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Abstract

Multidimensional function data arise from many fields nowadays. The covariance

function plays an important role in the analysis of such increasingly common data. In

this paper, we propose a novel nonparametric covariance function estimation approach

under the framework of reproducing kernel Hilbert spaces (RKHS) that can handle both

sparse and dense functional data. We extend multilinear rank structures for (finite-

dimensional) tensors to functions, which allow for flexible modeling of both covariance

operators and marginal structures. The proposed framework can guarantee that the

resulting estimator is automatically semi-positive definite, and can incorporate various

spectral regularizations. The trace-norm regularization in particular can promote low

ranks for both covariance operator and marginal structures. Despite the lack of a closed

form, under mild assumptions, the proposed estimator can achieve unified theoretical

results that hold for any relative magnitudes between the sample size and the number of

observations per sample field, and the rate of convergence reveals the phase-transition

phenomenon from sparse to dense functional data. Based on a new representer theorem,

an ADMM algorithm is developed for the trace-norm regularization. The appealing

numerical performance of the proposed estimator is demonstrated by a simulation study

and the analysis of a dataset from the Argo project.
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1 Introduction

In recent decades, functional data analysis (FDA) has become a popular branch of sta-

tistical research. General introductions to FDA can be found in a few monographs (e.g.,

Ramsay and Silverman, 2005; Ferraty and Vieu, 2006; Horváth and Kokoszka, 2012; Hsing

and Eubank, 2015; Kokoszka and Reimherr, 2017). While traditional FDA deals with a

sample of time-varying trajectories, many new forms of functional data have emerged due

to improved capabilities of data recording and storage, as well as advances in scientific com-

puting. One particular new form of functional data is multidimensional functional data,

which becomes increasingly common in various fields such as climate science, neuroscience

and chemometrics. Multidimensional functional data are generated from random fields, i.e.,

random functions of several input variables. We note that this is different from those settings

with multiple output variables, which are sometimes referred to as multivariate functional

data (e.g., Ramsay and Silverman, 2005; Ferraty and Vieu, 2006). One example is multi-

subject magnetic resonance imaging (MRI) scans, such as those collected by the Alzheimer’s

Disease Neuroimaging Initiative. A human brain is virtually divided into three-dimensional

boxes called “voxels” and brain signals obtained from these voxels form a three-dimensional

functional sample indexed by spatial locations of the voxels. Despite the growing popularity

of multidimensional functional data, statistical methods for such data are limited apart from

very few existing works (e.g., Huang et al., 2009; Allen, 2013; Zhang et al., 2013; Zhou and

Pan, 2014; Wang and Huang, 2017).

In FDA covariance function estimation plays an important role. Many methods have

been proposed for unidimensional functional data (e.g., Rice and Silverman, 1991; James

et al., 2000; Yao et al., 2005; Paul and Peng, 2009; Li and Hsing, 2010; Goldsmith et al.,

2011; Xiao et al., 2013), and a few were particularly developed for two-dimensional functional

data (e.g., Zhou and Pan, 2014; Wang and Huang, 2017). In general when the input domain is

2



of dimension p, one needs to estimate a 2p-dimensional covariance function. Since covariance

function estimation in FDA is typically nonparametric, the curse of dimensionality emerges

soon when p is moderate or large.

For general p, most work are restricted to regular and fixed designs (e.g., Zipunnikov

et al., 2011; Allen, 2013), where all random fields are observed over a regular grid like

MRI scans. Such sampling plan leads to a tensor dataset, so one may apply tensor/matrix

decompositions to estimate the covariance function. When random fields are observed at

irregular locations, the dataset is no longer a completely observed tensor so tensor/matrix

decompositions are not directly applicable. If observations are densely collected for each

random field, a two-step approach is a natural solution, which involves pre-smoothing every

random field followed by tensor/matrix decompositions at a fine discretized grid. However,

this solution is infeasible for sparse data where there are a limited number of observations

per random field. One example is the data collected by the international Argo project

(http://www.argo.net). See Section 8 for more details. In such sparse data setting, one

may apply the local smoothing method of Chen and Jiang (2017), but it suffers from the curse

of dimensionality when the dimension p is moderate due to a 2p-dimensional nonparametric

regression.

We notice that there is a related class of literature on longitudinal functional data (e.g.,

Chen and Müller, 2012; Park and Staicu, 2015; Chen et al., 2017), a special type of multidi-

mensional functional data where a function is repeatedly measured over longitudinal times.

Typically multi-step methods are needed to model the functional and longitudinal dimen-

sions either separately (one dimension at a time) or sequentially (one dimension given the

other), as opposed to the joint estimation procedure proposed in this paper. We also notice

a recent work on longitudinal functional data under the Bayesian framework (Shamshoian

et al., 2019).

The contribution of this paper is three-fold. First, we propose a new and flexible nonpara-
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metric method for low-rank covariance function estimation for multidimensional functional

data, via the introduction of (infinite-dimensional) unfolding operators (See Section 4 ). This

method can handle both sparse and dense functional data, and can achieve joint structural

reductions in all dimensions, in addition to rank reduction of the covariance operator. The

proposed estimator is a one-step estimator that achieves positivity and low-rankness, unlike

those multi-stage estimators (e.g., Hall and Vial, 2006; Poskitt and Sengarapillai, 2013) which

require a truncation and reconstruction step. The one-step nature reduces the theoretical

complexities in the development of asymptotic properties.

Second, we generalize the representer theorem for unidimensional functional data by

Wong and Zhang (2019) to the multidimensional case with more complex spectral regu-

larizations. The new representer theorem makes the estimation procedure practically com-

putable by generating a finite-dimensional parametrization to the solution of the underlying

infinite-dimensional optimization.

Finally, a unified asymptotic theory is developed for the proposed estimator. It auto-

matically incorporates the settings of dense and sparse functional data, and reveals a phase

transition in the rate of convergence. Different from existing theoretical work heavily based

on closed-form representations of estimators, (Li and Hsing, 2010; Cai and Yuan, 2010; Zhang

and Wang, 2016; Liebl, 2019), this paper provides the first unified theory for penalized global

M-estimators of covariance functions which does not require a closed-form solution. Further-

more, a near-optimal (i.e., optimal up to a logarithmic order) one-dimensional nonparamet-

ric rate of convergence is attainable for the 2p-dimensional covariance function estimator for

Sobolev-Hilbert spaces.

The rest of the paper is organized as follows. Section 2 provides some background on

reproducing kernel Hilbert space (RKHS) frameworks for functional data. Section 3 intro-

duces marginal low-rank structure of the covariance function. Section 4 presents Tucker

decomposition for finite-dimensional tensors and the generalization to tensor product RKHS
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operators, which is the foundation for our estimation procedure. The proposed estimation

method is given in Section 5, together with an algorithm. The unified theoretical results are

presented in Section 6. The numerical performance of the proposed method is evaluated by a

simulation study in Section 7 and a real data application in Section 8. Additional simulation

results and technical details are collected in a separate online supplemental material (SM).

2 RKHS Framework for Functional Data

In recent years there is a surge of RKHS methods in FDA (e.g., Yuan and Cai, 2010;

Zhu et al., 2014; Li and Song, 2017; Reimherr et al., 2018; Sun et al., 2018; Wong et al.,

2019). However, covariance function estimation, a seemingly well-studied problem, does

not receive the same amount of attention in the development of RKHS methods, even for

unidimensional functional data. Interestingly, we find that the RKHS modeling provides a

versatile framework for both unidimensional and multidimensional functional data.

Let X be a random field defined on an index set T ⇢ R
p, with a mean function µ0(·) =

E{X(·)} and a covariance function �0(⇤, ·) = Cov(X(⇤), X(·)), and let {Xi : i = 1, . . . , n}

be n independently and identically distributed (i.i.d.) copies of X. Typically, a functional

dataset is represented by {(Tij, Yij) : j = 1, . . .mi; i = 1, . . . , n}, where

Yij = Xi(Tij) + ✏ij 2 R (1)

is the noisy measurement of the i-th random field Xi taken at the corresponding index

Tij 2 T , mi is the number of measurements observed from the i-th random field, and

{✏ij : i = 1, . . . , n; j = 1, . . .mi} are independent errors with mean zero and finite variance.

For simplicity and without loss of generality, we assume mi = m for all i.

As in many nonparametric regression setups such as penalized regression splines (e.g.,

Pearce and Wand, 2006) and smoothing splines (e.g., Wahba, 1990; Gu, 2013), the sample

field of X, i.e., the realized X (as opposed to the sample path of a unidimensional random

function), is assumed to reside in an RKHS H of functions defined on T with a continuous
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and square integrable reproducing kernel K. Let h·, ·iH and k · kH denote the inner product

and norm of H respectively. With the technical condition EkXk2H < 1, the covariance

function �0 resides in the tensor product RKHS H ⌦H. It can be shown that H ⌦H is an

RKHS, equipped with the reproducing kernel K ⌦K defined as (K ⌦K)((s1, t1), (s2, t2)) =

K(s1, s2)K(t1, t2), for any s1, s2, t1, t2 2 T . This result has been exploited by Cai and Yuan

(2010) and Wong and Zhang (2019) for covariance estimation in the unidimensional setting.

For any function f 2 H ⌦ H, there exists an operator mapping H to H defined by

g 2 H 7! hf(⇤, ·), g(·)iH 2 H. When f is a covariance function, we call the induced operator

an H-covariance operator, or simply a covariance operator as below. To avoid clutter, the

induced operator will share the same notation with the generating function. Similar to L2-

covariance operators, the definition of an induced operator is obtained by replacing the L2

inner product by the RKHS inner product. The benefits of considering this operator have

been discussed in Wong and Zhang (2019). We also note that a singular value decomposition

(e.g., Hsing and Eubank, 2015) of the induced operator exists whenever the corresponding

function f belongs to the tensor product RKHS H⌦H. The idea of induced operator can be

similarly extended to general tensor product space F1⌦F2 where F1 and F2 are two generic

RKHSs of functions.

For any � 2 H⌦H, let �> be the transpose of �, i.e., �>(s, t) = �(t, s), s, t 2 T . Define

M = {� 2 H ⌦H : � ⌘ �>}. To guarantee symmetry and positive semi-definiteness of the

estimators, Wong and Zhang (2019) adopted M+ = {� 2M : h�f, fiH � 0, 8f 2 H} as the

hypothesis class of �0 and considered the following regularized estimator:

argmin
�2M+

{`(�) + ⌧Ψ(�)} , (2)

where ` is a convex and smooth loss function characterizing the fidelity to the data, Ψ(�)

is a spectral penalty function (see Definition 2 below), and ⌧ is a tuning parameter. Due

to the constraints specified in M+, the resulting covariance estimator is always positive

semi-definite.
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In particular, if the spectral penalty function Ψ(�) imposes the trace-norm regularization,

an `1-type shrinkage penalty on the respective singular values, the estimator is usually of

low rank. Cai and Yuan (2010) adopted a similar objective function as in (2) but with the

hypothesis class H ⌦H and an `2-type penalty Ψ(�) = k�k2H⌦H, so the resulting estimator

may neither be positive semi-definite nor low-rank.

Although Cai and Yuan (2010) and Wong and Zhang (2019) focused on unidimensional

functional data, their frameworks can be directly extended to the multidimensional setting.

Explicitly, similar to (2), as long as a proper H for the random fields with dimension p > 1 is

selected, an efficient “one-step” covariance function estimation with the hypothesis classM+

can be obtained immediately, which results in a positive semi-definite and possibly low-rank

estimator. Since an RKHS is identified by its reproducing kernel, we simply need to pick

a multivariate reproducing kernel K for multidimensional functional data. However, even

when the low-rank approximation/estimation is adopted (e.g., by trace-norm regularization),

we still need to estimate several p-dimensional eigenfunctions nonparametrically. This curse

of dimensionality calls for a more efficient modeling.

3 Marginal Low-rank Structure

The proposed method we will present in Section 5 relies on the promotion of sharing

structure among eigenfunctions. In this section we provide an illustration to explain it.

Suppose that X 2 H =
Np

k=1 Hk, where each Hk is an RKHS of functions equipped with

an inner product h·, ⇤ik and corresponding norm k · kk, k = 1, . . . , p. Then the covariance

function �0 resides in H ⌦H = (
Np

j=1 Hj) ⌦ (
Np

k=1 Hk). For a general H =
Np

j=1 Hj, let

{ek,lk : lk = 1, . . . , qk} be a set of orthonormal basis functions of Hk for k = 1, . . . , p, where

qk is allowed to be infinite, depending on the dimensionality of Hk. Then {
Np

k=1 ek,lk : lk =

1, . . . , qk; k = 1, . . . , p} forms a set of orthonormal basis functions for H. To have an easy
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illustration, we consider p = 2, and then the covariance function �0 can be expressed by

�0((s1, s2), (t1, t2)) =

q1
X

k1=1

q2
X

k2=1

q1
X

k3=1

q2
X

k4=1

Bk2+q1(k1�1),k4+q1(k3�1)e1,k1(s1)e2,k2(s2)e1,k3(t1)e2,k4(t2),

(3)

where B 2 R
q1q2⇥q1q2 .

Let {ul : l = 1, . . . , r1} and {vl : l = 1, . . . , r2} be two sets whose elements are orthonormal

linear combinations of {e1,l : l = 1, . . . , q1} and {e2,l : l2 = 1, . . . , q2} respectively, such that

�0((s1, s2), (t1, t2)) =

r1
X

j1=1

r2
X

j2=1

r1
X

j3=1

r2
X

j4=1

Ej2+r1(j1�1),j4+r1(j3�1)uj1(s1)vj2(s2)uj3(t1)vj4(t2), (4)

whereE 2 R
r1r2⇥r1r2 . To explain the sharing structure, we consider those associated with the

minimal r1, r2, which correspond to the “best” dimension reduction along each dimension.

Consider eigen-decomposition of E = PDP where D = diag(�1,�2, . . . ,�R) and P 2

R
r1r2⇥R has orthonormal columns. Then we obtain the eigen-decomposition of the covariance

function �0:

�0((s1, s2), (t1, t2)) =
R
X

g=1

�gfg(s1, s2)fg(t1, t2),

where the eigenfunction is

fg(s1, s2) =

r1
X

j1=1

r2
X

j2=1

Pj2+(j1�1)r1,guj1(s1)vj2(s2) =:

8

>

>

<

>

>

:

Pr1
j1=1 aj1,g(s2)uj1(s1)

Pr2
j2=1 bj2,g(s1)vj2(s2)

,

with aj1,g(·) =
Pr2

j2=1 Pj2+(j1�1)r1,ge2,j2(·) and bj2,g(·) =
Pr1

j1=1 Pj2+(j1�1)r1,ge1,j1(·). This shows

that {uj1 : j1 = 1, . . . , r1} is the common basis for the variation in H1, hence describing

the marginal structure in H1. Similarly {vj2 : j2 = 1, . . . , r2} is the common basis that

characterizes the marginal variation in H2. We call them the marginal basis along the

respective dimension.

Similarly, for p-dimensional functional data, each eigenfunction can be represented by

a linear combination of p-products of univariate functions. Compared to typical low-rank

covariance modelings only in terms of R, we also intend to find the efficient marginal bases
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that have small rk required to characterize the p-dimensional eigenfunctions of the covari-

ance operator. Intuitively, the above illustration shows the small rk encourages a “sharing”

structure of one-dimensional variations among different eigenfunctions. Promoting small rk

shrinks the number of these one-dimensional functions to be estimated and further alleviates

the curse of dimensionality. Moreover, one-dimensional marginal structures can potentially

help with a better understanding of p-dimensional eigenfunctions, as illustrated in Section

8.

Below, we explore low-rank modeling of marginal structures through the lens of tensor

decomposition in finite-dimensional vector spaces and its extension to infinite-dimensional

function spaces.

4 Unfolding Operations

In this section we first review the well-known Tucker decomposition for finite-dimensional

tensors, and then introduce the concept of functional unfolding for low-rank modeling.

4.1 Review of Tucker decomposition

Let G =
Nd

k=1 Gk denote a generic tensor product space. To begin with, we consider that

Gk, k = 1, . . . , d, are all finite-dimensional. Let the dimension of Gk be qk, k = 1, . . . , d. Then

each element in G =
Nd

k=1 Gk can be identified by an array A in R

Qd
j=k qk , which contains

the coefficients through an orthonormal basis. By Tucker decomposition (Tucker, 1966), we

can decompose an array A in the following way:

A = G⇥1 U1 ⇥2 · · ·⇥d Ud, (5)

where ⇥n represents the n-mode product (see Definition S1 in the SM), Ui 2 R
qi⇥ri i =

1, 2, . . . , d are called the factor matrices (usually orthonormal) with ri  qi, and G 2

R
r1⇥···⇥rd is called the core tensor. Then the n-mode matricization (see Definition S3 in
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the SM) of A, denoted by A(n), can be expressed as

A(n) = UnG(n)(Ud ⌦ · · ·⌦Un+1 ⌦Un�1 ⌦ · · ·⌦U1)
|, (6)

where, with a slightly notational abuse, ⌦ also represents the Kronecker product between

matrices.

