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Abstract

Multidimensional function data arise from many fields nowadays. The covariance
function plays an important role in the analysis of such increasingly common data. In
this paper, we propose a novel nonparametric covariance function estimation approach
under the framework of reproducing kernel Hilbert spaces (RKHS) that can handle both
sparse and dense functional data. We extend multilinear rank structures for (finite-
dimensional) tensors to functions, which allow for flexible modeling of both covariance
operators and marginal structures. The proposed framework can guarantee that the
resulting estimator is automatically semi-positive definite, and can incorporate various
spectral regularizations. The trace-norm regularization in particular can promote low
ranks for both covariance operator and marginal structures. Despite the lack of a closed
form, under mild assumptions, the proposed estimator can achieve unified theoretical
results that hold for any relative magnitudes between the sample size and the number of
observations per sample field, and the rate of convergence reveals the phase-transition
phenomenon from sparse to dense functional data. Based on a new representer theorem,
an ADMM algorithm is developed for the trace-norm regularization. The appealing
numerical performance of the proposed estimator is demonstrated by a simulation study
and the analysis of a dataset from the Argo project.
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1 Introduction

In recent decades, functional data analysis (FDA) has become a popular branch of sta-
tistical research. General introductions to FDA can be found in a few monographs (e.g.,
Ramsay and Silverman, 2005; Ferraty and Vieu, 2006; Horvath and Kokoszka, 2012; Hsing
and Eubank, 2015; Kokoszka and Reimherr, 2017). While traditional FDA deals with a
sample of time-varying trajectories, many new forms of functional data have emerged due
to improved capabilities of data recording and storage, as well as advances in scientific com-
puting. One particular new form of functional data is multidimensional functional data,
which becomes increasingly common in various fields such as climate science, neuroscience
and chemometrics. Multidimensional functional data are generated from random fields, i.e.,
random functions of several input variables. We note that this is different from those settings
with multiple output variables, which are sometimes referred to as multivariate functional
data (e.g., Ramsay and Silverman, 2005; Ferraty and Vieu, 2006). One example is multi-
subject magnetic resonance imaging (MRI) scans, such as those collected by the Alzheimer’s
Disease Neuroimaging Initiative. A human brain is virtually divided into three-dimensional
boxes called “voxels” and brain signals obtained from these voxels form a three-dimensional
functional sample indexed by spatial locations of the voxels. Despite the growing popularity
of multidimensional functional data, statistical methods for such data are limited apart from
very few existing works (e.g., Huang et al., 2009; Allen, 2013; Zhang et al., 2013; Zhou and
Pan, 2014; Wang and Huang, 2017).

In FDA covariance function estimation plays an important role. Many methods have
been proposed for unidimensional functional data (e.g., Rice and Silverman, 1991; James
et al., 2000; Yao et al., 2005; Paul and Peng, 2009; Li and Hsing, 2010; Goldsmith et al.,
2011; Xiao et al., 2013), and a few were particularly developed for two-dimensional functional

data (e.g., Zhou and Pan, 2014; Wang and Huang, 2017). In general when the input domain is



of dimension p, one needs to estimate a 2p-dimensional covariance function. Since covariance
function estimation in FDA is typically nonparametric, the curse of dimensionality emerges
soon when p is moderate or large.

For general p, most work are restricted to regular and fixed designs (e.g., Zipunnikov
et al.,, 2011; Allen, 2013), where all random fields are observed over a regular grid like
MRI scans. Such sampling plan leads to a tensor dataset, so one may apply tensor/matrix
decompositions to estimate the covariance function. When random fields are observed at
irregular locations, the dataset is no longer a completely observed tensor so tensor/matrix
decompositions are not directly applicable. If observations are densely collected for each
random field, a two-step approach is a natural solution, which involves pre-smoothing every
random field followed by tensor/matrix decompositions at a fine discretized grid. However,
this solution is infeasible for sparse data where there are a limited number of observations
per random field. One example is the data collected by the international Argo project
(http://www.argo.net). See Section 8 for more details. In such sparse data setting, one
may apply the local smoothing method of Chen and Jiang (2017), but it suffers from the curse
of dimensionality when the dimension p is moderate due to a 2p-dimensional nonparametric
regression.

We notice that there is a related class of literature on longitudinal functional data (e.g.,
Chen and Miiller, 2012; Park and Staicu, 2015; Chen et al., 2017), a special type of multidi-
mensional functional data where a function is repeatedly measured over longitudinal times.
Typically multi-step methods are needed to model the functional and longitudinal dimen-
sions either separately (one dimension at a time) or sequentially (one dimension given the
other), as opposed to the joint estimation procedure proposed in this paper. We also notice
a recent work on longitudinal functional data under the Bayesian framework (Shamshoian
et al., 2019).

The contribution of this paper is three-fold. First, we propose a new and flexible nonpara-



metric method for low-rank covariance function estimation for multidimensional functional
data, via the introduction of (infinite-dimensional) unfolding operators (See Section 4 ). This
method can handle both sparse and dense functional data, and can achieve joint structural
reductions in all dimensions, in addition to rank reduction of the covariance operator. The
proposed estimator is a one-step estimator that achieves positivity and low-rankness, unlike
those multi-stage estimators (e.g., Hall and Vial, 2006; Poskitt and Sengarapillai, 2013) which
require a truncation and reconstruction step. The one-step nature reduces the theoretical
complexities in the development of asymptotic properties.

Second, we generalize the representer theorem for unidimensional functional data by
Wong and Zhang (2019) to the multidimensional case with more complex spectral regu-
larizations. The new representer theorem makes the estimation procedure practically com-
putable by generating a finite-dimensional parametrization to the solution of the underlying
infinite-dimensional optimization.

Finally, a unified asymptotic theory is developed for the proposed estimator. It auto-
matically incorporates the settings of dense and sparse functional data, and reveals a phase
transition in the rate of convergence. Different from existing theoretical work heavily based
on closed-form representations of estimators, (Li and Hsing, 2010; Cai and Yuan, 2010; Zhang
and Wang, 2016; Liebl, 2019), this paper provides the first unified theory for penalized global
M-estimators of covariance functions which does not require a closed-form solution. Further-
more, a near-optimal (i.e., optimal up to a logarithmic order) one-dimensional nonparamet-
ric rate of convergence is attainable for the 2p-dimensional covariance function estimator for
Sobolev-Hilbert spaces.

The rest of the paper is organized as follows. Section 2 provides some background on
reproducing kernel Hilbert space (RKHS) frameworks for functional data. Section 3 intro-
duces marginal low-rank structure of the covariance function. Section 4 presents Tucker

decomposition for finite-dimensional tensors and the generalization to tensor product RKHS



operators, which is the foundation for our estimation procedure. The proposed estimation
method is given in Section 5, together with an algorithm. The unified theoretical results are
presented in Section 6. The numerical performance of the proposed method is evaluated by a
simulation study in Section 7 and a real data application in Section 8. Additional simulation

results and technical details are collected in a separate online supplemental material (SM).

2 RKHS Framework for Functional Data

In recent years there is a surge of RKHS methods in FDA (e.g., Yuan and Cai, 2010;
Zhu et al., 2014; Li and Song, 2017; Reimherr et al., 2018; Sun et al., 2018; Wong et al.,
2019). However, covariance function estimation, a seemingly well-studied problem, does
not receive the same amount of attention in the development of RKHS methods, even for
unidimensional functional data. Interestingly, we find that the RKHS modeling provides a
versatile framework for both unidimensional and multidimensional functional data.

Let X be a random field defined on an index set 7 C RP, with a mean function u(-) =
E{X(-)} and a covariance function vy(*,-) = Cov(X(x), X(-)), and let {X; : i = 1,...,n}
be n independently and identically distributed (i.i.d.) copies of X. Typically, a functional

dataset is represented by {(T};,Y;;) : j=1,...m;;i =1,...,n}, where
Yij = Xz'(Tij) +e;€R (1)

is the noisy measurement of the ¢-th random field X; taken at the corresponding index
T,; € T, m; is the number of measurements observed from the i-th random field, and
{e;j:i1=1,...,n;5 =1,...m;} are independent errors with mean zero and finite variance.
For simplicity and without loss of generality, we assume m; = m for all <.

As in many nonparametric regression setups such as penalized regression splines (e.g.,
Pearce and Wand, 2006) and smoothing splines (e.g., Wahba, 1990; Gu, 2013), the sample
field of X i.e., the realized X (as opposed to the sample path of a unidimensional random

function), is assumed to reside in an RKHS # of functions defined on 7 with a continuous
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and square integrable reproducing kernel K. Let (-, -)3 and || - |3 denote the inner product
and norm of H respectively. With the technical condition E||X||3, < oo, the covariance
function 7, resides in the tensor product RKHS H ® H. It can be shown that H ® #H is an
RKHS, equipped with the reproducing kernel K ® K defined as (K ® K)((s1,%1), (S2,t2)) =
K(s1,89)K(t1,t), for any sy, s9,t1,t5 € T. This result has been exploited by Cai and Yuan
(2010) and Wong and Zhang (2019) for covariance estimation in the unidimensional setting.

For any function f € H ® H, there exists an operator mapping H to H defined by
g€ H— (f(x-),9(:)n € H. When f is a covariance function, we call the induced operator
an H-covariance operator, or simply a covariance operator as below. To avoid clutter, the
induced operator will share the same notation with the generating function. Similar to L*-
covariance operators, the definition of an induced operator is obtained by replacing the L?
inner product by the RKHS inner product. The benefits of considering this operator have
been discussed in Wong and Zhang (2019). We also note that a singular value decomposition
(e.g., Hsing and Eubank, 2015) of the induced operator exists whenever the corresponding
function f belongs to the tensor product RKHS H ®H. The idea of induced operator can be
similarly extended to general tensor product space F; ® F; where F; and F; are two generic
RKHSs of functions.

For any v € H®H, let ' be the transpose of v, i.e., 7' (s,t) = v(t, s), s, € T. Define
M={yeH®H:v=~"} To guarantee symmetry and positive semi-definiteness of the
estimators, Wong and Zhang (2019) adopted M™ = {y € M : (vf, /) > 0,Vf € H} as the

hypothesis class of 7y and considered the following regularized estimator:

arg min {£(y) +7Y(7)}, (2)

yeMT
where ¢ is a convex and smooth loss function characterizing the fidelity to the data, W(vy)
is a spectral penalty function (see Definition 2 below), and 7 is a tuning parameter. Due
to the constraints specified in M™, the resulting covariance estimator is always positive

semi-definite.



In particular, if the spectral penalty function () imposes the trace-norm regularization,
an (1-type shrinkage penalty on the respective singular values, the estimator is usually of
low rank. Cai and Yuan (2010) adopted a similar objective function as in (2) but with the
hypothesis class H @ H and an lo-type penalty W(y) = ||v|7oy, so the resulting estimator
may neither be positive semi-definite nor low-rank.

Although Cai and Yuan (2010) and Wong and Zhang (2019) focused on unidimensional
functional data, their frameworks can be directly extended to the multidimensional setting.
Explicitly, similar to (2), as long as a proper H for the random fields with dimension p > 1 is
selected, an efficient “one-step” covariance function estimation with the hypothesis class M™
can be obtained immediately, which results in a positive semi-definite and possibly low-rank
estimator. Since an RKHS is identified by its reproducing kernel, we simply need to pick
a multivariate reproducing kernel K for multidimensional functional data. However, even
when the low-rank approximation /estimation is adopted (e.g., by trace-norm regularization),
we still need to estimate several p-dimensional eigenfunctions nonparametrically. This curse

of dimensionality calls for a more efficient modeling.

3 Marginal Low-rank Structure

The proposed method we will present in Section 5 relies on the promotion of sharing
structure among eigenfunctions. In this section we provide an illustration to explain it.

Suppose that X € H = @7 _, H, where each H, is an RKHS of functions equipped with
an inner product (-, *); and corresponding norm || - ||z, ¥ = 1,...,p. Then the covariance
function 7o resides in H @ H = (Q_, H;) ® (Qj_, Hi). For a general H = Q’_, H;, let
{ers, : Ik = 1,...,qx} be a set of orthonormal basis functions of Hy, for k = 1,...,p, where

g is allowed to be infinite, depending on the dimensionality of Hy. Then {@Qh_, ek, : I =

L,...,q5;k = 1,...,p} forms a set of orthonormal basis functions for H#. To have an easy



illustration, we consider p = 2, and then the covariance function 7y can be expressed by

q1 q2 q1 q2

Yo((s1, 82), (t1, t2)) Z Z Z Z Bl tg1(k1—1) katan (ks —1) €11 (81) €215 (52) €1 15 (1) €254 (22),

k=1 ko=1 kg=1 ky=1
(3)
where B € R#1%2x0142,
Let {u;: 1 =1,...,r}and {v; : L =1,... 7} be two sets whose elements are orthonormal
linear combinations of {e;;: {=1,...,¢1} and {ea; : o = 1,..., g2} respectively, such that

70(<81’ 82 tlv t2 Z Z Z Z EJ2+7"1 (j1=1),4a+r1(j3—1) Uja <81>UJ2<82>UJ3 (tl)vh (t2) (4)

J1=1j2=173=1 jsa=1

where E € R™7™*"172 To explain the sharing structure, we consider those associated with the
minimal ry, 79, which correspond to the “best” dimension reduction along each dimension.
Consider eigen-decomposition of E = PDP where D = diag(A1, A2, ..., Ag) and P €
R"72%% has orthonormal columns. Then we obtain the eigen-decomposition of the covariance

function ~y:

Yo((51,82), (t1,t2)) Z)\ Jo(51,82) fo(t1,t2),

g=1
where the eigenfunction is

Z;izl ajy g(82)uj, (1)

g(s1,52) ZZ o+ (1~ Dr1,gWis (51) Vo (82) = ,

n=tie=l Z;j 1 bja g (81)v), (52)
with ath(’) = Z;jzl Rz+(j1—1)rl79627j2< ) and bjz g( ) Z;izl B2+(j1—1)r1,9617j1 () This shows
that {u;, : j1 = 1,...,r1} is the common basis for the variation in #;, hence describing
the marginal structure in H;. Similarly {v;, : jo = 1,...,r2} is the common basis that

characterizes the marginal variation in Hs. We call them the marginal basis along the
respective dimension.

Similarly, for p-dimensional functional data, each eigenfunction can be represented by
a linear combination of p-products of univariate functions. Compared to typical low-rank

covariance modelings only in terms of R, we also intend to find the efficient marginal bases



that have small r; required to characterize the p-dimensional eigenfunctions of the covari-
ance operator. Intuitively, the above illustration shows the small r; encourages a “sharing”
structure of one-dimensional variations among different eigenfunctions. Promoting small r;,
shrinks the number of these one-dimensional functions to be estimated and further alleviates
the curse of dimensionality. Moreover, one-dimensional marginal structures can potentially
help with a better understanding of p-dimensional eigenfunctions, as illustrated in Section
8.

Below, we explore low-rank modeling of marginal structures through the lens of tensor
decomposition in finite-dimensional vector spaces and its extension to infinite-dimensional

function spaces.

4 Unfolding Operations

In this section we first review the well-known Tucker decomposition for finite-dimensional

tensors, and then introduce the concept of functional unfolding for low-rank modeling.

