
A Fully-integrated Gesture and Gait Processing SoC for 
Rehabilitation with ADC-less Mixed-signal Feature Extraction 

and Deep Neural Network for Classification and Online Training   
 

Yijie Wei, Qiankai Cao, Jie Gu 
Department of Electrical and Computer Engineering 

Northwestern University,  
Evanston, IL 

 

Levi Hargrove 
Shirley Ryan AbilityLab 

Chicago, IL 
 

Abstract— An ultra-low-power gesture and gait classification 
SoC is presented for rehabilitation application featuring (1) 
mixed-signal feature extraction and integrated low-noise amplifier 
eliminating expensive ADC and digital feature extraction, (2) an 
integrated distributed deep neural network (DNN) ASIC 
supporting a scalable multi-chip neural network for sensor fusion 
with distortion resiliency for low-cost front end modules, (3) on-
chip learning of DNN engine allowing in-situ training of user 
specific operations.  A 12-channel 65nm CMOS test chip was 
fabricated with 1µW power per channel, less than 3ms 
computation latency, on-chip training for user-specific DNN 
model and multi-chip networking capability. 
Keywords—edge processing; deep neural network; inter-chip 
communication; mixed-signal feature extraction; on-chip learning 

I. INTRODUCTION  
The rapid developments of artificial intelligence create 

significant demands on low power wearable electronics integrating 
a large number of heterogeneous sensor components and built-in 
machine learning capability for human activity assistance, e.g. 
rehabilitation of amputees.  It is reported that over 156,000 patients 
in the U.S. suffer from the loss of lower or upper-limbs, which 
provides constant demand of low power devices with built-in 
artificial intellgiience for patient assistance [1]. To achieve higher 
efficiency and lower power consumption, the computing tasks are 
being pushed toward sensor nodes where high dimensional sensor 
data are directly processed at the sensor edge through on-chip 
classifiers eliminating the expensive off-chip data communication.  
For rehabilitation application, accurate human gesture and gait 
classification holds the most critical roles in detecting user’s intent 
for the operation of prosthetic devices.  To improve classification 
accuracy of user’s intent, two areas of improvements are currently 
being pursued.  Firstly, at analog front end, sensor fusion techniques 
with large numbers of heterogenous sensors such as EMG sensors, 
strain sensors, and accelerometers are being incorporated for 
gesture or gait classification.  As shown in Fig. 1, 70 channels of 
heterogeneous sensors were used to obtain accurate classification of 
user’s gesture [2].  Secondly, deep neural network (DNN) based 
advanced machine learning methods are being explored to achieve 
higher level of accuracy [3].  However,  sensor fusion techniques 
and use of deep learning method pose significant challenges to an 
integrated system-on-chip (SoC): (1) Due to the large numbers of 
front-end channels to be supported, significant area and power costs 
are consumed for data conversion from analog-digital-converter 
(ADC) and digital feature extractions; (2) communication and 
computing bottleneck is easily formed when data from large 
number of channels are being processed by conventional centralized 
classifier ASIC; (3) As the DNN classifiers need to be adaptive to 
user’s body characteristics and wearing configuration, e.g. location 
of sensors, online training is highly desirable but faces significant 
challenges due to limited on-chip memory and low precision in 
embedded ASIC chips. In addition, prosthetic device sets a stringent 

millisecond classification latency requirement, much faster than 
existing ECG, EEG based classification.    

 
Fig. 1.   Illustration of gesture and gait classification with sensor fusion 
using near-sensor edge device with distributed neural network classifier. 

 
Fig. 2.   Top-level chip architecture in this work including LNA, mixed-
signal feature extraction, DNN engine and on-chip training circuitry.  

