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Abstract—This paper studies the “age of information” (Aol) in
a multi-source status update system where /N active sources each
send updates of their time-varying process to a monitor through
a server with packet delivery errors. We analyze the average Aol
for stationary randomized and round-robin scheduling policies.
For both of these scheduling policies, we further analyze the effect
of packet retransmission policies, i.e., retransmission without re-
sampling, retransmission with resampling, or no retransmission,
when errors occur. Expressions for the average Aol are derived
for each case. It is shown that the round-robin schedule policy
in conjunction with retransmission with resampling when errors
occur achieves the lowest average Aol among the considered
cases. For stationary randomized schedules with equiprobable
source selection, it is further shown that the average Aol gap to
round-robin schedules with the same packet management policy
scales as O(N). Finally, for stationary randomized policies, the
optimal source selection probabilities that minimize a weighted
sum average Aol metric are derived.

Index Terms—Age of information, multi-source, active sources,
scheduling, packet transmission errors.

I. INTRODUCTION

Freshness of information is of critical importance in net-
worked monitoring and control systems like intelligent vehicu-
lar systems. The Age of Information metric was first proposed
in [1] to capture the timeliness of received information. In
the simplest setting a source sends updates to a destination
through a channel that is typically modeled as a server with
random service time, e.g., [2]-[6]. The multi-source and/or
multi-destination setting with error-free packet delivery was
considered in [7]-[20].

Several recent papers have considered the effect of packet
delivery errors on Aol [21]-[32]. The single-source single-
destination setting was first studied in [21]. The average Aol
was derived for scheduled access with feedback and slotted
ALOHA-like random access over multiaccess channels in [23].
A single-source multi-destination setting was considered in
[25] where a single base station source sends status updates
to a number of destinations through packets with a fixed
transmission time over unreliable channels. It was shown
that a greedy policy, which schedules a transmission to the
destination with the highest current age is average age optimal
in the absence of error. In [26], [31], the opposite setting was
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Fig. 1. The multi-source status update system with unreliable transmissions.
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studied where a network of nodes transmits status updates
to a base station while simultaneously satisfying throughput
constraints. In this setting, stationary randomized policies are
derived to minimize the weighted sum Aol assuming a unit-
delay channel from each source to the destination. A lower
bound was derived on the average peak Aol in multi-hop
networks with time-slotted transmissions and packet loss [32].

This paper considers a multi-source single-destination status
update system where the sources send information packets to a
destination through a server with unreliable transmissions. The
setting considered in this paper is shown in Fig. 1 and is sim-
ilar to the multi-source single-destination setting considered
in [23], [26]. A key difference, however, is that the service
times in our model are assumed to be random according to
the exponential distribution. Another key difference is that we
consider both stationary randomized policies as well as round-
robin policies under three different packet retransmission poli-
cies when errors occur. Table I summarizes the key differences
between the results in this paper compared to [21], [23], [25],
[26]. The main contributions of this paper are twofold: (i)
we derive closed-form expressions for each source’s long-term
average Aol from the perspective of the destination, and (ii) we
derive optimal source selection probabilities that minimize the
weighted sum average Aol for stationary randomized policies.

II. SYSTEM MODEL

We consider a status update system with N sources S; for
i€I={l,...,N} and one destination node D as shown in Fig. 1.
The sources intend to share information about their local time-
varying state with the destination. We assume that the time
required to sample a status update is negligible and that each
source can generate packets containing status updates “at will”
as in [24], [27]. The packets are sent to the destination through
a server with service time S ‘%" Exp(p). We further assume
that upon service completion, a packet is lost with probability
€. The destination sends instantaneous and error-free feedback
to the server after every service completion indicating whether
the transmission was successful or not. The following sections



TABLE I
COMPARING THE AVERAGE AOI ANALYSIS IN [21], [23], [25], [26] WITH THIS WORK.

single/multi- status update _ stationary randomized policy round-robin policy
N arrival rate service rate — — — —
source/destination at the source(s) no retransmission | retransmission no retransmission | retransmission
retransmission | W/0 resampling |w/ resampling | retransmission| W/0 resampling [w/ resampling
single-source
[21] single-destination Poisson Exponential —_ — — —_ — —
multi-source at the beginning constant /
[23] |single-destination | of each time slot | time-slotted *' *' v *' *' v
single-source at the beginning constant /
(251 | multi-destination |  of each frame time-slotted v *' *' *' v *'
multi-source at will / constant /
[26] single-destination | instantaneously time-slotted v - - - - -
This multi-source at will /
work |single-destination | instantaneously Exponential v v v v v v

discuss the two scheduling policies considered here: (i) the
stationary randomized policy and (ii) the round-robin policy.

