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ABSTRACT

The incorporation of artificial intelligence into the rapidly
growing loT devices demands a high level of built-in intelligence,
e.g. machine learning capability at the device level. Affective
computing offers a new degree of cognitive intelligence into edge
processing IoT devices by inferring human emotion, stress
levels for intelligent human assistance. This work explores the
design space and runtime optimization opportunity for affective
computing at the system-on-chip (SoC) level. A design
optimization methodology for the neural network classifier and
runtime power management schemes are proposed to achieve
high energy efficiency on embedded low power devices. A test
chip based on a 65nm CMOS process was used to demonstrate the
proposed methodology on emotion and stress classification for
affective computing. An average power saving of 45% is achieved
with a peak power savings of 60% from the proposed emotion-
driven adaptive power management scheme.
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1 INTRODUCTION

Ultra-low power Internet-of-Things (IoT) or wearable
embedded devices have become one of the fastest-growing industry
segments. According to a survey from Cisco, the number of devices
has sustained an exponential growth rate and will soon reach 50
billion connected devices [1]. While low power and low cost have
been the critical masks for IoT devices, the recent rapid
development of artificial intelligence (Al) brings a new level of
challenges to such devices, i.e. how to create more intelligence into
the resource-limited edge devices. From the hardware point of
view, the incorporation of machine learning operation into the
embedded system has provided a strong boost to the capability of
edge processing [oT or wearable devices. Many commercial loT
products have already had built-in artificial intelligence into
devices such as smart home products from Nest Labs or similar
emerging companies [2]. At chip level, a rapid development
happens on integrating machine learning accelerators into the IC
chips to facilitate the support of Al from hardware devices [3].
However, the resource limitation and extremely low power budget
have become the bottleneck of the development of intelligent edge
devices. As aresult, dedicated design methodology and intelligent
power management schemes are strongly needed for such devices
to support resource and power consuming operation of machine
learning techniques, which is the focus of this paper.

A class of commonly used edge devices is the wearable
medical device where human’s daily activities and health
conditions are actively monitored for interactive human assistance
[4]. While numerous human daily activities and health indicators
such as heart rate, blood pressure, calorie intake etc. have already
been tracked from such wearable devices, there is currently a lack

of dedicated hardware support for the detection of human emotion.
As a matter of fact, human emotion or mood provides a rich amount
of information on human cognition. Hence comprehension of
human emotion serves as a gateway towards the new generation of
artificial intelligence [S]. To better understand and manage human
emotion, the so-called affective computing techniques are gaining
more and more attention to the development of advanced Al-
empowered devices.

Affective computing refers to the study and development of
intelligent systems and devices that can recognize, interpret and
classify human affects which include both short-term stress,
emotion and long-term personality, depression, etc. [6]. Due to the
nature of the highly interdisciplinary study, affective computing
requires close collaboration among computer science, engineering,
psychology and as a result, a low power IoT technique that
integrates heterogeneous physiological sensors and machine
learning capability becomes an enabling technology to support the
development of affective computing [7].

Many prior studies were demonstrated using off-shelf
physiological sensors to track human emotion. MIT media labs
demonstrated that commercial wearable devices can be used to
detect a variety of human affects. For instance, the driver’s stress
was detected using a combination of electromyogram (EMG),
electrocardiogram (ECQG), respiration and skin conductance (SC)
sensors. The detection of stress helped manage driver’s driving
behaviors to reduce the chances of accidents [8]. People’s
happiness was also inferred from a combination of SC,
accelerometer data as well as person’s location history achieving
an accuracy of around 70% [9]. Furthermore, combining with cell
phone activities, people’s emotions for the next day can be
predicted with high fidelity [10]. To better model people’s stress, a
new stress model “cStress” was proposed based on ECG,
respiration and accelerometer data showing 90% accuracy
compared with self-reported stress [11]. Besides, based on
physiological ECG detection, a just-in-time stress intervention
scheme was also proposed by Microsoft to mitigate workplace
stress through evaluation of employee’s stress and mental load [12].
Recently, as virtual reality (VR) becomes a new venue for home
entertainment and online business, affective computing offers an
alternative path to track users’ experience. For instance, an
interactive gaming system was proposed to adaptively change
gaming scenes and levels of difficulty based on the gamer’s
emotion. In such an application, a fast emotion tracking at a scale
of seconds was delivered from EEG and ECG measurements to
support the highly dynamic activity change in VR gaming [13].
The application of emotion and stress classification spans beyond
daily activity tracking. A personality detection system was
developed based on monitoring the physiological signal response
from the users when watching video clips [14]. A web browsing
user experience was monitored based on user’s pupil dilation to
web content [15].