To address these challenges, this work proposes a fully-
integrated SoC with both analog front end and integrated deep 
neural network processor with on-chip training capability.  The 
novelty of this work includes: (1) a mixed-signal feature extraction 
circuit leading to more than 9X reduction in area by elimination of 
both ADC and digital feature extraction circuits; (2) Empowered by 
the integrated DNN classifier, the distortion and gain loss from the 
low-cost low-power analog front end are tolerated from the proper 
training of the deep neural network classifier leading to significant 
area and power saving; (3) The design of DNN classifier allows a 
single large neural network to be split among various sensor nodes 
leading to 72X reduction of data traffic in sensor fusion 
environment; (4) On-chip 8-bit in-situ training is enabled with 
stochastic rounding technique allowing user specific, usage specific 
adjustment of the classifier operation.    

II. TOP-LEVEL CHIP ARCHITECTURE 
Fig. 2 shows the overall implementation of the gesture and gait 

classification SoC which consists of 6-channels of differential low 
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noise amplifier (LNA) or 12 single-ended LNA bypassed channels 
for sensor fusion, along with ADC-less mixed-signal feature 
extraction circuits, integrated deep neural network engine with 
chip-chip communication and online learning capability.  The on-
chip neural network contains four fully-connected layers with 12 
input-layer neurons, 24 second-layer neurons, 18 output neurons for 
gesture classification and an additional layer of 18 neurons for gait 
classification.  In addition, the neural network can be interconnected 
to scale up into a larger network through multiple chips.  Low 
precision on-chip learning with batch processing engine using 
stochastic rounding, and on-chip training data SRAM, is 
implemented to enable in-situ training for specific users.   

 
Fig. 3 (a) LNA design with differential-to-single convertion at the second 
stage amplifier; Mixed-signal feature extraction circuits for (b) histogram 
and zero crossing, (c) mean, (d) variance, (d) absolute slope sign change. 

III. LNA AND MIXED-SIGNAL EXTRACTION CIRCUITS 

A. Front-end LNA and Feasture Extraction Circuit Design 

To support a wide range of front-end sensors, a gain-
programmable two-stage LNA is implemented as shown in Fig. 
3(a).  The programmable feedback capacitors provide a 
programmable gain up to 57dB supporting a large variety of 
sensory signals such as EMG, strain sensors, inertia sensors, etc.  
PMOS pseudo resistors are used to provide high resistance to 
establish a bandwidth from 5Hz to 3kHz supporting EMG, ECG 
and other commonly used sensors.  The LNA has an input 
impedance from 3GΩ to 27MΩ within the signal band supporting 
dry electrodes.  Input referred noise of LNA is 9µVrms sufficiently 
low for EMG signals for gesture classification.  Different from 
conventional support of differential signals for ADC, a differential-
to-single end conversion was made at the second stage amplifier to 
satisfy the signal level required at the mixed-signal feature 
extraction circuits. The DC level of output signal is set from the 
feedback structure of the amplifier and adjustable using an on-chip 
generated reference voltage. The LNA can be by passed for non-
EMG types of large signals generated from off-chip sensors.   

Fig. 3(b) shows the implemented mixed-signal feature 
extraction circuits eliminating both conventional ADC and digital 
feature extraction circuits.  Totally eight time-domain features: 
mean, variance, slope absolute value, zero crossings and four bins 

of histograms are extracted within 200ms overlapped windows.  
The feature extraction circuits use simple mixed-signal circuits 
consisting of only voltage-controlled oscillator (VCO), comparators 
and counters. The mean feature consists of a VCO and a counter 
which calculates the averages counts of the VCO within the 100ms 
windows. The variance feature uses a VCO with another reference 
VCO in conjunction with a bidirectional counter to accumulate the 
distance from the mean over time. The slope absolute value feature 
uses a bi-directional counter which compares the difference in 
voltage between two 1-millisecond windows. The results of the 
absolute value of this difference is accumulated over many 
windows. The histogram features contain four bins and use clocked 
comparators to count the number of times the voltage falls within a 
bin. The zero-crossing feature is similar to the histogram with bin 
threshold set to the reference voltage. The simple design of mixed-
signal feature extraction circuits replaces the area costly ADC 
design showing more than 9X reduction of area as compared with 
prior work in [4, 5].  All VCO operates at subthreshold voltage from 
around 300mV to 500mV from LNA output. VCO runs at 20kHz to 
100kHz offering high sampling rate for the incoming signals.  

