p, scoreV̂1

(c) ≤ �1. This is immediate from the construction:
scoreV̂1

(r) = �1, for every nonrival c �= p, scoreV̂1
(c) = 0, and for every rival r̂ �= r ,

score( r̂ ) ≤ score(r) = �1 + �2, and so scoreV̂1
( r̂ ) ≤ �1.

So the only way in which p can be precluded fromwinning the runoff is if there is a rival r̂
of p such that r̂ is the unique winner of (C, V̂2) (recall that there are no manipulators in V̂2).
Since scoreV̂2

(r) = �2 and scoreV̂2
( r̂ ) ≤ �2 for every rival r̂ , it then follows that r is the

unique winner of (C, V̂2). But then score( r̂ ) < �2 for every rival r̂ �= r and score(c) < �2
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for every nonrival c �= p, and scoreV2(p) = scoreV̂2
(p) < �2. It follows that r is the unique

winner of (C, V2). Then p is never an overall winner of (C, V ) using the partition (V1, V2),
which contradicts our assumption. It follows that p is always a winner of (C, V ) using the
partition (V̂1, V̂2).

It remains to show the claim for k2 > 0 and �1 = 0. We will again construct a new
partition (V̂1, V̂2) that will work regardless of how the manipulators vote. Let V̂1 consist of
scoreV1(p) nonmanipulator votes for p and k1 manipulators. Then V̂2 consists of scoreV2(p)

nonmanipulator votes for p, all nonmanipulator votes for c, c �= p, and k2 manipulators.
Since p is the unique winner of (C, V1) when all manipulators vote for r , it follows that

k1 < scoreV1(p) = scoreV̂1
(p), and so p is always the unique winner of (C, V̂1).

So the only way in which p can be precluded from winning the runoff is if there is
manipulation and a rival r̂ of p such that r̂ is the unique winner of (C, V̂2). Then score( r̂ )+
k2 = scoreV̂2

( r̂ ) > scoreV̂2
(c) for all c �= r̂ . In particular, score( r̂ ) + k2 > score(c) for

every nonrival c �= p and score( r̂ ) + k2 > scoreV2(p). Since score( r̂ ) ≤ score(r) = �2,
it follows that r is the unique winner of (C, V2) when all manipulators vote for r . This
contradicts our assumption. It follows that p is always a winner of (C, V ) using the partition
(V̂1, V̂2). �

Theorem A.3 For plurality elections, CCPV-TE-CF is in P.

Proof Given an election (C, V ) and a preferred candidate of the chair p ∈ C , p can be made
a winner if and only if there exists a partition (V1, V2) such that p is always an overall winner.

If no rivals of p exist, then clearly control is possible if and only if C = {p} or there is at
least one vote for p (in the latter case, let V1 consist of one voter for p).

Otherwise, let r be a highest-scoring rival of p. It is immediate from Lemma A.2 that
control is possible if and only if there exists a partition such that p winswhen all manipulators
vote for r and rank the remaining candidates in lexicographic order. This can be determined
by running the polynomial-time algorithm for plurality-CCPV-TE from [42], modified in the
obvious way for the nonunique-winner case (see Observation 4.6). �

Theorem A.4 It holds that plurality-CCPV-TE-CF = plurality-CCPV-TE-MF.

Proof It immediately follows from the definition that plurality- CCPV-TE-CF ⊆
plurality- CCPV-TE-MF.

Now suppose that “MF” control is possible. Then for all manipulations there exists a
partition such that the preferred candidate p wins. Then either no rival to p exists, in which
case “CF” control is possible since either p is the only candidate or there exists at least one
vote for p. When a rival r to p exists, control is certainly possible when all the manipulators
vote for r . By Lemma A.2 we know that then there exists a partition where p is always a
winner, so “CF” control is possible. �

Corollary A.5 For plurality elections, CCPV-TE-MF is in P.

Theorem A.6 For plurality elections, M+DCPV-TE is in P.

Proof Given an election (C, V ) and adespised candidate of the chair p ∈ C ,we candetermine
in polynomial time if p can be precluded from winning by partitioning voters as follows.
If there are no manipulators, run the polynomial-time algorithm for plurality-DCPV-TE
from [42], modified in the obvious way for the nonunique-winner case (see Observation 4.6).