A. Stationary Randomized Schedule Policy

We assume a fixed probability mass function P
{p1,...,pn} with p; > 0 corresponding to the probability that
source S; is selected to transmit. We denote the indices of
the transmitted packets over time by j € J = {1,2,...} and
m; €I as the source of the j™ packet. If the j™ packet is
successfully delivered, the next source 141 is simply drawn
randomly from P. If the j™ packet is lost, then we consider
three packet management approaches:

Al. No Retransmission: The server ignores errors and simply
draws source m;1 from P as if no error occurred. We
refer to this case as “RND_NR”.

Retransmission Without Resampling: The server sets
mjt1 = m; and retransmits the original packet from
Smj. We refer to this case as “RND_ARQ”.
Retransmission With Resampling: The server sets
mj11 = m; and transmits a fresh packet from S,,,;. We
refer to this case as “RND_ASQ”.

A2.

A3.

B. Round-Robin Schedule Policy

For the round-robin scheduling policy, transmitting nodes
are selected deterministically in order. If the j" packet is suc-
cessfully delivered, the next source is m; 1 = {m; mod N }+
1. If the j™ packet is lost, then we consider same three packet
management approaches as in the stationary randomized
case. These packet management approaches are denoted as
‘RR_NR” (no retransmission, errors are ignored), “RR_ARQ”
(the original packet from S,,; is retransmitted until success-
fully delivered), and “RR_ASQ” (a fresh packet from S,,; is
transmitted until successfully delivered), respectively.

C. Average Age Metric

The age A;(t) of the status of S; at the destination is a
linearly increasing random process when no updates arrive at
the destination and has downward jumps when an update is

received. The average age of the status updates of S; from the
perspective of the destination is defined as [2]

1 T
. /O As(t) dt.

III. AVERAGE AGE ANALYSIS FOR STATIONARY
RANDOMIZED AND ROUND-ROBIN POLICIES

Ai £ lim
T—o0

ey

In this section we analyze the average Aol for the two
scheduling policies in Section II-A and Section II-B.

A. Stationary Randomized Schedule Policy

Theorem 1 presents the average Aol for the stationary
randomized schedule policies.

Theorem 1. The average Aol A; of the status updates of
source © € 1 for the multi-source system with active sources
and service completion with error probability € under the
stationary randomized policies is equal to

1 + 1 — €)P;
Aj RND_NR = M, (2a)
n(1 = €)ps
L+pi
A; = — 2b
[RND_ARQ = O (2b)
A RND_ASQ = Aj RND_NR- (2¢)

Proof sketch. We use tools from Stochastic Hybrid Systems
(SHS) [16] to derive the average age. Due to space limitations,
most of the algebraic derivations are omitted here. A Markov
chain representation of the discrete state ¢(¢t) € Q of the
system regarding A;(¢) for case RND_NR is shown in Fig. 2.
Table II represents the exponential rate and the transition
map for each link ¢ with continuous state [xg,z1], where z
represents the age of the S;’s state at D and x; stores the age
to be used after an age reset when S; successfully delivers a
packet (link 0). For notational convenience, we denote

1 0 0 0 1 0
D0—|:0 0:|,D1—|:1 O:|,al’ldD2—|:0 1:| (3)

Since there is only one state in Fig. 2, the stationary
distribution of the Markov chain is trivial and we can write
the single balance equation (Theorem 4, [16]) as

o =b+20v, Ay + APy, Ay, 4)
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Fig. 2. The Markov chain of the status update system in Fig. 1 regarding
A;(t) for case RND_NR. Link ¢ = 0 corresponds to a successfully delivered
packet for S;. Link ¢ = 1 corresponds to an unsuccessfully delivered packet
for S; as well as a successful or unsuccessful packet from any other source.

TABLE II
TRANSITION RATES AND MAPS FOR CASE RND_NR.
¢ a—>q | O | xAr | A | vg, Al
0 ‘ 0—0 ‘ u(l —e)p; ‘ [x1,0]) ‘ D1 | [vo1,0]
1| 0=0 | p(1 =1 —=¢€)pi) | [20,0]) | Do | [voo,0]

where b = [1,1] and ¥ = [Tpo, To1]. Substituting the quantities
from Table II and solving for vgg yields

1+ (0 -epi

= 5
10 (1 —€)p; ©)

which shows (2a).

We use a similar analysis for the RND_ARQ and
RND_ASQ cases. Both of these cases can be represented by
the Markov chain in Fig. 3. The system enters state O after
any successful transmission. The system enters state 1 after
an unsuccessful transmission from S; and the system enters
state 2 after an unsuccessful transmission from S; for j # <.
Links 0 and 4 correspond to successful transmissions by S;.
Links 2 and 3 correspond to unsuccessful transmissions by S;.
The remaining links correspond to successful and unsuccessful
transmissions from S; for all j # <.