Despite the above growing popularity in using wearable
devices for affective computing, there is a lack of discussion from
the hardware perspective on how to design and manage the devices
for efficient computing. In fact, almost all the works above relies
on machine learning techniques, e.g. artificial neural network
(ANN), support vector machine (SVM), decision tree (DT) to
perform emotion classification. Due to the lack of machine
learning support on existing loT devices, almost all the above work
was based on online sensing but offline classification from PC or
smartphone rendering major limitation of affective computing for
wearable devices. Due to the lack of existing study on how to
develop energy efficient ASIC chip for affective computing, this
paper, to the best of our knowledge, for the first time, performs a
systematic study on design space and power, accuracy,
performance tradeoff in designing machine learning empowered
edge devices for affective computing. The contributions of this
work are summarized as below: (1) from hardware perspective, the
design tradeoff between hardware cost, and accuracy is studied
with optimization method proposed for implementing machine
learning algorithms, e.g. neural network on a chip; (2) a thorough
analysis on power consumption of IoT device for affective
computing is provided based on real design and usage scenarios
showing tradeoff between the power and accuracy; (3) A runtime
adaptive power management scheme is proposed to achieve higher
power efficiency; (4) A 65nm CMOS test chip was used to
demonstrate the proposed adaptive scheme with more than 2X
power saving.

2 AFFECTIVE COMPUTING MODEL
AND DATABASE

Fig. 1(a) shows the typical system level configuration for
affective computing based on physiological signal processing.
Various physiological signals such as ECG, EEG, EMG, SC are
sensed by low noise amplifiers (LNA) to deliver a large analog
signal for later stages. Mixed-signal circuits such as analog to
digital conversion (ADC) and feature extraction circuits are used
on the sampled physiological signals to reduce the dimensionality
of the incoming data. A classifier such as a neural network is used

to create final classification results for people’s emotions.
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Figure 1: (a) Configuration and signal flow for affective computing; (b)
Russell’s Circumplex Model [18].

Despite a large variety of applications from affective
computing, this work focuses on emotion and stress classification.
For stress classification, this work uses the database released from
MIT media lab on driver’s stress detection from the real-life
measurement of drivers’ physiological signals [16]. The database
provides classification labels of rest, highway and city representing
drivers’ stress conditions. Although the MIT database only
provides a coarse measurement of stress, the driver’s stress
detection serves as an important application space for affective
computing. The requirement for both high accuracy and fast
response in driving conditions leads to a strong demand for an
efficient wearable device with built-in machine learning capability
for fast classification.

To further explore challenges in emotion classification with
finer granularity, we also study the DREAMER database which
uses off-the-shelf ECG and EEG sensors to detect human’s emotion
[17]. DREAMER database provides labels on the widely used
Russell’s Circumplex model for emotion classification [18]. Fig.
1(b) show the Russell’s circumplex model where the two-
dimensional space of valence and arousal are used to construct
people’s emotion, such as happiness, upset, and calmness based on
the mood angle formed by valence and arousal. Classification
accuracy is reported based on the values of valence and arousal. A
third variable, dominance is also provided in the database but is not
commonly used. In this work, we focus on valence and arousal for
emotion inference and use the average accuracy of the two values
for accuracy evaluation.

This work targets applications with stress classification for
drivers and emotion detection from gaming or virtual reality
system. In both cases, fast responses are needed. It has been
reported that phasic change of human skin conductance which
represents mood swing reaches peak values in 1~5 seconds [15].
Hence, we constrain our classification jobs to be completed within
5 seconds. In different applications, such as emotion detection for
online movie recommendation or depression detection, such a
requirement can be significantly relaxed.