So, let k > 0 denote the number of manipulators in V . If there exists a rival r to p (i.e., a
candidate that can beat p pairwise, i.e., a candidate for which score{p,r}(p) < score{p,r}(r)+
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k), then control is possible: Let V2 consist of one manipulator and let all manipulators vote
for r .

If there are no rivals, we must ensure that p doesn’t make it to the runoff, i.e., we need
to ensure there is a candidate c �= p such that c ties-or-beats p in both subelections or there
are two distinct candidates c, d �= p such that c ties-or-beats p in the first subelection and d
ties-or-beats p in the second subelection. It is easy to see that this can be done if and only if
we are in one of the following two cases.

1. There are at least two candidates, c is a highest-scoring candidate in C − {p}, and
score(p) ≤ score(c) + k. (Have all manipulators vote for c and use partition (V ,∅).)

2. There are at least three candidates, c and d are two highest-scoring candidates in C −{p},
and score(p) ≤ score(c) + score(d) + k. (Have V1 consist of min(score(p), score(c))
votes for p and all votes for c. The remaining votes, including all manipulators, who will
vote for d , will be in V2.) �


Lemma A.7 If there exists a partition of voters such that p is not a plurality winner in the
“TE” model when all manipulators vote for p, then there exists a partition such that p can
never be made a plurality winner by the manipulators.

Proof Given an election (C, V ) and a candidate p ∈ C , we do the following.
Let (V1, V2) be a partition such that p is not a winner when all manipulators vote for p.

If p can never be made a winner by the manipulators in this partition then we are done.
So, suppose there exists a manipulation such that p is an overall winner (with the partition
(V1, V2)). Without loss of generality assume that p is the unique winner of (C, V1). Then p
is also the unique winner in (C, V1) if all manipulators vote for p. However, since p is not
an overall winner if all manipulators vote for p there is a candidate c �= p such that if all
manipulators vote for p, c is the unique winner of (C, V2) and c is the unique winner of the
runoff ({p, c}, V ).

Now move all manipulators from V2 to V1. Note that c remains the unique winner of
(C, V2) and that c is always the unique winner of ({p, c}, V ). It follows that in this new
partition, p is never a winner, no matter what the manipulators do. �


Lemma A.7 implies that plurality-DCPV-TE-CF is in P, since control is possible if and
only if control is possible when all manipulators vote for p. This can be checked using the
polynomial-time algorithm for plurality-DCPV-TE fromHemaspaandra et al. [42], modified
in the obvious way for the nonunique-winner case (see Observation 4.6).

Theorem A.8 For plurality elections, DCPV-TE-CF is in P.

We will now show that Lemma A.7 also implies that plurality-DCPV-TE-MF is in P.

Theorem A.9 For plurality elections, DCPV-TE-MF is in P.

Proof Given an election (C, V ) and a despised candidate of the chair p ∈ C , we will show
that we can determine in polynomial time if p can be precluded fromwinning by partitioning
voters.

As in the “CF” case we will use Lemma A.7 to show that control is possible if and only
if there exists a partition such that p is precluded from winning when all manipulators vote
for p. This also implies that plurality-DCPV-TE-CF = plurality-DCPV-TE-MF.

It immediately follows from the definition that if the instance of plurality-DCPV-TE-MF
is positive, then there exists a partition such that p is not a winner when all manipulators vote
for p.

123



   52 Page 24 of 32 Autonomous Agents and Multi-Agent Systems            (2020) 34:52 

For the other direction, by Lemma A.7 if there exists a partition such that p is not a
winner when all the manipulators vote for p, then there exists a partition (V1, V2) such
that p can never be made a winner by the manipulators. This implies that no matter what the
manipulators do, there exists a partition (in fact, always the same partition) such that p is not
a winner. This then implies that the instance of plurality-DCPV-TE-MF is positive. �


A.2 Condorcet

In this subsection we prove the Condorcet cases of Theorem 4.5.

Theorem A.10 For Condorcet elections, the following hold.

1. M+

[
C

D

]
C

[
A

D

]
C are each in P.

2. M+DC

[
A

D

]
V are both in P.

3.

[
C

D

]
C

[
A

D

]
C-

[
CF

MF

]
are each in P.

4. DC

[
A

D

]
V-

[
CF

MF

]
are both in P.

Proof For the constructive cooperative and the destructive competitive cases it is clear that
the manipulators should all rank p first. The remaining candidates can be ranked in any order
since this does not affect whether or not p is a Condorcet winner.