Figure 1 provides a pictorial illustration of a Tucker decomposition. Tucker decomposition

naturally leads to a particular form of rank, called “multilinear rank”, which is defined as the

vector (rank(A(1)), . . . , rank(A(d))). If one chooses a Tucker decomposition such that {Uk :

k = 1, . . . , d} are orthonormal matrices and rank(Uk) = rk, then rank(A(k)) = rank(G(k)).

Thus a “small” multilinear rank corresponds to a small core tensor, which leads to an intrinsic

dimension reduction that potentially improves estimation and interpretation.

A

(q1 ⇥ q2 ⇥ q3)

=
U1

(q1 ⇥ r1)

G

(r1 ⇥ r2 ⇥ r3)

U3 (q3 ⇥ r3)

U2

(q2 ⇥ r2)

Figure 1: Tucker decomposition of a third-order array. The values in the parentheses are dimensions

for the corresponding matrices or arrays.

To encourage low-rank structures in covariance function estimation, the matricization

operation will be generalized for finite-dimensional arrays to infinite-dimensional tensors

(Hackbusch, 2012). Their relationship to the marginal structures explained in Section 3 will

become clear in Section 4.3.

4.2 Functional unfolding

Now we take Gk as an RKHS of functions with an inner product h·, ·iGk
, for k = 1, . . . , d.

Notice that the tensor product space G =
Nd

k=1 Gk can be generated by some elementary

tensors of the form (
Nd

k=1 fk)(x1, . . . , xd) =
Qd

k=1 fk(xk) where fk 2 Gk, k = 1, . . . , d. More
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specifically, G is the completion of the linear span of all elementary tensors under the inner

product h
Nd

k=1 fk,
Nd

k=1 f
0
kiG =

Qd
k=1hfk, f 0

kiGk
, for any fk, f

0
k 2 Gk.

In Definition 1 below, we generalize matricization/unfolding for finite-dimensional arrays

to infinite-dimensional elementary tensors. We also define a square unfolding for infinite-

dimensional tensors that will be used to describe the spectrum of covariance operators.

Definition 1 (Functional unfolding operators). The one-way unfolding operator and square

unfolding operators are defined as follows for any elementary tensor of the form
Nd

k=1 fk.

1. One-way unfolding operator Uj for j = 1, . . . , d: The j-mode one-way unfolding oper-

ator Uj :
Nd

k=1 Gk ! Gj ⌦ (
N

k 6=j Gk) is defined by Uj(
Nd

k=1 fk) = fj ⌦ (
N

k 6=j fk).

2. Square unfolding operator S: When d is even, the square unfolding operator S :

Nd
j=1 Gj ! (

Nd/2
j=1 Gj)⌦(

Nd
k=d/2+1 Gk) is defined by S(

Nd
j=1 fj) = (

Nd/2
j=1 fj)⌦(

Nd
k=d/2+1 fk).

These definitions extend to any function f 2 G by linearity. For notational simplicity we

denote Uj(f) by f(j), j = 1, . . . , d, and S(f) by f⌅.

Note that the image of each functional unfolding operator, either Uj, j = 1, . . . , d or S, is

a tensor product of two RKHSs, so its output can be interpreted as an (induced) operator.

Given a function f 2 G, the multilinear rank can be defined as (rank(f(1)), . . . , rank(f(d))),

where f(j)’s are interpreted as an operator here and rank(A) is the rank of any operator A. If

all Gk, k = 1, . . . , d are finite-dimensional, the singular values of the output of any functional

unfolding operator match with those of the j-mode matricization (of the corresponding array

representation).

Remark 1. For an array A 2 R

Qd
k=1 qk , the one-way unfolding Uj(A) is the same as ma-

tricization, if we further impose the same ordering of the columns in the output of Uj(A),

j = 1, . . . , d. This ordering is just related to how we represent the array, and is not cru-

cial in the general definition of Uj. Since the description of the computational strategy
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depends on the explicit representation, we will always assume this ordering. Similarly, we

also define a specific ordering of rows and columns for A⌅ 2 R
(
Qd/2

k=1 qk)⇥(
Qd/2

k=1 qk) when d is

even, such that its (j1, j2)-th entry is Ak1,...,kd where j1 = 1 +
Pd/2

i=1(ki � 1)(
Qd/2

m=i+1 qm) and

j2 = 1 +
Pd

i=d/2+1(ki � 1)(
Qd

m=i+1 qm).

4.3 One-way and two-way ranks in covariance functions

Recall that we aim to estimate �0 2 H ⌦ H. We could consider a special case of G =

Nd
j=1 Gj by letting d = 2p, Gj = Hj for j = 1, . . . , p, Gj = Hj�p for j = p + 1, . . . , d, and

h·, ·iGj
= h·, ·ij for j = 1, . . . , d. Clearly, the elements of H ⌦ H are identified by those in

G =
Nd

j=1 Gj. In terms of the folding structure, H ⌦H has a squarely unfolded structure.

Since a low-multilinear-rank structure is represented by different unfolded forms, it would be

easier to study the completely folded space
Nd

k=1 Gk instead of the squarely unfolded space

H⌦H. We use Γ0 to represent the folded covariance function, the corresponding element of

�0 in G. In other words, Γ0,⌅ = �0.

For any Γ 2 G, rank(Γ⌅) is defined as the two-way rank of Γ while rank(Γ(1)), . . . , rank(Γ(p))

are defined as the one-way ranks of Γ. Now, we link the unfolding to the illustration in Sec-

tion 3. In Section 3, let us define tensors Bfolded 2 R
q1⇥q2⇥q1⇥q2 and Efolded 2 R

r1⇥r2⇥r1⇥r2

such that Bfolded
⌅

= B and Efolded
⌅

= E. Then the fully folded covariance function Γ0 can

be expressed as Γ0 =
P

k1,...,kd
Bfolded

k1,k1,k2,k4

N4
i=1 ei,ki , as compared to the squarely unfolded

covariance function in (3). Similar to the construction of (4), there exist Uk 2 R
qk⇥rk ,

k = 1, 2, with orthonormal columns, such that Bfold = Efold ⇥1 U1 ⇥2 U2 ⇥3 U1 ⇥4 U2
1.

Now, one can see that R and (r1, r2) defined in Section 3 have the following interpre-

tations: R = rank(Bfold
⌅

) = rank(Efold
⌅

) is the two-way rank and (minimal) (r1, r2) =

(rank(Bfold
(1) ), rank(B

fold
(2) )) = (rank(Efold

(1) ), rank(E
fold
(2) )) are the one-way ranks. Therefore,

to promote marginal low-rank structure as discussed in Section 3, we should encourage a

low-multilinear-rank structure.

1The n-mode product (Definition S1) is extended to the case when qn is infinite.
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Remark 2. Obviously, rank(Γ⌅) 
Qp

k=1 rank(Γ(k)) for p-dimensional functional data. If

the random field X has the property of “weak separability” as defined by Lynch and Chen

(2018), then max(rank(Γ(1)), . . . , rank(Γ(p)))  R so the low-rank structure in terms of R

will be automatically translated to low one-way ranks. Note that the construction of our

estimator and corresponding theoretical analysis do not require separability conditions.

Next, we will utilize both one-way and two-way structures and propose an estimation pro-

cedure that regularizes one-way and two-way ranks jointly and flexibly, with the aim of seek-

ing the “sharing” of marginal structures while controlling the number of eigen-components

simultaneously.

5 Covariance Function Estimation

In this section we propose a low-rank covariance function estimation framework based

on functional unfolding operators and spectral regularizations. Spectral penalty functions

(Abernethy et al., 2009; Wong and Zhang, 2019) are defined as follows.

Definition 2 (Spectral penalty function). Given a compact operator A, a spectral penalty

function takes the form Ψ(A) =
P

k�1  (�k(A)) with the singular values of the operator A,

�1(A), �2(A), . . . in a descending order of magnitude and a non-decreasing penalty function

 such that  (0) = 0.

Recall H =
Np

j=1 Hj and G =
Nd

j=1 Gj where d = 2p, Gj = Hj for j = 1, . . . , p, and

Gj = Hj�p for j = p + 1, . . . , d. Clearly, a covariance operator is self-adjoint and positive

semi-definite. Therefore we consider the hypothesis space M+ = {Γ 2 M : hΓ⌅f, fiH �

0, for all f 2 H}, where M = {Γ 2 G : Γ⌅ is self-adjoint}, and propose a general class of

covariance function estimators as follows:

argmin
Γ2M+

(

`(Γ) + �

"

�Ψ0(Γ⌅) +
1� �
p

p
X

j=1

Ψj(Γ(j))

#)

, (7)
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where ` is a convex and smooth loss function, {Ψj : j = 1, . . . , p} are spectral penalty

functions, and � � 0 , � 2 [0, 1] are tuning parameters. Here Ψ0 penalizes the squarely

unfolded operator Γ⌅ while Ψj regularizes one-way unfolded operator Γ(j) respectively for

j = 1, . . . , p. The tuning parameter � controls the relative degree of regularization between

one-way and two-way singular values. The larger the � is, the more penalty is imposed

on the two-way singular values relative to the one-way singular values. When � = 1, the

penalization is only on the eigenvalues of the covariance operator (i.e., the two-way singular

values), similarly as Wong and Zhang (2019).

To achieve low-rank estimation, we adopt a special form of (7):

Γ̂ = argmin
Γ2M+

(

`square(Γ) + �

"

�kΓ⌅k⇤ +
1� �
p

p
X

j=1

kΓ(j)k⇤
#)

, (8)

where k · k⇤ is the sum of singular values, also called trace norm, and `square is the squared

error loss:

`square(Γ) =
1

nm(m� 1)

n
X

i=1

X

1j 6=j0m

{Γ(Tij1, . . . , Tijp, Tij01, . . . , Tij0p)� Zijj0}
2, (9)

with Zijj0 = {Yij � µ̂(Tij1, . . . , Tijp)}{Yij0 � µ̂(Tij01, . . . , Tij0p)}, µ̂ as an estimate of the mean

function, and Tijk as the k-th element of location vector Tij. Notice that trace-norm regu-

larizations promote low-rankness of the underlying operators, hence leading to a low-rank

estimation in terms of both the one-way and two-way (covariance) ranks.

The main reason for penalizing one-way ranks is that only regularizing two-way ranks is

often insufficient for dimension reduction for p-dimensional functional data. To nonparamet-

rically estimate the covariance function for p-dimensional functional data, even if the rank of

the covariance operator, i.e., the two-way rank, is R, one needs to estimate R eigenfunctions

of which each is p-dimensional. Thus, unless p is small, the covariance function estimation

will suffer from the curse of dimensionality.
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5.1 Representer theorem and parametrization

Before deriving a computational algorithm, we notice that the optimization (8) is an

infinite-dimensional optimization which is generally unsolvable. To overcome this chal-

lenge, we show that the solution to (8) always lies in a known finite-dimensional sub-

space given data, hence allowing a finite-dimensional parametrization. Indeed, we are

able to achieve a stronger result in Theorem 1 which holds for the general class of esti-

mators obtained by (7). In below, we use Γ̃ to represent a generic solution to (7). Let

Ln,m = {Tijk : i = 1, . . . , n, j = 1, . . . ,m, k = 1, . . . , p}.

Theorem 1 (Representer theorem). If the solution set of (7) is not empty, then the solution

Γ̃ lies in the space G(Ln,m) :=
N2p

k=1 Kk, where Kp+k = Kk and

Kk = span {Kk(Tijk, ·) : i = 1, . . . , n, j = 1, . . . ,m}

for k = 1, . . . , p. It also takes the form:

Γ̃(s1, . . . , sp, t1, . . . , tp) = A⇥1 z
|
1(s1)⇥2 z

|
2(s2) · · ·⇥p z

|
p(sp)⇥p+1 z

|
1(t1) · · ·⇥2p z

|
p(tp), (10)

where the l-th element of zk(·) 2 R
mn is K(Tijk, ·) with l = (i� 1)n+ j, A is a 2p-th order

tensor where the dimension of each mode is nm and A⌅ is a symmetric matrix.

The proof of Theorem 1 is given in Section S2 of the SM. By Theorem 1, we can now

only focus on covariance function estimators of the form (10). Let B = A ⇥1 M
T
1 · · · ⇥p

MT
p ⇥p+1 M

T
1 · · ·⇥2p M

T
p , where Mk is a nm⇥ qk matrix such that

MkM
T
k = Kk = [K(Ti1,j1,k, Ti2,j2,k)]1i1,i2n,1j1,j2m . (11)

With B, we can express

Γ̃(s1, . . . , sp, t1, . . . , tp) = B ⇥1 {M
+
1 z1(s1)}

| · · ·⇥p {M
+
p zp(sp)}

|

⇥p+1 {M
+
1 z1(t1)}

| · · ·⇥2p {M
+
p zp(tp)}

|,

(12)
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where zk(·) is defined in Theorem 1 and M+
k is the Moore–Penrose inverse of matrix Mk.

For the smooth modeling of Xi, the selected reproducing kernel is often smooth, which

leads to an approximately low-rank kernel matrix Kk. Thus computationally one can find a

matrix Mk with the number of columns qk much smaller than the rank of Kk and nm, such

that the first equation in (11) approximately holds. This greatly reduces the dimensions of

B, and thus benefits the computation.

Ideally we can obtain Mk by the “best” low-rank approximation with respect to the

Frobenius norm by eigen-decomposition, but a full eigen-decomposition is computationally

expensive. Instead, randomized algorithms can be used to obtain low-rank approximations

in an efficient manner (Halko et al., 2009).

One can easily show that the eigenvalues of the operator Γ̃⌅ are the same as those of the

matrix B⌅ and that the singular values of the operator Γ̃(j) are the same as those of the

matrix B(j). Therefore, solving (8) is equivalent to solving the following optimization:

B̂ = argmin
B

(

˜̀
square(B) + �

"

�h(B⌅) +
1� �
p

p
X

k=1

�

�B(j)

�

�

⇤

#)

, (13)

where k ·k⇤ also represents the trace norm of matrices, h(H) = kHk⇤ if matrix H is positive

semi-definite, and h(H) =1 otherwise, and ˜̀
square(B) = `square(Γ̃), where Γ̃ is constructed

from (12). Then Γ̂ in (8) can be obtained by substituting B̂ into (12).

Beyond estimating the covariance function, one may be further interested in the eigen-

decomposition of Γ̂⌅ via the L
2 inner product, e.g., to perform functional principal component

analysis in the usual sense. Due to the finite-dimensional parametrization, a closed-form

expression of L2 eigen-decomposition can be derived from our estimator without further

discretization or approximation. In addition, we can obtain a similar one-way analysis in

terms of the L2 inner product. We can define a L2 singular value decomposition via the

Tucker form and obtain the L2 marginal basis. Details are given in Appendix A.
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5.2 Computational algorithm

We solve (13) by the accelerated alternating direction method of multipliers (ADMM)

algorithm (Kadkhodaie et al., 2015). We begin with an alternative form of (13):

min
B2R

q1⇥···⇥q2p

(

˜̀
square(B) + ��h(D0,⌅) + �

1� �
p

p
X

k=1

�

�Dj,(j)

�

�

⇤

)

. (14)

subject to B = D0 = D1 = · · · = Dp (15)

where qp+k = qk for k = 1, . . . , p. Then a standard ADMM algorithm solves the opti-

mization problem (14) by minimizing the augmented Lagrangian with respect to different

variables alternatively. More explicitly, at the (t+ 1)-th iteration, the following updates are

implemented:

B(t+1) = argmin
B

(

˜̀
square(B) +

⌘

2
kB⌅ �D

(t)
0,⌅ + V

(t)
0,⌅ k2F +

⌘

2

p
X

k=1

�

�

�
B(k) �D

(t)
k,(k) + V

(t)
k,(k)

�

�

�

2

F

)

,

(16a)

D
(t+1)
0 = argmin

D0

⇢

��h(D0,⌅) +
⌘

2

�

�

�
B

(t+1)
⌅ �D0,⌅ + V

(t)
0,⌅

�

�

�

2

F

�

, (16b)

D
(t+1)
k = argmin

Dk

⇢

�
1� �
p
kDk,(k)k⇤ +

⌘

2

�

�

�
B

(t+1)
(k) �Dk,(k) + V

(t)
k,(k)

�

�

�

2

F

�

, k = 1, . . . , p, (16c)

V
(t+1)
k = V

(t)
k +B(t+1) �D

(t+1)
k , k = 0, . . . , p, (16d)

where Vk 2 R
q1⇥···q2p , for k = 0, . . . , p, are scaled Lagrangian multipliers and ⌘ > 0 is an

algorithmic parameter. An adaptive strategy to tune ⌘ is provided in Boyd et al. (2010).

One can see that Steps (16a), (16b) and (16c) involve additional optimizations. Now we

discuss how to solve them.