4.1 Review of Tucker decomposition

Let G = ®i:1 G denote a generic tensor product space. To begin with, we consider that
Gr, k=1,...,d, are all finite-dimensional. Let the dimension of G, be q,, k =1,...,d. Then
each element in G = ®Z:1 G can be identified by an array A in RIT - % which contains
the coefficients through an orthonormal basis. By Tucker decomposition (Tucker, 1966), we

can decompose an array A in the following way:
AZGX1U1X2--'XdUd, (5)

where x,, represents the n-mode product (see Definition S1 in the SM), U; € R%*" § =
1,2,...,d are called the factor matrices (usually orthonormal) with r; < ¢;, and G €

R x7a ig called the core tensor. Then the n-mode matricization (see Definition S3 in



the SM) of A, denoted by A, can be expressed as
Ap = UnG(n)(Ud QU1 0U, 1 ®---U,)T, (6)

where, with a slightly notational abuse, ® also represents the Kronecker product between
matrices.

Figure 1 provides a pictorial illustration of a Tucker decomposition. Tucker decomposition
naturally leads to a particular form of rank, called “multilinear rank”, which is defined as the
vector (rank(Aq)),...,rank(Ag))). If one chooses a Tucker decomposition such that {Uy, :
k =1,...,d} are orthonormal matrices and rank(Uy) = 7, then rank(Ay)) = rank(G ).
Thus a “small” multilinear rank corresponds to a small core tensor, which leads to an intrinsic

dimension reduction that potentially improves estimation and interpretation.
5 )

A B U, G U,

(r1 X rg X 13) (g2 % 13)

(fh X G2 X q3) (1 % Tl)

Figure 1: Tucker decomposition of a third-order array. The values in the parentheses are dimensions
for the corresponding matrices or arrays.

To encourage low-rank structures in covariance function estimation, the matricization
operation will be generalized for finite-dimensional arrays to infinite-dimensional tensors
(Hackbusch, 2012). Their relationship to the marginal structures explained in Section 3 will

become clear in Section 4.3.

4.2 Functional unfolding
Now we take Gy as an RKHS of functions with an inner product (-, -)g,, for k =1,...,d.
Notice that the tensor product space G = ®z:1 G, can be generated by some elementary

tensors of the form (®i:1 fi)(xy, ... xq) = Hizl fr(xg) where fr € Gr,k=1,...,d. More
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specifically, G is the completion of the linear span of all elementary tensors under the inner
product (Qj_y fi» @j—y fidg = [Tney (fi: fida, for any fi, fi € Gy

In Definition 1 below, we generalize matricization/unfolding for finite-dimensional arrays
to infinite-dimensional elementary tensors. We also define a square unfolding for infinite-

dimensional tensors that will be used to describe the spectrum of covariance operators.

Definition 1 (Functional unfolding operators). The one-way unfolding operator and square

unfolding operators are defined as follows for any elementary tensor of the form ®Z:1 fr-

1. One-way unfolding operator U; for j =1,...,d: The j-mode one-way unfolding oper-
ator Uj : ®Z:1 Gr = G; ® (®k7éj Gr) 1s defined by Uj(®§f:1 fr) =1 ® (®k7£j i)

2. Square unfolding operator S: When d is even, the square unfolding operator S :

®:_1 G = (®2 GO Rh_ajosr Gt is defined by S(QT_, f;) = (R £)D(®f_yjs1 fr)-

These definitions extend to any function f € G by linearity. For notational simplicity we

denote U;(f) by fuy, 7 =1,...,d, and S(f) by fa.

Note that the image of each functional unfolding operator, either i;, j = 1,...,dor &, is
a tensor product of two RKHSSs, so its output can be interpreted as an (induced) operator.
Given a function f € G, the multilinear rank can be defined as (rank(f)),...,rank(fa))),
where f(;)’s are interpreted as an operator here and rank(A) is the rank of any operator A. If
all Gy, k =1,...,d are finite-dimensional, the singular values of the output of any functional
unfolding operator match with those of the j-mode matricization (of the corresponding array

representation).

Remark 1. For an array A € RIli-1% the one-way unfolding U;(A) is the same as ma-
tricization, if we further impose the same ordering of the columns in the output of U;(A),
J = 1,...,d. This ordering is just related to how we represent the array, and is not cru-

cial in the general definition of U;. Since the description of the computational strategy

11



depends on the explicit representation, we will always assume this ordering. Similarly, we
. . d/2 d/2 .

also define a specific ordering of rows and columns for Ay € RUIL= a)*ILZ19%) when d is

even, such that its (ji, ja)-th entry is Ay, g, where j; = 1+ Zfﬁ(/{:z — 1)(“%;“ ¢m) and

jQ =1+ Z?:d/Q-i—l(ki - 1)<HiL:i+1 Qm)

4.3 One-way and two-way ranks in covariance functions

Recall that we aim to estimate vy € H ® H. We could consider a special case of G =
®?:lgj by letting d = 2p, G; = H; for j =1,...,p, G; = H;j_p, for j =p+1,...,d, and
(;)g;, = () for j =1,...,d. Clearly, the elements of H ® H are identified by those in
g = ®;.l:1 G;. In terms of the folding structure, H ® H has a squarely unfolded structure.
Since a low-multilinear-rank structure is represented by different unfolded forms, it would be
easier to study the completely folded space ®Z:1 Gy instead of the squarely unfolded space
H ®H. We use I'y to represent the folded covariance function, the corresponding element of
Y in G. In other words, I'gw = Y.

For any I' € G, rank(I'y) is defined as the two-way rank of I" while rank(I'(1)), . .., rank(I'(y))
are defined as the one-way ranks of I'. Now, we link the unfolding to the illustration in Sec-
tion 3. In Section 3, let us define tensors Bflded ¢ Raxaexaxe gpd Elolded o Rrixraxrixr
such that Blded = B and EX4ed = E. Then the fully folded covariance function I'y can
be expressed as I'p = >, B,fglf}g‘}k%m ®f:1 eir, as compared to the squarely unfolded
covariance function in (3). Similar to the construction of (4), there exist U, € R%*"x,
k = 1,2, with orthonormal columns, such that B4 = EPd x|, U, x, Uy, x5 U; x4 Us'.
Now, one can see that R and (ry,r3) defined in Section 3 have the following interpre-
tations: R = rank(BPY) = rank(EF49) is the two-way rank and (minimal) (rq,ry) =
(rank(B{‘l’l)d),rank(B{%d)) = (rank(E(f%d),rank(E(f%d)) are the one-way ranks. Therefore,
to promote marginal low-rank structure as discussed in Section 3, we should encourage a

low-multilinear-rank structure.

!The n-mode product (Definition S1) is extended to the case when g, is infinite.

12



Remark 2. Obviously, rank(I'y) < [],_; rank(I'4)) for p-dimensional functional data. If
the random field X has the property of “weak separability” as defined by Lynch and Chen
(2018), then max(rank(I'(y)), ... ,rank(I',))) < R so the low-rank structure in terms of R
will be automatically translated to low one-way ranks. Note that the construction of our

estimator and corresponding theoretical analysis do not require separability conditions.

Next, we will utilize both one-way and two-way structures and propose an estimation pro-
cedure that regularizes one-way and two-way ranks jointly and flexibly, with the aim of seek-
ing the “sharing” of marginal structures while controlling the number of eigen-components

simultaneously.

5 Covariance Function Estimation

In this section we propose a low-rank covariance function estimation framework based
on functional unfolding operators and spectral regularizations. Spectral penalty functions

(Abernethy et al., 2009; Wong and Zhang, 2019) are defined as follows.

Definition 2 (Spectral penalty function). Given a compact operator A, a spectral penalty
function takes the form W(A) = 3 -, ¥(Ae(A)) with the singular values of the operator A,
AM(A), X\a(A), ... in a descending order of magnitude and a non-decreasing penalty function

Y such that ¥(0) =

Recall H = @_, H; and G = ®;l:1 G; where d = 2p, G; = H; for j = 1,...,p, and
G; =Hj_p, for j =p+1,...,d. Clearly, a covariance operator is self-adjoint and positive
semi-definite. Therefore we consider the hypothesis space M+t = {T' € M : (Taf, f)u >
0,for all f € H}, where M = {I" € G : T'y is self-adjoint}, and propose a general class of

covariance function estimators as follows:

(T Z ] } )

arg min {K( )+ A
Fem+

13



where ¢ is a convex and smooth loss function, {U; : j = 1,...,p} are spectral penalty
functions, and A > 0, § € [0,1] are tuning parameters. Here W, penalizes the squarely
unfolded operator I'y while ¥; regularizes one-way unfolded operator I'(;) respectively for
7 =1,...,p. The tuning parameter 3 controls the relative degree of regularization between
one-way and two-way singular values. The larger the [ is, the more penalty is imposed
on the two-way singular values relative to the one-way singular values. When g = 1, the
penalization is only on the eigenvalues of the covariance operator (i.e., the two-way singular
values), similarly as Wong and Zhang (2019).

To achieve low-rank estimation, we adopt a special form of (7):

BIIF-II*+%ZIIF@)II*”7 (8)
j=1

where || - ||« is the sum of singular values, also called trace norm, and lsquare is the squared

[ = arg min < Csquare(I') + A
Tem+

error loss:
1 n
Csquare(I') = am(m = 1) Z Z {C(Tjrs - Tigp T - Tigrp) — Zigp ¥, (9)
i=1 1<j#j'<m

with Z;;0 = {Y;; — i(Tijr, ..., Tijp) H{Yiy — i(Tijn, ..., Tijp) }, v as an estimate of the mean
function, and 7j;, as the k-th element of location vector Tj;. Notice that trace-norm regu-
larizations promote low-rankness of the underlying operators, hence leading to a low-rank
estimation in terms of both the one-way and two-way (covariance) ranks.

The main reason for penalizing one-way ranks is that only regularizing two-way ranks is
often insufficient for dimension reduction for p-dimensional functional data. To nonparamet-
rically estimate the covariance function for p-dimensional functional data, even if the rank of
the covariance operator, i.e., the two-way rank, is R, one needs to estimate R eigenfunctions
of which each is p-dimensional. Thus, unless p is small, the covariance function estimation

will suffer from the curse of dimensionality.
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5.1 Representer theorem and parametrization

Before deriving a computational algorithm, we notice that the optimization (8) is an
infinite-dimensional optimization which is generally unsolvable. To overcome this chal-
lenge, we show that the solution to (8) always lies in a known finite-dimensional sub-
space given data, hence allowing a finite-dimensional parametrization. Indeed, we are
able to achieve a stronger result in Theorem 1 which holds for the general class of esti-
mators obtained by (7). In below, we use I' to represent a generic solution to (7). Let

Lom={Tijr:i=1,....n,j=1,...,mk=1,...,p}

Theorem 1 (Representer theorem). If the solution set of (7) is not empty, then the solution

T lies in the space G(Lym) = ®Zp:1 Ky, where K, v, = Ky and
Ky =span {Ky(Tijk, ) :i=1,...,n,j=1,...,m}

fork=1,...,p. It also takes the form:

F(Sl, .. .,Sp7t1, . ,tp) =A X1 21(81) X9 Z;(Sg) e Xp Z;(Sp) Xp+1 ZI(tl) c Xop Z;(tp), (10)

where the [-th element of z(-) € R™ is K(T}jy, ) withl = (i — 1)n+j, A is a 2p-th order

tensor where the dimension of each mode is nm and Ag s a symmetric matrix.

The proof of Theorem 1 is given in Section S2 of the SM. By Theorem 1, we can now
only focus on covariance function estimators of the form (10). Let B = A x; M{ --- x,,

M) Xpi1 M-+ X9, M|, where M, is a nm x ¢, matrix such that

MM, = K, = [K(T;, j, s Ty jo )]

1<i1iz<n,1<j1,j2<m ° (11>

With B, we can express

F<Sl7 R Sp7t17 cee 7tp) =B X1 {Mf_zl(sl)}T U XP {M;ZP(SP)}T (12)

Xp+1 {Mfrzl(tl)}T T Xgp {M;zp(tp)}Ta
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where z;(+) is defined in Theorem 1 and M, is the Moore-Penrose inverse of matrix Mj,.

For the smooth modeling of X, the selected reproducing kernel is often smooth, which
leads to an approximately low-rank kernel matrix Kj. Thus computationally one can find a
matrix M, with the number of columns ¢; much smaller than the rank of K} and nm, such
that the first equation in (11) approximately holds. This greatly reduces the dimensions of
B, and thus benefits the computation.

Ideally we can obtain M} by the “best” low-rank approximation with respect to the
Frobenius norm by eigen-decomposition, but a full eigen-decomposition is computationally
expensive. Instead, randomized algorithms can be used to obtain low-rank approximations
in an efficient manner (Halko et al., 2009).

One can easily show that the eigenvalues of the operator s are the same as those of the
matrix By and that the singular values of the operator f(j) are the same as those of the

matrix By;. Therefore, solving (8) is equivalent to solving the following optimization:

B

where || - ||« also represents the trace norm of matrices, h(H) = ||H ||, if matrix H is positive

B = argmin {gsquare(B) + A
B

1_82
shBa) + 2318y,
p k=1

semi-definite, and h(H) = oo otherwise, and gsquare(B) = ésquare(f), where T is constructed
from (12). Then I in (8) can be obtained by substituting B into (12).

Beyond estimating the covariance function, one may be further interested in the eigen-
decomposition of 'y via the L? inner product, e. g., to perform functional principal component
analysis in the usual sense. Due to the finite-dimensional parametrization, a closed-form
expression of L? eigen-decomposition can be derived from our estimator without further
discretization or approximation. In addition, we can obtain a similar one-way analysis in
terms of the L, inner product. We can define a L? singular value decomposition via the

Tucker form and obtain the L? marginal basis. Details are given in Appendix A.
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5.2 Computational algorithm
We solve (13) by the accelerated alternating direction method of multipliers (ADMM)

algorithm (Kadkhodaie et al., 2015). We begin with an alternative form of (13):

min {ésquare(B) + A\Bh(Dya) + )\— Z | D5 } . (14)
BeRM1 X X92p
subject to B=Dy=D;=---=D, (15)

where ¢,y = g for k = 1,...,p. Then a standard ADMM algorithm solves the opti-
mization problem (14) by minimizing the augmented Lagrangian with respect to different

variables alternatively. More explicitly, at the (¢ + 1)-th iteration, the following updates are

implemented:
OO A (1 ® |
1) 2
B+ —argml Square _“B DOI—I_‘/O,-HF"'_EZHB(M _Dk7(k) +‘/k’(k)HF )
k=1
(16a)

DétH = argmm {)\Bh (Doa) 77 HB(tJrl —Dyu+ VE) -

, 16b

F} (16b)
1 2

DY = argmm{)\—”Dk ol + 2 HB D Dy + Vk(f()k)HF}, k=1,....p, (16c)

vt —y® L g _ pitl g — g (16d)

where V, € R®*% for k = 0,...,p, are scaled Lagrangian multipliers and n > 0 is an
algorithmic parameter. An adaptive strategy to tune 7 is provided in Boyd et al. (2010).
One can see that Steps (16a), (16b) and (16¢) involve additional optimizations. Now we
discuss how to solve them.