3 HARDWARE-AWARE CLASSIFIER
OPTIMIZATIONS

Although many machine learning algorithms have been
explored in previous affective computing studies [17], there is a
lack of study considering the dedicated ASIC implementation. In
this work, we explore the design space as a tradeoff between power,
area, and accuracy. While existing work uses a variety of machine
learning schemes such as ANN, SVM, DT, etc. as classifiers, we
focus on ANN/DNN in this work due to its high accuracy,
scalability, and popularity in the current study.

3.1 Design of Neural Network Classifier

In this work, we used a pipelined multi-layer neural network
accelerator as our baseline design [19,20]. As will be shown in our
implementation of the SoC chip, the neural network classifier
contributes 65% of total area and becomes the largest component
of the chip. As a result, it is important to consider the silicon cost
when designing the classifier as [oT devices are extremely sensitive
to the silicon cost. The optimization of neural network architecture
is dictated by the tradeoff between accuracy, silicon area and power
consumption. In this study, we vary design parameters such as
numbers of neurons in each layer, number of layers to achieve the
target accuracy while minimizing power and area cost. 8-bit
precision is used in this work. Training is performed offline from
PC and weights are downloaded on the SoC chip for classification.
As will be shown later, the leakage power consumption of the
neural network and SRAM dominates the total digital power
consumption due to the long intervals between inference tasks. As
a result, the power optimization for the digital classifier is closely
related to the optimization of silicon area including neural network
size and SRAM spaces. In this work, we assume no power gating
is implemented and no non-volatile memory is available to off-load
neural network weights.

Fig 2(a) shows the change of accuracy and memory space for
the neural network as the number of layers increases in the
DREAMER database. The three-layer fully connected neural
network is observed to provide the almost-best accuracy. Further
increasing layers does not improve the accuracy anymore while
incurring more than 20% more memory overhead for each
additional layer. The accuracy further degrades beyond four layers
due to the difficulty of back-propagation training. As a result, the



optimal number of layers appears to be 3 or 4 layers. Fig 2(b)
shows the effect of neuron numbers on accuracy and memory
space. As the number of neurons increases, the prediction accuracy
increases while the rate of increase starts to saturate after 60
neurons. The amount of memory space needed also increases
proportionally with the number of neurons used. As a result, 40~60
neurons appear to be the optimal solution for the application
whereas the memory space increases by 34% from 40 to 60 neurons
with an accuracy change of 2%. The above study is repeated on the
driver stress database showing similar observation and hence is
omitted in this work.
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Figure 2: Accuracy and memory space (a) versus the number of layers;
(b) versus the number of neurons.

3.2  Optimization of Feature Extraction

Feature extraction also consumes a significant amount of total
powers and hence needs to be optimized. In this work, we extract
the commonly used time-domain features, e.g. mean, variance,
histogram, zero-crossing, slope absolute sign change, to pass to
neural network due to the low computation cost of the time-domain
features compared with features such as Fourier Transform (FFT),
Discrete Wavelet Transform (DWT) which are highly expensive to
implement on an edge device.

Fig 3(a) shows the power consumption for generating each
feature from each incoming signal assuming a continuous run. For
example, the histogram would require the most power to be
generated while the zero crossing requires 6X less power. However,
feature ranking by power does not consider the significance of each
feature for contribution to the final classification. Hence, a more
sophisticated ranking methodology needs to be developed to
evaluate the importance of the features.

Algorithm 1 Variance-Power Score

Procedure VP_Score (label_list, channel_list, feature_list,
feat_power, data)

1. foreach feature € feature_list do

2 foreach channel € channel_list do

3 data_s«<get_feature(data, channel, feature, sensor)
4 foreach i € label_list do

5. foreach j € label_list && j > i do

6 distl«—extract_distribution(data_s, i)

7 dist2«—extract_distribution(data_s, j)

8. score_feat(i,j)«—ttest (distl, dist2)

9. end for

10. end for

11. channel _VP_score(channel)—mean(score_feat) *ft_pwr
12.  end for

13. end for

14. return VP_feat_scores //return the scores
To assist in identifying the importance of each feature, we
propose a ranking scheme based on a “variance power score”,

which is the product of “variance” and power for each feature. The
“variance” comes from the Kolmogorov-Smirnov statistical test for
comparing two different samples. This statistic represents how
distinguishable the feature is at various classification labels. The
more variance the feature has, the easier for the classifier to perform
based on the feature. Algorithm 1 shows the optimization strategy
of building a variance-power score for each feature.