The objective function of (16a) is a quadratic function, and so we can easily solve this

with a closed-form solution, given in line 2 of Algorithm 1. To solve (16b) and (16c), we

use proximal operator proxkv , k = 1, . . . , p and prox+v : Rq1⇥···⇥q2p ! R
q1⇥···⇥q2p respectively
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defined by

proxkv(A) = argmin
W2R

q1⇥···⇥q2p

⇢

1

2
kW(k) �A(k)k2F + vkW(k)k⇤

�

, (17a)

prox+v (A) = argmin
W2R

q1⇥···⇥q2p

⇢

1

2
kW⌅ �A⌅k2F + vh(W⌅)

�

, (17b)

for v � 0. By Lemma 1 in Mazumder et al. (2010), the solutions to (17) have closed

forms. For (17a), write the singular value decomposition of A(k) as Udiag((ã1, . . . , ãqk))V
|,

then [proxkv(A)](k) = Udiag(c̃)V | where c̃ = ((ã1 � v)+, (ã2 � v)+, . . . , (ãqk � v)+). As for

(17b), the solution is restricted to be a symmetric matrix since the penalty h equals infinity

otherwise. Thus (17b) is equivalent to minimizing {(1/2)kW⌅ � (A⌅ +A
|
⌅)/2k2F + vh(W⌅)}

since hW⌅, (A⌅ �A
|
⌅)/2i = h(W⌅ +W

|
⌅ )/2, (A⌅ �A

|
⌅)/2i = 0 . Suppose that (A⌅ +A

|
⌅)/2

yields eigen-decomposition Pdiag((ã1, . . . , ãq)P
|. Then [prox+v (A)]⌅ = Pdiag(c̃)P |, where

c̃ = ((ã1 � v)+, (ã2 � v)+, . . . , (ãq � v)+). Unlike singular values, the eigenvalues may be

negative. Hence, as opposed to proxkv , this procedure prox+v also removes eigen-components

with negative eigenvalues.

The details of computational algorithm are given in Algorithm 1, an accelerated version

of ADMM which involves additional steps for a faster algorithmic convergence.

6 Asymptotic Properties

In this section, we conduct an asymptotic analysis for the proposed estimator Γ̂ as defined

in (8). Our analysis has a unified flavor such that the derived convergence rate of the proposed

estimator automatically adapts to sparse and dense settings. Throughout this section, we

neglect the mean function estimation error by setting µ0(t) = µ̂(t) = 0 for any t 2 T , which

leads to a cleaner and more focused analysis. The additional error from the mean function

estimation can be incorporated into our proofs without any fundamental difficulty.
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6.1 Assumptions

Without loss of generality let T = [0, 1]p. The assumptions needed in the asymptotic

results are listed as follows.

Assumption 1. Sample fields {Xi : i = 1, . . . , n} reside in H =
Np

k=1 Hk where Hk is an

RKHS of functions on [0, 1] with a continuous and square integrable reproducing kernel Kk.

Assumption 2. The true (folded) covariance function Γ0 6= 0 and Γ0 2 G =
Nd

j=1 Gj, where

d = 2p, Gj = Hj for j = 1, . . . , p and Gj = Hj�p for j = p+ 1, . . . , d.

Assumption 3. The locations {Tij : i = 1, . . . , n; j = 1, . . . ,m} are independent random

vectors from Uniform[0, 1]p, and they are independent of {Xi : i = 1, . . . , n}. The errors

{✏ij : i = 1, . . . , n; j = 1, . . . ,m} are independent of both locations and sample fields.

Assumption 4. For each t 2 T , X(t) is sub-Gaussian with a parameter bX > 0 which does

not depend on t, i.e., E[exp {�X(t)}]  exp {b2X�
2/2} for all � and t 2 T .

Assumption 5. For each i and j, ✏ij is a mean-zero sub-Gaussian random variable with a

parameter b✏ independent of i and j, i.e., E[exp {�✏ij}]  exp {b2✏�
2/2}. Moreover all errors

{✏ij : i = 1, . . . , n; j = 1, . . . ,m} are independent.

Assumption 1 delineates a tensor product RKHS modeling, commonly seen in the non-

parametric regression literature (e.g., Wahba, 1990; Gu, 2013). In Assumption 2, the con-

dition Γ0 2 G is satisfied if EkXk2H < 1, as shown in Cai and Yuan (2010). Assumption

3 is specified for random design and we adopt the uniform distribution here for simplicity.

The uniform distribution on [0, 1]p can be generalized to any other continuous distribution

of which density function ⇡ satisfies c⇡  ⇡(t)  c0⇡ for all t 2 [0, 1]p, for some constants

0 < c⇡  c0⇡ < 1, to ensure both Theorems 2 and 3 still hold. Assumptions 4 and 5 in-

volve sub-Gaussian conditions of the stochastic process and measurement error, which are

standard tail conditions.
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6.2 Reproducing kernels

In Assumption 1, the “smoothness” of the function in the underlying RKHS is not ex-

plicitly specified. It is well-known that such smoothness conditions are directly related to

the eigen-decay of the respective reproducing kernel. By Mercer’s Theorem (Mercer, 1909),

the reproducing kernel KH((t1, . . . , tp), (t
0
1, . . . , t

0
p)) of H possesses the eigen-decomposition

KH((t1, . . . , tp), (t
0
1, . . . , t

0
p)) =

1
X

l=1

µl�l(t1, . . . , tp)�l(t
0
1, . . . , t

0
p), (18)

where {µl : l � 1} are non-negative eigenvalues and {�l : l � 1} are L2 eigenfunctions on

[0, 1]p. Then for the space H⌦H, which is also identified by G =
Nd

k=1 Gk, its corresponding

reproducing kernel KG has the following eigen-decomposition

KG((x1, . . . , x2p), (x
0
1, . . . , x

0
2p))

= KH((x1, . . . , xp), (x
0
1, . . . , x

0
p))KH((xp+1, . . . , x2p), (x

0
p+1, . . . , x

0
2p))

=
1
X

l,h=1

µlµh�l(x1, . . . , xp)�h(xp+1, . . . , x2p)�l(x
0
1, . . . , x

0
p)�h(x

0
p+1, . . . , x

0
2p),

where {µlµh : l, h � 1} are the eigenvalues ofKG. Due to continuity assumption (Assumption

1) of the univariate kernels, there exists a constant b such that

sup
(x1,...,x2p)2[0,1]2p

KG((x1, . . . , x2p), (x1, . . . , x2p))  b.

The decay rate of the eigenvalues {µlµh : l, h � 1} is involved in our analysis through two

quantities n,m and ⌘n,m, which have relatively complex forms defined in Appendix B. Similar

quantities can be found in other analyses of RKHS-based estimators (e.g., Raskutti et al.,

2012) that accommodate general choices of RKHS. Generally n,m and ⌘n,m are expected to

diminish in certain orders of n and m, characterized by the decay rate of the eigenvalues

{µlµh}. The smoother the functions in the RKHS, the faster these two quantities diminish.

Our general results in Theorems 2 and 3 are specified in terms of these quantities. To provide

a solid example, we derive the orders of n,m and ⌘n,m under a Sobolev-Hilbert space setting

and provide the convergence rate of the proposed estimator in Corollary 1.
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6.3 Unified rates of convergence

We write the penalty in (8) as I(Γ) = �kΓ⌅k⇤ + (1 � �)p�1
Pp

k=1 kΓ(k)k⇤. For arbitrary

functions g1, g2 2 G, define their empirical inner product and the corresponding (squared)

empirical norm as

hg1, g2in,m =
1

nm(m� 1)

n
X

i=1

X

1j,j0m

g1(Tij1, . . . , Tijp, Tij01, . . . , Tij0p)g2(Tij1, . . . , Tijp, Tij01, . . . , Tij0p),

kg1k2n,m = hg1, g1in,m.

Additionally, the L2 norm of a function g is defined as kgk2 = {
R

T
g2(t) dt}1/2.

Define ⇠n,m = max{⌘n,m,n,m, (n
�1 log n)1/2}. We first provide the empirical L2 rate of

convergence for Γ̂.

Theorem 2. Suppose that Assumptions 1–5 hold. If ⇠n,m satisfies (log n)/n  ⇠2n,m/(log log ⇠
�1
n,m),

and � � L1⇠
2
n,m for some constant L1 > 0 depending on bX , b✏ and b, we have

kΓ̂� Γ0kn,m 
p

2I(Γ0)�+ L1⇠n,m,

with probability at least 1� exp(�cn⇠2n,m/log n) for some positive universal constant c.

Next, we provide the L2 rate of convergence for Γ̂.

Theorem 3. Under the same conditions as Theorem 2, there exists a positive constant L2

depending on bX , b✏, b and I(Γ0), such that

kΓ̂� Γ0k2  2
p

I(Γ0)�+ L2⇠n,m,

with probability at least 1� exp(�cpn⇠2n,m/ log n) for some constant cp depending on b.

The proofs of Theorems 2 and 3 can be found in Section S2 in the SM. Theorems 2 and

3 are applicable to general RKHS H which satisfies Assumption 1. The convergence rate

depends on the eigen-decay rates of the reproducing kernel. A special case of polynomial

decay rates for univariate RKHS will be given in Corollary 1. Moreover, our analysis has
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a unified flavor in the sense that the resulting convergence rates automatically adapt to

the orders of both n and m. After Corollary 1, we will provide a discussion of a “phase

transition” between dense and sparse functional data revealed by our theory.

Remark 3. With a properly chosen �, Theorems 2 and 3 bound the convergence rates (in

terms of both the empirical and theoretical L2 norm) by ⇠n,m, which cannot be faster than

(n�1 log n)1/2. The logarithmic order is due to the use of Adamczak bound in Lemma S2 in

the SM. If one further assumes boundedness for the sample fields Xi’s (in terms of the sup-

norm) and the noise variables ✏ij’s, we can instead use Talagrand concentration inequality

(Bousquet bound in Koltchinskii (2011)) and the results in Theorems 2 and 3 can be improved

to max{kΓ̂� Γ0k2n,m, kΓ̂� Γ0k22} = Op(⇠̃
2
n,m), where ⇠̃n,m = max{⌘n,m,n,m, n

�1/2}.

Next we focus on a special case where the reproducing kernels of the univariate RKHS

Hk’s exhibit polynomial eigen-decay rates, which holds for a range of commonly used RKHS.

A canonical example is ↵-th order Sobolev-Hilbert space:

Hk = {f : f (r), r = 0, . . . ,↵, are absolutely continuous; f (↵) 2 L2([0, 1])},

where k = 1, . . . , p. Here ↵ is the same as ↵ in Corollary 1. To derive the convergence

rates, we relate the eigenvalues ⌫l in (18) to the univariate RKHS Hk, k = 1, . . . , p. Due

to Mercer’s Theorem, the reproducing kernel Kk of Hk yields an eigen-decomposition with

non-negative eigenvalues {µ
(k)
l : l � 1} and an L2 eigenfunction {�

(k)
l : l � 1}, i.e., Kk(t, t

0) =

P1

l=1 µ
(k)
l �

(k)
l (t)�

(k)
l (t0). Therefore, the set of eigenvalues {µl : l � 1} in (18) is the same as

the set {
Qp

k=1 µ
(k)
lk

: l1, . . . , lp � 1}. Given the eigen-decay of µ
(k)
l , one can obtain the order

of ⇠n,m and hence the convergence rates from Theorems 2 and 3. Here are the results under

the setting of a polynomial eigen-decay.

Corollary 1. Suppose that the same conditions in Theorem 3 hold. If the eigenvalues of Kk

for Hk, k = 1, . . . , p, have polynomial decaying rates, that is, there exists ↵ > 1/2 such that
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µ
(k)
l ⇣ l�2↵ for all k = 1, . . . , p, then

max
n

kΓ̂� Γ0k2n,m, kΓ̂� Γ0k22
o

= Op

✓

max

⇢

(nm)�
2α

1+2α{log(nm)}
2α(2p�1)

2α+1 ,
log n

n

�◆

.

The proof of Corollary 1 can be found in Section S2 in the SM. All Theorems 2 and 3

and Corollary 1 reveal a “phase-transition” of the convergence rate depending on the relative

magnitudes between n, the sample size, and m, the number of observations per field. When

2n,m ⌧ (log n/n), which is equivalent to m � n1/(2↵)(log n)2p�2�1/(2↵) in Corollary 1, both

empirical and theoretical L2 rates of convergence can achieve the near-optimal rate
p

log n/n.

Under the stronger assumptions in Remark 3, the convergence rate will achieve the optimal

order
p

1/n when 2n,m ⌧ 1/n (or m � n1/(2↵)(log n)2p�1 in Corollary 1). In this case, the

observations are so densely sampled that we can estimate the covariance function as precisely

as if the entire sample fields are observable. On the contrary, when 2n,m � (log n/n) (or

m⌧ n1/(2↵)(log n)2p�2�1/(2↵) in Corollary 1), the convergence rate is determined by the total

number of observations nm. When p = 1, the asymptotic result in Corollary 1, up to some

logm and log n terms, is the same as the minimax optimal rate obtained by Cai and Yuan

(2010), and is comparable to the L2 rate obtained by Paul and Peng (2009) for ↵ = 2.

Our estimator is closely related to Wong and Zhang (2019), but the corresponding theories

are substantially distinct. First, the theoretical results of Wong and Zhang (2019) hold only

for one-dimensional functional data and Sobolev-Hilbert spaces, while our results apply to

multidimensional functional data and general RKHS. Moreover, unlike Theorems 2, 3 or

Corollary 1, Wong and Zhang (2019) does not provide unified theories. Their theories can

only achieve nonparametric rates which do not change over m, so they are not optimal for

dense functional data asm goes to infinity. In contrast, as shown in Corollary 1 by taking p =

1, our result gives a significantly better rate when m diverges. If m is bounded, by Theorem

3 of Wong and Zhang (2019), their best rate n�2↵/(1+2↵) log(n) is obtained if the covariance

function estimator is only searched for among periodic functions. In comparison, Corollary

1 indicates that our rate is n�2↵/(1+2↵) log(n)(2↵)/(1+2↵) for one-dimensional functional data,
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i.e., p = 1, and bounded m, which is slightly better than theirs, even if we do not assume

periodic covariance functions in our theory.

For covariance function estimation for unidimensional functional data, i.e., p = 1, a

limited number of approaches, including Cai and Yuan (2010), Li and Hsing (2010), Zhang

and Wang (2016), and Liebl (2019), can achieve unified theoretical results in the sense

that they hold for all relative magnitudes of n and m. The similarity of these approaches

is the availability of a closed form for each covariance function estimator. In contrast, our

estimator obtained from (8) does not have a closed form due to the non-differentiability of the

penalty, but it can still achieve unified theoretical results which hold for both unidimensional

and multidimensional functional data. Due to the lack of a closed form of our covariance

estimator, we used the empirical process techniques (e.g., Bartlett et al., 2005; Koltchinskii,

2011) in the theoretical development. In particular, we have developed a novel grouping

lemma (Lemma S4 in the SM) to deterministically decouple the dependence within a U -

statistics of order 2. We believe this lemma is of independent interest. In our analysis, the

corresponding U -statistics is indexed by a function class, and this grouping lemma provides

a tool to obtain uniform results (see Lemma S3 in the SM). In particular, this allows us

to relate the empirical and theoretical L2 norm of the underlying function class, in precise

enough order dependence on n and m to derive the unified theory. See Lemma S3 for more

details. To the best of our knowledge, this paper is one of the first in the FDA literature

that derives a unified result in terms of empirical process theories, and the proof technique

is potentially useful for some other estimators without a closed form.

7 Simulation

To evaluate the practical performance of the proposed method, we conducted a simulation

study. We in particular focused on two-dimensional functional data. Let H1 and H2 both

be the RKHS with kernel K(t1, t2) =
P1

k=1(k⇡)
�4ek(t1)ek(t2), where ek(t) =

p
2 cos(k⇡t),
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k � 1. This RKHS has been used in various studies in FDA, e.g., the simulation study of

Cai and Yuan (2012). Each Xi is generated from a mean-zero Gaussian random field with a

covariance function

�0((s1, s2), (t1, t2)) = Γ0(s1, s2, t1, t2) =
R
X

k=1

k�↵ k(s1, s2) k(t1, t2), (19)

where the eigenfunctions  k(t1, t2) 2 Pr1,r2 := {ei(t1)ej(t2) : i = 1, . . . , r1; j = 1, . . . , r2},

and ↵ controls the decay rate of eigenvalues. We considered three different choices of decay

rates (↵ = 1.1, 2, 4). Due to space limitation, we only present the results for ↵ = 2 here.

Corresponding results of the other two decay rates can be found in Section 3.1 of the SM.

Three combinations of one-way ranks (r1, r2) and two-way rank R were studied for Γ0:

Setting 1: R = 6, r1 = 3, r2 = 2; Setting 2: R = 6, r1 = r2 = 4;

Setting 3: R = r1 = r2 = 4.

For each setting, we chose R functions out of Pr1,r2 to be { k} such that smoother functions

are associated with larger eigenvalues. The details are described in Section S3.1.1 of the SM.