For the destructive cooperative and the constructive competitive cases the optimal action
for the manipulators is to rank p last.

In all cases we can determine if the chair can be successful by assuming the manipula-
tors vote as above and using the corresponding polynomial-time algorithm for control from
Bartholdi et al. [3] (for the constructive cases) or from Hemaspaandra et al. [42] (for the
destructive cases), modified in the obvious way for the nonunique-winner case (see Obser-
vation 4.6). �


We now prove the Condorcet partition cases. Since Condorcet winners are always unique,
the “TE” and “TP” cases coincide and so we will leave out this notation, following [42].

Theorem A.11 For Condorcet elections, M+

[
C

D

]
C

[
PC

RPC

]
are each in P.

Proof Given an election (C, V ) and a preferred candidate of the chair p ∈ C , we can
determine in polynomial time if p can be made a winner (in the presence of manipulators)
by partitioning of candidates and by runoff partitioning of candidates as follows.

The use we’re about to make of the notion of control being possible is as described
immediately before Theorem 4.7. For the constructive cases we do the following. Since
Condorcet elections satisfy both WARP and unique-WARP, we know from Theorems 4.7
and 4.9 that control is possible if and only if control is possible using partition (C −{p}, {p}).
Set all manipulators to rank p first. Rank the candidates that do not beat p pairwise next in
all manipulator votes (in any order). Then, as long as there exists an unranked candidate c
that can never be a Condorcet winner in (C − {p}, V ), rank c next in all manipulator votes.
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Let Ĉ be the set of candidates not yet ranked by the manipulators. Notice that every c ∈ Ĉ
beats p pairwise, and every c ∈ Ĉ can become a Condorcet winner in (Ĉ, V ) (and thus also
in (C, V )).

So, to determine if control is possible, we must determine if the manipulators can vote
in such a way that (Ĉ, V ) has no Condorcet winner, i.e., for each c ∈ Ĉ there exists a
c′ ∈ Ĉ − {c} such that c′ ties-or-beats c pairwise.

For ‖V ‖ even, assume that there are at least two candidates in Ĉ and for ‖V ‖ odd, assume
there are at least three candidates in Ĉ (otherwise there will always be Condorcet winners).
We have the following cases, depending on whether or not there is a Condorcet winner in
(Ĉ, V ) before the manipulators vote and depending on the parity of ‖V ‖. Let k ≥ 1 denote
the number of manipulators in V .

1. If there exists aCondorcetwinner and ‖V ‖ is even, then let c be theCondorcetwinner, and
let d ∈ Ĉ −{c}. It is easy to see that each of the manipulators can vote c > d > Ĉ −{c, d}
or d > c > Ĉ −{c, d} in such a way that c ties d pairwise. So, c is no longer a Condorcet
winner and no other candidate becomes a Condorcet winner, since c ties-or-beats every
other candidate pairwise.

2. If there exists a Condorcet winner and ‖V ‖ is odd, then let c be the Condorcet winner,
and let a, b ∈ Ĉ − {c} be such that a ties-or-beats b pairwise. Have �k/2� manipulators
vote a > b > c > Ĉ −{a, b, c} and �k/2�manipulators vote b > c > a > Ĉ −{a, b, c}.
After thismanipulation, b beats c pairwise, a beats b pairwise, and c beats every candidate
in Ĉ − {b, c} pairwise.

3. If there is no Condorcet winner and ‖V ‖ is even, then have �k/2� manipulators vote Ĉ

(i.e., the candidates in Ĉ in some fixed order) and �k/2� manipulators vote
←−̂
C (i.e., the

candidates in Ĉ in reverse order). When k is odd, let the remaining manipulator vote
arbitrarily. It is clear that no Condorcet winners are created by the manipulators.

4. If there is no Condorcet winner and ‖V ‖ is odd, then we have the following cases.

(a) If k is even, then have k/2 manipulators vote Ĉ and the remaining k/2 manipulators

vote
←−̂
C .

