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Virulence attenuating combination therapy: a
potential multi-target synergy approach to treat
Pseudomonas aeruginosa infections in cystic
fibrosis patients

Elana Shaw a and William M. Wuest *ab

The World Health Organization considers the discovery of new treatments for P. aeruginosa a top priority.

Virulence attenuating combination therapy (VACT) is a pragmatic strategy to improve bacterial clearance,

repurpose outmoded antibiotics, improve drug efficacy at lower doses, and reduce the evolution of

resistance. In vitro and in vivo studies have shown that adding a quorum sensing inhibitor or an extracellular

polymeric substance repressor to classical antibiotics synergistically improves antipseudomonal activity.

This review highlights why VACT could specifically benefit cystic fibrosis patients harboring chronic P.

aeruginosa infections, outlines the current landscape of synergistic combinations between virulence-

targeting small-molecules and anti-pseudomonal drugs, and suggests future directions for VACT research.

Introduction
Cystic fibrosis and P. aeruginosa: a deadly combination

Individuals with cystic fibrosis (CF) carry a genetic mutation
that causes defects in the cystic fibrosis transmembrane
conductance regulator (CFTR) protein. The clinical result is

an overproduction of thick, viscous mucus in the organ
systems, notably the lungs.1–10 Airway mucus promotes
chronic respiratory infections by physically shielding bacteria
from antibiotics and impeding mucociliary clearance (MCC)
of inhaled pathogens.8,11 To make matters worse, CFTR-
dependent disruptions to complement-mediated immunity
impair the ability of monocytes to phagocytose and kill
bacteria.12,13 Consequently, bacteria thrive in CF lungs and
decimate lung function (Fig. 1).14 A CFTR-mediated
metabolic defect that results in excessive succinate release
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particularly favors colonization by succinate-metabolizing
Pseudomonas aeruginosa.15 Chronic infection by this
opportunistic Gram-negative rod is the leading cause of
morbidity and mortality for CF patients.6,7,15–18

Treating P. aeruginosa with antibiotics is exceptionally
difficult:19–24 the bacteria's outer membrane under expresses
OprD porins by which antibiotics can enter the cell and over
expresses RND (resistance-nodulation-division) efflux pumps
which expel antibiotics. In addition, P. aeruginosa has an
inducible gene that codes for AmpC cephalosporinase, a
potent beta-lactamase.24,25 The bacteria can also mutate to
overproduce a protective, charged, alginate-filled
biofilm.9,26–30 Bacteria in biofilms are up to 1000 times more
resistant to antibiotic treatment than their planktonic
counterparts, making this mucoidal phenotype infamously
difficult to treat.31–37 To make matters worse, CF patients
require frequent antibiotics, placing near-constant pressure
on P. aeruginosa to evolve new resistance traits.38

On average, CF patients initially contract P. aeruginosa at
age 2.6. By adolescence, 85% of CF patients are actively
harboring the bacteria in their lungs.5,14,31,33 To treat the
infection, CF patients cycle through bactericidal
monotherapies (including colistin (COL), meropenem (MER),
tobramycin (TOB), ceftazidime (CFT), gentamycin (GEN), and
azithromycin (AZM)).23–25,39–42 Though these monotherapies
may dampen P. aeruginosa flare-ups, they often fail to achieve
full bacterial clearance due to the pathophysiology of CF
(Fig. 1). Bacteria that persist in mucus or biofilms may select
for resistance, repopulate the lung, and evolve mucoidy. Each
failed treatment attempt increases the likelihood of
eventually colonizing a mucoidal multidrug resistant (MDR)
or extensively drug-resistant (XDR) strain.43–50 As such, this
current treatment paradigm promotes heinous chronic
infections and the World Health Organization (WHO) has
assigned top priority to discovering novel therapies for
treating P. aeruginosa.17

Virulence attenuating combination therapy (VACT)

Modern insights into how bacteria specifically interact with
the body to cause disease have shed light on new potential
drug targets: virulence factors.44,51 Virulence inhibitors
specifically interfere with the disease process, thereby
preserving the host microbiome and minimizing the risk of
selecting for resistance.44,52 VACT couples virulence-targeting
small-molecules (to disarm pathogens) with a bactericidal
antibiotic (to kill pathogens).