The objective function of (16a) is a quadratic function, and so we can easily solve this
with a closed-form solution, given in line 2 of Algorithm 1. To solve (16b) and (16¢), we

use proximal operator prox®, k = 1,...,p and prox] : RO>XX%2 — ROXXa2 pegpectively
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defined by

) 1
proxi(4) = arguin { J1Wie - Al + o Wl | (17a)
W eRYILX " X42p
1
prox, (A) = argmin {—HW. — Aul% + vh(W.)} : (17b)
WeRIL X X92p 2

for v > 0. By Lemma 1 in Mazumder et al. (2010), the solutions to (17) have closed
forms. For (17a), write the singular value decomposition of A as Udiag((as, ..., a,,))VT,
then [proxf(A)]y) = Udiag(€)VT where é = ((a1 — v)4, (a2 — v)4, ..., (Gg, — v)+). As for
(17b), the solution is restricted to be a symmetric matrix since the penalty h equals infinity
otherwise. Thus (17b) is equivalent to minimizing {(1/2)||Wa — (Aa + Ag)/2||% + vh(Wa)}
since (Wa, (Aa — Ag)/2) = (Wa+ Wyq)/2,(Aa— Ai)/2) = 0 . Suppose that (As+ Aa)/2
yields eigen-decomposition Pdiag((ay, ..., a,)PT. Then [prox; (A)]a = Pdiag(¢)PT, where
¢ = (&1 —v)s, (a2 —v)4,...,(ag — v)+). Unlike singular values, the eigenvalues may be
negative. Hence, as opposed to prox”, this procedure prox;” also removes eigen-components
with negative eigenvalues.

The details of computational algorithm are given in Algorithm 1, an accelerated version

of ADMM which involves additional steps for a faster algorithmic convergence.

6 Asymptotic Properties

In this section, we conduct an asymptotic analysis for the proposed estimator [ as defined
in (8). Our analysis has a unified flavor such that the derived convergence rate of the proposed
estimator automatically adapts to sparse and dense settings. Throughout this section, we
neglect the mean function estimation error by setting po(¢t) = f1(t) = 0 for any ¢t € T, which
leads to a cleaner and more focused analysis. The additional error from the mean function

estimation can be incorporated into our proofs without any fundamental difficulty.
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6.1 Assumptions
Without loss of generality let 7 = [0,1]P. The assumptions needed in the asymptotic

results are listed as follows.

Assumption 1. Sample fields {X; : i = 1,...,n} reside in H = Q7 _, Hi where Hy, is an

RKHS of functions on [0, 1] with a continuous and square integrable reproducing kernel Kj,.

Assumption 2. The true (folded) covariance function 'y # 0 and 'y € G = ®;.i:1 G;, where

d=2p, Gi=H; forj=1,....pand G; =H,;_, forj=p+1,...,d.

Assumption 3. The locations {T;; : i = 1,...,n;5 = 1,...,m} are independent random
vectors from Uniform|0, 1|7, and they are independent of {X;:i=1,...,n}. The errors

{e;j:i=1,...,n;7=1,...,m} are independent of both locations and sample fields.

Assumption 4. For each t € T, X(t) is sub-Gaussian with a parameter bx > 0 which does

not depend on t, i.e., Elexp {8X (t)}] < exp {0%%/2} for all f and t € T.

Assumption 5. For each i and j, €; is a mean-zero sub-Gaussian random variable with a
parameter b independent of i and j, i.e., Elexp {Be;;}] < exp {b?3?/2}. Moreover all errors

{e;j:i=1,....,n;5=1,...,m} are independent.

Assumption 1 delineates a tensor product RKHS modeling, commonly seen in the non-
parametric regression literature (e.g., Wahba, 1990; Gu, 2013). In Assumption 2, the con-
dition Ty € G is satisfied if E||X||3, < oo, as shown in Cai and Yuan (2010). Assumption
3 is specified for random design and we adopt the uniform distribution here for simplicity.
The uniform distribution on [0, 1]” can be generalized to any other continuous distribution
of which density function 7 satisfies ¢, < 7(t) < ¢, for all £ € [0, 1]?, for some constants
0 < ¢ <. <1, to ensure both Theorems 2 and 3 still hold. Assumptions 4 and 5 in-
volve sub-Gaussian conditions of the stochastic process and measurement error, which are

standard tail conditions.
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6.2 Reproducing kernels

In Assumption 1, the “smoothness” of the function in the underlying RKHS is not ex-
plicitly specified. It is well-known that such smoothness conditions are directly related to
the eigen-decay of the respective reproducing kernel. By Mercer’s Theorem (Mercer, 1909),

the reproducing kernel Ky((t1,...,tp), (t},...,1,)) of H possesses the eigen-decomposition

EKo((tr, - oty), (B 1) = > men(te, - ) du(t), . 1), (18)
=1

where {y; : [ > 1} are non-negative eigenvalues and {¢; : [ > 1} are L? eigenfunctions on
[0,1]7. Then for the space H ® H, which is also identified by G = ®Z:1 Gy, its corresponding

reproducing kernel K¢ has the following eigen-decomposition

Kg((@1, ..., map), (27, ... ,a:gp))
= Ky((z1,...,2,), (2, ... ,J:;))KH((:UPH, e, X)), (x;H, . ,x/Qp))

o0
= Z Lfth G (21, - - Tp)On(Tpgs - - Tap)Pu(2], 735;)%(95;“7 e ,flzp),
Lh=1

where {1, h > 1} are the eigenvalues of Kg. Due to continuity assumption (Assumption

1) of the univariate kernels, there exists a constant b such that

Sup Kg((xhapr)a(xla;me)) Sb
(x1,...,22p)€[0,1]2P

The decay rate of the eigenvalues {ypy, : [, h > 1} is involved in our analysis through two
quantities Ky, and 1, ,, which have relatively complex forms defined in Appendix B. Similar
quantities can be found in other analyses of RKHS-based estimators (e.g., Raskutti et al.,
2012) that accommodate general choices of RKHS. Generally &, ., and 7, ,, are expected to
diminish in certain orders of n and m, characterized by the decay rate of the eigenvalues
{pupr}. The smoother the functions in the RKHS, the faster these two quantities diminish.
Our general results in Theorems 2 and 3 are specified in terms of these quantities. To provide
a solid example, we derive the orders of &, ,, and 7, ,, under a Sobolev-Hilbert space setting

and provide the convergence rate of the proposed estimator in Corollary 1.
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6.3 Unified rates of convergence

We write the penalty in (8) as I(I') = f||Tall« + (1 — 8)p ' >%_, ITxll«. For arbitrary
functions ¢i, g» € G, define their empirical inner product and the corresponding (squared)
empirical norm as

1 n
(91792>n,m=m2 > ai(Ti - Tigp Ty, Tigp) 92Tt - T Tigrts - T

i=1 1<j,j'<m

Hgl i,m = <glagl>n,m-

Additionally, the L? norm of a function g is defined as ||g||2 = { [ g*(¢) dt}'/%.
Define &, ., = max{n,.m, fn.m, (0" logn)/2}. We first provide the empirical L? rate of

convergence for I'.

Theorem 2. Suppose that Assumptions 1-5 hold. If &, satisfies (logn)/n < & /(loglog&, ),

and A > Llfim for some constant Ly > 0 depending on bx, b, and b, we have

||f‘ - F()Hn,m S V 2I(FO))\ + Ll&n,m?
with probability at least 1 — exp(—cn& ,, /logn) for some positive universal constant c.
Next, we provide the L? rate of convergence for I.

Theorem 3. Under the same conditions as Theorem 2, there exists a positive constant Lo

depending on bx, be, b and I(T'y), such that

|1 = Toll2 < 2¢/T(To)A + L& m,

with probability at least 1 — exp(—cpnfim/log n) for some constant c, depending on b.

The proofs of Theorems 2 and 3 can be found in Section S2 in the SM. Theorems 2 and
3 are applicable to general RKHS H which satisfies Assumption 1. The convergence rate
depends on the eigen-decay rates of the reproducing kernel. A special case of polynomial

decay rates for univariate RKHS will be given in Corollary 1. Moreover, our analysis has
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a unified flavor in the sense that the resulting convergence rates automatically adapt to
the orders of both n and m. After Corollary 1, we will provide a discussion of a “phase

transition” between dense and sparse functional data revealed by our theory.

Remark 3. With a properly chosen A, Theorems 2 and 3 bound the convergence rates (in
terms of both the empirical and theoretical L? norm) by &, ,,, which cannot be faster than
(n"'logn)'/2. The logarithmic order is due to the use of Adamczak bound in Lemma S2 in
the SM. If one further assumes boundedness for the sample fields X;’s (in terms of the sup-
norm) and the noise variables €;;’s, we can instead use Talagrand concentration inequality
(Bousquet bound in Koltchinskii (2011)) and the results in Theorems 2 and 3 can be improved

to max{[|[ — T2, [F — Toll3} = Op(€2,,.), where & = max{ . ks n~2}.

[

Next we focus on a special case where the reproducing kernels of the univariate RKHS
‘H’s exhibit polynomial eigen-decay rates, which holds for a range of commonly used RKHS.

A canonical example is a-th order Sobolev-Hilbert space:
Hi={f:f",r=0,...,a,are absolutely continuous; f® € L*([0,1])},

where £k = 1,...,p. Here « is the same as « in Corollary 1. To derive the convergence
rates, we relate the eigenvalues v, in (18) to the univariate RKHS Hy, £ = 1,...,p. Due
to Mercer’s Theorem, the reproducing kernel K} of Hy yields an eigen-decomposition with
non-negative eigenvalues {ul(k) : 1 > 1} and an L? eigenfunction {qﬁl(k) 1> 1} e, Ki(t, ) =
Yo M(k)¢(k) (t)<bl(k) (t'). Therefore, the set of eigenvalues {gy : I > 1} in (18) is the same as
the set {I[7_, ulk :ly,...,l, > 1}. Given the eigen-decay of ,ul(k), one can obtain the order
of &,m and hence the convergence rates from Theorems 2 and 3. Here are the results under

the setting of a polynomial eigen-decay.

Corollary 1. Suppose that the same conditions in Theorem 3 hold. If the eigenvalues of Kj,

for Hi, k = 1,...,p, have polynomial decaying rates, that is, there exists o > 1/2 such that
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,ul(k) =172 forallk =1,...,p, then

max{”f - F0||721’m, ||f‘ - F0||§} =0, (max {(nm)_lfga{log(nm) %i_ll), loin}) )

The proof of Corollary 1 can be found in Section S2 in the SM. All Theorems 2 and 3
and Corollary 1 reveal a “phase-transition” of the convergence rate depending on the relative
magnitudes between n, the sample size, and m, the number of observations per field. When
K2, < (logn/n), which is equivalent to m > n'/*)(logn)*~2=1/* in Corollary 1, both
empirical and theoretical L? rates of convergence can achieve the near-optimal rate \/W.
Under the stronger assumptions in Remark 3, the convergence rate will achieve the optimal
order \/1/n when x2,, < 1/n (or m > n'/@*)(logn)*~! in Corollary 1). In this case, the
observations are so densely sampled that we can estimate the covariance function as precisely
as if the entire sample fields are observable. On the contrary, when &7 ,, > (logn/n) (or
m < n'/(logn)?~2-1/(22) in Corollary 1), the convergence rate is determined by the total
number of observations nm. When p = 1, the asymptotic result in Corollary 1, up to some
logm and logn terms, is the same as the minimax optimal rate obtained by Cai and Yuan
(2010), and is comparable to the L? rate obtained by Paul and Peng (2009) for o = 2.

Our estimator is closely related to Wong and Zhang (2019), but the corresponding theories
are substantially distinct. First, the theoretical results of Wong and Zhang (2019) hold only
for one-dimensional functional data and Sobolev-Hilbert spaces, while our results apply to
multidimensional functional data and general RKHS. Moreover, unlike Theorems 2, 3 or
Corollary 1, Wong and Zhang (2019) does not provide unified theories. Their theories can
only achieve nonparametric rates which do not change over m, so they are not optimal for
dense functional data as m goes to infinity. In contrast, as shown in Corollary 1 by taking p =
1, our result gives a significantly better rate when m diverges. If m is bounded, by Theorem
3 of Wong and Zhang (2019), their best rate n=2%/(1*2%) Jog(n) is obtained if the covariance
function estimator is only searched for among periodic functions. In comparison, Corollary

—2a/(1+2a

1 indicates that our rate is n ) log(n)«)/(1+22) for one-dimensional functional data,
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i.e., p = 1, and bounded m, which is slightly better than theirs, even if we do not assume
periodic covariance functions in our theory.

For covariance function estimation for unidimensional functional data, i.e., p = 1, a
limited number of approaches, including Cai and Yuan (2010), Li and Hsing (2010), Zhang
and Wang (2016), and Liebl (2019), can achieve unified theoretical results in the sense
that they hold for all relative magnitudes of n and m. The similarity of these approaches
is the availability of a closed form for each covariance function estimator. In contrast, our
estimator obtained from (8) does not have a closed form due to the non-differentiability of the
penalty, but it can still achieve unified theoretical results which hold for both unidimensional
and multidimensional functional data. Due to the lack of a closed form of our covariance
estimator, we used the empirical process techniques (e.g., Bartlett et al., 2005; Koltchinskii,
2011) in the theoretical development. In particular, we have developed a novel grouping
lemma (Lemma S4 in the SM) to deterministically decouple the dependence within a U-
statistics of order 2. We believe this lemma is of independent interest. In our analysis, the
corresponding U-statistics is indexed by a function class, and this grouping lemma provides
a tool to obtain uniform results (see Lemma S3 in the SM). In particular, this allows us
to relate the empirical and theoretical L? norm of the underlying function class, in precise
enough order dependence on n and m to derive the unified theory. See Lemma S3 for more
details. To the best of our knowledge, this paper is one of the first in the FDA literature
that derives a unified result in terms of empirical process theories, and the proof technique

is potentially useful for some other estimators without a closed form.

7 Simulation

To evaluate the practical performance of the proposed method, we conducted a simulation
study. We in particular focused on two-dimensional functional data. Let H; and H, both

be the RKHS with kernel K(t;,t2) = Y oo, (k7) *ex(t1)ex(t2), where ex(t) = /2 cos(krt),
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k > 1. This RKHS has been used in various studies in FDA, e.g., the simulation study of
Cai and Yuan (2012). Each X; is generated from a mean-zero Gaussian random field with a

covariance function

R
Yo((s1,82), (t1,t2)) = To(s1, S2,t1,t2) = Z k™% (51, 82)0k(t1, t2), (19)
k=1

where the eigenfunctions ¢y (t1,t2) € Py, = {ei(t1)ej(ta) i = 1,...,m55 = 1,...,1m2},
and a controls the decay rate of eigenvalues. We considered three different choices of decay
rates (o = 1.1,2,4). Due to space limitation, we only present the results for « = 2 here.
Corresponding results of the other two decay rates can be found in Section 3.1 of the SM.

Three combinations of one-way ranks (r1,r2) and two-way rank R were studied for I'y:

Setting 1: R=06,r, =3, ry = 2; Setting 2: R =06, r, =1y =4,

Setting 3: R=1r; =r, = 4.