In the above algorithm, variance across various groups is
compared. Fig. 3(c) shows the variance-power scores across
various features. To achieve the highest efficiency, features with
lower feature power scores, e.g. variance or slope absolute sign
change can be removed to reduce power consumption. Fig 3(b)
shows the accuracy tradeoff for removing the least important
features across different feature-channel pairs. The accuracy is
compared with random removal. As shown in the figure, with 25%
removal of features, a 3% accuracy loss and a 25% power saving is
observed. Compared with random removal, 3% more accuracy is
gained using the proposed ranking methodology. If 13% feature is
removed based on the ranking, 20% power saving can be achieved
with only 1% accuracy degradation, which represents an optimal
power/accuracy tradeoff.
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Figure 3: (a) Power comparison among features. (b) Effect of feature
reduction based on proposed variance-power score. (¢) Variance-power
score of each feature.

4 RUNTIME POWER MANAGEMENT
4.1 Operation Modes

Different from high performance computing, physiological
signals are slowly varying signals measured at a scale of seconds.
It requires high gain low-noise amplifier to amplify micro-volt
signal into hundreds of millivolt range to satisfy the input
requirement of mixed-signal circuits such as ADC. In the
DREAMER database, there are 14 channel EEG signals and 2
channel ECG signals. In the Driver database, there are 1 ECG
signal, 1 EMG signal, 2 skin conductance signal, 1 respiration
signal as input. The total power consumption was highly related to
the working duration of LNA & mixed-signal circuits (MSC). As a
result, a new power management paradigm is observed in this work.
Fig. 4(a) and Fig. 4(b) shows two different working modes. When
chip is working on the continuous mode, LNA & MSC must
continuously run for sampling the incoming data. The neural
network will be clock gated after a classification is finished. As a
result, LNA and MSC dominate total power consumption. To
reduce their power consumption, we study a duty-cycle operation
mode where the LNA and MSC are only turned on for a fractional
period of time. Effectively, the total numbers of raw signal samples
are being reduced leading to a drop of accuracy. Our study shows
that within a classification interval, e.g. 5 seconds, the classification
accuracy strongly depends on the total number of samples in use



but does not strongly depend on when the sampling happened
within the classification interval. Hence, the duty cycle directly
impacts the final accuracy. Below are the equations for the
calculation of total power based on the duty cycle of the operation.

DProtqr = DPyy X DCyy + DPspay X DCspam + DPrya X DCiya

+ DPysc X DCysc (€]
LProtar = LPspam + LPiya + LPysc (2
Powerrgrar = LProtar + DProta (©)]

where DP is dynamic power, LP is leakage power, and DC is the
duty cycle within the 5-second window.
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Figure 4: (a) continuous run mode; (b) Duty cycle mode with 20% DC;
(c) Power contributions by each circuit on DREAMER and Driver
database in two operating modes.

Fig. 4(c) shows the power contribution by different scenarios
under two databases on continuous mode and duty cycle mode. The
LNA and MSC contribute most power consumption. The leakage
power from SRAM and neural network also contribute significantly
to the power consumption. It is interesting to observe that in
affective computing, the active power from the neural network is
less than 5% of the total power. This is because the neural network
only requires millisecond to finish classification and remains shut-
off most of the time. Compared with continuous run mode,
significant power saving is observed due to the duty cycle at an
expense of accuracy loss from the shorter sampling time.

4.2 Power and Accuracy Tradeoff

Fig 5 shows the accuracy and power changes as a function of
the duty cycle in DREAMER database and Driver database. As the
duty cycle decreases, accuracy generally decreases. For instance,
at a 50% duty cycle, a 3% accuracy loss is traded off with 30%
power saving. Further reduce the duty cycle to 20% can reduce
power by 3.3X with 4% loss of accuracy. Based on this observation,
we proposed an adaptive power management scheme as will be
discussed in section 4.4.