In terms of sampling plans, we considered both sparse and dense designs. Here we only

show and discuss the results for the sparse design, while defer those for the dense design to

Section S3.1.1 of the SM.

For the sparse design, the random locations Tij, j = 1, . . . ,m, were independently gener-

ated from the continuous uniform distribution on [0, 1]2 within each field and across different

fields, and the random errors {✏ij : i = 1, . . . , n; j = 1, . . . ,m} were independently generated

from N(0, �2). In each of the 200 simulation runs, the observed data were obtained following

(1) with various combinations of m = 10, 20, n = 100, 200 and noise level � = 0.1, 0.4.

We compared the proposed method, denoted by mOpCov, with three existing meth-

ods: 1) OpCov: the estimator based on Wong and Zhang (2019) with adaption to two

dimensional case (see Section 2); 2) ll-smooth: local linear smoothing with Epanechnikov

kernel; 3) ll-smooth+: the two-step estimator constructed by retaining eigen-components of
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ll-smooth selected by 99% fraction of variation explained (FVE), and then removing the eigen-

components with negative eigenvalues. For both OpCov and mOpCov, 5-fold cross-validation

was adopted to select the corresponding tuning parameters.

Table 1 show the average integrated squared error (AISE), average of estimated two-way

rank (R̄), as well as average of estimated one-way ranks (r̄1, r̄2) of the above covariance

estimators over 200 simulated data sets in respective settings when sample size is n = 200.

Corresponding results for n = 100 can be found in Table S5 of the SM, and they lead to

similar conclusions. Obviously ll-smooth and ll-smooth+, especially ll-smooth, perform sig-

nificantly worse than the other two methods in both estimation accuracy and rank reduction

(if applicable). Below we only compare mOpCov and OpCov.

Regarding estimation accuracy, the proposed mOpCov has uniformly smaller AISE values

than OpCov, with around 10% ⇠ 20% improvement of AISE over OpCov in most cases under

Settings 1 and 2. If the standard error (SE) of AISE is taken into account, the improvements

of AISE by mOpCov are more distinguishable in Settings 1 and 2 than those in Setting 3

since the SEs of OpCov in Setting 3 are relatively high. This is due to the fact that in Setting

3, the marginal basis is not shared by different two-dimensional eigenfunctions, and hence

mOpCov cannot benefit from the structure sharing among eigenfunctions. Setting 3 is in fact

an extreme setting we designed to challenge the proposed method.

For rank estimation, OpCov almost always underestimates two-way ranks, while mOpCov

typically overestimates both one-way and two-way ranks. For mOpCov, the average one-

way rank estimates are always smaller than the average two-way rank estimates, and their

differences are substantial in Settings 1 and 2. This demonstrates the benefit of mOpCov of

detecting structure sharing of one-dimensional basis among two-dimensional eigenfunctions.

We also tested the performance of mOpCov in the dense and regular designs, and com-

pared it with the existing methods mentioned above together with the one by Wang and

Huang (2017), which is not applicable to the sparse design. Details are given in Section
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S3.1.3 of the SM. Overall, all methods achieve similar AISE values, but mOpCov performs

slightly better in estimation accuracy in smoother cases (i.e., those with larger ↵), and when

the noise level is high.

We also investigated the performance of mOpCov when the true covariance function is of

high rank and obtained a similar conclusion as above. See details in Section S3.2 of the SM.

8 Real Data Application

We applied the proposed method to an Argo profile data set, obtained from https:

//argo.ucsd.edu. The Argo project has a global array of approximately 3,800 free-drifting

profiling floats, which measure temperature and salinity of the ocean. These floats drift freely

in the depths of the ocean most of the time, and ascend regularly to the sea surface, where

they transmit the collected data to the satellites. Every day only a small subset of floats

show up on the sea surface. Due to the drifting process, these floats measure temperature

and salinity at irregular locations over the ocean. See Figure 2 for examples.

In this analysis, we focus on the different changes of sea surface temperature between the

tropical western and eastern Indian Ocean, which is called the Indian Ocean Dipole (IOD).

The IOD is known to be associated with droughts in Australia (Ummenhofer et al., 2009)

and has a significant effect on rainfall patterns in southeast Australia (Behera and Yamagata,

2003). According to Shinoda et al. (2004), the IOD phenomenon is a predominant inter-

annual variation of sea surface temperature during late boreal summer and autumn (Shinoda

et al., 2004), so in this application we focused on the sea surface temperature in the Indian

Ocean region of longitude 40⇠120 and latitude -20⇠20 between September and November

every year from 2003 to 2018.

Based on a simple autocorrelation analysis on the gridded data, we decided to use mea-

surements for every ten days in order to reduce the temporal dependence among the data.

At each location of a float on a particular day, the average temperature between 0 and 5

hPa from the float is regarded as a measurement. The Argo float dataset provides multiple
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versions of data, and we adopted the quality controlled (QC) version. Eventually we have a

two-dimensional functional data collected of n = 144 days, where the number of observed lo-

cations Tij = (longitudie, latitude) per day varies from 7 to 47, i.e., 7  mi  47, i = 1, ..., n,

with an average of 21.83. The locations are rescaled to [0, 1]⇥ [0, 1]. As shown in Figure 2,

the data has a random sparse design.

Figure 2: Observations on 2013/09/04 (left), and all observations in the data set (right). Points on

the map indicate locations (Longitude, Latitude) of observations and the color scale of every point

shows the corresponding Celsius temperature.

First we used kernel ridge regression with the corresponding kernel for the tensor product

of two second order Sobolev spaces (e.g., Wong and Zhang, 2019) to obtain a mean function

estimate for every month. Then we applied the proposed covariance function estimator with

the same kernel.

The estimates of the top two two-dimensional L2 eigenfunctions are illustrated in Figure

3. The first eigenfunction shows the east-west dipole mode, which aligns with existing

scientific findings (e.g., Shinoda et al., 2004; Chu et al., 2014; Deser et al., 2010). The

second eigenfunction can be interpreted as the basin-wide mode, which is a dominant mode

all around the year (e.g., Deser et al., 2010; Chu et al., 2014).

To provide a clearer understanding of the covariance function structure, we derived a

marginal L2 basis along longitude and latitude respectively. The details are given in Ap-

pendix A. The left panel of Figure 4 demonstrates that the first longitudinal marginal basis
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reflects a large variation in the western region while the second one corresponds to the varia-

tion in the eastern region. Due to different linear combinations, the variation along longitude

may contribute to not only opposite changes between the eastern and western sides of the

Indian Ocean as shown in the first two-dimensional eigenfunction, but also an overall warm-

ing or cooling tendency as shown in the second two-dimensional eigenfunction. The second

longitudinal marginal basis reveals that the closer to the east boundary, the greater the vari-

ation is, which suggests that the IOD may be related to the Pacific Ocean. This aligns with

the evidence that the IOD has a link with El Niño Southern Oscillation (ENSO) (Stuecker

et al., 2017), an irregularly periodic variation in sea surface temperature over the tropical

eastern Pacific Ocean. As shown in the right panel of Figure 4, the overall trend for the first

latitude marginal basis is almost a constant function. This provides evidence that the IOD

is primarily associated with the variation along longitude.

Figure 3: The first two-dimensional L2 eigenfunction (left) and the second two-dimensional L2

eigenfunction (right). The first eigenfunction explains 33.60% variance and the second eigenfunction

explains 25.94% variance.
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(a) Longitude (39.06%, 36.10%) (b) Latitude (48.22%, 25.40%)

Figure 4: The first two marginal L2 basis functions along longitude and latitude respectively.

Solid lines are the first marginal basis function and dotted lines are the second marginal basis

function. The fractions of variation explained by the corresponding principle components are given

in parentheses.

Supplemental Material

In the supplemental material related to this paper, we provide formal definitions related

to Tucker decomposition for finite-dimensional tensors, proofs of our theoretical findings and

additional simulation results.

Appendix

A L2 eigensystem and L2 marginal basis

In this section, we present a transformation procedure to produce L2 eigenfunctions and

corresponding eigenvalues from our estimator B̂ obtained by (13).

LetQk = [
R

[0,1]
K(s, Tijk)K(s, Ti0j0k)ds]1i,i0n,1j,j0m, k = 1, . . . , p. ThenQk = MkRkM

|

k ,

where Rk = [
R

[0,1]
vl(s)vh(s)ds]1l,hqk and {vl : l = 1, . . . , qk} form a basis of Hk, so

Rk = M+
k Qk(M

+
k )

|. The L2 eigenvalues of Γ̂⌅ coincide with the eigenvalues of matrix

B̂L
square := (R1⌦ . . .⌦Rp)

1/2B̂⌅[(R1⌦ . . .⌦Rp)
1/2]|, and the number of nonzero eigenvalues

is the same as the rank of B̂⌅. The L
2 eigenfunction �̂l that corresponds to the l-th eigenvalue
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of Γ̂⌅ can be expressed as �̂l(s1, ..., sp) = u
|

l [z1(s1)⌦ . . .⌦ zp(sp)], where zk(·), k = 1, . . . , p

are defined in Theorem 1, and ul = (M+
1 ⌦ . . .⌦M+

p )
|(R1 ⌦ . . .⌦Rp)

�1/2vl with vl being

the l-th eigenvector of matrix B̂L
square. Using the property of Kronecker products, we have

�̂l(s1, ..., sp) = v
|

l [(R
�1/2
1 M+

1 z1(s1))⌦ . . .⌦ (R
�1/2
p M+

p zp(sp))].

By simple verification, we can see that R
�1/2
k M+

k zk(·) are qk one-dimensional orthonor-

mal L2 functions for dimension k, k = 1, ..., p. Therefore, we can also express Γ̂ with these

L2 one-dimensional basis and the coefficients will form a 2p�th order tensor of dimension

q1 ⇥ . . . qp ⇥ q1 ⇥ . . . qp. We use B̂L to represent this new coefficient tensor and extend our

unfolding operators to L2 space. It is easy to see that B̂L
⌅
= B̂L

square.

Since Γ̂(k) is a compact operator in the L2 space, this yields a singular value decomposition

which leads to a L2 basis characterizing the marginal variation along the k�th dimension. We

call it a L2 marginal basis for the k�th dimension. Obviously the marginal basis function  ̂k
l

corresponding to the l-th singular value for dimension k can be expressed as  ̂k
l (·) = uk

l zk(·),

where uk
l = (M+

k )
|R

�1/2
k vk

l , and vk
l is the l-th singular vector of B̂L

(k). And the L2 marginal

singular values of Γ̂(k) coincide with the singular values of matrix B̂L
(k).

B Definitions of n,m and ⌘n,m

Here we provide the specific forms of n,m and ⌘n,m, which are closely related to the decay

of {µlµh : l, h = 1, . . . }. Specifically, n,m is defined as the smallest positive  such that

cb3

"

1

n(m� 1)

1
X

l,h=1

min
�

2, µlµh

 

#1/2

 2,

32cb

"

1

n(m� 1)

1
X

l,h=1

min
�

2/b2, µlµh

 

#1/2

 2,

(20)

where c is a universal constant, and ⌘n,m is defined as the smallest positive ⌘ such that

 

c⌘
nm

1
X

l,h=1

min{⌘2, µlµh}+
⌘2

n

!1/2

 ⌘2, (21)
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where c⌘ is a constant depending on b, bX , b✏. The existences of n,m and ⌘n,m are shown in

the proof of Theorem 2.
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Algorithm 1: Accelerated ADMM for solving (13)

Input: V̂
(0)
k 2 R

q1⇥···⇥q2p , k = 0, 1, . . . , p, and B(0) 2 R
q1⇥···⇥q2p such that V̂0,(0) and

B
(0)
⌅ are symmetric matrices; Mk = [M |

1,k, . . . ,M
|

n,k]
|, k = 1, . . . , p;

Zi = (Zijj0)1j,j0m , i = 1, . . . , n; Ĩ = [I(i 6= j)]1i,jm; ⌘ > 0; T

Initialization: ↵
(0)
k  1, D

(�1)
k  B(0), D̂

(0)
k  B(0), V

(�1)
k  V̂

(0)
k , k = 0, 1, . . . , p

Li  [M |
i,1 �M

|
i,2 � · · ·�M

|
i,p]

|, i = 1, . . . , n, where � is the Khatri–Rao product

defined as A�B = [ai ⌦ bi]i=1,...,r 2 R
rarb⇥r for A 2 R

ra⇥r, B 2 R
rb⇥r and ai, bi are

i-th column of matrices A and B respectively.

G 1
nm(m�1)

Pn
i=1(Li ⌦Li)

|diag(vec(Ĩ))(Li ⌦Li)

h 2
nm(m�1)

Pn
i=1(Li ⌦Li)

|diag(vec(Ĩ))vec(Zi)

Q (2(G+ p+1
2
⇤ ⌘ ⇤ I))�1

1 for t = 0, 1, . . . , T do

2 vec(B
(t+1)
⌅ ) Q{h+ ⌘

Pp
k=0 vec([D

(t)
k � V̂

(t)
k ]⌅)}

3 for k = 0, 1, . . . , p do

4 if k = 0 then

5 D
(t)
0  prox+

��/⌘(B
(t+1) + V̂

(t)
0 )

6 else

7 D
(t)
k  proxk�(1��)/(p⌘)(B

(t+1) + V̂
(t)
k )

8 end

9 V
(t)
k  V̂

(t)
k +B(t+1) �D

(t)
k

10 ↵
(t+1)
k  1+

q

1+4(↵
(t)
k )2

2

11 D̂
(t+1)
k  D

(t)
k +

↵
(t)
k �1

↵
(t+1)
k

(D
(k)
k �D

(k�1)
k )

12 V̂
(t+1)
k  V

(t)
k +

↵
(t)
k �1

↵
(t+1)
k

(V
(t)
k � V

(t�1)
k )

13 end

14 Stop if objective value change less than tolerance.

15 end

Output: D
(T )
0
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Table 1: Simulation results for three Settings with the sparse design when sample size (n) is 200.

The AISE values with standard errors (SE) in parentheses are provided for the four covariance

estimators in comparison, together with average two-way ranks (R̄) for those estimators which can

lead to rank reduction (i.e., mOpCov, OpCov, and ll-smooth+) and average one-way ranks (r1, r2)

for mOpCov.

Setting m σ mOpCov OpCov ll-smooth ll-smooth+

1 10 0.1 AISE 0.053 (1.96e-03) 0.0632 (3.22e-03) 0.652 (1.92e-01) 0.337 (5.35e-02)

R̄ 8.35 2.94 - 172.70

r̄1, r̄2 5.22, 5.19

0.4 AISE 0.0527 (1.39e-03) 0.0656 (2.72e-03) 0.714 (2.11e-01) 0.366 (5.96e-02)

R̄ 9.16 2.84 - 177.3

r̄1, r̄2 5.29, 5.26

20 0.1 AISE 0.0340 (1.35e-03) 0.0421 (1.97e-03) 0.297 (1.39e-02) 0.206 (4.62e-03)

R̄ 8.265 3.78 - 317.44

r̄1, r̄2 5.81, 5.8

0.4 AISE 0.0349 (1.38e-03) 0.044 (2.21e-03) 0.325 (1.58e-02) 0.223 (4.94e-03)

R̄ 8.86 3.76 - 326.31

r̄1, r̄2 5.8, 5.8

2 10 0.1 AISE 0.0516 (1.96e-03) 0.0636 (3.12e-03) 2.33 (1.13e+00) 0.795 (2.98e-01)

R̄ 8.48 3.02 - 191.175

r̄1, r̄2 5.47, 5.47

0.4 AISE 0.0532 (1.96e-03) 0.0686 (3.53e-03) 2.44 (1.17e+00) 0.828 (3.04e-01)

R̄ 9.04 3.04 - 196.34

r̄1, r̄2 5.45, 5.43

20 0.1 AISE 0.0339 (1.39e-03) 0.0419 (2.02e-03) 0.301 (1.58e-02) 0.208 (4.50e-03)

R̄ 8.745 3.74 - 318.645

r̄1, r̄2 5.87, 5.88

0.4 AISE 0.0349 (1.43e-03) 0.043 (2.22e-03) 0.328 (1.78e-02) 0.225 (4.74e-03)

R̄ 7.785 3.6 - 327.395

r̄1, r̄2 5.75, 5.75

3 10 0.1 AISE 0.0581 (2.68e-03) 0.0692 (5.33e-03) 0.454 (7.28e-02) 0.286 (2.89e-02)

R̄ 6.76 3.12 - 182.74

r̄1, r̄2 4.07, 4.165

0.4 AISE 0.0602 (2.76e-03) 0.0733 (6.14e-03) 0.531 (1.07e-01) 0.323 (4.23e-02)

R̄ 6.93 3.2 - 185.82

r̄1, r̄2 4.12, 4.17

20 0.1 AISE 0.0399 (1.32e-03) 0.0535 (2.64e-03) 0.267 (5.04e-03) 0.196 (3.59e-03)

R̄ 6.17 4.49 - 332.09

r̄1, r̄2 3.50, 3.49

0.4 AISE 0.0405 (1.33e-03) 0.0494 (2.42e-03) 0.292 (5.30e-03) 0.212 (3.72e-03)

R̄ 6.12 3.36 - 338.725

r̄1, r̄2 3.53, 3.55
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This supplemental material provides formal definitions related to Tucker decomposition for

finite-dimensional tensors, proofs of our theoretical findings and additional simulation results.