For each setting, we chose R functions out of P,, ., to be {tx} such that smoother functions
are associated with larger eigenvalues. The details are described in Section S3.1.1 of the SM.

In terms of sampling plans, we considered both sparse and dense designs. Here we only
show and discuss the results for the sparse design, while defer those for the dense design to
Section S3.1.1 of the SM.

For the sparse design, the random locations Tj;, 7 = 1,...,m, were independently gener-
ated from the continuous uniform distribution on [0, 1] within each field and across different
fields, and the random errors {€;; : 4 =1,...,n;j =1,...,m} were independently generated
from N(0,0?). In each of the 200 simulation runs, the observed data were obtained following
(1) with various combinations of m = 10,20, n = 100, 200 and noise level o = 0.1,0.4.

We compared the proposed method, denoted by mOpCov, with three existing meth-
ods: 1) OpCov: the estimator based on Wong and Zhang (2019) with adaption to two
dimensional case (see Section 2); 2) ll-smooth: local linear smoothing with Epanechnikov

kernel; 3) Ill-smooth+: the two-step estimator constructed by retaining eigen-components of
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ll-smooth selected by 99% fraction of variation explained (FVE), and then removing the eigen-
components with negative eigenvalues. For both OpCov and mOpCov, 5-fold cross-validation
was adopted to select the corresponding tuning parameters.

Table 1 show the average integrated squared error (AISE), average of estimated two-way
rank (R), as well as average of estimated one-way ranks (7,7,) of the above covariance
estimators over 200 simulated data sets in respective settings when sample size is n = 200.
Corresponding results for n = 100 can be found in Table S5 of the SM, and they lead to
similar conclusions. Obviously ll-smooth and Il-smooth+, especially ll-smooth, perform sig-
nificantly worse than the other two methods in both estimation accuracy and rank reduction
(if applicable). Below we only compare mOpCov and OpCov.

Regarding estimation accuracy, the proposed mOpCov has uniformly smaller AISE values
than OpCov, with around 10% ~ 20% improvement of AISE over OpCov in most cases under
Settings 1 and 2. If the standard error (SE) of AISE is taken into account, the improvements
of AISE by mOpCov are more distinguishable in Settings 1 and 2 than those in Setting 3
since the SEs of OpCov in Setting 3 are relatively high. This is due to the fact that in Setting
3, the marginal basis is not shared by different two-dimensional eigenfunctions, and hence
mOpCov cannot benefit from the structure sharing among eigenfunctions. Setting 3 is in fact
an extreme setting we designed to challenge the proposed method.

For rank estimation, OpCov almost always underestimates two-way ranks, while mOpCov
typically overestimates both one-way and two-way ranks. For mOpCov, the average one-
way rank estimates are always smaller than the average two-way rank estimates, and their
differences are substantial in Settings 1 and 2. This demonstrates the benefit of mOpCov of
detecting structure sharing of one-dimensional basis among two-dimensional eigenfunctions.

We also tested the performance of mOpCov in the dense and regular designs, and com-
pared it with the existing methods mentioned above together with the one by Wang and

Huang (2017), which is not applicable to the sparse design. Details are given in Section
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S3.1.3 of the SM. Overall, all methods achieve similar AISE values, but mOpCov performs
slightly better in estimation accuracy in smoother cases (i.e., those with larger o), and when
the noise level is high.

We also investigated the performance of mOpCov when the true covariance function is of

high rank and obtained a similar conclusion as above. See details in Section S3.2 of the SM.

8 Real Data Application

We applied the proposed method to an Argo profile data set, obtained from https:
//argo.ucsd.edu. The Argo project has a global array of approximately 3,800 free-drifting
profiling floats, which measure temperature and salinity of the ocean. These floats drift freely
in the depths of the ocean most of the time, and ascend regularly to the sea surface, where
they transmit the collected data to the satellites. Every day only a small subset of floats
show up on the sea surface. Due to the drifting process, these floats measure temperature
and salinity at irregular locations over the ocean. See Figure 2 for examples.

In this analysis, we focus on the different changes of sea surface temperature between the
tropical western and eastern Indian Ocean, which is called the Indian Ocean Dipole (IOD).
The 10D is known to be associated with droughts in Australia (Ummenhofer et al., 2009)
and has a significant effect on rainfall patterns in southeast Australia (Behera and Yamagata,
2003). According to Shinoda et al. (2004), the IOD phenomenon is a predominant inter-
annual variation of sea surface temperature during late boreal summer and autumn (Shinoda
et al., 2004), so in this application we focused on the sea surface temperature in the Indian
Ocean region of longitude 40~120 and latitude -20~20 between September and November
every year from 2003 to 2018.

Based on a simple autocorrelation analysis on the gridded data, we decided to use mea-
surements for every ten days in order to reduce the temporal dependence among the data.
At each location of a float on a particular day, the average temperature between 0 and 5

hPa from the float is regarded as a measurement. The Argo float dataset provides multiple
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versions of data, and we adopted the quality controlled (QC) version. Eventually we have a
two-dimensional functional data collected of n = 144 days, where the number of observed lo-
cations T;; = (longitudie, latitude) per day varies from 7 to 47, i.e., 7 <m; <47, i=1,...,n,
with an average of 21.83. The locations are rescaled to [0, 1] x [0,1]. As shown in Figure 2,

the data has a random sparse design.

20 20
P ¥ e, 'K v 4
¢ 4 B "Sa 2 : 3
> P
10 4 10 4 X A e
% % E . t ”
2 04 2 oA - gtmere & % J
© © & »
- -
L 4
10 10
\,’
‘20 T T T ‘20 T T T
40 60 80 100 120 40 60 80 100 120
Longitude Longitude
]

22.5 25.0 27.5 30.0 32.5

Figure 2: Observations on 2013/09/04 (left), and all observations in the data set (right). Points on
the map indicate locations (Longitude, Latitude) of observations and the color scale of every point

shows the corresponding Celsius temperature.

First we used kernel ridge regression with the corresponding kernel for the tensor product
of two second order Sobolev spaces (e.g., Wong and Zhang, 2019) to obtain a mean function
estimate for every month. Then we applied the proposed covariance function estimator with
the same kernel.

The estimates of the top two two-dimensional L? eigenfunctions are illustrated in Figure
3. The first eigenfunction shows the east-west dipole mode, which aligns with existing
scientific findings (e.g., Shinoda et al., 2004; Chu et al., 2014; Deser et al., 2010). The
second eigenfunction can be interpreted as the basin-wide mode, which is a dominant mode
all around the year (e.g., Deser et al., 2010; Chu et al., 2014).

To provide a clearer understanding of the covariance function structure, we derived a
marginal L? basis along longitude and latitude respectively. The details are given in Ap-

pendix A. The left panel of Figure 4 demonstrates that the first longitudinal marginal basis
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reflects a large variation in the western region while the second one corresponds to the varia-
tion in the eastern region. Due to different linear combinations, the variation along longitude
may contribute to not only opposite changes between the eastern and western sides of the
Indian Ocean as shown in the first two-dimensional eigenfunction, but also an overall warm-
ing or cooling tendency as shown in the second two-dimensional eigenfunction. The second
longitudinal marginal basis reveals that the closer to the east boundary, the greater the vari-
ation is, which suggests that the IOD may be related to the Pacific Ocean. This aligns with
the evidence that the IOD has a link with El Nifio Southern Oscillation (ENSO) (Stuecker
et al., 2017), an irregularly periodic variation in sea surface temperature over the tropical
eastern Pacific Ocean. As shown in the right panel of Figure 4, the overall trend for the first
latitude marginal basis is almost a constant function. This provides evidence that the IOD

is primarily associated with the variation along longitude.
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Figure 3: The first two-dimensional L? eigenfunction (left) and the second two-dimensional L?
eigenfunction (right). The first eigenfunction explains 33.60% variance and the second eigenfunction

explains 25.94% variance.
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Figure 4: The first two marginal L? basis functions along longitude and latitude respectively.
Solid lines are the first marginal basis function and dotted lines are the second marginal basis
function. The fractions of variation explained by the corresponding principle components are given
in parentheses.

Supplemental Material

In the supplemental material related to this paper, we provide formal definitions related
to Tucker decomposition for finite-dimensional tensors, proofs of our theoretical findings and

additional simulation results.

Appendix

A [? eigensystem and L? marginal basis

In this section, we present a transformation procedure to produce L? eigenfunctions and
corresponding eigenvalues from our estimator B obtained by (13).

Let Qi = U[O,l] K (s, Tiji) K (s, Ty )dshi<iir<ni<jji<m, k = 1,...,p. Then Qy = MR, M],
where Ry = [f[o,u vi(s)up(s)dsli<in<g, and {v; : 1 = 1,...,q} form a basis of Hy, so
R, = M Q(M;")T. The L* eigenvalues of ['w coincide with the eigenvalues of matrix
BL e =(Ri®...®R,)"?B[(R®...®R,)"?]", and the number of nonzero eigenvalues

is the same as the rank of Bg. The L2 eigenfunction le that corresponds to the [-th eigenvalue
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of T'a can be expressed as ¢;(s1, ..., s,) = ul[21(s1) @ ... @ 2,(sp)], where z4(-), k=1,...,p

are defined in Theorem 1, and w; = (M ® ... ® M;)T(Rl ®R...8 Rp)_1/2vl with v; being

L
square*

Gi(51, s 8) = V] (R P M 21(51)) ® ... @ (R P M 2, (s,))].

the [-th eigenvector of matrix B Using the property of Kronecker products, we have

By simple verification, we can see that R,:l/ M .+ 2;(+) are g one-dimensional orthonor-
mal L? functions for dimension k, k = 1, ...,p. Therefore, we can also express [' with these
L? one-dimensional basis and the coefficients will form a 2p—th order tensor of dimension
Q1 X ...qp X q X ...q. We use B~ to represent this new coefficient tensor and extend our
unfolding operators to L? space. It is easy to see that Bf = BL ...

Since f(k) is a compact operator in the L? space, this yields a singular value decomposition
which leads to a L? basis characterizing the marginal variation along the k—th dimension. We
call it a L? marginal basis for the k—th dimension. Obviously the marginal basis function 1@’“
corresponding to the [-th singular value for dimension k& can be expressed as 1[}1’“() = urz,("),
where uf = (MJ)TR,;U%Z"‘, and vy is the [-th singular vector of Bé) And the L? marginal

singular values of f‘(k) coincide with the singular values of matrix B(Lk)

B Definitions of «, ,, and 7, ,,

Here we provide the specific forms of x,, , and 7, ,,, which are closely related to the decay

of {pupn = 1,h =1,...}. Specifically, , ,, is defined as the smallest positive x such that

~ 11/2
1
3 cfL2 2
cb mzmm{% \ Hiftn § < K7,
1,h=1 | 5
oL L 20)
32¢h | —— min {x?/b%, p < K%
[n(m -1 lg:jl { }_

where c is a universal constant, and 7, ,, is defined as the smallest positive 7 such that

1/2
00 2
Cn . 2 n 2
. L < 21
(nml%lmm{'f? upen} + n) <N, (21)
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where ¢, is a constant depending on b, bx, b.. The existences of &, ,, and 7, ,, are shown in

the proof of Theorem 2.
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Algorithm 1: Accelerated ADMM for solving (13)

Input: Vk(o) € Roxxe L =0,1,...,p, and B®) € R®**%r guch that Vo,(o) and

B are symmetric matrices; My = [M[,, ..., M}, ], k=1,...,p;

Zi = (Zijj’)lgj,j’ﬁm , ] = 1, N (N I = [](Z 7é j)]lgi,jgm; n > O, T
Initialization: o\” + 1, D'V« BO DY« BO vV v 1 —01,.. p
Li+— M/ ,oM,o- -0 M|, i=1,...,n, where © is the Khatri-Rao product
defined as A ® B = [a; ® b;|=1,. » € R™"*" for A € R"*" B € R™*" and a;, b; are
t-th column of matrices A and B respectively.

h + ﬁ Y (L; ® L;)Tdiag(vec(I))vec(Z;)

Q « (2G + 5 xnx 1))~
1 fort=0,1,...,7 do

-----

2 | vee(Ba")  Q{h+n Y} vee( D - Vi"]a)}

3 for k=0,1,...,pdo

4 if £ =0 then

D(t) + B+ f/(t)
5 o < Proxyg, ( +Vi)
6 else
t O (t

7 | DY e proxf ) (B + V)

8 end

9 V;c(t) « ‘A/k(t) + Bt+1) _ Dl(ct)

/ a2
10 oz,(fH) — Ty iaey )7 1+24( 3
A~ () _ _
1 D"« D + %y (DY — DY)
k
N (t) _ _
R e A T
k

13 end
14 Stop if objective value change less than tolerance.
15 end

Output: D((]T)

36



Table 1: Simulation results for three Settings with the sparse design when sample size (n) is 200.
The AISE values with standard errors (SE) in parentheses are provided for the four covariance

estimators in comparison, together with average two-way ranks (R) for those estimators which can
lead to rank reduction (i.e., mOpCov, OpCov, and ll-smooth+) and average one-way ranks (r1, r2)

for mOpCov.
Setting m o mOpCov OpCov [l-smooth [l-smooth+
1 10 0.1 [ AISE 0.053 (1.96e-03)  0.0632 (3.22¢-03) 0.652 (1.92¢-01)  0.337 (5.35¢-02)
R 8.35 2.94 - 172.70
71, T2 5.22, 5.19 - - -
0.4 | AISE  0.0527 (1.39e-03) 0.0656 (2.72¢-03) 0.714 (2.11e-01) 0.366 (5.96e-02)
R 9.16 2.84 - 177.3
71, T2 5.29, 5.26 - - -
20 0.1 | AISE 0.0340 (1.35e-03) 0.0421 (1.97e-03) 0.297 (1.39e-02) 0.206 (4.62¢-03)
R 8.265 3.78 - 317.44
71, 72 5.81, 5.8 _ _ _
0.4 | AISE 0.0349 (1.38¢-03) 0.044 (2.21e-03)  0.325 (1.58¢-02) 0.223 (4.94e-03)
R 8.86 3.76 - 326.31
71, 72 5.8, 5.8 - - -
2 10 0.1 | AISE 0.0516 (1.96e-03) 0.0636 (3.12e-03) 2.33 (1.13e4+00) 0.795 (2.98¢-01)
R 8.48 3.02 - 191.175
71, To  5.47, 5.47 - - -
0.4 | AISE 0.0532 (1.96e-03) 0.0686 (3.53¢-03) 2.44 (1.17e+00) 0.828 (3.04e-01)
R 9.04 3.04 - 196.34
71, T2 5.45, 5.43 - _ _
20 0.1 | AISE 0.0339 (1.39e-03) 0.0419 (2.02e-03) 0.301 (1.58e-02) 0.208 (4.50e-03)
R 8.745 3.74 - 318.645
71, Ty D.87, 5.88 _ _ _
0.4 | AISE 0.0349 (1.43e-03) 0.043 (2.22e-03)  0.328 (1.78¢-02) 0.225 (4.74e-03)
R 7.785 3.6 - 327.395
71, T2 D.75, 5.75 - _ _
3 10 0.1 [ AISE 0.0581 (2.68¢-03) 0.0692 (5.33¢-03) 0.454 (7.28e-02) 0.286 (2.89¢-02)
R 6.76 3.12 - 182.74
7, 72 4.07, 4.165 - _ _
0.4 | AISE 0.0602 (2.76e-03) 0.0733 (6.14e-03) 0.531 (1.07e-01) 0.323 (4.23e-02)
R 6.93 3.2 - 185.82
T, T 4.12, 4.17 _ _ _
20 0.1 | AISE 0.0399 (1.32e-03) 0.0535 (2.64e-03) 0.267 (5.04e-03) 0.196 (3.59e-03)
R 6.17 4.49 - 332.09
71, 72 3.50, 3.49 - - _
0.4 | AISE 0.0405 (1.33e-03) 0.0494 (2.42e-03) 0.292 (5.30e-03) 0.212 (3.72¢-03)
R 6.12 3.36 - 338.725
71, 72 3.53, 3.55 - - _
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This supplemental material provides formal definitions related to Tucker decomposition for

finite-dimensional tensors, proofs of our theoretical findings and additional simulation results.