4.3 Proposed Voting Strategy for Accuracy

To help improve prediction accuracy while sustaining lower
power of operation, this work proposes a voting strategy. Since the
total time for a decision is made at a much slower rate of every 5
seconds, it is possible to vote on the results of multiple times with
smaller sampling window. By increasing the number of
classifications used to make a final prediction, we are essentially
filtering out the number of misclassifications. Equation 4 shows the
ideal improvement by using multiple window voting.

Majority = i (‘f:) p*(1—p)W* 4

x=W/2

where p is the prediction accuracy, W is the number of windows to
be looked back at. According to the equation, ideally the higher the
prediction accuracy is, the greater the improvement is for the voting
scheme. As shown in Fig. 6, compared with ideal improvement
from (4), the simulation shows a similar trend with lower
improvement because samples are temporal correlated and are
likely misclassified to the same label. This prevents achieving
theoretical voting benefits. As shown in Fig. 6, for both the
DREAMER and driver database, the ideal combination would be
to use a continuous 1s window with 5 sample voting. Compared to
using 5s continuous operation, the accuracy improvement is 2% for
the same power consumption. Note that in the voting scenario, the
dynamic power of neural network classification increases by 5
times growing from the original 0.1% to 0.4% of the total power,
which is still insignificant in total power consumption.
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4.4 Emotion Driven Adaptive Power

Management and Sampling

In this section, we propose an adaptive power management
and sampling schemes for affective computing based on
DREAMER emotion database and MIT driver stress database. The
affective computing can be used to manage device power
consumption to adapt to human’s psychological state during real-
life operation, e.g. playing video games or driving. When a
sensitive state like fear or high level of stress was detected, the chip
can dynamically increase the sampling period to increase the
classification accuracy. When a non-sensitive state like calmness
was detected, the chip will drop the sampling duty cycle to achieve
longer battery life.
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Figure 7: Illustration of proposed emotion driven adaptive power
management and sampling scheme for (a) Driving scenario. (b) Gaming
scenario.

For the DREAMER database, we used a scheme that the video
game can dynamically change the difficulty level and environment
atmosphere based on emotion state sensed by the chip [14]. A
higher level of difficulty and more stressful gaming rhythm will be
provided when a low level of emotion like calmness or relax was
detected on gamers. At high excitement state, a higher sampling
rate is utilized to achieve higher classification accuracy due to the
intensity of the actions. At calm state, a lower sampling rate is
applied to save power. To perform this task, 6 datasets from
DREAMER database with target emotions of excitement, fatigue,
and calmness. In the initial state, the chip works on the continuous
mode to get the most precise result at the setup phase. When the
excitement emotion is detected, the chip works in the continue
sampling mode for sensing the gamers emotion condition with high
accuracy. When fatigue emotion was detected, the chip will change
to 60% duty cycle mode to reduce power and indicate the video
game to lower the difficulty and change the environment
atmosphere in the game. When the calmness emotion is detected,
the chip will be set to a 20% duty cycle to further save the power
and indicate the video game to gradually increase the difficulty and
intensity of the game to make the video game more challenging.

On driving cases, we set up a scheme that the music of radio
channels or A/C temperature can be adaptively changed based on
the detected driver’s mental stress. We dynamically manage the
sampling rate of the device to adapt to the accuracy needed for each
driving scenario to achieve better energy efficiency of the IoT
device. The driver’s stress level is related to different driving
environment. The city driving scenario needs much higher
attention with a high level of stress measured from the affective
metrics. The highway scenario produces less stress level due to the
fewer dynamics of the environment. As a result, we propose to
dynamically vary the sampling rate to obtain better power and
accuracy tradeoff in different scenarios based on the detected
driver’s stress level. Fig. 7 shows the proposed operation condition.
In the initial state, the highest sampling rate, i.e. continuous mode
is applied as the driver’s stress condition is unknown. As more
stress results are detected, based on the different driving scenarios,
different duty cycle modes are applied. As shown in Fig. 7,
continuous sampling is applied for city condition providing the best
accuracy of detection. For highway condition, a 50% duty cycle is
applied. At rest condition, a 20% duty cycle is applied.

Correspondingly, the accuracy varies from 69% to 75% depending
on the stress level of the driver. Many potential applications can be
applied with the proposed scheme such as in-vehicle entertainment
systems or air-condition controls rending interesting future
developments from affective computing.