S1 Definitions related to tensor decompositions

In this section, we provide formal definitions of n-mode product, Tucker decomposition and n-mode

matricization for finite-dimensional array.

Definition S1 (n-mode product). For any arrays A 2 R
q1⇥q2⇥···⇥qd and P 2 R

pn⇥qn, n 2

{1, . . . , d}, the n-mode product between A and P , denoted by A ⇥n P , is an array of dimension

q1 ⇥ q2 ⇥ · · · qn�1 ⇥ pn ⇥ qn+1 ⇥ · · · qd of which (l1, . . . , ln�1, j, ln+1, . . . ld)-th element is defined by

(A⇥n P )l1,...,ln�1,j,ln+1,...ld =

qn
X

i=1

Al1,...,ln�1,i,ln+1,...ldPj,i.

Definition S2 (Tucker decomposition). Tucker decomposition of A 2 R
q1⇥q2⇥···⇥qd is

A = G⇥1 U1 ⇥2 · · ·⇥d Ud,
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where Ui 2 R
qi⇥ri i = 1, 2, . . . , d, are called the “factor matrices” (usually orthonormal) with ri  qi

and G 2 R
r1⇥···⇥rd is called the “core tensor”.

Definition S3 (Matricization). For any n 2 {1, . . . , d}, the n-mode matricization of A 2 R
q1⇥q2⇥···⇥qd,

denoted by A(n), is a matrix of dimension qn ⇥ (
Q

k 6=n qk) of which (ln, j)-th element is defined by

[A(n)]ln,j = Al1,...,ld, where j = 1 +
Pd

i=1,i 6=n(li � 1)(
Qi�1

m=1,m 6=n qm)1.

S2 Proofs

S2.1 Proof of Theorem 1

For any Γ 2 G , we can decompose it into two orthogonal parts Γ1 and Γ2 such that Γ1 2 G(Ln,m)

and Γ2 2 (G(Ln,m))?. Since the loss function `(Γ) only depends on data, it suffices to show that

Ψ0(Γ⌅) � Ψ0(Γ1,⌅) and Ψk(Γ(k)) � Ψk(Γ1,(k)) for k = 1, . . . , p. Below we follow two steps to prove

this.

Step 1. Take H(Ln,m) :=
Np

k=1Kk. Since we require Γ 2 M+, we first show that Γ1,⌅ = Γ
|
1,⌅ and

hΓ1,⌅f, fiH � 0 for any f 2 H. Note that Γ⌅ = Γ
|
⌅, so Γ⌅ = (Γ1,⌅ + Γ2,⌅)/2 + (Γ|

1,⌅ + Γ
|
2,⌅)/2. As

Γ
|
1,⌅ 2 H(Ln,m) ⌦ H(Ln,m) and Γ

|
2,⌅ 2 (H(Ln,m) ⌦ H(Ln,m))?, we have Γ1 = (Γ1,⌅ + Γ

|
1,⌅)/2 and

Γ2 = (Γ2,⌅ + Γ
|
2,⌅)/2. Thus Γ1,⌅ = Γ

|
1,⌅ and Γ2,⌅ = Γ

|
2,⌅.

By the definition of Γ2, hΓ2,⌅g, giH = 0 for any g 2 H(Ln,m), so we have

0  hΓ⌅g, giH = hΓ1,⌅g, giH + hΓ2,⌅g, giH = hΓ1,⌅g, giH.

Moreover, the definition of Γ1 leads to hΓ1,⌅g, giH = 0 for any g 2 (H(Ln,m))?. Hence hΓ1,⌅f, fiH �

0 for any f 2 H.

Step 2. Next we show that for all k, �k(Γ⌅) � �k(Γ1,⌅) and �k(Γ(j)) � �k(Γ1,(j)) with j = 1, . . . , p.

Let PH(Ln,m) be the projection operator to space H(Ln,m) and denote the adjoint operator of A by

1All empty products are defined as 1. For example,
Qj

m=i
qm = 1 when i > j.
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A⇤. Then we have

�k(Γ1,⌅) = �k
�

PH(Ln,m)Γ⌅PH(Ln,m)

�

 �k
�

Γ⌅PH(Ln,m)

�

= �k
�

PH(Ln,m)Γ
⇤
⌅

�

 �k (Γ
⇤
⌅
) = �k(Γ⌅).

Let PKj
denote the projection operator to space Kj and PK�j

as the projection operator to space

N2p
k=1,k 6=j Kk where Kp+k = Kk, j = 1, . . . , p. Then

�k(Γ1,(j)) = �k
�

PKj
Γ(j)PK�j

�

 �k
�

Γ(j)PK�j

�

= �k

⇣

PK�j
Γ
⇤
(j)

⌘

 �k

⇣

Γ
⇤
(j)

⌘

= �k
�

Γ(j)

�

.

Therefore, Ψ0(Γ⌅) � Ψ0(Γ1,⌅) and Ψk(Γ(k)) � Ψk(Γ1,(k)) for k = 1, . . . , p.

S2.2 Proofs of Theorems 2, 3 and Corollary 1

For notational simplicity, we do not adopt different notations for the fully folded and squarely

unfolded versions of operators (functions) in this section.

Write ∆ = Γ̂�Γ0 and e(Tij ,Tij0) = (Xi(Tij) + ✏ij)(Xi(Tij0) + ✏ij0)�Γ0(Tij ,Tij0). From (8), we

obtain the following basic inequality:

k∆k2n,m + �I(Γ̂)  2he,∆in,m + �I(Γ0). (S1)

The term he,∆in,m involved in (S1) plays a crucial role in the subsequent asymptotic analysis, so

we will focus on this term first.

Consider Gs = {(Γ� Γ0) /{I(Γ) + I(Γ0)} : Γ 2 G} . To bound he,∆in,m, we start with control-

ling supg2Gs
he, gin,m. For any g 2 Gs, there exists a Γ 2 G such that g = (Γ� Γ0)/ {I(Γ) + I(Γ0)}.

When Γ = Γ0, kgkG = 0. Otherwise,

kgkG =

�

�

�

�

Γ� Γ0

I(Γ) + I(Γ0)

�

�

�

�

G

 kΓ� Γ0kG
I(Γ� Γ0)

 kΓ� Γ0kG
kΓ� Γ0kG

= 1,

where the second inequality is due to that I(Γ) � kΓkG for any Γ 2 G, and k ·kG is Hilbert–Schmidt
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norm of RKHS G. Take G0 = {g 2 G : kgkG  1}. From the above, one can easily see that Gs ✓ G0,

and hence supg2Gs
he, gin,m  supg2G0he, gin,m for any e. In the later part of our analysis, we will

bound supg2G0he, gin,m to control supg2Gs
he, gin,m.

First, we note that the functions residing in G0 are bounded: For any g 2 G0, by the property

of reproducing kernel,

sup
g2G0

|g|1  sup
(x1,...,x2p)2[0,1]2p

K((x1, ..., x2p), (x1, ..., x2p))  b.

Next we recall the definition of the sub-exponential norm of a random variable.

Definition S4. For a random variable X, its sub-exponential norm is defined as

kXk 1 = inf{� > 0 : E(exp(|X|/�))  2}.

If kXk 1 < 1, then we call X a sub-exponential random variable.

Recall that Ln,m = {Tijk : i = 1, ..., n; j = 1, ...,m; k = 1, ..., p}. We write eijj0 = e(Tij ,Tij0).

For random variables A and B, we denote by kA | Bk 1 the sub-exponential norm of the random

variable A conditional on B. The notation naturally extends to the case when B is a random

vector or a set of random variables. By Lemma 3 in Wong and Zhang (2019), we can see that

conditioned on Ln,m, eijj0 are sub-exponential random variables. Moreover, there exists a constant

� 1 , depending on bX and b✏, such that keijj0 | Ln,mk 1  �2 1
.

Next we introduce the following random variables:

Ẑn,m(e, t;G0) := sup
{g2G0:kgkn,mt}

�

�

�

�

�

�

1

nm(m� 1)

n
X

i=1

m
X

j 6=j0

eijj0g(Tij ,Tij0)

�

�

�

�

�

�

,

Z̃n,m(e, t;G0) := sup
{g2G0:kgk2t}

�

�

�

�

�

�

1

nm(m� 1)

n
X

i=1

m
X

j 6=j0

eijj0g(Tij ,Tij0)

�

�

�

�

�

�

.

Our immediate goal is to bound Ẑn,m(e, t;G0), which will be achieved by bounding Z̃n,m(e, t;G0).

We start with its expectation. Without loss of generality, we use c to denote all the universal

constants.
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Lemma S1. There exists a constant c⌘ > 0, depending on � 1 and L, such that

E



n

Z̃n,m(e, t;G0)
o2
�

 c⌘

0

@

1

nm

1
X

l,h=1

min{t2, µlµh}+
t2

n

1

A . (S2)

Proof. A majority of the proof resembles that of Lemma 42 in Mendelson (2002), with additional ar-

guments developed to control an important expectation term. Since the sample field of X resides in

H, we can decompose X(t) =
P1

h=1 ⇣h�h(t) where E(⇣h⇣h0) = E
�

Γ0(Tij ,Tij0)�h(Tij)�
0
h(Tij0)

 

. For

every s, t 2 [0, 1]p, write Φ(s, t) =
�p

µlµh�l(s)�h(t)
�1

l,h=1
. For two squarely summable sequences

a = {alh}
1
l,h=1 and b = {blh}

1
l,h=1, define their inner product and the 2-norm in the following:

ha, bi =P1
l,h=1 alhblh and kak2 = (

P1
l,h=1 a

2
lh)

1/2. One can show that

G0 = {g(·, ?) = h�, Φ(·, ?)i : k�k2  1} .

Let B(t) = {� : kgk2  t}. It follows that g 2 G0 \ B(t) if and only if � belongs to set Ω =

{� :
P1

l,h=1 �
2
lh(µlµh)  t2,

P1
l,h=1 �

2
lh  1}. Let Ξ = {� :

P1
l,h=1 �

2
lh⌫lh  1}, where ⌫lh =

(min{1, t2/µlµh})
�1. We can see that Ξ ⇢ Ω ⇢

p
2Ξ, which implies

E

⇣

Z̃n,m(!, t;G0)
⌘2

⇣ 1

n2m2(m� 1)2
E sup
�2Ξ

h�,
n
X

i=1

m
X

j 6=j0

eijj0Φ(Tij ,Tij0)i2.

Next,

E sup
�2Ξ

*

�,
n
X

i=1

m
X

j 6=j0

eijj0Φ(Tij ,Tij0)

+2

= E sup
�2Ξ

*

1
X

l,h=1

p
⌫lh�lh,

1
X

l,h=1

p
µlµhp
⌫lh

n
X

i=1

m
X

j 6=j0

eijj0�l(Tij)�h(Tij0)

+2

 E

1
X

l,h=1

µlµh

⌫lh

8

<

:

n
X

i=1

m
X

j 6=j0

eijj0�l(Tij)�h(Tij0)

9

=

;

2

= n

1
X

l,h=1

µlµh

⌫lh
E

8

<

:

m
X

j 6=j0

e1jj0�l(T1j)�h(T1j0)

9

=

;

2

.

The last equality follows from the independence between different sample fields and observed loca-

5



tions, combined with the fact that E(eijj0 | Ln,m) = 0.

It remains to bound E

n

Pm
j 6=j0 e1jj0�l(T1j)�h(T1j0)

o2
. Write

Ujj0kk0 = e1jj0e1kk0�l(T1j)�h(T1j0)�l(T1k)�h(T1k0).

When j = k and j0 = k0,

Ujj0jj0 = Ee21jj0�
2
l (T1j)�

2
h(T1j0) = E

⇥�

E(e21jj0 | Ln,m)
 

�2l (T1j)�
2
h(T1j0)

⇤

 c�2 1
E
�

�2l (T1j)�
2
h(T1j0)

 

= c�2 1
,

where the inequality follows from the property of sub-exponential random variables and c is a

universal constant. When j = k and j0 6= k0,

Ujj0jk0 = E
�

e1jj0e1jk0�
2
l (T1j)�h(T1j0)�h(T1k0)

 

 E

h

�

E(e1jj0 | Ln,m)2E(e1jk0 | Ln,m)2
 1/2

�2l (T1j)�h(T1j0)�h(T1k0)
i

 c�2 1
E
�

�2l (T1j)�h(T1j0)�h(T1k0)
 

 c�2 1

�

E�2h(T1j0)E�
2
h(T1k0)

 1/2  c�2 1
.

Similarly for j 6= k and j0 = k0, Ujj0kj0  c�2 1
. When j 6= k and j0 6= k0,

Ujj0kk0 = E
�

Ee1jj0�l(T1j)�h(T1j0) | X
 2

= E
⇥

E
�

(X(T1j) + ✏1j)(X(T1j0) + ✏1j0)� Γ0(T1j ,T1j0)
 

�l(T1j)�h(T1j0) | X
⇤2

= E
⇥

E
�

X(T1j)X(T1j0)�l(T1j)�h(T1j0) | X
 

� EΓ0(T1j ,T1j0)�l(T1j)�h(T1j0)
⇤2

= E

"

E

8

<

:

1
X

g=1

⇣g�g(T1j)�l(T1j) | {⇣g : g � 1}

9

=

;

⇥ E

8

<

:

1
X

g=1

⇣g�g(T1j0)�l(T1j0) | {⇣g : g � 1}

9

=

;

� E⇣l⇣h

#2

= E(⇣l⇣h � E⇣l⇣h)
2  E

�

⇣2l ⇣
2
h

�

.
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Putting together all these cases leads to

1
X

l,h=1

µlµh

⌫lh
E

8

<

:

m
X

j 6=j0

e1jj0�l(T1j)�h(T1j0)

9

=

;

2


1
X

l,h=1

µlµh

⌫lh

�

m(m� 1)c�2 1
+ 3m(m� 1)(m� 2)c�2 1

+m(m� 1)(m� 2)(m� 3)E
�

⇣2l ⇣
2
h

� 

 c

8

<

:

m3c�2 1

1
X

l,h=1

µlµh

⌫lh
+m4

1
X

l,h=1

µlµh

⌫lh
E
�

⇣2l ⇣
2
h

�

9

=

;

 c

8

<

:

m3c�2 1

1
X

l,h=1

min{t2, µlµh}+m4t2
1
X

l,h=1

E
�

⇣2l ⇣
2
h

�

9

=

;

.

Since
P1

l,h=1 E
�

⇣2l ⇣
2
h

�

= E(X4(T )) = L < 1,

E

n

Z̃n,m(e, t;G0)
o2

 c⌘

0

@

1

nm

1
X

l,h=1

min{t2, µlµh}+
t2

n

1

A .

Next we derive the following concentration inequality for Z̃n,m(e, t;G0).

Lemma S2. There exists a universal constant c > 1 and a constant c1 > 0 depending on b and

� 1, such that with probability at least 1� exp(�cnt2/log n), we have

Z̃n,m(e, t;G0)  c
n

EZ̃n,m(e, t;G0) + c1t
2
o

.

Proof. Write ei =
�

eijj0 : j = 1, ...,m
 

, Ti = {Tij : j = 1, ...,m} and

f(ei,Ti) =
1

m(m� 1)

m
X

j 6=j0

eijj0g(Tij ,Tij0).

Note that E(f(ei,Ti)) = 0. We adopt the Adamczak bound (Theorem 4 in Adamczak et al.,

2008; Koltchinskii, 2011) to establish a concentration inequality for the unbounded class F =

{f : g 2 G0, kgk2  t}. To this end, we need to bound a variance term �2(F) := supf2F E(f2(e1,T1))
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and the sub-exponential norm of the envelope function F of the class F . For the variance term,

�2(F) := sup
kgkG1,kgk2t

Ef2(e1,T1))

=
1

m2(m� 1)2
sup

kgkG1,kgk2t
E

8

<

:

m
X

j 6=j0

e1jj0g(T1j ,T1j0)

9

=

;

2

=
1

m2(m� 1)2

m
X

j 6=j0

m
X

k 6=k0

sup
kgkG01,kgk2t

E(Ee1jj0e1kk0 | T1)g(T1j ,T1j0)g(Tik,Tik0)


c�2 1

m2(m� 1)2

m
X

j 6=j0

m
X

k 6=k0

sup
kgkG1,kgk2t

Eg(T1j ,T1j0)g(Tik,Tik0)


c�2 1

m2(m� 1)2

m
X

j 6=j0

m
X

k 6=k0

sup
kgkG1,kgk2t

�

Eg2(T1j ,T1j0)Eg
2(Tik,Tik0)

 1/2

 c�2 1
t2.