S1 Definitions related to tensor decompositions

In this section, we provide formal definitions of n-mode product, Tucker decomposition and n-mode

matricization for finite-dimensional array.

Definition S1 (n-mode product). For any arrays A € R@X2XXdd gpnd P € RPrXIn n €
{1,...,d}, the n-mode product between A and P, denoted by A X, P, is an array of dimension

g1 X q2 X Q-1 X Dn X @ui1 X -+ qq of which (I1,...,ln—1,J,lnt1,...1q)-th element is defined by

qn

(A X Pyt idnsda = D Al by da P
=1

Definition S2 (Tucker decomposition). Tucker decomposition of A € RI*92X*4d g

A:GX1U1 X2"'><dUda
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where U; € RE*" 4 =1,2,...,d, are called the “factor matrices” (usually orthonormal) with r; < g

and G € R"*X"XTd 45 cglled the “core tensor”.

Definition S3 (Matricization). For anyn € {1,...,d}, the n-mode matricization of A € RN *92Xx4d

denoted by Ay, is a matriz of dimension g, X (H,@én qx) of which (1, j)-th element is defined by

(At g = Asy g where j =14 320 (1= (T2 o @)

S2 Proofs

S2.1 Proof of Theorem 1

For any I" € G , we can decompose it into two orthogonal parts I'y and I'y such that I'y € G(Lyp, )
and I'y € (G(Lp.m))*". Since the loss function ¢(I') only depends on data, it suffices to show that
Vo(Tw) > Wo(I'1,e) and Wy (T () > Ui (T 1)) for £ =1,...,p. Below we follow two steps to prove
this.

Step 1. Take H(Ly,m) := @j—; Kk Since we require I' € M, we first show that 'y g = T'] , and
(Tiwf, f)n > 0 for any f € H. Note that 'y = I's, 50 T'a = (I'1a + I'2a)/2 + (FL + F£7_)/2. As
I a € H(Lnm) @ H(Lnm) and Ty 4 € (H(Lym) @ H(Lnm))H, we have Ty = (T'1a + I'],)/2 and
Ty = (T2m+T13,)/2. Thus Ty =T], and Tou =T .

By the definition of I'y, (I'2 g, 9)% = 0 for any g € H(Ly, m), so we have

0< (Tug,9)% = T109,9)n + (T2ug,9)1n = (L'109,9)%-

Moreover, the definition of T'y leads to (I'1 ug, )% = 0 for any g € (H(Lyn.m))*". Hence (T'1uf, f >

0 for any f € H.

Step 2. Next we show that for all k, A\x(I'e) > Ax(I'1e) and Ag (L)) > Ae(T'y5)) with j =1,...,p.

Let P, be the projection operator to space H (L., ) and denote the adjoint operator of A by
H(Lr,m) J )

! All empty products are defined as 1. For example, an _;qm = 1 when ¢ > j.



A*. Then we have

Ae(C1m) = M (Pr(n ) CaPriz, )

<M (TaPrz,m)) = Mk (PriznTa) <M (Ta) = Ae(Ta).

Let P, denote the projection operator to space K; and Px_. as the projection operator to space
j J J J

®ip:17k¢j Ki where Kpy, = Ky, j=1,...,p. Then

(1) = A (P Ty Peoy) < M (T Pes) = M (PeoTly) < M (T7) = M ().
Therefore, Wo(I'a) > Wo(I'1,m) and Wy (L)) > Ui (T 1) for k=1,...,p.

S2.2 Proofs of Theorems 2, 3 and Corollary 1

For notational simplicity, we do not adopt different notations for the fully folded and squarely
unfolded versions of operators (functions) in this section.
Write A = f - FO and e(T%j, T’ij’) = (Xz(TZ]) + 61])(Xz(112]/) + 61']-/) — Fo(ﬂj, TZ-J-/). From (8), we

obtain the following basic inequality:
Al + AT < 2(e, A)pm + AI(To). (S1)

The term (e, A), », involved in (S1) plays a crucial role in the subsequent asymptotic analysis, so
we will focus on this term first.

Consider Gg = {(I' = T'g) /{I(T") + I(T'0)} : I' € G} . To bound (e, A),, m, we start with control-
ling supgeg, (€, g)n,m- For any g € G, there exists a I' € G such that g = (I' — I'g)/ {I(T") + I(I'o) }.
When I" =T, ||g|]lg = 0. Otherwise,

—Ty

IT —Tollg _ IT'—Tollg
lgllg = < < =
I(T') + I(T)

‘g ~ I('—To) ~ Il —Tollg

L,

where the second inequality is due to that I(I') > ||T'||g for any I € G, and || - ||¢ is Hilbert—Schmidt



norm of RKHS G. Take G’ = {g € G : ||lgll¢g < 1}. From the above, one can easily see that G C G,
and hence sup,cg (€, 9)nm < SuPyegr (€, g)nm for any e. In the later part of our analysis, we will
bound supegi (€, g)n,m to control sup,eg, (€, g)nm

First, we note that the functions residing in G’ are bounded: For any g € G’, by the property

of reproducing kernel,

sup [gloo < sup K((x1,...,x2p), (21, ..., x2p)) < b.
geg, (xlv"'7$2p)e[071]2p

Next we recall the definition of the sub-exponential norm of a random variable.

Definition S4. For a random variable X, its sub-exponential norm is defined as
[ X[y, = inf{A > 0: E(exp(|X|/A)) < 2}.

If || X |y, < o0, then we call X a sub-exponential random variable.

Recall that Ly, = {Tijr : i =1,...,n;5 = 1,...,m;k = 1,...,p}. We write e;;;; = e(Ty;, T;j).
For random variables A and B, we denote by ||A | B||y, the sub-exponential norm of the random
variable A conditional on B. The notation naturally extends to the case when B is a random
vector or a set of random variables. By Lemma 3 in Wong and Zhang (2019), we can see that
conditioned on Ly, ,,, €;j; are sub-exponential random variables. Moreover, there exists a constant
oy, , depending on bx and b, such that ||e;;;r | Loy < 012/)1’

Next we introduce the following random variables:

me(evt; g/) = sup nm — 1 Zzezy’g Z]7 ) )

{9€G" llglln.m <t} ey

Zn,m(eatQ g/) = sup nm — 1 Z Z 62]]’9 ZJ’ ) .

{9€G":|gll2<t} i=1 j#£j5'

Our immediate goal is to bound vam(e,t; G’"), which will be achieved by bounding Znym(e,t; agh.
We start with its expectation. Without loss of generality, we use ¢ to denote all the universal

constants.



Lemma S1. There exists a constant ¢, > 0, depending on oy, and L, such that

E|JZ M < R t2 -
|:{ n,m(e,t,g )} :| > Gy o Z;I mln{t 7Nth}+ g . ( )

Proof. A majority of the proof resembles that of Lemma 42 in Mendelson (2002), with additional ar-
guments developed to control an important expectation term. Since the sample field of X resides in
H, we can decompose X (t) = 7%, (¢ () where E((,¢y) = E{To(Ty5, T ) on(Ti5) 8}, (Tijr) } . For
every s,t € [0,1]P, write ®(s,t) = (\/m@(s)qﬁh(t))zz:l. For two squarely summable sequences
a = {am};p=; and b = {bi};5—,, define their inner product and the 2-norm in the following:

(a,b) = > 51 anbin and [lallz = (3_75—, a?,)"/2. One can show that

G'={g(,%) = (B, ©(,%)) : [|Bll2 < 1}

Let B(t) = {8:|gll2 <t}. It follows that ¢ € G’ N B(t) if and only if 5 belongs to set Q =

{8+ 3= B ) < 25705218 < 1} Let 2 = {8 0%, Bivin < 1}, where vy, =

(min{1,¢?/ppn})~". We can see that = C Q C /2=, which implies

N 2 1
E (Zn,m(w,t; g’)) = m g Zzem@ T, T;jr )2,

i=1 j#j'

Next,

2
Esup <B, Z Z ezjj’q) ’Izbja,I'l] )>

pe= i=1 j#£j'

2
_Esup<z \/W,Blh, Z % ZZGZJJ/¢I ij ¢h( i’ )>

l,h=1 l,h=1 i=1 j#j’

Z /‘Ll:uh Z Z em'@ i ¢h( ij’ )

l,h=1 i=1 j#j'

0 m
=n >0 BPEESS ey dn(Ty)on(Ty)
= i3

2

| /\

2

The last equality follows from the independence between different sample fields and observed loca-



tions, combined with the fact that E(e;j; | Lnm) = 0.

2
It remains to bound E {Z;”#, eljj/gbl(le)tbh(le/)} . Write

Ujjrer = evjjreirr o1(T1j)dn(Trjr ) o1(Tir) o (T )-

When j =k and 7' = k',

Ujjijr = Eelg]/¢l (le)¢h(le [{E el]j £nm)} ¢l2(T1j)¢i2L(T1j’)]

< cop E{¢}(T1;)¢5(Tij)} = coy,

where the inequality follows from the property of sub-exponential random variables and ¢ is a

universal constant. When j = k and j’ # k/,

Ujjrjee = E {exjerju i (Toj)on(Tij)on(Tip) }

1/2

<E [{Melj‘j’ | L) E(erjwr | Lom)} ¢l2(T1j)¢h(T1j’)¢h(T1k’)}

1/2
< cof, E{ ] (T1;)on (T )on(Tuw) } < coly, {Edp (T1y ) By, (Tuw) } /2 < coy, .
Similarly for j # k and j' =k, Ujjgj < caw When j # k and j' # K/,

Ujj/k’k’ =E {EGljj/¢l(T1j)¢h(T1j’) ’ X}2
E [E{(X(T1;) + e1;)(X(Tiy) + ery) — Do(Thz, Tiyr) } &1(T1j)én(Tip) | X)°

= E [E {X(T1;) X (T1;)&i(T1;)én(T1j0) | X } — ELo(Trz, Tijr)u(T1j)on(T1j0)]

E {Zng’g(le)le(le) | {Cg 19> 1}}

=
. :

xE {ZCg%(le/)cbl(le/) | {¢g:9 > 1}} — EG¢h

g=1

= E(G¢ — EGG)? < E(G¢).



Putting together all these cases leads to

2

Z BB ¢ 3™ e150n(Th;)n(Th)

Lh=1 i’

Z “,ﬁf,ih {mlm — Ve, + 3mlm — 1)(m — 2)eo?, +mlm — 1)(m —2)(m ~ 3)E (7))}
h=1

12# Z ,Ul,U«h m? Z Ml,uh Cl Ch)

l,h=1 l,h=1

o0
<c m“cai1 Z min{t2, pipn} + m*t? Z E (ClQC}QL)

I,h=1 l,h=1

Since > )5 E (GF¢?) =E(XUT)) =L < o,

~ 1 o0 ) t2
E{Z m(e, t; g)} < ¢y — Z mln{tz,uluh}-f—g
=1

Next we derive the following concentration inequality for Znym(e, t;G").

Lemma S2. There exists a universal constant ¢ > 1 and a constant ¢; > 0 depending on b and

0y, such that with probability at least 1 — exp(—cnt?/logn), we have
Zn,m(ea t; g/) <c {EZn,m(ev t; g/) + Clt2} .

Proof. Write e; = {eijj/ g =1, ...,m}, T,={T;:j=1,..,m} and

f(eian) _1 Zelj]/g 1]7 )
J#J

Note that E(f(e;,T;)) = 0. We adopt the Adamczak bound (Theorem 4 in Adamczak et al.,
2008; Koltchinskii, 2011) to establish a concentration inequality for the unbounded class F =

{f:9€d,|gll2 <t}. To this end, we need to bound a variance term o?(F) := supc r E(f?(e1, T1))



and the sub-exponential norm of the envelope function F' of the class F. For the variance term,

o2(F):== sup Ef’(e,Th))
llgllg<1,llgll2<t
2

1 m
= - sup E e1j579(Thj, Ty)
m*(m —1)% g15<1,gll<t J;

= 2 m = 1) Z Z ol illlrﬁ | <tE(E€1jj’€1kk’ | T1)g(T1j, T1j) 9(Tie, Tinr)
]#Jlkfkl glig’ gll2>

CU
—— 2 Z sup Eg(Tv;, T1j')9(Tik, Tirr)

— m?(m — i i lgllg<t.lgll2<t
CG% 2 2 1/2
= )2 Z sup {Eg* (T, T1j)Eg* (T, Tir) }
mA(m —1)2 €= o gllg <1, llglb<t
< 0‘712#1752'

As for the envelope,

H HllaX F(el> i)le < ¢ max HF(ei?T’i)le(logn)
n 1=1,...,n

20y

cb

=1 > eijirlly, (logn) < cbad, (logn),

J#J
where the first inequality comes from Theorm 4 of Pisier (1983) and the second inequality results

from g(T;j,T;j) < b. The desired result then follows from Adamzack bound. O

By Lemmas S1 and S2, we are able to bound Zy, (e, t;G'). Then, we relate Zp (e, t;G') with
Znym(e,t;g’ ) by Lemma S3 below. Recall that k, ,, is the smallest positive real number x that

fulfills the following inequalities

cb®Q(r/b) < K2, (S3)

32cbQ (k) < K2, (S4)



where c is an universal constant that we do not specify and

1/2
1 = .
Q(k) = 7n(m 1) Z;I min {,‘12,/”/%}

Note that Q(k)/k — o0 as k — 0. Also, Q(k)/k is non-increasing in k. Dividing both sides in (S3)
and (S4) by &, the resulting right hand side is an identity function, which is continuous, strictly

increasing and is zero when x = 0. Therefore &, ,, exists.

Lemma S3. We assume t > ky, n, for all the following cases. For any g € G', there exist constants

My, Moy > 2, both depending on b, such that

{lgll7m < £} € {llgl3 < M1t}

with probability at least 1 — exp(—cnmn?hm +logm), and

{913 < £} € {llglis,m < Mat®},

with probability at least 1 — exp(—cnmn%vm + logm). Additionally, we have

1
Igll3 = llgllm < 5913,

holds for all g € G' such that ||g||3 > t?, with probability at least 1 — exp(—c,nmt? + logm) where

cp is a constant depending on b.