 
(a) (b) 

Fig. 4.   Distortion resiliency from DNN.  (a) Accuracy loss from distortion 
of VCO non-linearity; (b) Accuracy loss from LNA power reduction. 

B.  Distortion Resiliency from Deep Neural Network 

Fig. 3 shows that the measured mean and variance features 
exhibiting strong distortion from the VCOs due to the subthreshold 
operation of VCO producing strong 2nd and 4th order distortion 
which leads to the collapse of feature spaces and degradation from 
linear classifiers.  The distortion from VCO is studied by 
characterizing VCO as an ADC in term of spur-free dynamic range 
(SFDR) at near full-scale output range and evaluating the accuracy 
impact through classifiers.  As shown in Fig. 4 (a), such a distortion 
leads to significant degradation, 8% from simple single layer 
neural network or linear SVM. However, proper training of the 
deep neural network using feature characteristics of the mixed-
signal circuits can effectively mitigate the distortion impact 
through the nonlinear sigmoid operation of multi-layer neural 
network and hence recovers most of the accuracy loss from the 
mixed-signal distortion.  As shown in Fig. 4(a), the VCO of feature 
extraction circuit in this work has a SFDR of 42 dB due to 
distortion.  However, the neural network reduces the accuracy loss 
to only 1% as compared with 4% in single layer neuron network. 
As a result, significant relaxation in LNA and feature extraction 
circuit’s performance, e.g. linearity, is resulted. Fig. 4(b) shows the 
accuracy impact versus total six channels of LNA power.  With 
5.7X power reduction of LNA, the accuracy is only dropped by 
1.5% due to gain loss.  In addition, compared with the digital 
feature extraction generated by ASIC flow, the mixed-signal 
feature extraction circuit in this work achieves 2X area saving.     

IV. DEEP NEURAL NETWORK DESIGN AND INTER-CHIP 

COMMUICATION FOR A SCALABLE OPERATION 
Channels from sensors in close proximity contain a locality of 

information as opposed to sensors at a distance. To take advantage 
of this locality, a distributed neural network is specially developed. 
This architecture allows the neural network to be divided among 
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several neural network processors reducing routing and data 
communication congestion at a single central classifier. 
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Fig. 5.  (a) Deep neural network topology used in this work; (b) Inter-chip 
communication and measured waveform for three chip operation. 

Fig. 5(a) shows the neural network architecture with local and 
global neural network layers.  Each distributed neural processor 
contains its own private hidden layer and communicates with 
adjacent sensor and processing nodes only at a global output layer 
reducing the connections among local neurons. Both local and 
global layers are fully connected.  For a sensor node number of N, 
a reduction of N times of weights is achieved through the proposed 
distributed architecture. For bit width B, the communication traffic 
reduction through the proposed architecture is on the order of 
3×N×B.  For instance, the separation of local and global layer for 3 
chips leads to a 66% memory reduction and 72X saving of 
communication latency with a small accuracy loss of about 2%.  As 
a result, sensor fusion signals do not need to be routed to a 
centralized location and only low dimensional feature data 
processed after local neural networks are transmitted across chips.   

Fig. 5(b) shows the networking scheme of the distributed neural 
network.  Global wires, including a start/stop signal, a single clock 
and a single data line are routed for communication.  A master chip 
is programmed to provide a global clock and each chip is 
programmed to sequentially send its hidden layer neuron output 
through the global single-bit data line.  While one chip is 
transmitting, all chips are receiving the data, and rising and falling 
edges of global clocks are alternatively used for transmitting and 
receiving to tolerate clock frequency mismatch of individual chips.  
A networking operation of 36 channels can be successfully 
processed by three chips within 200us~3ms at a supply from 0.9V 
to 0.6V. After communication is complete, the master chip will 
complete the process to produce the final classification result. 

