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Abstract— An ultra-low-power gesture and gait classification
SoC is presented for rehabilitation application featuring (1)
mixed-signal feature extraction and integrated low-noise amplifier
eliminating expensive ADC and digital feature extraction, (2) an
integrated distributed deep neural network (DNN) ASIC
supporting a scalable multi-chip neural network for sensor fusion
with distortion resiliency for low-cost front end modules, (3) on-
chip learning of DNN engine allowing in-situ training of user
specific operations. A 12-channel 65nm CMOS test chip was
fabricated with 1pW power per channel, less than 3ms
computation latency, on-chip training for user-specific DNN
model and multi-chip networking capability.

Keywords—edge processing; deep neural network; inter-chip
communication; mixed-signal feature extraction; on-chip learning

[. INTRODUCTION

The rapid developments of artificial intelligence create
significant demands on low power wearable electronics integrating
a large number of heterogeneous sensor components and built-in
machine learning capability for human activity assistance, e.g.
rehabilitation of amputees. It is reported that over 156,000 patients
in the U.S. suffer from the loss of lower or upper-limbs, which
provides constant demand of low power devices with built-in
artificial intellgiience for patient assistance [1]. To achieve higher
efficiency and lower power consumption, the computing tasks are
being pushed toward sensor nodes where high dimensional sensor
data are directly processed at the sensor edge through on-chip
classifiers eliminating the expensive off-chip data communication.
For rehabilitation application, accurate human gesture and gait
classification holds the most critical roles in detecting user’s intent
for the operation of prosthetic devices. To improve classification
accuracy of user’s intent, two areas of improvements are currently
being pursued. Firstly, at analog front end, sensor fusion techniques
with large numbers of heterogenous sensors such as EMG sensors,
strain sensors, and accelerometers are being incorporated for
gesture or gait classification. As shown in Fig. 1, 70 channels of
heterogeneous sensors were used to obtain accurate classification of
user’s gesture [2]. Secondly, deep neural network (DNN) based
advanced machine learning methods are being explored to achieve
higher level of accuracy [3]. However, sensor fusion techniques
and use of deep learning method pose significant challenges to an
integrated system-on-chip (SoC): (1) Due to the large numbers of
front-end channels to be supported, significant area and power costs
are consumed for data conversion from analog-digital-converter
(ADC) and digital feature extractions; (2) communication and
computing bottleneck is easily formed when data from large
number of channels are being processed by conventional centralized
classifier ASIC; (3) As the DNN classifiers need to be adaptive to
user’s body characteristics and wearing configuration, e.g. location
of sensors, online training is highly desirable but faces significant
challenges due to limited on-chip memory and low precision in
embedded ASIC chips. In addition, prosthetic device sets a stringent
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millisecond classification latency requirement, much faster than
existing ECG, EEG based classification.
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Fig. 1. Tllustration of gesture and gait classification with sensor fusion
using near-sensor edge device with distributed neural network classifier.
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Fig. 2. Top-level chip architecture in this work including LNA, mixed-
signal feature extraction, DNN engine and on-chip training circuitry.

To address these challenges, this work proposes a fully-
integrated SoC with both analog front end and integrated deep
neural network processor with on-chip training capability. The
novelty of this work includes: (1) a mixed-signal feature extraction
circuit leading to more than 9X reduction in area by elimination of
both ADC and digital feature extraction circuits; (2) Empowered by
the integrated DNN classifier, the distortion and gain loss from the
low-cost low-power analog front end are tolerated from the proper
training of the deep neural network classifier leading to significant
area and power saving; (3) The design of DNN classifier allows a
single large neural network to be split among various sensor nodes
leading to 72X reduction of data traffic in sensor fusion
environment; (4) On-chip 8-bit in-situ training is enabled with
stochastic rounding technique allowing user specific, usage specific
adjustment of the classifier operation.