Proof. For 1 < j,j" < m, we call (j,5') a pair formed by individuals j and j'. When m is even,
by Lemma S4, we are able to partition the collection P = {(4,5') : 1 < j < j' < m} into (m — 1)
groups G, ..., G1, such that Gy N Gy = 0 for k # K, P = "' Gy, card(Gy) = m/2 for all k,
and card({(j,j) € Gy : j =jor j'=j}) = 1 for all j and k (i.e., no individual occurs more than
one time within a group), where card(A) denotes the cardinality of a set A. Therefore it is easy
to see that the location pairs in {(ﬂ-j,ﬂj/) : (J,7") € Gy} are independent for any fixed k. As an

illustration, suppose m = 4. Following the construction rule in Lemma S4, we obtain three groups



G =A{(1,4),(2,3)}, G2 = {(1,2),(3,4)} and Gz = {(1,3),(2,4)}.

Consider the case when m is even. Take fq, (T) = -2 57 =1 2. (j.jeGy 9 (T, Tijr), k =
1,...,m — 1. Note that the nm/2 summands ¢*(T;;,T};) in fg,(T) all have expectation |g||3,
and are independent due to the above grouping property. To relate ||g||3 and fg, (T'), we can apply
Theorem 3.3 in Bartlett et al. (2005).

Take Ry m(t;GE,G') = %SUP{geg':ngHggt} | 2001 2o (5)eGy Tidi'd 2(T;;,Tij)| to be the corre-

sponding empirical local Rademacher complexity. By the well-known contraction inequality and

Lemma 42 in Mendelson (2002), it is simple to show that with some universal constant c,

2
ERn,m(mGk’g/) < 20—E sup Z Um/g i, T )
nm 9€9"9ll2<t | inea,
1/2
.. y < cbQ(t
< nm 1;1 min{t?, pufon} < e

Note that for (j,5") € Gx,

Var{g*(T;;, Tiy)} < E{g"(Ty;, T;)} < b*|lg]l3 < b*t*.

In Theorem 3.3 in Bartlett et al. (2005), we can take T'(g) = b*||g||3, B = b and ¢¥(r) =

cb3Q(r'/2/b). We then verify a condition in Theorem 3.3 in Bartlett et al. (2005). For any ¢ > 0,

202
bQERn,m(t; Gka g/> %E , sup ) Z Gljj/g 1—12]1 T ) < cng(t),
9€G’ T (g)<b2t2 3.5 )EGH

where the desired condition follows from taking r = b*?. From the definition (S3) of 5, m, we can

see that ﬁ%,m

is larger than the fixed point of ¢ (i.e., the solution of ¢(r) = r). Theorem 3.3 in

Bartlett et al. (2005) shows that

1408 ,

1408
1912 < 2f6, () + %82 o1 4 522062, = 2f, (T) + (

b2

7 +12m¥> Ko

10



holds for all g € G/, with probability at least 1 — exp(—nms3 ,,). Also,

704 704
Fo(T) < 2glf + o+ 2000 4 2687002, = gl + (T + 740 )

holds for all g € G’, with probability at least 1 — exp(—nm/f%’m).
Recall that [|g||2 ,,, = L Z:r;l fa, (T). We proceed by taking union bounds of the probability

statements derived above, over fq,,..., fa,,_1- Ift > Knm,

1408
o1 < 2l + (S + 12607 2 < M1

holds for all g € G’ such that ||g||2,, < t?, with probability at least 1 — (m — 1) exp(—nm/@%m).

n,m —

Also, if t > Ky m,

704
ol < 2918 + (5 + 7487 0 < M1

holds for all g € G’ such that ||g||3 < ¢, with probability at least 1 — (m — 1) exp(—nms3 ). Here
My, Mo > 2 are constants that depend on b.
Now, we focus on ||g||3 > #2. By applying Theorem 2.1 in Bartlett et al. (2005), we obtain the

following inequality

l9ll3 — fe, (T) < 0.5]lg]I3,

holds for all g € G’ such that ||g||3 > ¢2, with probability at least 1 — exp(—(mmn/64b?)t>. Take a

union bound over (m — 1) groups, we will have

lgll3 = llgllz... < 0.5]gll3,

holds for all g € G’ such that ||g||3 > ¢, with probability at least 1 — (m — 1) exp(—(mn/64b%)t?).
When misodd, {(j,7) : 1 <j < j" < m — 1} can be decomposed into (m—2) groups (G1, ..., Gmn—2)

as described before, since m — 1 is even. The remaining pairs are {(j,m) : j = 1,2,...,m — 1} which

11



are not independent.

m—2 n m—1 n
m —

2 1
2 2
= 17 - E)T;,m
ol = T - )(;G O (@5 D) 0+ oDy 2 228 @ Tom)
J>J

k=1 i=1

(S5)

In the odd-m setting, we define fg, (T') = o 1) Doie1 2o 0eGy 9 g*(T;;,T;j1). We can apply the
similar arguments derived for the even case (with m replaced by m —1). Therefore, we focus on the
new term, which is the second term in (S5). First, we study V;(T) = 2 3°7 | ¢*(T}j, Tim) for a fixed
1 < j <m— 1. Note that E{¢*(T};, Tim)} = ||g9/|3 and the summands in V;(T') are independent.

We still apply Theorem 3.3 in Bartlett et al. (2005). The local Rademacher complexity becomes
1/2

1 -~ 1 —
R(t;g’)ZE{ sup Z (T, Tim )}Scb Ezmin{tQ,uzuh}

N ged’ lgll2<t ;= I,h=1

Take k,, to be the smallest positive real number x that satisfies
1/2

L™ wmin{ (/0% ppm} | < 62

1,h=1

By Theorem 3.3 in Bartlett et al. (2005), it can be shown that

1408
b2

9|13 < 2Vj(T) + —— k2 + 2(116 + 52b)m

7’I’VL

1408
b2

lgll3/m < 2V;(T) ryp fm+ 2(110% + 520%) k7,

holds for all g € G/, with probability at least 1 — exp(—nm#x2 m)- Also,

(T)/m < 2||g|3/m + 704 K2 /m + 2(11(b?) + 26b2) K>

b2

nm?

holds for all g € G’, with probability at least 1 — exp(—nm/f%m).
Now, we take a union bound, and then combine it with the result for the first term in (S5).

Since k/2/m < K2

n.m» we derive the following with assumption ¢ > ﬁ%,m

12



lgll3 < 2llglI3  +

n,m

1408 m— 2 m—2
AzngQ <7n4—2>-+2(1u9-+5266ﬁ3m1<7ﬂ/-%2) < Mt

holds for all g € G’ such that ||g||2 < t2, with probability at least 1—(m—2+2(m—1)) exp(—nm/@%m).

m— 2

704
2 2 | ——+2) +2(11(b%) +260) | —— +2 ) K2, < Mot?
ol < 2918 + o (o 2) 200102+ 268) ("2 2) i < 0

holds for all g € G’ such that ||g||3 < #*, with probability at least 1—(m—2+2(m—1)) exp(—nms?. ).
Here My and M, are some constants that depend on b.

With similar argument, we will be able to derive for the odd case,

lgll3 = gl < 0.5]gll3,

holds for all g € G’ such that ||g||3 > t2, with probability at least 1—(m—2+2(m—1)) exp(—c,nmt?)
for some constant ¢, = ¢,(1/b).

O

With Lemmas S1, S2 and S3, we are now ready to prove Theorem 2. Recall the definition of

Mn,m and &, . The term 7, ,, is defined as the smallest positive value 7 such that

0 2
Cn Z g2 n 2
— m + — <
nm — 1n{77 ,,LLl,LLh} n =n,

where ¢, > 0 is a constant defined in Lemma S1. By similar arguments for the existence of ky, 4, we

can show that 7,, ., exists. By Lemma S1, we can show that EZ,, (e, t; G') \/IE {Znm(e, t;G)}2] <

t2 for t > Nym-

n

1/2
Take &, = min {max {Mnms Fngm } (IOg"> } We include the term (logn/n)"/? mainly due
to the unboundedness of {e;;;}, which leads to the application of Adamzack bound (Lemma S2)

instead of simpler forms of Talagrand’s concentration inequality.

13



Proof for Theorem 2. First, we study the crucial term

Zn,m(e’ b; g/) = sup nm — 1 Z Z 62]]’9 1]7 ) ,

{9€G" llglln,m<b} ey

which is bounded by the maximum of an (€,&nm;G’) and

sup nm — 1 Z Zel]j/g 1]7 ) ) (86)

{9€G":ll9lln,m>&n,m} i=1 j£j'

so it suffices to study the rates of convergence of these two terms.
For the rate of the maximum of an (e,&nm;G’), by Lemmas S1, S2 and S3, we can show that

with probability at least 1 — exp(—cnﬁ%}m /logn) for some universal constant c:

Zn,m(@ﬁn,m% g/) < Zn,m(€7 V len,m; g/)
> C{EZn,m y V gn m; G +CIM1§n m}

<c {leim + C].M].g’?l,,m} < Rf?z,m?

where R = ¢M1(1 + ¢1) and, the first, second and last inequalities are due to Lemmas S3, S2 and
S1 respectively.
For the rate of the second term in (S6), we first prove the following result. For any r > &, m,

with probability at least 1 — exp(—cné2 ,,/logn), we have

n

Znmle,rG') = ! sup m(l—l)z Zeijj’g(Tqu ')

n m 3 .
§nm {9€G" 1gllg <& Nigllm,m <En.m} i=1 j#j’

="

Zn,m (67 gn,m§ g )

- gn,m o Enm

For b > &, m, a direct application of the above result with r = b does not provide the increment

with respect to the empirical norm, and so we apply a peeling argument.

14



Set S;:={ge€ g : 21_1§n7m < |1gllnm < 2l§n,m}, l=1,...,L, where L =1logy(b/&n m)-

1
D) 2oiet 2oy € 9(Tij Tijr)

P sup > 2REnm
{9€G":1glln,m>Enm} 19l7,m2
L sty St S €459 (Tis Tig )|
—1 =1 r S99 17
< Z]P’ nm(m—1) £~i J7#3 > 2REp m
9ES: 19ln,m

~

1

M=

P(Zumle,260mi @) > 2R27EL, )

p< lognfnm>
( “logn ”m)

where the second last inequality results from (S7) by taking r = 2l§n7m, and the universal constant ¢

~

1

< Lex

in the last two lines could be different. For the last inequality, as long as 0 < (log(log(1/&n.m)))/{; Ognf,%’m} <
1 such a universal constant c¢ exists.

Therefore, we have

<eag>n,m < R( 721m

I )7

for every g € G5 C G, with probability at least 1 —exp(—cnﬁ,%}m /logn). With the same probability,

we have

(e, A < REZ {T(0) + 1(T0) } + 2REnm | A - (58)

In below, we condition on the event (S8). From the basic inequality (S1), with A = ¢x&2,,, such

that ¢y > 2R,

AR 1 < 2(es A)nm + A (To) = I(1),

”AHnm < 2/\I(F0) + 4an mHAHnm

15



Then we have

1
HAHn,m S {QCAI(F0>}2 gn,m + 4R5n,m

and the proof is complete by taking L; = 2R.

Next, we are ready to bound the L? norm [|A|s for A = I' — I'y obtained by (8).

Proof of Theorem 3. From Lemma S3, we can see that [|g[|3 < 2||gll7,, + & ., for all g € G’ with
probability at least 1 — exp(—c,€2,,) for some universal constant ¢, = ¢,(1/b). So with the same
probability we have | Alla < 2Y2(|Allnm + Enm {I(f) + I(Fo)}. In terms of Lemma S5, we are able

to bound the regularization term I (f) by a constant Lo, so finally we get

JAll2 < 2 [{26\I(T0)}? +4R] & + {B2 + I(To)} énm

< [24eAI o)} +4Q)3 R+ By + I(T0)] &0

By taking Ly = 4(2)/2R + Ry + I(I'g), the proof is complete. O

Proof of Corollary 1. By Lemma S6, the tensor product eigenvalue sequence has decay p; =< (172%(log 1)2*(2r—1)
as | — oo.
By the definitions of xy, m and 7y,m, when m = O (nl/(%‘)(log n)2p—2_1/(2°‘)), they are all of the
same order, and so is &, ». By Lemma S7, we can see that
Enm = (nm)20/ (1429 (1og nm)20(p=1)/(2a+1) " When n'/ () (log n)2 272z = O(m), logn/n will be
the dominant term. From Theorems 2 and 3, we can see that ||I' — Lol2 ,, and I — Tg||3 are both

of the same order. Overall, we have

. . _ _2a 222p-1)  logn
IE = Tl e I = ol = O )55 togm) “5555° o 257,

n,m>»

16



S2.3 Auxiliary Lemmas

Lemma S4. When m is even, we can decompose any collection of individual indez pairs {(j,7') : 1 < j < j < m}

into (m — 1) groups such that within each group, there are m/2 pairs and no repeated individuals.

Proof. First, we consider to construct a matrix G € R™*™ that satisfies following conditions: 1.
All the diagonal entries are zero;

2. Every row and every column is a permutation of sequence {0, 1,2, ...,(m —1)};

3. It is symmetric.

To begin with, we consider the cycle cyc = {1,2,...,(m — 1)} and construct a sub-matrix G, €
R=Dx(m=1) from it. For i—th row of Gy, we set it to be a sequence that starts with ¢ in cyc
and ends until it reaches (m — 1) elements. For example, the first row will be [1,2, ..., (m — 1)], the
second row will be [2,3,...,(m —1),1], and so on. Take the first (m — 1) rows and first (m — 1)
columns of G to be Gy, and fill last row and last column of G with zeros. Then obviously G
fulfills Conditions 2 and 3.

To fulfill Condition 1, set G, and G, ; to be Gy and then set G =0 for i = 1,..., (m — 1).
By this operation, it’s easy to see that for first (m — 1) rows and first (m — 1) columns, they are still
permutations of sequence {0,1,2,...,(m — 1)} and symmetrization of G is not violated. It remains
to prove that last row and last column are also a permutation of the sequence, which is equivalent
to proving the diagonal part of Gy is a permutation. In fact Gy is (20 — 1)-th element of
cycle cye, i = 1,2, ..., (m—1). Since m is even, diagonal parts of G, will cover the whole sequence
{1,2,...,(m—1)}.

So for every pair (j,7'), 1 < j < j' < 'm, we can assign it to Group G, where k = G j. In this
way, we decompose the collection {(j,5"): 1< j < j <m} into (m — 1) groups where each group

contains m/2 elements and within one group, there is no repeated individual. O

Lemma S5. Under the same assumptions as Theorem 2, if X = c)\&2 with some constant cy > 2R,

then there exists a constant Ro depending on I(Ly), R and cy, such that with probability at least

n
logn

1 — exp(cran&2 ), we have



Proof. From the basic inequality (S1), we have

A2, + M(T) < 2(e, A) + AI(Ty), (S9)
M (T) < 2(e, A) + M(Tp). (S10)
Theorem 2, we know that
(e, 8) < RE., {I(0) + 1(To) } + 2R A (s11)
and
1A lnm < {26x1(T0)}? € + 4REnm- (312)
Therefore, plug (S12) into (S12),
(e, A) < [R {I(f) + I(ro)} +2R {20, I(To)}? + 8R2| €2,
By plugging in(S10), we have
(ex — 2R)I() < 2RI(To) + 4R {231(To)} 2 + 16R? + cxI(Ty).
Therefore, there exists a constant Lo, such that
1D < 2RI + 4R{2c,\CI/\(F0)2}; F16R 4 (D) _ o
O
Lemma S6. Suppose Ki(-,-) = Ka(:,-) = ... K,(-,-), then H1 = Hy = ... = H,,. If eigenvalues

(k) _

of Ky, has decay pr,’ =< (n=%) for some constant s. Then eigenvalues of the reproducing kernel for

tensor product @ _, Hi @ QF_, Hy will have decay i, < (n~*(logn)*2r~1)
Proof. A direct application of Theorem 1 (Krieg, 2018) completes the proof.