CF patients suffering from intractable mucoid P.
aeruginosa are a strong example of a population that could
benefit from VACT. In CF lungs, VACT may improve
antibiotic efficacy by attenuating biofilm and reducing P.
aeruginosa virulence factor production to improve the
antipseudomonal activity of antibiotics. Substantial in vitro
and in vivo P. aeruginosa VACT studies support this theory.
This review summarizes these synergistic combinations in
accordance with their virulence target, including 1) quorum
sensing (QS) systems and 2) biofilm extracellular polymeric
substance (EPS) as well as advocates for future VACT studies
that target the type 3 secretion system (T3SS) (Fig. 2).

Discussion
Quorum sensing

QS describes the process by which bacteria communicate
with one another by synthesizing, releasing, and responding
to the population-dependent concentration of small
molecules known as autoinducers (Fig. 3).53–55 P. aeruginosa
secretes two main classes of autoinducer: acyl-homoserine
lactones (HSLs) and 2-heptyl-3-hydroxy-4-quinolone (PQS)
(Fig. 3).56 When the environmental concentration of
autoinducers reaches a threshold, transcriptional regulators
alter gene expression to promote survival.55 P. aeruginosa's
three QS systems, (Las, Rhl, and PQS), work together to
control over 300 genes.57–60 Many of those genes code for
potent virulence factors such as LasB elastase, LasA protease,
the T3SS, exotoxin A, and pyocyanin.60–62

Quorum signaling also allows individual planktonic
bacteria to make group-behavioral decisions, notably the
choice to form a biofilm (Fig. 3).63 During biofilm formation,
bacterial cells aggregate together within a self-produced
matrix of EPS.64–66 Inside of the EPS, P. aeruginosa can
persist, shielded from the host immune system,
environmental stresses, and many antibiotics.37,63

Additionally, biofilms facilitate horizontal gene transfer,
which can lead to the development of resistance.67

Functional QS systems are vital for P. aeruginosa
pathogenesis.56,68 In mouse and rat models, P. aeruginosa
mutants that lacked QS genes caused less lung pathology,
suggesting that cell–cell signaling plays a key role in acute
virulence.69,70 In addition, sputum cultures from CF patients
infected with chronic P. aeruginosa were discovered to
contain significant amounts of HSLs and PQS, indicating that
all three QS systems are deeply involved in human
infection.56,71,72 Thus, selectively perturbing P. aeruginosa's

Fig. 1 Depiction of a CF lung.
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QS systems with small molecules is an extremely promising
strategy for curtailing pathogen virulence in both acute and
chronic infections.

Quorum sensing inhibitors and VACT

Small molecule quorum sensing inhibitors (QSIs) have
demonstrated therapeutic anti-pseudomonal potential.73–77

Alone, they have been found to reduce virulence factor
production, biofilm formation, bacterial motility, and
pathogen virulence.78–81 In mouse and rat infection models,
QSIs alone induced immunogenicity, improved bacterial
clearance, decreased lung pathology, and improved
survival.69,70,78,82

The addition of a QSI to antibiotic therapy generally
attenuates biofilm to improve antibiotic penetration into the
cell while also reducing virulence factor production. Strong
QSI candidates for VACT must be non-cytotoxic to human
cells and synthetically accessible (<5 steps) or commercially
available (for feasible large-scale testing). Laboratories have
been exploring VACT in vitro and in vivo with promising
results as discussed herein.