II. ToP-LEVEL CHIP ARCHITECTURE

Fig. 2 shows the overall implementation of the gesture and gait
classification SoC which consists of 6-channels of differential low
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noise amplifier (LNA) or 12 single-ended LNA bypassed channels
for sensor fusion, along with ADC-less mixed-signal feature
extraction circuits, integrated deep neural network engine with
chip-chip communication and online learning capability. The on-
chip neural network contains four fully-connected layers with 12
input-layer neurons, 24 second-layer neurons, 18 output neurons for
gesture classification and an additional layer of 18 neurons for gait
classification. In addition, the neural network can be interconnected
to scale up into a larger network through multiple chips. Low
precision on-chip learning with batch processing engine using
stochastic rounding, and on-chip training data SRAM, is
implemented to enable in-situ training for specific users.
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Fig. 3 (a) LNA design with differential-to-single convertion at the second
stage amplifier; Mixed-signal feature extraction circuits for (b) histogram
and zero crossing, (c) mean, (d) variance, (d) absolute slope sign change.

III. LNA AND MIXED-SIGNAL EXTRACTION CIRCUITS
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A. Front-end LNA and Feasture Extraction Circuit Design

To support a wide range of front-end sensors, a gain-
programmable two-stage LNA is implemented as shown in Fig.
3(a). The programmable feedback capacitors provide a
programmable gain up to 57dB supporting a large variety of
sensory signals such as EMG, strain sensors, inertia sensors, etc.
PMOS pseudo resistors are used to provide high resistance to
establish a bandwidth from 5Hz to 3kHz supporting EMG, ECG
and other commonly used sensors. The LNA has an input
impedance from 3GQ to 27MQ within the signal band supporting
dry electrodes. Input referred noise of LNA is 9uVrms sufficiently
low for EMG signals for gesture classification. Different from
conventional support of differential signals for ADC, a differential-
to-single end conversion was made at the second stage amplifier to
satisfy the signal level required at the mixed-signal feature
extraction circuits. The DC level of output signal is set from the
feedback structure of the amplifier and adjustable using an on-chip
generated reference voltage. The LNA can be by passed for non-
EMBG types of large signals generated from off-chip sensors.

Fig. 3(b) shows the implemented mixed-signal feature
extraction circuits eliminating both conventional ADC and digital
feature extraction circuits. Totally eight time-domain features:
mean, variance, slope absolute value, zero crossings and four bins

of histograms are extracted within 200ms overlapped windows.
The feature extraction circuits use simple mixed-signal circuits
consisting of only voltage-controlled oscillator (VCO), comparators
and counters. The mean feature consists of a VCO and a counter
which calculates the averages counts of the VCO within the 100ms
windows. The variance feature uses a VCO with another reference
VCO in conjunction with a bidirectional counter to accumulate the
distance from the mean over time. The slope absolute value feature
uses a bi-directional counter which compares the difference in
voltage between two 1-millisecond windows. The results of the
absolute value of this difference is accumulated over many
windows. The histogram features contain four bins and use clocked
comparators to count the number of times the voltage falls within a
bin. The zero-crossing feature is similar to the histogram with bin
threshold set to the reference voltage. The simple design of mixed-
signal feature extraction circuits replaces the area costly ADC
design showing more than 9X reduction of area as compared with
prior work in [4, 5]. All VCO operates at subthreshold voltage from
around 300mV to 500mV from LNA output. VCO runs at 20kHz to
100kHz offering high sampling rate for the incoming signals.
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Fig. 4. Distortion resiliency from DNN. (a) Accuracy loss from distortion
of VCO non-linearity; (b) Accuracy loss from LNA power reduction.