4 7
0 1

Fig. 3. The Markov chain for cases RND_ARQ and RND_ASQ.

Table III shows the transition rates for case RND_ARQ.
The table for RND_ASQ is identical except for links 2 and 3
where, for RND_ASQ, we have As = A3 = Dg and
xAs = xAj3 = [20,0]. For RND_ASQ we also have
Vg Ao = [vo0,0] and vy, Az = [v19,0]. These differences
are due to the fact that, since RND_ASQ always transmits a
fresh sample, links 2 and 3 reset the stored age in ;. A similar
analysis as above can be applied to solve for the steady state
distribution of the Markov chain as

T=mom M) =[1-¢ e e(l—p)]. (6
and then solving the balance equations for vg, v, and vy and
then compute A; = vgo + v1g + v20 to arrive at (2b) and (2c).

In general, for any fixed system parameters, we have
A rND_ARQ 2> AjrND NR = Ajrnp_asq. The fact that the
achieved average age is identical between cases RND_NR and
RND_ASQ can be understood intuitively by noting that the
destination always receives a fresh sample with both RND_NR
and RND_ASQ. Moreover, the rates of successful packets
from S; are the same in both cases, i.e., for RND_ASQ, the
sum of links 0 and 4 weighted by the steady state probabilities
of the Markov chain can be computed as 7oA(?) + 7 A(H) =

TABLE III
TRANSITION RATES AND MAPS FOR CASE RND_ARQ.
(] =g, A0 xA, A | vgAg
0] 0—=0 p(l—e€)p; [z1,0] | D1 | [vo1,0]
1 0—0 w(1l—€)(1—p;) [0, 0] Do [vo0, 0]
2| 01 pep; [zo0,z1] | D2 | [vo0,vo01]
31 1—=1 e [zo,z1] | D2 | [vi0,v11]
41 10 w(l —¢) [z1,0] | Dy [v11,0]
50/ 02 pe(l — pi) [z0,0] | Do | [voo,0]
6 2—2 e [0, 0] Do [v20, 0]
7 2—=0 M(l - E) [:1,‘0,0} Do [U207 0}

(1 —€)?p; + pe(l —€)p; = u(1l — €)p;, which is the same as
link 0 in RND_RR.

B. Round-robin policy

Theorem 2 presents the average Aol for the round-robin
schedule policies.

Theorem 2. The average Aol A; of the status updates of
source © € I for the multi-source system with active sources
and service completion with error probability € under the
round-robin policies is equal to

N+3+ (N —3)e

A; = , 7
RR_NR ) (7a)
N+3
Aj RR_ARQ = m7 (7b)
N +3—2¢
Ai,RR_ASQ = m (7¢)

Proof sketch. A Markov chain and transition rates for case
RR_NR regarding A;(t) are shown in Fig. 4 and Table IV,
respectively. State m corresponds to S, selected to transmit.
Links 0 and 1 correspond to successful and unsuccessful
transmissions from S, respectively. The remaining links are
for transmissions from S; for all j # 1 and do not distinguish
between successful or unsuccessful transmissions.

1

0 9:90 0

Fig. 4. The Markov chain for case RR_NR.

TABLE IV
TRANSITION RATES AND MAPS FOR CASE RR_NR.

] qe—=a, | 2O | xA, | A | vg A
0 1—=2 [ pul—¢ | [21,0] [ D1 | [v11,0]
1 1—=2 pe [z0,0] | Do | [v10,0]
i | i—>i+1 o [x0,0] | Do [vio, 0]
N | N—=1 jz [20,0] | Do | [vno,0]

Both RR_ARQ and RR_ASQ can be represented by the
Markov chain in Fig. 5. Here, the even numbered links cor-
respond to unsuccessful transmissions and the odd numbered
links correspond to successful transmissions. The transition
rates for case RR_ARQ are shown in Table V. Similar to
the previous discussion, the only difference between RR_ARQ
and RR_ASQ is that the stored age x; is reset in link O for



RR_ASQ. Hence, the transition rate table for case RR_ASQ is
the same as Table V except for link 0 where, for RND_ASQ,
we have A() = DQ, XAO = [IQ,O], and quAO = [1}10,0].
A similar analysis as above can be applied to solve for
vi,...,vy and then compute A; :vazl v;o to get (7a)-(7c).

Fig. 5. The Markov chain for cases RR_ARQ and RR_ASQ.