(b) If k is odd and there is no weak Condorcet winner (a weak Condorcet winner is a
candidate that ties-or-beats every other candidate pairwise), then have �k/2� manip-

ulators vote Ĉ and �k/2� manipulators vote
←−̂
C . Let the remaining manipulator vote

arbitrarily. It is clear that no Condorcet winner is created by the manipulators.
(c) If k is odd and there exists a weak Condorcet winner, then let c be a weak Condorcet

winner and let a be a candidate such that a ties c pairwise. We have the following
two cases.
i. If for all b ∈ Ĉ − {a, c}, a beats b pairwise and c beats b pairwise, then have

�k/2� manipulators vote Ĉ − {a, c} > a > c and have the remaining �k/2�
manipulators vote c > Ĉ − {a, c} > a. So, now a beats c pairwise, and for all
b ∈ Ĉ − {a, c}, c beats b pairwise and b beats a pairwise, and thus there is still
no Condorcet winner.

ii. Otherwise, there exists a candidate b ∈ C − {a, c} such that it is not the case
that a and c both beat b pairwise. Suppose there are at least three manipulators,
and set their votes in the following way. (If there is only one manipulator, then
since each candidate in Ĉ can become a Condorcet winner, all candidates in Ĉ
tie pairwise. And so there is always a Condorcet winner after manipulation.)
A. If a does not beat b pairwise, then let �k/3�manipulators vote c > b > a >

Ĉ−{a, b, c}, �k/3�manipulators vote b > a > c > Ĉ−{a, b, c}, and �k/3�
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manipulators vote a > c > b > Ĉ −{a, b, c}. Note that a beats c pairwise,
b beats a pairwise, and c beats every candidate in Ĉ − {a, c} pairwise, so
there is no Condorcet winner. If two manipulators remain, then have one

vote Ĉ and the other vote
←−̂
C . Otherwise, if a single manipulator remains,

since a beats c pairwise after the manipulators act as above, when the one
remaining manipulator votes c > · · · , no Condorcet winner is created.

B. If a beats b pairwise, then c does not beat b pairwise. It follows that c ties b
pairwise. Now switch candidates a and b, and we are in the previous case.

For the destructive cases, sinceCondorcet elections satisfy unique-WARP, the chair cannot,
by partitioning of candidates or by runoff partitioning of candidates, cause a candidate that
is a unique winner to no longer be a unique winner [42]. This implies that control is possible
if and only if the manipulators can vote so that p is not a winner in (C, V ). It is immediate
that the optimal action for the manipulators is to put p last. �


Theorem A.12 For Condorcet elections,

[
C

D

]
C

[
PC

RPC

]
-

[
CF

MF

]
are each in P.

Proof Given an election (C, V ) and a preferred candidate of the chair p ∈ C , we can
determine in polynomial time if p can be made a winner by partitioning candidates and by
runoff partitioning of candidates as follows.

For the constructive cases, since Condorcet elections satisfy both WARP and unique-
WARP, we know from Theorems 4.7 and 4.9 (which each apply only to the TE model, but
since the Condorcet election system never has more than one winner, for Condorcet elections
TE and TP are in effect identical) that control is possible if and only if control is possible
using partition (C − {p}, {p}). The manipulators can preclude p from winning if and only if
there is a candidate c �= p that can be made to uniquely win (C −{p}, V ) and ties-or-beats p
pairwise. This can easily be checked by having all manipulators vote for c.

For the destructive cases, sinceCondorcet elections satisfy unique-WARP, the chair cannot,
by partitioning of candidates or by runoff partitioning of candidates, cause a candidate that
is a unique winner to no longer be a unique winner [42]. This implies that control is possible
if and only if the manipulators cannot vote so that p becomes a winner in (C, V ). It is
immediate that the optimal action for the manipulators is to vote for p. �

Theorem A.13 For Condorcet elections, M+DCPV is in P.

Proof Given an election (C, V ) and adespised candidate of the chair p ∈ C ,we candetermine
in polynomial time if p can be precluded from winning by partitioning voters as follows.

If there exists a candidate r ∈ C − {p} such that when all manipulators rank p last (and
ranking the remaining candidates in any order), r ties-or-beats p pairwise, then control is
possible by having all manipulators rank p last and using partition (V ,∅).

If no such candidate exists, the only way to ensure that p is not a winner is to ensure that p
does not participate in the runoff. Suppose there exists a partition and a manipulation such
that p is not a unique winner of either subelection. If in this partition we set all manipulators
to rank p last, p still does not win either subelection. So, we can check whether we are in
this case by having all manipulators rank p last, and then use the polynomial-time algorithm
for Condorcet-DCPV from [42], modified in the obvious way for the nonunique-winner case
(see Observation 4.6). �


Below we state a lemma analogous to Lemma A.7, but for Condorcet elections.
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Lemma A.14 If there exists a partition of voters such that p is not a Condorcet winner when
all manipulators vote for p, then there exists a partition such that p can never be made a
winner by the manipulators.