B. Distortion Resiliency from Deep Neural Network

Fig. 3 shows that the measured mean and variance features
exhibiting strong distortion from the VCOs due to the subthreshold
operation of VCO producing strong 2™ and 4" order distortion
which leads to the collapse of feature spaces and degradation from
linear classifiers. The distortion from VCO is studied by
characterizing VCO as an ADC in term of spur-free dynamic range
(SFDR) at near full-scale output range and evaluating the accuracy
impact through classifiers. Asshown in Fig. 4 (a), such a distortion
leads to significant degradation, 8% from simple single layer
neural network or linear SVM. However, proper training of the
deep neural network using feature characteristics of the mixed-
signal circuits can effectively mitigate the distortion impact
through the nonlinear sigmoid operation of multi-layer neural
network and hence recovers most of the accuracy loss from the
mixed-signal distortion. As shown in Fig. 4(a), the VCO of feature
extraction circuit in this work has a SFDR of 42 dB due to
distortion. However, the neural network reduces the accuracy loss
to only 1% as compared with 4% in single layer neuron network.
As a result, significant relaxation in LNA and feature extraction
circuit’s performance, e.g. linearity, is resulted. Fig. 4(b) shows the
accuracy impact versus total six channels of LNA power. With
5.7X power reduction of LNA, the accuracy is only dropped by
1.5% due to gain loss. In addition, compared with the digital
feature extraction generated by ASIC flow, the mixed-signal
feature extraction circuit in this work achieves 2X area saving.

IV. DEEP NEURAL NETWORK DESIGN AND INTER-CHIP
COMMUICATION FOR A SCALABLE OPERATION

Channels from sensors in close proximity contain a locality of
information as opposed to sensors at a distance. To take advantage
of this locality, a distributed neural network is specially developed.
This architecture allows the neural network to be divided among
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several neural network processors reducing routing and data

communication congestion at a single central classifier.
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Fig. 5. (a) Deep neural network topology used in this work; (b) Inter-chip
communication and measured waveform for three chip operation.

Voltage (V)

Fig. 5(a) shows the neural network architecture with local and
global neural network layers. Each distributed neural processor
contains its own private hidden layer and communicates with
adjacent sensor and processing nodes only at a global output layer
reducing the connections among local neurons. Both local and
global layers are fully connected. For a sensor node number of N,
areduction of N times of weights is achieved through the proposed
distributed architecture. For bit width B, the communication traffic
reduction through the proposed architecture is on the order of
3xNxB. For instance, the separation of local and global layer for 3
chips leads to a 66% memory reduction and 72X saving of
communication latency with a small accuracy loss of about 2%. As
a result, sensor fusion signals do not need to be routed to a
centralized location and only low dimensional feature data
processed after local neural networks are transmitted across chips.

Fig. 5(b) shows the networking scheme of the distributed neural
network. Global wires, including a start/stop signal, a single clock
and a single data line are routed for communication. A master chip
is programmed to provide a global clock and each chip is
programmed to sequentially send its hidden layer neuron output
through the global single-bit data line. While one chip is
transmitting, all chips are receiving the data, and rising and falling
edges of global clocks are alternatively used for transmitting and
receiving to tolerate clock frequency mismatch of individual chips.
A networking operation of 36 channels can be successfully
processed by three chips within 200us~3ms at a supply from 0.9V
to 0.6V. After communication is complete, the master chip will
complete the process to produce the final classification result.

V. ON-CHIP IN-SITU TRAINING OF NEURAL NETWORK

On-chip learning remains very challenging due to the limitation
of bit precision and memory space available on the chip. As a
result, there is a lack of prior demonstration of on-chip learning for
embedded SoC. This work mitigates the precision and memory
limitation using stochastic rounding and batching processing.