As for the envelope,

k max
i=1,...,n

F (ei,Ti)k 1  c max
i=1,...,n

kF (ei,Ti)k 1(log n)

 cb

m(m� 1)
k

m
X

j 6=j0

eijj0k 1(log n)  cb�2 1
(log n),

where the first inequality comes from Theorm 4 of Pisier (1983) and the second inequality results

from g(Tij ,Tij0)  b. The desired result then follows from Adamzack bound.

By Lemmas S1 and S2, we are able to bound Z̃n,m(e, t;G0). Then, we relate Ẑn,m(e, t;G0) with

Z̃n,m(e, t;G0) by Lemma S3 below. Recall that n,m is the smallest positive real number  that

fulfills the following inequalities

cb3Q(/b)  2, (S3)

32cbQ()  2, (S4)

8



where c is an universal constant that we do not specify and

Q() =

2

4

1

n(m� 1)

1
X

l,h=1

min
�

2, µlµh

 

3

5

1/2

.

Note that Q()/! 1 as ! 0. Also, Q()/ is non-increasing in . Dividing both sides in (S3)

and (S4) by , the resulting right hand side is an identity function, which is continuous, strictly

increasing and is zero when  = 0. Therefore n,m exists.

Lemma S3. We assume t � n,m for all the following cases. For any g 2 G0, there exist constants

M1,M2 > 2, both depending on b, such that

�

kgk2n,m  t2
 

✓
�

kgk22  M1t
2
 

,

with probability at least 1� exp(�cnm2n,m + logm), and

�

kgk22  t2
 

✓
�

kgk2n,m  M2t
2
 

,

with probability at least 1� exp(�cnm2n,m + logm). Additionally, we have

kgk22 � kgk2n,m  1

2
kgk22,

holds for all g 2 G0 such that kgk22 > t2, with probability at least 1 � exp(�cpnmt2 + logm) where

cp is a constant depending on b.

Proof. For 1  j, j0  m, we call (j, j0) a pair formed by individuals j and j0. When m is even,

by Lemma S4, we are able to partition the collection P = {(j, j0) : 1  j < j0  m} into (m � 1)

groups G1, ..., Gm�1, such that Gk \Gk0 = ; for k 6= k0, P =
Sm�1

k=1 Gk, card(Gk) = m/2 for all k,

and card({(j, j0) 2 Gk : j = j̃ or j0 = j̃}) = 1 for all j̃ and k (i.e., no individual occurs more than

one time within a group), where card(A) denotes the cardinality of a set A. Therefore it is easy

to see that the location pairs in {
�

Tij , Tij0
�

: (j, j0) 2 Gk} are independent for any fixed k. As an

illustration, suppose m = 4. Following the construction rule in Lemma S4, we obtain three groups

9



G1 = {(1, 4), (2, 3)}, G2 = {(1, 2), (3, 4)} and G3 = {(1, 3), (2, 4)}.

Consider the case when m is even. Take fGk
(T ) = 2

nm

Pn
i=1

P

(j,j0)2Gk
g2(Tij ,Tij0), k =

1, ...,m � 1. Note that the nm/2 summands g2(Tij ,Tij0) in fGk
(T ) all have expectation kgk22,

and are independent due to the above grouping property. To relate kgk22 and fGk
(T ), we can apply

Theorem 3.3 in Bartlett et al. (2005).

Take Rn,m(t;Gk,G
0) = 2

nm sup{g2G0:kgk2t} |
Pn

i=1

P

(j,j0)2Gk
�ijj0g

2(Tij ,Tij0)| to be the corre-

sponding empirical local Rademacher complexity. By the well-known contraction inequality and

Lemma 42 in Mendelson (2002), it is simple to show that with some universal constant c,

ERn,m(t;Gk,G
0)  2b

2

nm
E

8

<

:

sup
g2G0,kgk2t

�

�

�

�

�

�

X

(j,j0)2Gk

�ijj0g(Tij ,Tij0)

�

�

�

�

�

�

9

=

;

 cb

0

@

1

nm

1
X

l,h=1

min{t2, µlµh}

1

A

1/2

 cbQ(t)

Note that for (j, j0) 2 Gk,

Var{g2(Tij ,Tij0)}  E{g4(Tij ,Tij0)}  b2kgk22  b2t2.

In Theorem 3.3 in Bartlett et al. (2005), we can take T (g) = b2kgk22, B = b2 and  (r) =

cb3Q(r1/2/b). We then verify a condition in Theorem 3.3 in Bartlett et al. (2005). For any t > 0,

b2ERn,m(t;Gk,G
0) =

2b2

nm
E

8

<

:

sup
g2G0,T (g)b2t2

�

�

�

�

�

�

X

(j,j0)2Gk

�ijj0g
2(Tij ,Tij0)

�

�

�

�

�

�

9

=

;

 cb3Q(t),

where the desired condition follows from taking r = b2t2. From the definition (S3) of n,m, we can

see that 2n,m is larger than the fixed point of  (i.e., the solution of  (r) = r). Theorem 3.3 in

Bartlett et al. (2005) shows that

kgk22  2fGk
(T ) +

1408

b2
2n,m + 2(11b2 + 52b2)2n,m = 2fGk

(T ) +

✓

1408

b2
+ 126b2

◆

2n,m,

10



holds for all g 2 G0, with probability at least 1� exp(�nm2n,m). Also,

fGk
(T )  2kgk22 +

704

b2
2n,m + 2(11b2 + 26b2)2n,m = 2kgk22 +

✓

704

b2
+ 74b2

◆

2n,m,

holds for all g 2 G0, with probability at least 1� exp(�nm2n,m).

Recall that kgk2n,m = 1
m�1

Pm�1
i=1 fGk

(T ). We proceed by taking union bounds of the probability

statements derived above, over fG1 , ..., fGm�1 . If t � n,m,

kgk22  2kgk2n,m +

✓

1408

b2
+ 126b2

◆

2n,m  M1t
2,

holds for all g 2 G0 such that kgk2n,m  t2, with probability at least 1 � (m � 1) exp(�nm2n,m).

Also, if t � n,m,

kgk2n,m  2kgk22 +
✓

704

b2
+ 74b2

◆

2n,m  M2t
2,

holds for all g 2 G0 such that kgk22  t2, with probability at least 1� (m� 1) exp(�nm2n,m). Here

M1,M2 > 2 are constants that depend on b.

Now, we focus on kgk22 > t2. By applying Theorem 2.1 in Bartlett et al. (2005), we obtain the

following inequality

kgk22 � fGk
(T )  0.5kgk22,

holds for all g 2 G0 such that kgk22 > t2, with probability at least 1 � exp(�(mn/64b2)t2. Take a

union bound over (m� 1) groups, we will have

kgk22 � kgk2n,m  0.5kgk22,

holds for all g 2 G0 such that kgk22 > t2, with probability at least 1� (m� 1) exp(�(mn/64b2)t2).

Whenm is odd, {(j, j0) : 1  j < j0  m� 1} can be decomposed into (m�2) groups (G1, . . . , Gm�2)

as described before, since m�1 is even. The remaining pairs are {(j,m) : j = 1, 2, ...,m� 1} which

11



are not independent.

kgk2n,m =
m� 2

m

1

(m� 2)

8

<

:

m�2
X

k=1

n
X

i=1

2

n(m� 1)

X

(j,j0)2Gk

g2(Tij ,Tij0)

9

=

;

+
2

m(m� 1)

m�1
X

j=1

1

n

n
X

i=1

g2(Tij ,Tim)

(S5)

In the odd-m setting, we define fGk
(T ) = 2

n(m�1)

Pn
i=1

P

(j,j0)2Gk
g2(Tij ,Tij0). We can apply the

similar arguments derived for the even case (with m replaced by m�1). Therefore, we focus on the

new term, which is the second term in (S5). First, we study Vj(T ) = 1
n

Pn
i=1 g

2(Tij ,Tim) for a fixed

1  j  m� 1. Note that E{g2(Tij ,Tim)} = kgk22 and the summands in Vj(T ) are independent.

We still apply Theorem 3.3 in Bartlett et al. (2005). The local Rademacher complexity becomes

R(t;G0) = E

(

1

n
sup

g2G0,kgk2t

n
X

i=1

g2(Tij ,Tim)

)

 cb

0

@

1

n

1
X

l,h=1

min{t2, µlµh}

1

A

1/2

.

Take 0n to be the smallest positive real number  that satisfies

cb3

0

@

1

n

1
X

l,h=1

min{(/b)2, µlµh}

1

A

1/2

 2.

By Theorem 3.3 in Bartlett et al. (2005), it can be shown that

kgk22  2Vj(T ) +
1408

b2
02n + 2(11b2 + 52b2)m2n,m

kgk22/m  2Vj(T )/m+
1408

b2
02n /m+ 2(11b2 + 52b2)2n,m

holds for all g 2 G0, with probability at least 1� exp(�nm2n,m). Also,

Vj(T )/m  2kgk22/m+
704

b2
02n /m+ 2(11(b2) + 26b2)2n,m,

holds for all g 2 G0, with probability at least 1� exp(�nm2n,m).

Now, we take a union bound, and then combine it with the result for the first term in (S5).

Since 02n /m  2n,m, we derive the following with assumption t � 2n,m:

12



kgk22  2kgk2n,m +
1408

b2
2n,m

✓

m� 2

m
+ 2

◆

+ 2(11b2 + 52b2)2n,m

✓

m� 2

m
+ 2

◆

 M1t
2

holds for all g 2 G0 such that kgk22  t2, with probability at least 1�(m�2+2(m�1)) exp(�nm2n,m).

kgk2n,m  2kgk22 +
704

b2
2n,m

✓

m� 2

m
+ 2

◆

+ 2(11(b2) + 26b2)

✓

m� 2

m
+ 2

◆

2n,m  M2t
2

holds for all g 2 G0 such that kgk22 < t2, with probability at least 1�(m�2+2(m�1)) exp(�nm2n,m).

Here M1 and M2 are some constants that depend on b.

With similar argument, we will be able to derive for the odd case,

kgk22 � kgk2n,m  0.5kgk22,

holds for all g 2 G0 such that kgk22 > t2, with probability at least 1�(m�2+2(m�1)) exp(�cpnmt2)

for some constant cp = cp(1/b).

With Lemmas S1, S2 and S3, we are now ready to prove Theorem 2. Recall the definition of

⌘n,m and ⇠n,m. The term ⌘n,m is defined as the smallest positive value ⌘ such that

0

@

c⌘
nm

1
X

l,h=1

min{⌘2, µlµh}+
⌘2

n

1

A

1/2

 ⌘2,

where c⌘ > 0 is a constant defined in Lemma S1. By similar arguments for the existence of n,m, we

can show that ⌘n,m exists. By Lemma S1, we can show that EZ̃n,m(e, t;G0) 
q

E[{Z̃n,m(e, t;G0)}2] 

t2 for t � ⌘n,m.

Take ⇠n,m = min

⇢

max {⌘n,m,n,m} ,
⇣

logn
n

⌘1/2
�

. We include the term (log n/n)1/2 mainly due

to the unboundedness of {eijj0}, which leads to the application of Adamzack bound (Lemma S2)

instead of simpler forms of Talagrand’s concentration inequality.
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Proof for Theorem 2. First, we study the crucial term

Ẑn,m(e, b;G0) = sup
{g2G0:kgkn,mb}

�

�

�

�

�

�

1

nm(m� 1)

n
X

i=1

X

j 6=j0

eijj0g(Tij ,Tij0)

�

�

�

�

�

�

,

which is bounded by the maximum of Ẑn,m (e, ⇠n,m;G0) and

sup
{g2G0:kgkn,m>⇠n,m}

�

�

�

�

�

�

1

nm(m� 1)

n
X

i=1

X

j 6=j0

eijj0g(Tij ,Tij0)

�

�

�

�

�

�

, (S6)

so it suffices to study the rates of convergence of these two terms.

For the rate of the maximum of Ẑn,m (e, ⇠n,m;G0), by Lemmas S1, S2 and S3, we can show that

with probability at least 1� exp(�cn⇠2n,m/ log n) for some universal constant c:

Ẑn,m(e, ⇠n,m;G0)  Z̃n,m(e,
p

M1⇠n,m;G0)

 c
n

EZ̃n,m(e,
p

M1⇠n,m;G0) + c1M1⇠
2
n,m

o

 c
�

M1⇠
2
n,m + c1M1⇠

2
n,m

 

 R⇠2n,m,

where R = cM1(1 + c1) and, the first, second and last inequalities are due to Lemmas S3, S2 and

S1 respectively.

For the rate of the second term in (S6), we first prove the following result. For any r > ⇠n,m,

with probability at least 1� exp(�cn⇠2n,m/ log n), we have

Ẑn,m(e, r;G0) =
r

⇠n,m
sup

{g2G0:kgkG
ξn,m

r
,kgkn,m⇠n,m}

�

�

�

�

�

�

1

nm(m� 1)

n
X

i=1

X

j 6=j0

eijj0g(Tij ,Tij0)

�

�

�

�

�

�

 r

⇠n,m
Ẑn,m(e, ⇠n,m;G0)  r

⇠n,m
R⇠2n,m = Rr⇠n,m. (S7)

For b > ⇠n,m, a direct application of the above result with r = b does not provide the increment

with respect to the empirical norm, and so we apply a peeling argument.
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Set Sl := {g 2 G0 : 2l�1⇠n,m  kgkn,m  2l⇠n,m}, l = 1, . . . , L, where L = log2(b/⇠n,m).

P

0

@ sup
{g2G0:kgkn,m>⇠n,m}

�

�

�

1
nm(m�1)

Pn
i=1

P

j 6=j0 eijj0g(Tij ,Tij0)
�

�

�

kgkn,m
> 2R⇠n,m

1

A


L
X

l=1

P

0

@sup
g2Sl

�

�

�

1
nm(m�1)

Pn
i=1

P

j 6=j0 eijj0g(Tij ,Tij0)
�

�

�

kgkn,m
> 2R⇠n,m

1

A


L
X

l=1

P

⇣

Ẑn,m(e, 2l⇠n,m;G0) > 2R2l�1⇠2n,m

⌘

 L exp

✓

�c
n

log n
⇠2n,m

◆

 exp

✓

�c
n

log n
⇠2n,m

◆

,

where the second last inequality results from (S7) by taking r = 2l⇠n,m, and the universal constant c

in the last two lines could be different. For the last inequality, as long as 0  (log(log(1/⇠n,m)))/{ n
logn⇠

2
n,m} 

1 such a universal constant c exists.

Therefore, we have

he, gin,m  R(⇠2n,m + 2kgkn,m⇠n,m),

for every g 2 Gs ⇢ G0, with probability at least 1�exp(�cn⇠2n,m/ log n). With the same probability,

we have

he,∆in,m  R⇠2n,m

n

I(Γ̂) + I(Γ0)
o

+ 2R⇠n,mk∆kn,m. (S8)

In below, we condition on the event (S8). From the basic inequality (S1), with � = c�⇠
2
n,m such

that c� > 2R,

k∆k2n,m  2he,∆in,m + �(I(Γ0)� I(Γ̂)),

k∆k2n,m  2�I(Γ0) + 4R⇠n,mk∆kn,m.
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Then we have

k∆kn,m  {2c�I(Γ0)}
1
2 ⇠n,m + 4R⇠n,m

and the proof is complete by taking L1 = 2R.

Next, we are ready to bound the L2 norm k∆k2 for ∆ = Γ̂� Γ0 obtained by (8).

Proof of Theorem 3. From Lemma S3, we can see that kgk22  2kgk2n,m + ⇠2n,m, for all g 2 G0 with

probability at least 1 � exp(�cp⇠
2
n,m) for some universal constant cp = cp(1/b). So with the same

probability we have k∆k2  21/2k∆kn,m+⇠n,m

n

I(Γ̂) + I(Γ0)
o

. In terms of Lemma S5, we are able

to bound the regularization term I(Γ̂) by a constant L2, so finally we get

k∆k2  2
1
2

h

{2c�I(Γ0)}
1
2 + 4R

i

⇠n,m + {R2 + I(Γ0)} ⇠n,m


h

2 {c�I(Γ0)}
1
2 + 4(2)

1
2R+R2 + I(Γ0)

i

⇠n,m.

By taking L2 = 4(2)1/2R+R2 + I(Γ0), the proof is complete.

Proof of Corollary 1. By Lemma S6, the tensor product eigenvalue sequence has decay µl ⇣ (l�2↵(log l)2↵(2p�1))

as l ! 1.

By the definitions of n,m and ⌘n,m, when m = O
�

n1/(2↵)(log n)2p�2�1/(2↵)
�

, they are all of the

same order, and so is ⇠n,m. By Lemma S7, we can see that

⇠n,m ⇣ (nm)2↵/(1+2↵)(log nm)2↵(2p�1)/(2↵+1). When n1/(2↵)(log n)2p�2� 1
2α = O(m), log n/n will be

the dominant term. From Theorems 2 and 3, we can see that kΓ̂� Γ0k2n,m and kΓ̂� Γ0k22 are both

of the same order. Overall, we have

kΓ̂� Γ0k2n,m, kΓ̂� Γ0k22 = Op

✓

(nm)�
2α

1+2α (log nm)
2α(2p�1)

2α+1 +
log n

n

◆

.
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S2.3 Auxiliary Lemmas

Lemma S4. When m is even, we can decompose any collection of individual index pairs {(j, j0) : 1  j < j0  m}

into (m� 1) groups such that within each group, there are m/2 pairs and no repeated individuals.