18



Lemma S7. Tuake t to be the solution of the equality

1

- 1/2
N (Zmin {t2,,uh}> :tz,
h=1

where piy, =< (h=2*(log 1)~V Then as n — co and m — oo, the solution

a(2p—1)
t =< (nm)fﬁ(lognm) 20t

Proof. Take N = nm, To find the order of t. We need to find I’ such that > < I'~2%(log ')2*(2P~1),

From some simple analysis, we could see that when N — oo, t — 0 and I’ — co. Therefore, when

N — oo we have

t <1""%(log l')o‘(Qp_l),

1
E - l’o‘(log l/)foz(prl)’

log(1/t) < alogl’ — a(2p — 1) log(log(l")) < log!’,

=<t~ *(log(1/t))~ .

It’s easy to see that t2I' =< (t)2~1/*(log(1/t))%~ 1, lel, w o= Ot (logl')2Cr-1)) <
01/ log(1/9) ).

S0 D sy = O(£21'), therefore

Ve
VN

N = (1/t)2+1/a(log(l/t))prly

= t2,

log N < (2+ 1/a)log(1/&,) + (2p — 1) loglog(1/t) < log(1/t),

a(2p—1)

1/t < NTi2a (log N)~ 2ail

a(2p—1)

t =< N~ 12 (log N) 2at1 .
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S3 Simulation: additional details

S3.1 Low-rank settings
S3.1.1 Eigenfunctions

We present three simulation settings in a table form (Tables S1, S2 and S3). In each table, rows
correspond to basis functions for dimension 1 and columns correspond to basis functions for di-
mension 2. Recall that for each dimension, we use ex(t) = v/2cos(knt), k = 1,2,... as basis.
Then, for the cell with position row ¢ and column j, it represents the two dimensional function
fij(s1,52) = ei(s1)ej(s2). We use a positive integer k to indicate that this two dimensional function
is the k-th eigenfunction. The details of the three settings are given as follows.

Table S1: Eigenfunctions for Setting 1

€1 €9
€1 1 2
€9 3 5
€3 4 6

Table S2: Eigenfunctions for Setting 2

€1 €y €3 €4
€1 1 2 - _
€9 3 4 - _
€3 - - 5} -
€4 | - - - _6

e e es ey
€1 - 1 - -
€2 2 - - _
es |- - 3 _
€4 | - - - _4
Setting 1: R = 6, ry = 3, ro = 2. For dimension 1, we use ej, e and es as our basis

functions. For dimension 2, we use e; and es as our basis functions. Let 6 eigenfunctions ¢ be
the tensor product of these one dimensional basis with eigenvalue decay A\, = k=%, k = 1,2, ..., 6.

Eigenfunctions can be expressed as ¥y, (t1,t2) = e;(t1)e;(t2), where k =2(i —1)+j for k =1,2,3,6

20



and 4(s,t) = ez(s)e1(t), ¥s(t1,ta) = ea(ti)ea(tz). In this setting, R = r1 % 19, one-way basis are
mostly shared among different eigenfunctions.

Setting 2: R = 6, r; = ro = 4. For both dimension 1 and dimension 2, we use ¢;, ¢ = 1,..,4
as our basis functions. Let 6 eigenfunctions v with eigenvalue decay A\ = k=¢, k = 1,2,...,6.
Yr(t1,t2) = ei(ti)ej(tz), where k = 2(i — 1) + j for k = 1,2,3. i(t1,t2) = ep—2(t1)er—2(t2) for
k =4,5,6. In this setting, one-way basis are partly shared by different eigenfunctions.

Setting 3: R = r;1 = ro = 4. For both dimension 1 and dimension 2, we use ¢;, i = 1,..,4
as our basis functions. Let 4 eigenfunctions i with eigenvalue decay A\, = k7%, k = 1,...,4.
P1(ty,t2) = e1(tr)ea(ta), Ya(ty,ta) = ea(ty)er(te) and Y (t1,t2) = ex(t1)er(ta) for k = 3,4. In this

case, one-way basis are not shared among different eigenfunctions.

S3.1.2 Additional simulation results for sparse design

In our study, we considered different decay rates of eigenvalues, correspondingly three different
values of a in (19). The corresponding simulation results for the sparse design with sample size
n =100, m = 4,10,20 and ¢ = 0.1,0.4 are shown in Tables S4, S5, and S6.

Similar to the discussion in Section 7, the local linear smoother performs much worse than the
other two methods. So here we only focus on the comparison between mOpCov and OpCov. When
« = 1.1, the results are very similar to those when o = 2. We can see that for Settings 1 and 2,
the improvements in AISE achieved by mOpCov, as compared to OpCov, is more distinguishable
in the slow decay settings. A possible explanation is that when decay rate is slower, the signal of

“sharing structure” becomes more apparent, so does the benefit of mOpCov.

S3.1.3 Simulation results for regular design

For regular design, we selected 10 equally spaced points for each dimension and constructed a
regular 10 x 10 grid (m = 100). We set sample size to be 50 (n = 50). Two different noise levels are
considered, since regular design has dense observations, we pick ¢ = 0.4 to represent the low noise
level and o = 0.8 to represent the high noise level. Beside methods we mentioned in sparse design,

we also include an additional estimator from Wang and Huang (2017) (spatpca), which allows to
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perform multi-dimensional covariance function estimation with location-fixed observations into our
comparisons. These results are presented in Tables S7, S8 and S9.

Overall, all methods achieve similar AISE values, but mOpCov performs slightly better in esti-
mation accuracy in smoother cases (large «), and when the noise level is high. When « is small,

mOpCov and OpCov tend to overestimate R more.

S3.2 High-rank settings
S3.2.1 Eigenfunctions

We also considered the high-rank settings, i.e., R is very large. We focused on a@ = 2. The true rank
is set as R = 625, which corresponds to more than 99% of the variation of the full-rank settings,
ie., 222:51 k=2 >0.99 ppay k~2. For high-rank settings, we only considered sparse design and two
eignfunction settings.

Setting 1: R = 625, r1 = r9 = 25. For both dimensions 1 and 2, we use ej,...,e95 (see
their definitions in S3.1.1) as our marginal basis functions. And eigenfunctions are expressed as
Yij(s1,52) = ei(s1)ej(s2), 4,5 = 1,...,25. In addition, we ordered the eigenfunctions by their
smoothness. In this setting, R = r17ry so margianl basis are mostly shared by eigenfunctions.

Setting 2: R = ry = ro = 625. For both dimensions 1 and 2, we use eq, . .., ege5 as our marginal
basis functions. Eigenfunctions are expressed as ¥ (s1, s2) = e1(s1)ea(s2), Pa(s1, s2) = ea(s1)e1(s2),
and ¥(s1,s2) = ex(s1)er(s2), k = 1,---,625. In this case, one-way basis are not shared among

different eigenfunctiions.

S3.2.2 Results

For each eigenfunction setting, we also considered different choices of m and o. More specifically,
n = 100, m = 4,10,20, 0 = 0.1,0.4. The simulation results can be found in Table S10. In Setting
1 where the true covariance function has “sharing structure”, mOpCov achieves better AISE than
OpCov. The improvement becomes more distinguishable as m increases. In Setting 3, while there
is no “sharing” structure among eigenfunctions, mOpCov has close but slightly better AISE than
OpCov. As for the rank estimations, both mOpCov and OpCov provide low-rank estimations for

covaraince functions. Although mOpCov usually give a larger estimates of R than OpCov, it also
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provides low-rank approximation of one-way ranks.
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Table S4: Simulation results for three Settings with the sparse design when sample size is 100

(n =100) and o = 1.1: see description in Table 1.

Setting m o mOpCov OpCov |l-smooth [l-smooth+
1 4 0.1 | AISE 0.436 (1.87e-02) 0.494 (2.27e-02) 2770 (2.53e+03) 81.4 (4.00e+01)
R 7.13 2.12 - 102
71, T2 5.05, 5.02 - _ _
0.4 | AISE  0.447 (1.94e-02) 0.509 (2.97e-02) 4120 (3.82e4+03) 100 (4.52e+01)
R 7.22 2.08 - 102
71, 72 5.03, 5.01 - _ _
10 0.1 | AISE 0.238 (1.45e-02) 0.295 (1.57e-02) 3.59 (7.95e-01)  1.62 (2.87¢-01)
R 8.32 3.31 - 150
71, 72 5.83, 5.83 - _ _
0.4 | AISE  0.239 (1.54e-02) 0.302 (1.69e-02) 5.47 (1.97e4+00) 1.75 (3.30e-01)
R 8.28 3.36 - 151
71, T2 5.88, 5.88 - _ _
20 0.1 | AISE 0.169 (3.62e-03) 0.201 (6.18¢-03) 4.94 (4.04e+00) 1.87 (1.25e-+00)
R 8.96 4.5 - 261
71,72 6,6 _ _ _
0.4 | AISE 0.171 (3.71e-03)  0.202 (5.46e-03) 5.39 (4.44e+00) 2.03 (1.37e-+00)
R 8.94 4.24 - 265
71,72 6,6 _ _ _
2 4 0.1 | AISE 0.442 (2.22e-02) 0.62 (1.14e-01) 6760 (6.55e+03) 78.3 (3.77e+01)
R 7.38 2.1 - 103
71, 72 5.16, 5.16 - _ _
0.4 | AISE 0.458 (2.35¢-02) 0.612 (1.01e-01) 6760 (6.39¢+03) 143 (7.96e+01)
R 7.56 2.06 - 103
rl, r2  5.13, 5.12 - _ _
10 0.1 | AISE 0.239 (1.16e-02) 0.295 (1.35e-02) 8.08 (4.91e+00) 1.53 (2.56e-01)
R 7.82 3.22 - 151
1,7 5.9,5.9 _ _ _
0.4 | AISE 0.245 (1.24e-02) 0.301 (1.48¢-02) 16.1 (1.28e401) 1.6 (2.93¢-01)
R 8 3.28 - 152
71, T2 5.84,5.84 _ _ _
20 0.1 [ AISE 0.171 (3.33¢-03)  0.201 (5.42¢-03) 5.33 (4.40e4+-00) 2 (1.36e4-00)
R 7.77 3.86 - 264
71, 72 6, 5.99 - _ _
0.4 | AISE 0.173 (3.46e-03) 0.213 (6.38¢-03) 5.81 (4.84e4+00)  2.16 (1.50e-+00)
R 7.7 4.22 - 267
71,72 6,6 - _ _
3 4 0.1 | AISE 0.462 (2.00e-02) 0.499 (5.18e-02) 20 (1.09e-+01) 8.83 (4.84e+00)
R 12.8 2.62 - 102
71, T2 5.67, 5.68 - _ _
0.4 | AISE  0.475 (1.95e-02) 0.52 (5.99¢-02)  19.3 (8.05e+00) 8.4 (3.54e+00)
R 12.9 2.6 - 102
71, 7o 5.75, 5.74 _ _ _
10 0.1 | AISE 0.252 (5.89¢-03) 0.251 (7.77¢-03) 42.8 (4.01e+01) 3.11 (1.90e+00)
R 9.43 2.67 - 155
71, T2 4.85,4.84 _ _ _
0.4 | AISE 0.257 (6.06e-03) 0.258 (8.14¢-03) 45.4 (3.82¢+01)  3.99 (1.99¢+00)
R 10 2.7 - 155
71, 72 4.96, 5 - _ _
20 0.1 | AISE 0.206 (3.73¢-03) 0.205 (4.35¢-03) 1.79 (7.10e-01)  0.907 (2.61e-01)
R 8.38 2.84 - 266
71, Fo  4.52, 4.56 - _ _
0.4 | AISE 0.207 (3.59e-03) 0.211 (5.09¢-03) 1.79 (7.10e-01)  0.907 (2.61e-01)
R 8.51 3.01 - 266
71, Fa  4.51, 4.52 _ _ _
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Table S5: Simulation results for three Settings with the sparse design when sample size is 100

(n =100) and a = 2: see description in Table 1.

Setting m o mOpCov OpCov [l-smooth [l-smooth+
1 4 0.1 [ AISE 0.188 (1.13e-02)  0.207 (2.28¢-02) 260 (1.55e+02) 104 (6.27e+01)
R 5.16 1.6 - 88.1
71, T2 4.7, 4.69 - _ _
0.4 [ AISE 0.189 (1.16e-02)  0.202 (1.49¢-02) 351 (1.86¢+02) 67.1 (2.86¢4-01)
R 5.32 1.57 - 89.2
71, 72 4.45,4.45 _ _ _
10 0.1 | AISE 0.102 (5.50e-03)  0.122 (1.20e-02)  4.36 (2.28¢+00) 1.702 (8.43¢-01)
R 7.335 2.45 - 142.61
1, 7o 4.51 ,4.53 . _ _
0.4 | AISE 0.101 (3.79¢-03)  0.12 (1.19e-02) 3.89 (1.78¢+00)  0.989 (1.96e-01)
R 7.34 2.2 - 146.33
71, Fa 479, 4.78 - _ _
20 0.1 | AISE 0.0648 (2.17e-03) 0.075 (3.49¢-03)  3.93 (3.17¢+00) 1.40 (9.80e-01)
R 7.84 3.02 - 249.95
71, 72 5.29,5.26 _ _ _
0.4 | AISE 0.065 (2.17¢-03)  0.0761 (3.34¢-03) 0.468 (6.90e-02) 0.310 (2.32¢-02)
R 7.51 2.83 - 205.675
71, 72 5.32,5.28 _ _ _
2 4 0.1 [ AISE 0.186 (1.17e-02)  0.204 (1.79e-02) 560 (4.64e+02)  39.1 (1.72e+01)
R 5.8 1.54 - 88.3
71, 72 4.61, 4.62 _ _ _
0.4 | AISE 0.193 (1.22¢-02)  0.204 (1.58¢-02) 351 (1.86e+02)  67.1 (2.86¢4-01)
R 5.72 1.46 - 89.2
rl, r2 4.62, 4.6 _ - _
10 0.1 [ ATSE 0.0963 (5.26e-03) 0.113 (6.12e-03)  2.12 (6.23e-01)  0.826 (1.76e-01)
R 7.68 2.38 - 144.645
T, Ty 4.86, 4.87 _ _ _
0.4 | AISE 0.0978 (5.29¢-03) 0.112 (5.64e-03)  4.18 (2.21e+00) 0.931 (1.76e-01)
R 7.34 2.22 - 146.855
1, Fo 472, 4.72 _ _ _
20 0.1 | AISE 0.0629 (2.91e-03) 0.0706 (3.21¢-03) 0.472 (8.01e-02)  0.304 (2.80¢-02)
R 8.13 2.76 - 200.69
71, 72 5.34,5.34 _ _ _
0.4 | AISE  0.0648 (3.03e-03) 0.0733 (3.30e-03) 0.484 (7.27e-02) 0.317 (2.53¢-02)
R 8.24 2.78 - 206.16
F1, T2 5.78,5.78 - _ _
3 4 0.1 AISE 0.241 (1.48¢-02)  0.261 (3.02¢-02)  9.13 (3.41e4+00) 4.64 (1.50e+00)
R 11.09 2.5 - 97.1
71, 72 5.51, 5.48 - _ _
0.4 | AISE 0.256 (1.49¢-02)  0.28 (3.47¢-02) 11.3 (4.60e+00)  5.57 (2.02e+00)
R 10.925 2.44 - 97.4
71, 72 5.52,5.5 _ _ _
10 0.1 [ ATSE 0.103 (4.87e-03)  0.115 (7.58¢-03)  24.1 (2.28¢401) 1.87 (1.19)
R 6.68 2.82 - 150.8
T, Ty 4.35, 4.32 _ _ _
0.4 | AISE  0.108(5.06¢-03) 0.115 (8.33¢-03)  26.2 (2.40e+01) 2.05
R 4.46 2.74 - 152.575
71, 72 3.50, 3.49 - _ _
20 0.1 | AISE 0.0688 (2.82¢-03) 0.0813 (4.63¢-03) 0.614 (2.28¢-01) 0.350 (8.35¢-02)
R 7.09 3.24 - 210.515
1, 7o 4.41,4.4 _ _ _
0.4 | AISE  0.0710 (2.89e-03)  0.0859 (5.03e-03) 0.573 (1.74e-01) 0.344 (6.37¢-02)
R 6.19 3.38 - 214.455
71, o 4.03, 4.02 _ _ _
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Table S6: Simulation results for three Settings with the sparse design when sample size is 100

(n =100) and a = 4: see description in Table 1.