TABLE V
TRANSITION RATES AND MAPS FOR CASE RR_ARQ, i € {2,...,N — 1}.
¢ =g, | 2O | xA, | Ar | ve Ay
0 0—=0 e [xo,z1] D> [v10, v11]
1 0—>1 | pl—e€) | [21,0] | D1 | [v11,0]
2 —2 i pe [20,0] | Do | [vi0,0]
2t —1 i—i+1 M(l — 6) [SEO, 0] Do [’Uz‘o,o}
2N —2 N — N HE [Io, 0] Do [UNo,O}
2N —1 N —1 M(l — 6) [SEO, 0] DO [UN0,0}

C. Discussion

To compare the RND and the RR policies, we can assume

p1=...=pn = 3. From (2a)-(2¢) and (7a)-(7¢c) we have
-1
A RND NR — A RR NR = >0, (8a)
N -1
A; YAY =— >0, 8b
RND_ARQ RR_ARQ (1= o) (8b)
N -1
A; — A =— " >0. 8
RND_ASQ RR_ASQ S —e) = (8¢c)

The average age gap between RND and RR policies can be
intuitively understood by considering the case when ¢ = 0.
In this case, the round-robin policy ensures each source is
regularly sampled whereas a randomized stationary policy,
even when sampled in the same overall proportion as the
round-robin schedule, samples each source irregularly. This
irregular sampling causes an increase in the average age with
respect to the round-robin schedule.

IV. OPTIMAL RANDOMIZED STATIONARY POLICY FOR
MINIMIZING WEIGHTED SUM AVERAGE AOI

In this section we find the optimal source selection prob-
abilities p7,...,p} that minimize the general weighted sum
average Aol among all stationary randomized policies. Con-
sidering Theorem 1, this problem can be formulated as

N
n;in WSAoI, sty pi=1, 9)

¢ i=1

where
a;[1+(1—)p
WSAOIRND NR=WSAolrnp _ASQ— Zli_ei] (10a)
il +D;

WSAOIRND_ARQ £ @ [ +p ] (10b)

—pN(L = e)p;’

and «; > 0 denotes the fixed wight for source i. Without loss
of generality we assume Zﬁl a; = 1. Theorem 3 represents
the optimal solution for the problem in (9).

Theorem 3. For the RND policies, the optimal p; is

D; RND_NR = Pj RND_ARQ = P7,RND_ASQ = V/ Qi (11

Proof: Considering (10a)-(10b), the Hessian matrix of
2001 2an

WSAOoI can be written as
ey . (12)
pN(1—e)pt’ 7 uN(1 —e)p?v)

Since o; > 0 we have |[H(WSAoI)| > 0, which means that
WSAOoI is a convex function of p1,...,pn and there exist a
set of optimal p; values that minimize WSAol. From (10a) we
define the following Lagrangian multiplier function

sz 1).

Taking the partial derivative of (13), we get

6£(pi, /\) Q5
=— A
opi z A

Nu(1 = €)p;
8£(p1‘, /\)

A =2 ri L

Setting (14a) and (14b) to zero, we get

H(WSAoI) = diag <

1 a;[l+pi(l—e
E(pi,/\)z—z[p—

13
N—=  pupi(l—e¢ (1)

(14a)

(14b)

DiRND_NR = PiRND_ASQ = V@i, A= Nl = (15)

Repeating steps (13)-(14b) for (10b) gives p; gnp aro- O

V. NUMERICAL RESULTS

This section presents numerical examples to illustrate and
verify the achieved average Aol. Figure 6 represents the
average age pairs (A1, Ag) for N =2 sources, error probability
€={0.15,0.6} and normalized service rate u=1. The results
show that A;+As is minimized under the round-robin policy
with retransmissions of fresh samples.

Figure 7 represents WSAoI versus p; for a3 =0.49, as=
0.09, N=2, e=0.6 and p=1. Since the information from
source S7 has a higher weight, intuitively over the long term
more packets from S; should be delivered to the destination
to minimize WSAol. The simulation results show that the
minimum WSAoI is reached when pj gnp Nk =P1 RND_ARQ =
P71 rnp_asg=0.7, which agrees with Theorem 3. For the two
extreme cases where p;—0 (p2—1) and p;—1 (p2—0) we have
A1—00 (A becomes finite) and A; becomes finite (As—00),
respectively, giving WSAol—o0.

VI. CONCLUSION

This paper analyzed the average Aol for a multi-source
status update system with packet delivery errors. For two
scheduling policies, we derived simple closed-form expres-
sions for the average Aol under three different packet man-
agement approaches whenever errors occur. The round-robin
policy with retransmission of fresh samples was shown to have
the lowest average Aol among the considered cases. The gap



RND_NR:
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Fig. 7. Weighted sum average age versus p1 for N =2, ¢ = 0.6 and px = 1.

between the randomized stationary and round-robin policies
was also shown to scale with O(N). For a general problem
where the sources have different priorities, the source selec-
tion probabilities were optimized to minimize the weighted
sum average Aol for stationary randomized policies. Future
directions of this work include deriving fundamental bounds
on the Aol of stationary randomized policy and developing an
optimal scheduling policy that minimizes the age.
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