Proof. First, we consider to construct a matrix G 2 R
m⇥m that satisfies following conditions: 1.

All the diagonal entries are zero;

2. Every row and every column is a permutation of sequence {0, 1, 2, ..., (m� 1)};

3. It is symmetric.

To begin with, we consider the cycle cyc = {1, 2, ..., (m� 1)} and construct a sub-matrix Gsub 2

R
(m�1)⇥(m�1) from it. For i�th row of Gsub, we set it to be a sequence that starts with i in cyc

and ends until it reaches (m� 1) elements. For example, the first row will be [1, 2, ..., (m� 1)], the

second row will be [2, 3, ..., (m� 1), 1], and so on. Take the first (m � 1) rows and first (m � 1)

columns of G to be Gsub and fill last row and last column of G with zeros. Then obviously G

fulfills Conditions 2 and 3.

To fulfill Condition 1, set Gi,m and Gm,i to be Gii and then set Gii = 0 for i = 1, ..., (m� 1).

By this operation, it’s easy to see that for first (m�1) rows and first (m�1) columns, they are still

permutations of sequence {0, 1, 2, ..., (m� 1)} and symmetrization of G is not violated. It remains

to prove that last row and last column are also a permutation of the sequence, which is equivalent

to proving the diagonal part of Gsub is a permutation. In fact Gsub(i,i) is (2i � 1)-th element of

cycle cyc, i = 1, 2, ..., (m�1). Since m is even, diagonal parts of Gsub will cover the whole sequence

{1, 2, ..., (m� 1)}.

So for every pair (j, j0), 1  j < j0  m, we can assign it to Group Gk where k = Gj.j0 . In this

way, we decompose the collection {(j, j0) : 1  j < j0  m} into (m � 1) groups where each group

contains m/2 elements and within one group, there is no repeated individual.

Lemma S5. Under the same assumptions as Theorem 2, if � = c�⇠
2
n with some constant c� > 2R,

then there exists a constant R2 depending on I(Γ0), R and c�, such that with probability at least

1� exp(c n
logn⇠

2
n,m), we have

I(Γ̂)  R2.
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Proof. From the basic inequality (S1), we have

k∆k2n,m + �I(Γ̂)  2he,∆i+ �I(Γ0), (S9)

�I(Γ̂)  2he,∆i+ �I(Γ0). (S10)

Theorem 2, we know that

he,∆i  R⇠2n,m

n

I(Γ̂) + I(Γ0)
o

+ 2R⇠n,mk∆kn,m, (S11)

and

k∆kn,m  {2c�I(Γ0)}
1
2 ⇠n,m + 4R⇠n,m. (S12)

Therefore, plug (S12) into (S12),

he,∆i 
h

R
n

I(Γ̂) + I(Γ0)
o

+ 2R {2c�I(Γ0)}
1
2 + 8R2

i

⇠2n,m.

By plugging in(S10), we have

(c� � 2R)I(Γ̂)  2RI(Γ0) + 4R {2c�I(Γ0)}
1
2 + 16R2 + c�I(Γ0).

Therefore, there exists a constant L2, such that

I(Γ̂)  2RI(Γ0) + 4R {2c�I(Γ0)}
1
2 + 16R2 + c�I(Γ0)

c� � 2R
 R2.

Lemma S6. Suppose K1(·, ·) = K2(·, ·) = . . .Kp(·, ·), then H1 = H2 = . . . = Hp. If eigenvalues

of Kk has decay µ
(k)
n ⇣ (n�s) for some constant s. Then eigenvalues of the reproducing kernel for

tensor product
Np

k=1Hk ⌦
Np

k=1Hk will have decay µn ⇣ (n�s(log n)s(2p�1))

Proof. A direct application of Theorem 1 (Krieg, 2018) completes the proof.
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Lemma S7. Take t to be the solution of the equality

1p
nm

 

1
X

h=1

min
�

t2, µh

 

!1/2

= t2,

where µh ⇣ (h�2↵(log l)2↵(2p�1)). Then as n ! 1 and m ! 1, the solution

t ⇣ (nm)�
α

1+2α (log nm)
α(2p�1)
2α+1 .

Proof. Take N = nm, To find the order of t. We need to find l0 such that t2 ⇣ l0�2↵(log l0)2↵(2p�1).

From some simple analysis, we could see that when N ! 1, t ! 0 and l0 ! 1. Therefore, when

N ! 1 we have

t ⇣ l0�↵(log l0)↵(2p�1),

1

t
⇣ l0↵(log l0)�↵(2p�1),

log(1/t) ⇣ ↵ log l0 � ↵(2p� 1) log(log(l0)) ⇣ log l0,

l0 ⇣ t�1/↵(log(1/t))2p�1.

It’s easy to see that t2l0 ⇣ (t)2�1/↵(log(1/t))2p�1,
P

l�l0 µl ⇣ O(l0�2↵+1(log l0)2↵(2p�1)) ⇣

O(t2�1/↵(log(1/t))2p�1).

So
P

l�l0 µl = O(⇠2nl
0), therefore

p
t2l0p
N

⇣ t2,

N ⇣ (1/t)2+1/↵(log(1/t))2p�1,

logN ⇣ (2 + 1/↵)log(1/⇠n) + (2p� 1) log log(1/t) ⇣ log(1/t),

1/t ⇣ N
α

1+2α (logN)�
α(2p�1)
2α+1 ,

t ⇣ N� α
1+2α (logN)

α(2p�1)
2α+1 .
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S3 Simulation: additional details

S3.1 Low-rank settings

S3.1.1 Eigenfunctions

We present three simulation settings in a table form (Tables S1, S2 and S3). In each table, rows

correspond to basis functions for dimension 1 and columns correspond to basis functions for di-

mension 2. Recall that for each dimension, we use ek(t) =
p
2 cos(k⇡t), k = 1, 2, . . . as basis.

Then, for the cell with position row i and column j, it represents the two dimensional function

fij(s1, s2) = ei(s1)ej(s2). We use a positive integer k to indicate that this two dimensional function

is the k-th eigenfunction. The details of the three settings are given as follows.

Table S1: Eigenfunctions for Setting 1

e1 e2
e1 1 2
e2 3 5
e3 4 6

Table S2: Eigenfunctions for Setting 2

e1 e2 e3 e4
e1 1 2
e2 3 4
e3 5
e4 6

Table S3: Eigenfunctions for Setting 3

e1 e2 e3 e4
e1 1
e2 2
e3 3
e4 4

Setting 1: R = 6, r1 = 3, r2 = 2. For dimension 1, we use e1, e2 and e3 as our basis

functions. For dimension 2, we use e1 and e2 as our basis functions. Let 6 eigenfunctions  k be

the tensor product of these one dimensional basis with eigenvalue decay �k = k�↵, k = 1, 2, ..., 6.

Eigenfunctions can be expressed as  k(t1, t2) = ei(t1)ej(t2), where k = 2(i� 1)+ j for k = 1, 2, 3, 6
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and  4(s, t) = e3(s)e1(t),  5(t1, t2) = e2(t1)e2(t2). In this setting, R = r1 ⇤ r2, one-way basis are

mostly shared among different eigenfunctions.

Setting 2: R = 6, r1 = r2 = 4. For both dimension 1 and dimension 2, we use ei, i = 1, .., 4

as our basis functions. Let 6 eigenfunctions  k with eigenvalue decay �k = k�↵, k = 1, 2, ..., 6.

 k(t1, t2) = ei(t1)ej(t2), where k = 2(i � 1) + j for k = 1, 2, 3.  k(t1, t2) = ek�2(t1)ek�2(t2) for

k = 4, 5, 6. In this setting, one-way basis are partly shared by different eigenfunctions.

Setting 3: R = r1 = r2 = 4. For both dimension 1 and dimension 2, we use ei, i = 1, .., 4

as our basis functions. Let 4 eigenfunctions  k with eigenvalue decay �k = k�↵, k = 1, ..., 4.

 1(t1, t2) = e1(t1)e2(t2),  2(t1, t2) = e2(t1)e1(t2) and  k(t1, t2) = ek(t1)ek(t2) for k = 3, 4. In this

case, one-way basis are not shared among different eigenfunctions.

S3.1.2 Additional simulation results for sparse design

In our study, we considered different decay rates of eigenvalues, correspondingly three different

values of ↵ in (19). The corresponding simulation results for the sparse design with sample size

n = 100, m = 4, 10, 20 and � = 0.1, 0.4 are shown in Tables S4, S5, and S6.

Similar to the discussion in Section 7, the local linear smoother performs much worse than the

other two methods. So here we only focus on the comparison between mOpCov and OpCov. When

↵ = 1.1, the results are very similar to those when ↵ = 2. We can see that for Settings 1 and 2,

the improvements in AISE achieved by mOpCov, as compared to OpCov, is more distinguishable

in the slow decay settings. A possible explanation is that when decay rate is slower, the signal of

“sharing structure” becomes more apparent, so does the benefit of mOpCov.

S3.1.3 Simulation results for regular design

For regular design, we selected 10 equally spaced points for each dimension and constructed a

regular 10⇥10 grid (m = 100). We set sample size to be 50 (n = 50). Two different noise levels are

considered, since regular design has dense observations, we pick � = 0.4 to represent the low noise

level and � = 0.8 to represent the high noise level. Beside methods we mentioned in sparse design,

we also include an additional estimator from Wang and Huang (2017) (spatpca), which allows to
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perform multi-dimensional covariance function estimation with location-fixed observations into our

comparisons. These results are presented in Tables S7, S8 and S9.

Overall, all methods achieve similar AISE values, but mOpCov performs slightly better in esti-

mation accuracy in smoother cases (large ↵), and when the noise level is high. When ↵ is small,

mOpCov and OpCov tend to overestimate R more.

S3.2 High-rank settings

S3.2.1 Eigenfunctions

We also considered the high-rank settings, i.e., R is very large. We focused on ↵ = 2. The true rank

is set as R = 625, which corresponds to more than 99% of the variation of the full-rank settings,

i.e.,
P625

k=1 k
�2 � 0.99

P1
k=1 k

�2. For high-rank settings, we only considered sparse design and two

eignfunction settings.

Setting 1: R = 625, r1 = r2 = 25. For both dimensions 1 and 2, we use e1, . . . , e25 (see

their definitions in S3.1.1) as our marginal basis functions. And eigenfunctions are expressed as

 ij(s1, s2) = ei(s1)ej(s2), i, j = 1, . . . , 25. In addition, we ordered the eigenfunctions by their

smoothness. In this setting, R = r1r2 so margianl basis are mostly shared by eigenfunctions.

Setting 2: R = r1 = r2 = 625. For both dimensions 1 and 2, we use e1, . . . , e625 as our marginal

basis functions. Eigenfunctions are expressed as  1(s1, s2) = e1(s1)e2(s2),  2(s1, s2) = e2(s1)e1(s2),

and  k(s1, s2) = ek(s1)ek(s2), k = 1, · · · , 625. In this case, one-way basis are not shared among

different eigenfunctiions.

S3.2.2 Results

For each eigenfunction setting, we also considered different choices of m and �. More specifically,

n = 100, m = 4, 10, 20, � = 0.1, 0.4. The simulation results can be found in Table S10. In Setting

1 where the true covariance function has “sharing structure”, mOpCov achieves better AISE than

OpCov. The improvement becomes more distinguishable as m increases. In Setting 3, while there

is no “sharing” structure among eigenfunctions, mOpCov has close but slightly better AISE than

OpCov. As for the rank estimations, both mOpCov and OpCov provide low-rank estimations for

covaraince functions. Although mOpCov usually give a larger estimates of R than OpCov, it also
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provides low-rank approximation of one-way ranks.
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Table S4: Simulation results for three Settings with the sparse design when sample size is 100
(n = 100) and ↵ = 1.1: see description in Table 1.

Setting m � mOpCov OpCov ll-smooth ll-smooth+

1 4 0.1 AISE 0.436 (1.87e-02) 0.494 (2.27e-02) 2770 (2.53e+03) 81.4 (4.00e+01)
R̄ 7.13 2.12 - 102
r̄1, r̄2 5.05, 5.02

0.4 AISE 0.447 (1.94e-02) 0.509 (2.97e-02) 4120 (3.82e+03) 100 (4.52e+01)
R 7.22 2.08 - 102
r̄1, r̄2 5.03, 5.01

10 0.1 AISE 0.238 (1.45e-02) 0.295 (1.57e-02) 3.59 (7.95e-01) 1.62 (2.87e-01)
R̄ 8.32 3.31 - 150
r̄1, r̄2 5.83, 5.83

0.4 AISE 0.239 (1.54e-02) 0.302 (1.69e-02) 5.47 (1.97e+00) 1.75 (3.30e-01)
R̄ 8.28 3.36 - 151
r̄1, r̄2 5.88, 5.88

20 0.1 AISE 0.169 (3.62e-03) 0.201 (6.18e-03) 4.94 (4.04e+00) 1.87 (1.25e+00)
R̄ 8.96 4.5 - 261
r̄1, r̄2 6, 6

0.4 AISE 0.171 (3.71e-03) 0.202 (5.46e-03) 5.39 (4.44e+00) 2.03 (1.37e+00)
R̄ 8.94 4.24 - 265
r̄1, r̄2 6, 6

2 4 0.1 AISE 0.442 (2.22e-02) 0.62 (1.14e-01) 6760 (6.55e+03) 78.3 (3.77e+01)
R̄ 7.38 2.1 - 103
r̄1, r̄2 5.16, 5.16

0.4 AISE 0.458 (2.35e-02) 0.612 (1.01e-01) 6760 (6.39e+03) 143 (7.96e+01)
R̄ 7.56 2.06 - 103
r1, r2 5.13, 5.12

10 0.1 AISE 0.239 (1.16e-02) 0.295 (1.35e-02) 8.08 (4.91e+00) 1.53 (2.56e-01)
R̄ 7.82 3.22 - 151
r̄1, r̄2 5.9, 5.9

0.4 AISE 0.245 (1.24e-02) 0.301 (1.48e-02) 16.1 (1.28e+01) 1.6 (2.93e-01)
R̄ 8 3.28 - 152
r̄1, r̄2 5.84, 5.84

20 0.1 AISE 0.171 (3.33e-03) 0.201 (5.42e-03) 5.33 (4.40e+00) 2 (1.36e+00)
R̄ 7.77 3.86 - 264
r̄1, r̄2 6, 5.99

0.4 AISE 0.173 (3.46e-03) 0.213 (6.38e-03) 5.81 (4.84e+00) 2.16 (1.50e+00)
R̄ 7.7 4.22 - 267
r̄1, r̄2 6, 6

3 4 0.1 AISE 0.462 (2.00e-02) 0.499 (5.18e-02) 20 (1.09e+01) 8.83 (4.84e+00)
R̄ 12.8 2.62 - 102
r̄1, r̄2 5.67, 5.68

0.4 AISE 0.475 (1.95e-02) 0.52 (5.99e-02) 19.3 (8.05e+00) 8.4 (3.54e+00)
R̄ 12.9 2.6 - 102
r̄1, r̄2 5.75, 5.74

10 0.1 AISE 0.252 (5.89e-03) 0.251 (7.77e-03) 42.8 (4.01e+01) 3.11 (1.90e+00)
R̄ 9.43 2.67 - 155
r̄1, r̄2 4.85, 4.84

0.4 AISE 0.257 (6.06e-03) 0.258 (8.14e-03) 45.4 (3.82e+01) 3.99 (1.99e+00)
R̄ 10 2.7 - 155
r̄1, r̄2 4.96, 5

20 0.1 AISE 0.206 (3.73e-03) 0.205 (4.35e-03) 1.79 (7.10e-01) 0.907 (2.61e-01)
R̄ 8.38 2.84 - 266
r̄1, r̄2 4.52, 4.56

0.4 AISE 0.207 (3.59e-03) 0.211 (5.09e-03) 1.79 (7.10e-01) 0.907 (2.61e-01)
R̄ 8.51 3.01 - 266
r̄1, r̄2 4.51, 4.52
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Table S5: Simulation results for three Settings with the sparse design when sample size is 100
(n = 100) and ↵ = 2: see description in Table 1.