Furiga and colleagues took inspiration from the structure
of C4-HSL (Fig. 3), a key signaling molecule in CF lung
infections, to develop N-(2-pyrimidyl)butanamide (C11)
(Table 1, entry A). C11 downregulates Las and Rhl QS systems,
decreasing virulence factors LasB and RhlA. C11 also notably
attenuates both aerobic biofilms and the more robust
anaerobic biofilms that predominate in CF lung infection.
When combined with CIP, TOB, and COL, C11 inhibited
biofilm in a dose-dependent manner to improve antibiotic
efficacy. They hypothesize that C11 tampers with QS, causing
the bacteria to transition from a biofilm to a planktonic state
where antibiotics have easier access for killing. C11 is a
strong target for in vivo studies because it is stable, not
cytotoxic to human cells, and synthetically accessible.83

Similarly inspired by the structure of HSLs, Bortolotti and
colleagues conjugated an antagonistic C12-HSL analog to CIP.
They observed that their hybrid molecule, ET37, reduced
biofilm formation and the development of CIP tolerance in
clinical strains of P. aeruginosa (Table 1, entry B).84

Aware that linolenic acid (LNA), an essential fatty acid,
has antimicrobial properties, Chanda et al. added LNA to
TOB therapy and found that the combination synergistically
attenuated biofilm and virulence factor production by
interfering with all three QS systems (Table 1, entry C).85 The
LNA and TOB combination is promising for future in vivo
exploration and eventual studies in CF patients for two
reasons: 1) the regiment is less toxic than TOB alone because

Fig. 2 Adding a virulence inhibitor to antibiotic therapy improves P. aeruginosa killing.

Fig. 3 The QS systems of P. aeruginosa are activated when
autoinducers bind to transcriptional regulators upregulating
autoinducers, virulence factor production, and biofilm formation.
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the addition of LNA allowed TOB efficacy at lower doses and
2) the VACT has been found to disrupt the production of
alginate, a key contributor to chronicity in P. aeruginosa lung
infections.

Work by Brackman and colleagues showed the addition of
baicalin hydrate (BH) to TOB significantly increased biofilm
killing in vitro (Table 1, entry D). They also found that a VACT
regiment of BH and TOB improved survival in a C. elegans
infection model.86 BH is commercially available, making
larger-scale VACT studies (for example, in conditions that
mimic the CF lung environment) very feasible.

Berberine (BER) is an isoquinolone alkaloid that has been
approved for over-the-counter use in China to treat
gastrointestinal infections and is being studied as an anti-
diabetic and antimicrobial.87,88 Li and coworkers found that
sub-MIC regimens of BER and AZM interfered with the Las
and Rhl QS systems to inhibit biofilm and virulence factor
production (notably alginate) (Table 1, entry E). The VACT
also proved effective against 10 clinical P. aeruginosa isolates
cultured from the sputum of CF patients. Excitingly, infected
mice treated with a regimen of 0.8 mg kg−1 of AZM combined
with 3.2 mg kg−1 of BER showed markedly increased survival
and decreased lung inflammation.89

Intrigued by the antibacterial properties of itaconimides,
Fong and colleagues synthesized an analog library based on
structure–activity relationships (SAR) and found that 10 μM
(non-cytotoxic up to 40 μM) of itaconimide 12a in
combination with TOB completely eradicated an entire

population of 72 hour old P. aeruginosa biofilm (Table 1, entry
F). They hypothesize that 12a works by inhibiting the PQS
system via the Las system.90 The VACT's ability to entirely
remove preformed biofilms may suggest exciting utility
against chronic mucoid infection. However, before initiating
further clinically oriented studies, it is necessary to test 12a
for reactivity with thiol containing compounds such as
glutathione. Such reactivity has been linked to cell-death.91

Using bioisosteric modification of known, single-target
inhibitors, Thomann et al. developed compound 6, which is a
multi-target drug that simultaneously inhibits the
transcriptional regulator, PqsR, and a key enzyme for PQS
production, PqsD (Table 1, entry G).92 Alone, 6 interfered with
iron metabolism, decreased virulence factor production, and
inhibited biofilm formation (IC50 = 100 μM) and eDNA
production. It was also efficacious in vivo, increasing the
survival of Galleria mellonella (low toxicity observed). The
VACT combination of 1 μM CIP + 50 μM 6 restored CIP
activity against P. aeruginosa biofilm. They hypothesize that
this synergy is due to the ability of 6 to inhibit eDNA, which
hinders CIP.