Proof Given an election (C, V ) and a candidate p ∈ C , we do the following.
Let (V1, V2) be a partition such that p is not a winner when all manipulators vote for p.

So, either there exists a candidate r ∈ C − {p} such that r ties-or-beats p pairwise when all
manipulators vote for p, or p is not a unique winner of either subelection.

In the former case the partition (V ,∅) will always work, and in the latter case it is clear to
see that there is no way for the manipulators to make p a unique winner of either subelection,
so we are done. �


Lemma A.14 implies that Condorcet-DCPV-CF is in P, since control is possible if and
only if control is possible when all manipulators vote for p. This can be checked using the
polynomial-time algorithm from [42], modified in the obvious way for the nonunique-winner
case (see Observation 4.6).

Theorem A.15 For Condorcet elections, DCPV-CF is in P.

A similar argument as in the proof of Theorem A.9 shows that Lemma A.14 above also
implies that the corresponding “MF” case is also in P.

Theorem A.16 For Condorcet elections, DCPV-MF is in P.

A.3 Approval

In this subsection we prove the Approval cases of Theorem 4.5.

Theorem A.17 For approval elections, the following hold.

1. M+

[
C

D

]
C

[
A

D

]
C are each in P.

2. M+DC

[
A

D

]
V are both in P.

3.

[
C

D

]
C

[
A

D

]
C-

[
CF

MF

]
are each in P.

4. DC

[
A

D

]
V-

[
CF

MF

]
are each in P.

Proof For the constructive cooperative and the destructive competitive cases it is clear that
the manipulators should all approve of only p.

For the destructive cooperative and the constructive competitive cases the optimal action
for the manipulators is approve of all candidates except p.

In all cases we can determine if the chair can be successful by assuming the manipula-
tors vote as above and using the corresponding polynomial-time algorithm for control from
Bartholdi et al. [3] (for the constructive cases) or from Hemaspaandra et al. [42] (for the
destructive cases), modified in the obvious way for the nonunique-winner case (see Obser-
vation 4.6). �
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Theorem A.18 For approval elections, M+

[
C

D

]
C

[
PC

RPC

]
-

[
TE

TP

]
are each in P.

Proof Given an election (C, V ) and a preferred candidate of the chair p ∈ C , we can
determine in polynomial time if p can be made a winner (in the presence of manipulators) by
partitioning of candidates and by runoff partitioning of candidates as follows. Let k denote
the number of manipulators in V .

For the constructive “TE” cases we do the following. Since approval elections satisfy both
WARP and unique-WARP, we know from Theorems 4.7 and 4.9 that control is possible if
and only if control is possible using partition (C −{p}, {p}). Set all manipulators to approve
of p. If that makes p an overall winner of the election, we are done. If not, let c be the unique
winner of subelection (C − {p}, V ) (since p will participate in the runoff, the only way p
can fail to then win overall is if there is a unique winner of (C − {p}, V ) who beats p in the
runoff). As just mentioned parenthetically, note that after manipulation, c’s score in this case
must be greater than p’s score. If for all d ∈ C − {p, c}, score(c) > score(d) + k, c will
always be the unique winner of (C −{p}, V ) and so p will never be an overall winner. If there
exists a candidate d in C − {p, c} such that score(c) ≤ score(d) + k, let score(c) − score(d)

voters approve of d (in addition to p). In this case, (C − {p}, V ) does not have a unique
winner and so p is an overall winner.

For the constructive “TP” cases, note that control is possible if and only if themanipulators
can vote so that p becomes a winner in (C, V ). So the optimal action for the manipulators
is to approve of only p. Similarly, for the destructive cases, control is possible if and only if
the manipulators can vote so that p does not win (for the “TP” cases) or does not uniquely
win (for the “TE” cases) in (C, V ). So the optimal action for the manipulators is to approve
of all candidates except p. �


Theorem A.19 For approval elections,

[
C

D

]
C

[
PC

RPC

]
-

[
TE

TP

]
-

[
CF

MF

]
are each in P.