Setting m � mOpCov OpCov ll-smooth ll-smooth+

1 4 0.1 AISE 0.188 (1.13e-02) 0.207 (2.28e-02) 260 (1.55e+02) 104 (6.27e+01)
R̄ 5.16 1.6 - 88.1
r̄1, r̄2 4.7, 4.69

0.4 AISE 0.189 (1.16e-02) 0.202 (1.49e-02) 351 (1.86e+02) 67.1 (2.86e+01)
R̄ 5.32 1.57 - 89.2
r̄1, r̄2 4.45, 4.45

10 0.1 AISE 0.102 (5.50e-03) 0.122 (1.20e-02) 4.36 (2.28e+00) 1.702 (8.43e-01)
R̄ 7.335 2.45 - 142.61
r̄1, r̄2 4.51 , 4.53

0.4 AISE 0.101 (3.79e-03) 0.12 (1.19e-02) 3.89 (1.78e+00) 0.989 (1.96e-01)
R̄ 7.34 2.2 - 146.33
r̄1, r̄2 4.79 , 4.78

20 0.1 AISE 0.0648 (2.17e-03) 0.075 (3.49e-03) 3.93 (3.17e+00) 1.40 (9.80e-01)
R̄ 7.84 3.02 - 249.95
r̄1, r̄2 5.29 , 5.26

0.4 AISE 0.065 (2.17e-03) 0.0761 (3.34e-03) 0.468 (6.90e-02) 0.310 (2.32e-02)
R̄ 7.51 2.83 - 205.675
r̄1, r̄2 5.32 , 5.28

2 4 0.1 AISE 0.186 (1.17e-02) 0.204 (1.79e-02) 560 (4.64e+02) 39.1 (1.72e+01)
R̄ 5.8 1.54 - 88.3
r̄1, r̄2 4.61, 4.62

0.4 AISE 0.193 (1.22e-02) 0.204 (1.58e-02) 351 (1.86e+02) 67.1 (2.86e+01)
R̄ 5.72 1.46 - 89.2
r1, r2 4.62, 4.6

10 0.1 AISE 0.0963 (5.26e-03) 0.113 (6.12e-03) 2.12 (6.23e-01) 0.826 (1.76e-01)
R̄ 7.68 2.38 - 144.645
r̄1, r̄2 4.86, 4.87

0.4 AISE 0.0978 (5.29e-03) 0.112 (5.64e-03) 4.18 (2.21e+00) 0.931 (1.76e-01)
R̄ 7.34 2.22 - 146.855
r̄1, r̄2 4.72, 4.72

20 0.1 AISE 0.0629 (2.91e-03) 0.0706 (3.21e-03) 0.472 (8.01e-02) 0.304 (2.80e-02)
R̄ 8.13 2.76 - 200.69
r̄1, r̄2 5.34, 5.34

0.4 AISE 0.0648 (3.03e-03) 0.0733 (3.30e-03) 0.484 (7.27e-02) 0.317 (2.53e-02)
R̄ 8.24 2.78 - 206.16
r̄1, r̄2 5.78, 5.78

3 4 0.1 AISE 0.241 (1.48e-02) 0.261 (3.02e-02) 9.13 (3.41e+00) 4.64 (1.50e+00)
R̄ 11.09 2.5 - 97.1
r̄1, r̄2 5.51, 5.48

0.4 AISE 0.256 (1.49e-02) 0.28 (3.47e-02) 11.3 (4.60e+00) 5.57 (2.02e+00)
R̄ 10.925 2.44 - 97.4
r̄1, r̄2 5.52, 5.5

10 0.1 AISE 0.103 (4.87e-03) 0.115 (7.58e-03) 24.1 (2.28e+01) 1.87 (1.19)
R̄ 6.68 2.82 - 150.8
r̄1, r̄2 4.35, 4.32

0.4 AISE 0.108(5.06e-03) 0.115 (8.33e-03) 26.2 (2.40e+01) 2.05
R̄ 4.46 2.74 - 152.575
r̄1, r̄2 3.50, 3.49

20 0.1 AISE 0.0688 (2.82e-03) 0.0813 (4.63e-03) 0.614 (2.28e-01) 0.350 (8.35e-02)
R̄ 7.09 3.24 - 210.515
r̄1, r̄2 4.41, 4.4

0.4 AISE 0.0710 (2.89e-03) 0.0859 (5.03e-03) 0.573 (1.74e-01) 0.344 (6.37e-02)
R̄ 6.19 3.38 - 214.455
r̄1, r̄2 4.03, 4.02
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Table S6: Simulation results for three Settings with the sparse design when sample size is 100
(n = 100) and ↵ = 4: see description in Table 1.

Setting m � mOpCov OpCov ll-smooth ll-smooth+

1 4 0.1 AISE 0.104 (8.45e-03) 0.131 (3.64e-02) 93.8 (5.00e+01) 59.5 (4.25e+01)
R̄ 3.13 1.32 - 93
r̄1, r̄2 3.87, 3.87

0.4 AISE 0.109 (9.10e-03) 0.149 (4.82e-02) 228 (1.12e+02) 111 (5.77e+01)
R̄ 3.06 1.27 95.8
r̄1, r̄2 4.06, 4.04

10 0.1 AISE 0.0546 (4.49e-03) 0.0541 (5.56e-03) 2.03 (9.68e-01) 0.781 (3.22e-01)
R̄ 2.58 1.49 - 136
r̄1, r̄2 3.52, 3.51

0.4 AISE 0.0556 (4.40e-03) 0.0485 (4.10e-03) 3.16 (1.43e+00) 0.842 (2.94e-01)
R̄ 2.49 1.14 - 141
r̄1, r̄2 3.34, 3.36

20 0.1 AISE 0.0363 (2.72e-03) 0.0353 (2.65e-03) 3.46 (2.43e+00) 1.2 (7.55e-01)
R̄ 1.52 1.33 - 232
r̄1, r̄2 2.97, 2.96

0.4 AISE 0.0365 (2.80e-03) 0.0356 (2.69e-03) 4.03 (2.83e+00) 1.39 (8.80e-01)
R̄ 1.75 1.3 - 246
r̄1, r̄2 2.96, 2.96

2 4 0.1 AISE 0.102 (8.33e-03) 0.132 (3.70e-02) 94.2 (4.78e+01) 58.5 (4.00e+01)
R̄ 2.99 1.32 - 93
r̄1, r̄2 3.98, 3.97

0.4 AISE 0.112 (9.19e-03) 0.108 (2.05e-02) 237 (1.19e+02) 114 (5.87e+01)
R̄ 3.2 1.2 - 95.8
r̄1, r̄2 4.17, 4.16

10 0.1 AISE 0.0545 (4.48e-03) 0.0546 (5.57e-03) 2.09 (9.77e-01) 0.783 (3.22e-01)
R̄ 2.5 1.5 - 136
r̄1, r̄2 3.5, 3.5

0.4 AISE 0.0548 (4.40e-03) 0.0489 (4.12e-03) 3.37 (1.61e+00) 0.838 (2.94e-01)
R̄ 2.44 1.16 - 141
r̄1, r̄2 3.44, 3.45

20 0.1 AISE 0.0358 (2.72e-03) 0.0352 (2.64e-03) 3.42 (2.39e+00) 1.19 (7.42e-01)
R̄ 1.58 1.32 - 232
r̄1, r̄2 2.9, 2.9

0.4 AISE 0.0372 (2.89e-03) 0.0351 (2.69e-03) 3.98 (2.79e+00) 1.37 (8.67e-01)
R̄ 1.7 1.24 - 246
r̄1, r̄2 2.92, 2.92

3 4 0.1 AISE 0.194 (1.47e-02) 0.218 (4.49e-02) 5.06 (1.76e+00) 2.22 (7.68e-01)
R̄ 12 2.12 - 99
r̄1, r̄2 5.73, 5.74

0.4 AISE 0.202 (1.46e-02) 0.21 (2.98e-02) 8.36 (3.88e+00) 3.67 (1.70e+00)
R̄ 11.9 2.05 - 99.7
r̄1, r̄2 5.74, 5.76

10 0.1 AISE 0.0745 (4.67e-03) 0.0763 (5.76e-03) 3.22 (1.74e+00) 1.06 (3.64e-01)
R̄ 9.44 2.2 - 144
r̄1, r̄2 5.18, 5.17

0.4 AISE 0.0779 (4.73e-03) 0.0806 (5.61e-03) 4.44 (3.26e+00) 0.942 (4.07e-01)
R̄ 9.67 2.22 - 148
r̄1, r̄2 5.07, 5.09

20 0.1 AISE 0.0474 (2.77e-03) 0.055 (3.32e-03) 0.957 (5.14e-01) 0.318 (6.30e-02)
R̄ 8.68 3.18 - 244
r̄1, r̄2 4.96, 4.96

0.4 AISE 0.0497 (2.87e-03) 0.057 (3.66e-03) 0.667 (2.34e-01) 0.298 (3.69e-02)
R̄ 9.57 3.23 - 254
r̄1, r̄2 5.14, 5.17
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Table S7: Results on regular design for ↵ = 1.1: see description in Table 1.

Setting � mOpCov OpCov spatpca ll-smooth ll-smooth+

1 0.4 AISE 0.126 (5.22e-03) 0.131 (5.28e-03) 0.126 (5.11e-03) 0.113 (4.07e-03) 0.113 (4.07e-03)
R̄ 17.2 13.8 5.96 12
r̄1, r̄2 6, 6

0.8 AISE 0.138 (5.22e-03) 0.148 (5.48e-03) 0.142 (5.17e-03) 0.123 (4.15e-03) 0.122 (4.15e-03)
R̄ 15.6 9.36 6.68 23.3
r̄1, r̄2 6, 6

2 0.4 AISE 0.141 (4.94e-03) 0.143 (5.13e-03) 0.113 (4.03e-03) 0.113 (4.03e-03)
R̄ 8.85 7.76 11
r̄1, r̄2 5.99, 5.99

0.8 AISE 0.151 (5.00e-03) 0.154 (5.17e-03) 0.147 (4.96e-03) 0.123 (4.12e-03) 0.122 (4.12e-03)
R̄ 11.1 8.35 5.5 22.9
r̄1, r̄2 6, 6

3 0.4 AISE 0.128 (4.97e-03) 0.126 (4.75e-03) 0.124 (4.14e-03) 0.124 (4.15e-03)
R̄ 9.4 10.1 20.6
r̄1, r̄2 5.72, 5.71

0.8 AISE 0.138 (4.91e-03) 0.139 (5.12e-03) 0.117 (4.62e-03) 0.133 (4.15e-03) 0.132 (4.16e-03)
R̄ 12.2 13.3 6.64 31.3
r̄1, r̄2 5.7, 5.7

Table S8: Results on regular design for ↵ = 2: see description in Table 1.

Setting � mOpCov OpCov ll-smooth spatpca ll-smooth+

1 0.4 AISE 0.0611 (4.37e-03) 0.0626 (4.10e-03) 0.0571 (3.71e-03) 0.0625 (4.37e-03) 0.057 (3.71e-03)
R̄ 8.27 7.25 - 5.95 15.125 (0.10)
r̄1, r̄2 6, 6

0.8 AISE 0.0629 (4.45e-03) 0.0676 (4.49e-03) 0.0643 (3.79e-03) 0.0738 (4.52e-03) 0.0639 (3.79e-03)
R̄ 10.9 3.98 - 5.84 26.065 (0.087)
r̄1, r̄2 6, 6

2 0.4 AISE 0.0602 (4.38e-03) 0.0641 (4.69e-03) 0.056 (3.71e-03) 0.0624 (4.37e-03) 0.0559 (3.71e-03)
R̄ 8.09 7.22 - 4.21 14.135 (0.095)
r̄1, r̄2 6, 6

0.8 AISE 0.062 (4.48e-03) 0.0659 (4.54e-03) 0.0631 (3.79e-03) 0.0724 (4.47e-03) 0.0627 (3.79e-03)
R̄ 10.7 4.04 - 4.28 25.84 (0.0898)
r̄1, r̄2 6, 6

3 0.4 AISE 0.0628 (4.22e-03) 0.0589 (4.34e-03) 0.0677 (3.92e-03) 0.0598 (4.17e-03) 0.0675 (3.92e-03)
R̄ 5.66 14 - 3.52 18.74 (0.104)
r̄1, r̄2 6, 6

0.8 AISE 0.0645 (4.05e-03) 0.0677 (4.48e-03) 0.0745 (3.94e-03) 0.0715 (4.20e-03) 0.07389 (3.94e-03)
R̄ 7.7 13.1 - 2.93 29.485 (0.143)
r̄1, r̄2 6, 6
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Table S9: Results on regular design for ↵ = 4: see description in Table 1.

Setting � mOpCov OpCov ll-smooth spatpca ll-smooth+

1 0.4 AISE 0.0412 (4.27e-03) 0.0402 (3.93e-03) 0.0422 (4.27e-03) 0.04 (3.65e-03) 0.0399 (3.65e-03)
R̄ 10.1 7.85 3.56 18.2
r̄1, r̄2 4.96, 5.09

0.8 AISE 0.044 (4.31e-03) 0.0419 (3.98e-03) 0.0508 (4.40e-03) 0.0456 (3.72e-03) 0.0453 (3.72e-03)
R̄ 7.63 2.46 3.56 27.9
r̄1, r̄2 3.62, 3.86

2 0.4 AISE 0.0411 (4.27e-03) 0.0401 (3.93e-03) 0.0422 (4.28e-03) 0.0399 (3.65e-03) 0.0399 (3.65e-03)
R̄ 9.23 7.62 3.62 18.2
r̄1, r̄2 4.86, 5.04

0.8 AISE 0.0439 (4.37e-03) 0.0421 (3.99e-03) 0.0507 (4.40e-03) 0.0456 (3.72e-03) 0.0453 (3.72e-03)
R̄ 7.59 2.66 3.53 27.9
r̄1, r̄2 3.63, 3.84

3 0.4 AISE 0.0395 (4.12e-03) 0.0403 (4.18e-03) 0.0425 (4.11e-03) 0.0527 (3.90e-03) 0.0526 (3.90e-03)
R̄ 4.74 4.2 2 24.7
r̄1, r̄2 3.76, 3.28

0.8 AISE 0.0414 (4.22e-03) 0.0463 (4.32e-03) 0.0509 (4.13e-03) 0.0584 (3.92e-03) 0.058 (3.92e-03)
R̄ 5.78 11.9 2.94 33.4
r̄1, r̄2 3.61, 3.36
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Table S10: Results for high rank settings: see description in Table 1.

Setting m � mOpCov OpCov ll-smooth ll-smooth+

1 4 0.1 AISE 0.21 (1.49e-02) 0.23 (2.68e-02) 32.3 (1.36e+01) 12 (4.55e+00)
R̄ 4.88 1.56 - 95.6
r̄1, r̄2 4.56, 4.54

0.4 AISE 0.226 (1.54e-02) 0.217 (2.02e-02) 46.8 (1.94e+01) 18 (6.95e+00)
R̄ 5.1 1.5 - 96.4
r̄1, r̄2 4.74, 4.74

10 0.1 AISE 0.104 (5.52e-03) 0.107 (5.23e-03) 6.63 (3.36e+00) 2.28 (9.79e-01)
R̄ 5.6 1.94 - 134
r̄1, r̄2 4.78, 4.78

0.4 AISE 0.108 (5.58e-03) 0.117 (7.15e-03) 7.64 (4.49e+00) 2.53 (1.28e+00)
R̄ 5.7 2.02 - 138
r̄1, r̄2 4.58, 4.56

20 0.1 AISE 0.0678 (3.40e-03) 0.0818 (4.40e-03) 0.641 (1.05e-01) 0.386 (3.40e-02)
R̄ 7.58 2.91 - 249
r̄1, r̄2 5.42, 5.44

0.4 AISE 0.0686 (3.40e-03) 0.0842 (4.50e-03) 0.731 (1.34e-01) 0.425 (4.15e-02)
R̄ 7.44 2.94 - 254
r̄1, r̄2 5.41, 5.45

2 4 0.1 AISE 0.266 (1.58e-02) 0.273 (3.66e-02) 13.8 (4.52e+00) 5.87 (1.78e+00)
R̄ 11.8 2.48 - 104
r̄1, r̄2 5.58, 5.58

0.4 AISE 0.284 (1.69e-02) 0.294 (4.40e-02) 31.6 (1.77e+01) 12.3 (6.37e+00)
R̄ 12.5 2.42 - 104
r̄1, r̄2 5.68, 5.66

10 0.1 AISE 0.112 (4.13e-03) 0.111 (6.34e-03) 1.44 (4.22e-01) 0.686 (1.33e-01)
R̄ 8.98 2.76 - 146
r̄1, r̄2 4.64, 4.64

0.4 AISE 0.111 (4.19e-03) 0.115 (6.40e-03) 1.57 (4.44e-01) 0.741 (1.40e-01)
R̄ 8.36 2.79 - 148
r̄1, r̄2 4.58, 4.53

20 0.1 AISE 0.0774 (3.11e-03) 0.0777 (3.97e-03) 0.514 (9.39e-02) 0.33 (2.43e-02)
R̄ 8.52 2.83 - 266
r̄1, r̄2 4.67, 4.68

0.4 AISE 0.0787 (3.09e-03) 0.084 (4.97e-03) 0.542 (8.45e-02) 0.35 (2.22e-02)
R̄ 8.38 3.05 - 269
r̄1, r̄2 4.62, 4.64

29