A. Low Precision with Stochastic Rounding

Neural network training was conventionally performed with
floating point operation offline using a PC. Fig. 6(a) shows the
precision loss for gesture classification in Ninapro database as

number of bits drop [2]. A 22% loss of classification accuracy is
observed with 8-bit precision using backpropagation due to
diminishing gradient. The use of stochastic rounding reduces the
accuracy loss to only 2% enabling 8-bit on-chip learning. The
stochastic rounding was realized by randomly flipping LSB of a
weight bit using an on-chip random number generators from linear
feedback shift register (LFSR).
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Fig. 6. Accuracy of neural processor with (a) stochatic rounding, (b) gait

processing, (c) memory usage vs. batch size, (d) accuracy vs batch size.
B. On-chip Stochastic Batch Processing

On-chip training is highly desirable because each user has his
own charateristics of physilogical signals and the sensor
attachement varies case by case. The use of user-specific training
can improve the accuracy from globally trained generic weight by
12% as shown in Fig. 6(a). To enable on-chip learning, each chip is
preloaded with a globally trained generic weights at lower accuracy.
Users are instructed to perform motions with designated labels.
However, a single run of labeled data produces very low accuracy.
Multiple batch processing with randomized data sequences allows
data to be repeatedly used for training A random number generator
based on LFSR is used to randomize the training sequence for each
batch during learning. In this design, each batch is run for 6 epoches,
to avoid overfitting. However, the batch processing requires all data
to be saved on-chip leading to significant memory area overhead.
As a result, a tradeoff between on-chip training accuracy and
memory space is observed as shown in Fig. 6(c) and (d). As a
gesture classification of above 70% is generally satisfactory for the
target application, this work trades off memory space with accuracy
loss. An on-chip learning memory of 256 examples for each batch
run was used with 128X reduction of memory space compared with
full dataset with an accuracy loss up to 3%. After a batch of 256
examples are stored onto the chip, the chip runs a batch training
with 6 epochs of 256 samples. Four batches of learning are run to
reach a final accuracy of about 82%. An additional layer is added
on top of neural network for gait classification. By classification of
a temporal sequence of gesture operation up to 24 motions, a gait of
5 seconds of continuous motion can be further classified with an
accuracy loss of within 1% from off-line PC.

VI. MEASUREMENT RESULTS

The test chip was fabricated in a 65 nm low power process.
Fig.7(a) and (b) show the measured inference waveforms and
computing latency from both feature extraction and neural network
operations. The computation including communication is
completed within 0.3~3ms scalable with supply voltages meeting
the required latency for prothestic limbs of 10~15ms [1]. Fig. 7(c)
and (d) show inference power breakdown versus supply voltages.
Digital power from neural network and the SRAM dominates the
inference operation due to the stringent latency requirement. The
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chip operates down to 0.6V consuming about 1.1uW/channel or
total 12.31 uW. Fig. 7(e) and (f) show on-chip training waveform,
training time and power consumption. Each batch with 6 epochs
takes about 36 second to run and consumes 600uW peak power at
0.9V and scales with digital supply voltages. To be able to evaluate
the chip performance with more complete sensor fusion
environment in comparison with existing publication, multiple
DAC boards were used to replay the digitally recorded sensor
waveforms from existing database. Various large signals were sent
directly into the mixed-signal feature extraction circuits bypassing
LNA due to the large signal nature of the sensor. Fig. 7(e) shows
the inference results across three databases with the “Rehab”
database obtained from 20 real-life amputee patients from our
collaborator hospital. Classification accuracy loss remains within
2% for all use cases with 8-bit precision. Fig. 8 shows die photo and
a simple demonstration setup with EMG channels. The gestures can
be accurately classified through 6 EMG dry-electrode channels.

200ms

gnal (LNA Outp

0.5 Completion Time

o5 4
=035 ; = 3 —~3 Processors
2 % 2 —2 Processors

0.6[=1 1 = a
& 04 1| Inference Control Clock E2 1 Processor
202 T T
o
> 0% | | €

0.4 Cidssfidati otpuan{el =0

02 (111 05 07 09 11

0 0.4 0.6 0.8 1 Voltage (V)
Time (s)
(a) Inference Waveforms (b) Inference Latency

Neural Network Neura Network
~—feature Extraction(@ Fixed 0.6V)
LNA(@ Fixed 0.7V)
—Digital Leakage
SRAM

Foat LNA

eature

Enractiogbsgm
25 g

Digital Leakagé

0.9

SRAM

0.7 0.8
Voltage(V)