V. ON-CHIP IN-SITU TRAINING OF NEURAL NETWORK 

On-chip learning remains very challenging due to the limitation 
of bit precision and memory space available on the chip. As a 
result, there is a lack of prior demonstration of on-chip learning for 
embedded SoC.  This work mitigates the precision and memory 
limitation using stochastic rounding and batching processing.   
A. Low Precision with Stochastic Rounding  

Neural network training was conventionally performed with 
floating point operation offline using a PC.  Fig. 6(a) shows the 
precision loss for gesture classification in Ninapro database as 

number of bits drop [2].  A 22% loss of classification accuracy is 
observed with 8-bit precision using backpropagation due to 
diminishing gradient.  The use of stochastic rounding reduces the 
accuracy loss to only 2% enabling 8-bit on-chip learning.  The 
stochastic rounding was realized by randomly flipping LSB of a 
weight bit using an on-chip random number generators from linear 
feedback shift register (LFSR).  

 
Fig. 6.   Accuracy of neural processor with (a) stochatic rounding, (b) gait 
processing, (c) memory usage vs. batch size, (d) accuracy vs batch size. 

B. On-chip Stochastic Batch Processing 
On-chip training is highly desirable because each user has his 

own charateristics of physilogical signals and the sensor 
attachement varies case by case.  The use of user-specific training 
can improve the accuracy from globally trained generic weight by 
12% as shown in Fig. 6(a). To enable on-chip learning, each chip is 
preloaded with a globally trained generic weights at lower accuracy.  
Users are instructed to perform motions with designated labels.  
However, a single run of labeled data produces very low accuracy.  
Multiple batch processing with randomized data sequences allows 
data to be repeatedly used for training   A random number generator 
based on LFSR is used to randomize the training sequence for each 
batch during learning. In this design, each batch is run for 6 epoches, 
to avoid overfitting.  However, the batch processing requires all data 
to be saved on-chip leading to significant memory area overhead.  
As a result, a tradeoff between on-chip training accuracy and 
memory space is observed as shown in Fig. 6(c) and (d).  As a 
gesture classification of above 70% is generally satisfactory for the 
target application, this work trades off memory space with accuracy 
loss.  An on-chip learning memory of 256 examples for each batch 
run was used with 128X reduction of memory space compared with 
full dataset with an accuracy loss up to 3%. After a batch of 256 
examples are stored onto the chip, the chip runs a batch training 
with 6 epochs of 256 samples.  Four batches of learning are run to 
reach a final accuracy of about 82%.  An additional layer is added 
on top of neural network for gait classification. By classification of 
a temporal sequence of gesture operation up to 24 motions, a gait of 
5 seconds of continuous motion can be further classified with an 
accuracy loss of within 1% from off-line PC.  

VI. MEASUREMENT RESULTS 
The test chip was fabricated in a 65 nm low power process. 

Fig.7(a) and (b) show the measured inference waveforms and 
computing latency from both feature extraction and neural network 
operations.   The computation including communication is 
completed within 0.3~3ms scalable with supply voltages meeting 
the required latency for prothestic limbs of 10~15ms [1].  Fig. 7(c) 
and (d) show inference power breakdown versus supply voltages.  
Digital power from neural network and the SRAM dominates the 
inference operation due to the stringent latency requirement. The 
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chip operates down to 0.6V consuming about 1.1µW/channel or 
total 12.31 µW.  Fig. 7(e) and (f) show on-chip training waveform, 
training time and power consumption.  Each batch with 6 epochs 
takes about 36 second to run and consumes 600uW peak power at 
0.9V and scales with digital supply voltages. To be able to evaluate 
the chip performance with more complete sensor fusion 
environment in comparison with existing publication, multiple 
DAC boards were used to replay the digitally recorded sensor 
waveforms from existing database.  Various large signals were sent 
directly into the mixed-signal feature extraction circuits bypassing 
LNA due to the large signal nature of the sensor.  Fig. 7(e) shows 
the inference results across three databases with the “Rehab” 
database obtained from 20 real-life amputee patients from our 
collaborator hospital.   Classification accuracy loss remains within 
2% for all use cases with 8-bit precision. Fig. 8 shows die photo and 
a simple demonstration setup with EMG channels. The gestures can 
be accurately classified through 6 EMG dry-electrode channels.  