Excitingly, Maura and colleagues found that another PqsR
inhibitor, M64, is one hundred times more potent at
inhibiting biofilm than compound 6 (Table 1, entry H).93 Pre-
treatment with M64 restored TOB and MER efficacy against
antibiotic-tolerant biofilms. Concurrent treatment with M64
and MER or TOB decreased biofilm CFU by 178 and 17 times
respectively.

Table 1 QSI chemical structures and VACT testing summary

Entry Structure Synergy with Tested in vitro? Tested in vivo?

A CIP, TOB, COL Yes No

B CIP Yes No

C TOB Yes No

D TOB Yes Yes

E AZM Yes Yes

F TOB Yes No

G CIP Yes Yes

H TOB, MER Yes No
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In recent years, a plethora of auspicious QSIs have been
discovered. Many of these inhibitors are commercially
available, have low toxicity, or inhibit alginate (the main
component of mucoid P. aeruginosa biofilm). For these
reasons, such compounds and their synthetic analogs merit
VACT studies in the context of CF. A summary of promising
QSIs for VACT studies can be found in Table 2.78,79,81,94–97

Extracellular polymeric substance repressors

During the early stages of biofilm formation, bacteria
generate a matrix made up of extracellular polymeric
substances (EPSs).98 P. aeruginosa produces three EPSs: Pel,
Psl, and alginate. Pel is believed to function as an eDNA
cross-linker and has been implicated in the development of
antimicrobial resistance.99,100 Psl may act as a signal to
initiate biofilm formation and is a critical structural element
of biofilms during the microcolony formation stage.101,102

Pel and Psl are exciting targets for VACT because
inhibiting EPSs reduces or eliminates biofilm, making
bacteria more susceptible to antimicrobials.100 The Lewenza
Lab used a high-throughput gene expression screen to find
compounds that repress Pel.103 When studied in combination
with COL, polymyxin B (PB), TOB, GEN, and CIP, EPS
inhibitors I7-I11 attenuated mucoidal biofilms to improve
antibiotic penetration and efficacy (Fig. 4). Notably,
compound I7 also demonstrated ability to attenuate biofilm
in mucoidal P. aeruginosa, making it a prime candidate for
in vivo exploration in the context of CF.

Type 3 secretion system inhibitors and VACT

Type 3 secretion systems (T3SSs) play leading roles in P.
aeruginosa virulence and are a strong yet unexplored
candidate for VACT.104,105 The T3SS is broadly responsible for

transferring proteins out of the bacterial cell and highly
conserved amongst Gram-negative pathogens.105,106 P.
aeruginosa expresses two distinct T3SSs: the fT3SS and the
iT3SS.107 The fT3SS expels flagellar proteins, enabling
chemotaxis and biofilm formation and secreting effector
toxins.107–109 The iT3SS, or injectosome, ejaculates cytotoxic
effector toxins (ETA, ExoS, ExoT, ExoU, ExoY) directly into the
host cell's cytoplasm (Fig. 5).80,110,111

The most potent effector toxin is ExoU.18,22 ExoU has been
found to lyse lung cells and destroy the alveolar epithelia,
leading to septic shock and severe acute lung damage.112,113

ExoS prevents human neutrophils from producing reactive
oxygen species (ROS), which are vital for killing phagocytosed
bacteria.114 ExoT inhibits mammalian cytokinesis, causing
slowed wound healing.9,115 ExoY causes apoptosis.113,116 In
addition to their individual functions, the four major effector
toxins collude to kill and impair alveolar neutrophils and
macrophages, severely handicapping the phagocytotic
immune response to bacteria.117