Proof Given an election (C, V ) and a preferred candidate of the chair p ∈ C , we can
determine in polynomial time if p can be made a winner (in the presence of manipulators)
by partitioning candidates and by runoff partitioning of candidates as follows.

For the constructive “TE” cases, since approval elections satisfy both WARP and unique-
WARP, we know from Theorems 4.7 and 4.9 that control is possible if and only if control
is possible using partition (C − {p}, {p}). The manipulators can preclude p from winning
if and only if there is a candidate c �= p that can be made to uniquely win using partition
(C − {p}, {p}). This can easily be checked by having all manipulators approve of only c.

For the constructive “TP” cases, note that control is possible if and only if themanipulators
cannot vote so that p does not become a winner in (C, V ). So the optimal action for the
manipulators, regardless of who goes first, is to approve of all candidates except p. Similarly,
for the destructive cases, control is possible if and only if the manipulators cannot vote so
that p becomes a winner (for the “TP” cases) or a unique winner (for the “TE” cases) in
(C, V ). So the optimal action for the manipulators, regardless of who goes first, is to approve
of only p. �


Theorem A.20 For approval elections, M+DCPV-

[
TE

TP

]
are both in P.

Proof Given an election (C, V ) containing k manipulators, and a despised candidate of the
chair p ∈ C , we can determine in polynomial time if p can be precluded from winning by
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partitioning voters for the “TE” case as follows. Let k denote the number of manipulators
in V .

1. If there is a candidate, c �= p such that score(p) ≤ score(c) + k, then control is possible
by having all manipulators disapprove of only p and using partition (V ,∅).

2. If we are not in Case 1, the only way to preclude p from being a winner is if p doesn’t
make it to the runoff, i.e., if there exist a partition and a manipulation such that p is not a
unique winner of either subelection. If in this partition we make all manipulators vote to
disapprove of only p, p is still not a unique winner of either subelection. So, we can check
whether we are in this case by having all manipulators vote to disapprove of only p, and
then using the polynomial-time algorithm for approval-DCPV-TE from [42], modified in
the obvious way for the nonunique-winner case (see Observation 4.6).

For the “TP” case, replace “≤” by “<” in Case 1, and “unique winner” by “winner” and
“approval-DCPV-TE” by “approval-DCPV-TP” in Case 2. �


Below we state a lemma analogous to Lemma A.7, but for approval elections.

Lemma A.21 If there exists a partition of voters such that p is not an approval winner in the
“TE” (“TP”) model when all manipulators approve of only p, then there exists a partition
such that p can never be made an approval winner by the manipulators in the same tie-
breaking model.

Proof The proof for the “TE” case follows similarly to the proof of Lemma A.7, so we just
provide the proof of the “TP” case.

Given an election (C, V ) and a candidate p ∈ C , we do the following.
Let (V1, V2) be a partition such that p is not a winner when all manipulators approve of

only p. If p can never bemade awinner by themanipulators in this partition thenwe are done.
So, suppose there exists a manipulation such that p is an overall winner (with the partition
(V1, V2)). Without loss of generality p is a winner of the subelection (C, V1). Then if all
manipulators in V1 approve of only p, we know that p remains a winner of (C, V1). Note we
don’t get any new winners in (C, V1). Since p is not an overall winner if all manipulators
approve of only p there is a candidate c �= p such that if all manipulators vote for p, c is a
winner of (C, V2) and score(c) > score(p).

Now move all manipulators from V2 to V1. Note that c remains a winner of (C, V2) and
that c will always beat p in the runoff. It follows that in this new partition, p is never a winner,
no matter what the manipulators do. �


LemmaA.21 implies that approval-DCPV-TE-CF and approval-DCPV-TP-CF are both in
P, since control is possible if and only if (nonmanipulator) control is possible when all manip-
ulators approve of only p. This can be checked using the corresponding polynomial-time
algorithms from Hemaspaandra et al. [42], modified in the obvious way for the nonunique-
winner case (see Observation 4.6).

Theorem A.22 For approval elections, DCPV-

[
TE

TP

]
-CF are both in P.

Lemma A.21 above also implies that the corresponding manipulators-first cases are both
in P. The proof of the following theorem follows from a similar argument as the proof of
Theorem A.9.

Theorem A.23 For approval elections, DCPV-

[
TE

TP

]
-MF are both in P.
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