(c) Inference Power Breakdown
78%

(d) Inference Power versus Vdd

Power

76% %77 1200 - 120
Z 7a% e%E”“” (continuous run)

I 74% Epoch6 =1000 100
72% 74‘5& h3 . -
3 70% 2% EPOC % 800 Single-sample s 2
< 68% |ssxEpochl = Training Time £
66% Batch #1 2 600 60 £
64% 3 £
0 6 12_18 24 30 36 a 400 40 =

Time (s) 200 20

0 0

06 07 08 09 1
Voltage (V)

6 12 30 36

18 24
Time (s)

(e) On-line Training Waveform
85%
80%
75% |=Floating Point

(f) Single-run Train. Time and Power

= Fixed Point (This Work)

70%
65%

Accuracy

60%
55%

USC-HAD USC-HAD USC-HAD Ninapro Ninapro Ninapro Rehab Rehab Rehab
User1 User2 User3 User1 User2 User3 User1 User2 User3

(9) Inference Accuracy

Fig. 7. Measurement results. (a) Inference waveforms; (b) Inference
latency; (c) Inference power breakdown; (d) Inference power versus vdd;
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(single sample) versus power; (g) Accuracy across various data set.
Ninapro [2] and Rehab are for gesture. USC-HAD is for gait [6].

Comparison in Table 1 is made on both digital and analog front-
end design with recent physiological signal processors. Most of
prior work only contains either analog front-end [5, 8] or digital
backend [7]. A fully-integrated SVM based SoC for seizure
detection was reported in [4], but does not support on-chip batch
training from integrated deep neural network as in this work.
Compared with [5, 8], our analog front-end design takes less area,
runs at a faster speed and consumes the similar or smaller power
(Note feature extraction power is also included in our power number
while not in previous work). Compared with VCO based front-end
design [5], besides area saving, the calibration for distortion has

been eliminated due to the use of neural network resulting
power/area saving. Compared to neural network architectures in
[7], this work consumes less or similar power at digital back-end
while operating at significantly faster classification speed with
millisecond total computing latency versus seconds’ latency in [7]
and [4]. Furthermore, for the first time, on-chip deep neural network
training through back-propagation and multi-chip networking
capability were e??ﬂed for physiological signal processing.
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hoto and a demonstration setup with EMG signals.
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TABLE 1. COMPARISON WITH PRIOR WORKS
171 14] I5] 18] .
visi‘17_|1sscc 13| 1ssccis | visrig | This Work
Technology 65 nm 180 nm 40 nm 180 nm 65 nm
Total Area 5.87 mm* 25mm’ | 0.14 mm? 1.1 mm? 3.28 mm’
Supply Voltage 0.55V 1.0-1.8V_| 0.45V-1.2V 0.8V 0.55V-1.0V
ECG EEG LFP Signal | EEG Feature | EMG, etc.
Application Biometric Seizure Disorder Extraction Motion
Authentication| Detection | Detection Recognition
Memory Size 19.5 kB 96kB - - 39 kB
Clock Freq 2 kHz 1kHz - - 100kHz-3MHz
. Latency 1s 2s <5 ms
2 | _Total Power 1.06 pW 156 pW - - 9.6 tW
§ Power/Channel 1.06 pW 19 pW - - 800 nW
= On-Chip -
[
Classifier DNN SVM - DNN
Ol'l-CI:Ilp No No - ° Yes
Learning
Topology - LNA+ADC VCO LNA+ADC LNA+VCO
E # of Ch ! 8 4 16 6/12
o LNA 0.63mm? | N/A 0.04mm? | 0.035mm’?
S |[Area/Channel
= ADC/FE 2 2 2
%.; Area/Channel - 0.48 mm’ 0.1 mm' N/A 0.011mm
£ |Sampling Rate - 1kHz 1 kHz 4kHz 20-100kHz
Power/Channel - 740 nW 7 nW 240 nW 326nW
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