Setting m o mOpCov OpCov [l-smooth [l-smooth+
1 4 0.1 AISE 0.104 (8.45¢-03)  0.131 (3.64¢-02)  93.8 (5.00e4+01) 59.5 (4.25e+01)
R 3.13 1.32 - 93
71, 72 3.87, 3.87 _ _ _
0.4 | AISE 0.109 (9.10e-03)  0.149 (4.82e-02) 228 (1.12e+02) 111 (5.77e+01)
R 3.06 1.27 95.8
71, 72 4.06, 4.04 _ _ _
10 0.1 | AISE 0.0546 (4.49¢-03) 0.0541 (5.56e-03) 2.03 (9.68e-01)  0.781 (3.22¢-01)
R 2.58 1.49 - 136
7, T2 3.52, 3.51 _ _ _
0.4 | AISE 0.0556 (4.40e-03) 0.0485 (4.10e-03) 3.16 (1.43e+00) 0.842 (2.94e-01)
R 2.49 1.14 - 141
71, 72 3.34, 3.36 _ _ _
20 0.1 | AISE 0.0363 (2.72e-03) 0.0353 (2.65e-03) 3.46 (2.43e+00) 1.2 (7.55e-01)
R 1.52 1.33 - 232
71, T2 2.97,2.96 _ _ _
0.4 | AISE 0.0365 (2.80e-03) 0.0356 (2.69¢-03)  4.03 (2.83e4+00) 1.39 (8.80e-01)
R 1.75 1.3 - 246
1, T2 2.96, 2.96 _ _ _
2 4 0.1 AISE 0.102 (8.33¢-03)  0.132 (3.70e-02)  94.2 (4.78¢+01) 58.5 (4.00e+01)
R 2.99 1.32 - 93
71, T2 3.98, 3.97 _ _ _
0.4 | AISE 0.112 (9.19e-03)  0.108 (2.05e-02) 237 (1.19e+02) 114 (5.87e+01)
R 3.2 1.2 - 95.8
71, 7o 4.17, 4.16 _ _ _
10 0.1 | AISE 0.0545 (4.48¢-03) 0.0546 (5.57e-03) 2.09 (9.77e-01)  0.783 (3.22¢-01)
R 2.5 1.5 - 136
1, Ty 3.5,3.5 . _ _
0.4 | AISE 0.0548 (4.40e-03) 0.0489 (4.12¢-03) 3.37 (1.61e+00) 0.838 (2.94¢-01)
R 2.44 1.16 - 141
71, T2 3.44, 3.45 - _ _
20 0.1 | AISE 0.0358 (2.72e-03) 0.0352 (2.64e-03) 3.42 (2.39e+00) 1.19 (7.42e-01)
R 1.58 1.32 - 232
1, 72 2.9, 2.9 _ _ _
0.4 [ AISE 0.0372 (2.89¢-03) 0.0351 (2.69¢-03) 3.98 (2.79¢+00) 1.37 (8.67¢-01)
R 1.7 1.24 - 246
F1, T2 2.92,2.92 _ _ _
3 4 0.1 AISE 0.194 (1.47¢-02)  0.218 (4.49¢-02)  5.06 (1.76e+00) 2.22 (7.68¢-01)
R 12 2.12 - 99
71, T2 5.73, 5.74 _ _ _
0.4 | AISE 0.202 (1.46e-02)  0.21 (2.98¢-02) 8.36 (3.88¢+00) 3.67 (1.70e+00)
R 11.9 2.05 - 99.7
71, Ta  5.74, 5.76 _ _ _
10 0.1 | AISE 0.0745 (4.67¢-03) 0.0763 (5.76¢-03) 3.22 (1.74e+00) 1.06 (3.64e-01)
R 9.44 2.2 - 144
71, 72 5.18, 5.17 _ _ _
0.4 | AISE 0.0779 (4.73¢-03) 0.0806 (5.61c-03) 4.44 (3.26e+00) 0.942 (4.07c-01)
R 9.67 2.22 - 148
71, 72 5.07, 5.09 - _ _
20 0.1 | AISE 0.0474 (2.77e-03) 0.055 (3.32¢-03)  0.957 (5.14e-01) 0.318 (6.30e-02)
R 8.68 3.18 - 244
71, 7o 4.96, 4.96 _ _ _
0.4 | AISE 0.0497 (2.87e-03) 0.057 (3.66e-03)  0.667 (2.34e-01) 0.298 (3.69¢-02)
R 9.57 3.23 - 254
71, 72 5.14, 5.17 _ _ _
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Table S7: Results on regular design for a = 1.1: see description in Table 1.

Setting o mOpCov OpCov spatpca ll-smooth Il-smooth-+
1 0.4 AISE | 0.126 (5.22¢-03) 0.131 (5.28¢-03) 0.126 (5.11e-03) 0.113 (4.07e-03) 0.113 (4.07¢-03)
R 17.2 13.8 5.96 12
71, T2 | 6,6 _ _ _ _
0.8 AISE | 0.138 (5.22¢-03) 0.148 (5.48¢-03) 0.142 (5.17e-03) 0.123 (4.15¢-03) 0.122 (4.15¢-03)
R 15.6 9.36 6.68 23.3
71,72 | 6,6 _ _ _ _
2 0.4 AISE | 0.141 (4.94e-03) 0.143 (5.13¢-03) 0.113 (4.03e-03) 0.113 (4.03¢-03)
R 8.85 7.76 11
71, T2 | 5.99, 5.99 _ _ _ _
0.8 AISE | 0.151 (5.00e-03) 0.154 (5.17e-03) 0.147 (4.96e-03) 0.123 (4.12¢-03) 0.122 (4.12¢-03)
R 11.1 8.35 5.5 22.9
71,72 | 6,6 _ _ _ _
3 0.4 AISE | 0.128 (4.97¢-03) 0.126 (4.75¢-03) 0.124 (4.14e-03) 0.124 (4.15¢-03)
R 9.4 10.1 20.6
71, T2 | 5.72, 5.71 _ _ _ _
0.8 AISE | 0.138 (4.91e-03) 0.139 (5.12e-03) 0.117 (4.62¢-03) 0.133 (4.15¢-03) 0.132 (4.16e-03)
R 12.2 13.3 6.64 31.3
7, T2 | 5.7, 5.7 _ _ _ _

Table S8: Results on regular design for a = 2: see description in Table 1.

Setting o mOpCov OpCov ll-smooth spatpca [l-smooth+
1 0.4 AISE | 0.0611 (4.37e-03) 0.0626 (4.10e-03) 0.0571 (3.71e-03) 0.0625 (4.37e-03) 0.057 (3.71e-03)
R 8.27 7.25 - 5.95 15.125 (0.10)
71,72 | 6,6 . . . .
0.8 AISE | 0.0629 (4.45e-03) 0.0676 (4.49e-03) 0.0643 (3.79¢-03) 0.0738 (4.52e-03) 0.0639 (3.79e-03)
R 10.9 3.98 - 5.84 26.065 (0.087)
71,72 | 6,6 . . . .
2 0.4 AISE | 0.0602 (4.38¢-03) 0.0641 (4.69¢-03) 0.056 (3.71e-03)  0.0624 (4.37¢-03) 0.0559 (3.71e-03)
R 8.09 7.22 - 4.21 14.135 (0.095)
71,72 | 6,6 . . . .
0.8 AISE | 0.062 (4.48¢-03)  0.0659 (4.54e-03) 0.0631 (3.79¢-03) 0.0724 (4.47e-03) 0.0627 (3.79e-03)
R 10.7 4.04 - 4.28 25.84 (0.0898)
r1, 72 | 6, 6 - - - -
3 0.4 AISE | 0.0628 (4.22¢-03)  0.0589 (4.34e-03) 0.0677 (3.92¢-03) 0.0598 (4.17¢-03) 0.0675 (3.92¢-03)
R 5.66 14 . 3.52 18.74 (0.104)
1, 72 | 6,6 _ _ _ _
0.8 AISE | 0.0645 (4.05e-03) 0.0677 (4.48¢-03) 0.0745 (3.94e-03) 0.0715 (4.20e-03) 0.07389 (3.94¢e-03)
R 7.7 13.1 - 2.93 29.485 (0.143)
1, 7 | 6, 6 i i i i
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Table S9: Results on regular design for o = 4: see description in Table 1.

Setting o mOpCov OpCov [l-smooth spatpca |l-smooth+
1 0.4 AISE | 0.0412 (4.27¢-03) 0.0402 (3.93¢-03) 0.0422 (4.27¢-03) 0.04 (3.65¢-03) 0.0399 (3.65¢-03)
R 10.1 7.85 3.56 18.2
71, T2 | 4.96, 5.09 _ _ _ _
0.8 AISE | 0.044 (4.31e-03)  0.0419 (3.98¢-03) 0.0508 (4.40e-03) 0.0456 (3.72e-03) 0.0453 (3.72e-03)
R 7.63 2.46 3.56 27.9
71, T2 | 3.62, 3.86 _ _ _ _
2 0.4 AISE | 0.0411 (4.27¢-03) 0.0401 (3.93e-03) 0.0422 (4.28¢-03) 0.0399 (3.65e-03) 0.0399 (3.65¢-03)
R 9.23 7.62 3.62 18.2
71, T2 | 4.86, 5.04 _ _ _ _
0.8 AISE | 0.0439 (4.37e-03) 0.0421 (3.99e-03) 0.0507 (4.40e-03) 0.0456 (3.72e-03) 0.0453 (3.72e-03)
R 7.59 2.66 3.53 27.9
71, T2 | 3.63, 3.84 . . . N
3 0.4 AISE | 0.0395 (4.12e-03) 0.0403 (4.18¢-03) 0.0425 (4.11e-03) 0.0527 (3.90e-03) 0.0526 (3.90e-03)
R 4.74 4.2 2 24.7
71, 72 | 3.76, 3.28 _ _ _ _
0.8 AISE | 0.0414 (4.22¢-03) 0.0463 (4.32¢-03) 0.0509 (4.13¢-03) 0.0584 (3.92¢-03) 0.058 (3.92¢-03)
R 5.78 11.9 2.94 33.4
71, 72 | 3.61, 3.36 _ _ _ _
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Table S10: Results for high rank settings: see description in Table 1.

Setting m o mOpCov OpCov [l-smooth [l-smooth+
1 4 0.1 [ ATSE 0.21 (1.49e-02) 0.23 (2.68¢-02) 32.3 (1.36e+01) 12 (4.55¢+00)
R 4.88 1.56 - 95.6
1, Ty 4.56, 4.54 . _ _
0.4 | AISE 0.226 (1.54e-02)  0.217 (2.02¢-02)  46.8 (1.94e+01) 18 (6.95¢+00)
R 5.1 1.5 - 96.4
F1, Fo 474, 4.74 _ _ _
10 0.1 | AISE 0.104 (5.52e-03)  0.107 (5.23¢-03)  6.63 (3.36e+00) 2.28 (9.79¢-01)
R 5.6 1.94 - 134
71, 7o 4.78, 4.78 _ _ _
0.4 [ AISE 0.108 (5.58¢-03)  0.117 (7.15¢-03)  7.64 (4.49e+00) 2.53 (1.28¢400)
R 5.7 2.02 - 138
T, Ty 4.58, 4.56 _ _ _
20 0.1 | AISE 0.0678 (3.40e-03) 0.0818 (4.40c-03) 0.641 (1.05¢-01) 0.386 (3.40¢-02)
R 7.58 2.91 - 249
71, T2 5.42, 5.44 _ _ _
0.4 | AISE 0.0686 (3.40e-03) 0.0842 (4.50e-03) 0.731 (1.34e-01) 0.425 (4.15¢-02)
R 7.44 2.94 - 254
71, 72 5.41, 5.45 _ _ _
2 4 0.1 AISE 0.266 (1.58¢-02)  0.273 (3.66e-02)  13.8 (4.52e4+00) 5.87 (1.78e+00)
R 11.8 2.48 - 104
71, 72 5.58, 5.58 - _ _
0.4 | AISE 0.284 (1.69¢-02)  0.294 (4.40e-02)  31.6 (1.77e+01) 12.3 (6.37¢4-00)
R 12.5 2.42 - 104
71, 72 5.68, 5.66 - _ _
10 0.1 | AISE 0.112 (4.13¢-03)  0.111 (6.34e-03)  1.44 (4.22¢-01)  0.686 (1.33¢-01)
R 8.98 2.76 - 146
71, 7o 4.64, 4.64 _ _ _
0.4 | AISE  0.111 (4.19e-03)  0.115 (6.40e-03)  1.57 (4.44e-01)  0.741 (1.40e-01)
R 8.36 2.79 - 148
71, 7o 4.58, 4.53 - _ _
20 0.1 | AISE 0.0774 (3.11e-03)  0.0777 (3.97¢-03) 0.514 (9.39¢-02) 0.33 (2.43¢-02)
R 8.52 2.83 - 266
71, 72 4.67, 4.68 _ _ _
0.4 | AISE 0.0787 (3.09¢-03) 0.084 (4.97¢-03)  0.542 (8.45¢-02) 0.35 (2.22¢-02)
R 8.38 3.05 - 269
71, 7o 4.62, 4.64 _ _ _
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