5 EXPERIMENTAL RESULTS

5.1 Design Overview

To verify the proposed scheme, a 65nm CMOS test chip is
fabricated in a low power process as shown in Fig. 8 with design
specifications. The chip is designed with up to 12 analog input
channels integrating front-end low noise amplifier, mixed-signal
data conversion, feature extractions and back-end neural network
classifier. All the output features are sent to a neural network
classifier with on-chip SRAM cache storing off-line trained
weights. Clock-gating is implemented for the neural network and
SRAM to dynamically turn on and off the active power.
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Figure 9: Die micrograph and Test setup.

Fig. 9 shows the die photograph and test setup. The test chip
is mounted on a test PCB board. An FPGA was used as an interface
for controlling the chip and scanning in and out the data for
verification. The selected recorded analog signal channels from
MIT Driver Stress database [17] and DREAMER database are
replayed with sufficient amplification using the USB-DA12-8A
digital to analog converters (DAC) from ACESS. When doing the
measurement, due to the limit numbers of LNAs built in the
fabricated chip, we selected only five physiological signals for each
driver: Electrocardiogram (ECG), Left-shoulder electromyogram
(EMG), Left foot skin conductance (SC), Left-hand skin
conductance and Chest cavity expansion respiration (RESP) for the
Driver database or five EEG signals and one ECG signal from the
DREAMER database for the VR gaming case. The chip is operated
at the minimum voltage of 0.6V to achieve the lowest power
consumption.

5.2 Classification Accuracy and Power Saving
Fig. 10 shows the classification accuracy of the adaptive power
management scheme across two database cases. Five seconds
windows are used across many samples. In DREAMER cases, the
continuously run with excitement emotion achieves 76% accuracy
with the highest power consumption while the Calmness emotion



uses a 20% duty cycle with 72% accuracy leading to 60% power
reduction. In Driver case, the continuous run achieves 75%
accuracy in the city condition, while the duty cycle mode of 50%
and 20% are used in the highway and rest respectfully. The
accuracy in these cases are 73% and 70%.

Fig. 11 shows the measured sampling & classification
waveforms on two databases cases. In the Driver database cases,
the chip was set on continues mode on initial state and City state.
After Highway state was classified, the chip worked on 50% duty
cycle mode, then 20% duty cycle when Rest was sensed. In the
Dreamer database case, the initial and excitement state was set in
continuous mode. The 20% duty cycle mode was set when
Calmness was detected. When fatigue was sensed, the duty cycle
was shifted back to 60%.
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Figure 10: Power and accuracy of measurement. (a) Power in driving

scheme; (b) Power in Gaming scheme; (c) Average power saving in

proposed schemes; (d) Accuracy in driving scheme; (e) Accuracy in

gaming scheme.
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Figure 11: Measured input signal, sampling duty cycle & classification
result waveforms in (a) driving scheme, (b) gaming scheme.

Fig. 10 also shows the power measurements break down in
various sampling methods. Front end and mixed-signal circuits
dominate the total power since it needs a continuous operation. The
power consumptions are proportional to the average sampling time
in each scenario. The average power using the proposed adaptive
power management scheme is reduced by up to 45% compared with
the continuous operation mode. A peak power savings of 60% is
observed at different stress states of the users. More importantly,
compared with conventional dynamic voltage and frequency
scaling (DVFS) which does not consider user’s affective
conditions, the proposed emotion-driven power management
provides a new paradigm in device management in the era of
artificial intelligence.

6 CONCLUSION

Affective computing provides a new dimension of cognitive
intelligence for emerging machine learning empowered edge
devices. To study the hardware perspective of affective computing,

this paper explores the design space and optimization techniques
for designing dedicated ASIC chips. An optimization scheme is
proposed to deliver the optimal neural network topography as well
as improving the power efficiency of feature extraction. Power
management techniques along with voting techniques are proposed
to obtain the optimal tradeoff between power consumption and
accuracy. An emotion-driven adaptive power management scheme
is also proposed to provide runtime optimization for the energy
efficiency of affective computing. A 65nm CMOS test chip was
used to demonstrate the proposed technique showing 30% to 60%
reduction on the power consumption based on the sensed emotion
of the users.
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