 
Fig. 7.  Measurement results. (a) Inference waveforms; (b) Inference 
latency; (c) Inference power breakdown; (d) Inference power versus vdd; 
(e) On-line training waveform and accuracy; (f) On-line training time 
(single sample) versus power; (g) Accuracy across various data set. 
Ninapro [2] and Rehab are for gesture. USC-HAD is for gait [6]. 

 Comparison in Table 1 is made on both digital and analog front-
end design with recent physiological signal processors.  Most of 
prior work only contains either analog front-end [5, 8] or digital 
backend [7].  A fully-integrated SVM based SoC for seizure 
detection was reported in [4], but does not support on-chip batch 
training from integrated deep neural network as in this work.  
Compared with [5, 8], our analog front-end design takes less area, 
runs at a faster speed and consumes the similar or smaller power 
(Note feature extraction power is also included in our power number 
while not in previous work).  Compared with VCO based front-end 
design [5], besides area saving, the calibration for distortion has 

been eliminated due to the use of neural network resulting 
power/area saving.  Compared to neural network architectures in 
[7], this work consumes less or similar power at digital back-end 
while operating at significantly faster classification speed with 
millisecond total computing latency versus seconds’ latency in [7] 
and [4]. Furthermore, for the first time, on-chip deep neural network 
training through back-propagation and multi-chip networking 
capability were enabled for physiological signal processing.   

 
Fig. 8.   Die photo and a demonstration setup with EMG signals. 
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TABLE I.  COMPARISON WITH PRIOR WORKS 

    
 

[7]  
VLSI ‘17 

[4]  
ISSCC ‘13 

[5]  
ISSCC’16 

[8] 
VLSI’16 

This Work 

 
Technology 65 nm  180 nm 40 nm 180 nm 65 nm 
Total Area 5.87 mm2  25 mm2 0.14 mm2 1.1 mm2 3.28 mm2 

Supply Voltage 0.55V  1.0-1.8V 0.45V-1.2V 0.8V 0.55V-1.0V 

Application 
ECG 

Biometric 
Authentication 

EEG 
Seizure 

Detection 

LFP Signal 
Disorder 
Detection 

EEG Feature 
Extraction 

EMG, etc.  
Motion 

Recognition 

P
ro

ce
ss

or
 

Memory Size 19.5 kB  96kB - - 39 kB 
Clock Freq 2 kHz  1kHz - - 100kHz-3MHz 
Latency  1 s 2 s   < 5 ms 

Total Power  1.06 µW  156 µW - - 9.6 µW 
Power/Channel 1.06 µW  19 µW - - 800 nW 

On-Chip 
Classifier 

DNN SVM - 
- 

DNN 

On-Chip 
Learning 

No  No  ‐ 
- 

Yes 

A
n

al
og
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ro

n
t 

E
n

d 

Topology -  LNA+ADC VCO LNA+ADC LNA+VCO 
# of Channels  8 4 16 6/12 

LNA 
Area/Channel 

  0.63 mm2 N/A       0.04 mm2 0.035mm2 

ADC/FE 
Area/Channel 

-  0.48 mm2 0.1 mm2 N/A 0.011mm2 

Sampling Rate - 1kHz 1 kHz 4 kHz 20-100kHz 

Power/Channel ‐  740 nW 7 µW 240 nW 326nW 
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