Inhibiting the T3SS with small-molecules is a highly
appealing anti virulence strategy: the T3SS is specific to
pathogenic bacteria, limiting the chance of off-target
effects.18,80,118–121 In addition, because the T3SS is not vital
for the bacteria's survival, disrupting it should not place
evolutionary pressure on P. aeruginosa to evolve new
resistance mechanisms.122 Ideally, a selective T3SS inhibitor

Table 2 Summary and evaluation of promising QSIs not tested for synergy

Compound Reduces virulence factors Inhibits biofilm? Commercially available?

Alginate, pyocyanin Yes No (2 synthetic steps)

Alginate, rhamnolipid (sub-MIC) Yes Yes

Elastase, pyocyanin, violacetin Yes Yes

Pyocyanin Yes (IC85 = 100 μM) Yes

Elastase, pyocyanin (IC50 = 10 μM) Yes (IC50 = 50 μM) No

Elastase, pyocyanin Yes Yes

Fig. 4 Chemical structures of EPS inhibitors by the Lewenza Lab used
in VACT.
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would stop P. aeruginosa from impairing phagocytosis,
empowering the host immune system to kill the bacteria.118

However, T3SS inhibitors have never been studied for synergy
with bactericidal antibiotics. Several promising T3SS
inhibitors and VACT candidates are featured in Fig. 6 and
discussed herein. However, for a thorough review of targeting
the T3SS to fight P. aeruginosa, see Anantharajah et al.123 and
Duncan et al.124

Promising T3SS inhibitors for future VACT studies

Sheremet and colleagues studied the activity of
flourothiazinon (FT), a 2,4-disubstituted-4H-[1,3,4]-thiadiazine-
5-one, against P. aeruginosa infections in a mouse
model.122,125 They found that mice dosed with 50 mg kg−1 of
FT twice daily for 4 days after being infected with various
lethal doses of multi-drug resistant clinical isolates of P.
aeruginosa often survived the infection and displayed less
lung pathology, lower levels of systemic inflammation,
increased clearance of bacteria in their lungs and spleen, and
no bacteremia. This suggests that at both a systemic level
and in the lungs, FT intercepts P. aeruginosa's characteristic
attempt to suppress host immunity, improving phagocytotic
clearance of pathogen from the cells to allow survival. In vitro
experiments showed that FT specifically inhibited secretion
of ExoT and ExoY and significantly decreased bacterial
cytotoxicity. They also found that FT restored the ability HeLa
cells to phagocytose bacteria in a dose dependent manner.
When plated with FT, P. aeruginosa growth was not affected.
The efficacy, specificity, and documented low toxicity104 of FT
make it a highly promising candidate for VACT.

Anantharajah and colleagues explored two classes of
T3SS inhibitors for antibiotic potential: salicylidine
acylhydrides and hydroxyquinolones.107 These molecular
classes were promising as they had previously been found
to inhibit transcription of the iT3SS in other gram negative
pathogens including Y. pseudotuberculosis, Shigella,
Salmonella, and Chlamydia.119–121 The team compared the
anti-pseudomonal activity of the two chemical classes by
selecting a non-cytotoxic model molecule from each and
testing it in a series of in vitro experiments. From the
salicylidine acylhydrides, they selected INP0341 (SA
INP0341), and from the hydroxyquinolines, they selected
INP1750 (HINP1750). They found that both INPs reduced
P. aeruginosa's cytotoxicity in phagocytotic and epithelial
eukaryotic cells. Further experimentation revealed that SA
INP0341 interferes with iT3SS gene transcription while
HINP1750 mediates cytotoxicity by inhibiting a key ATPase
homologous to the iT3SS and the fT3SS to decrease ExoS
secretion and flagellar motility. HINP1750 had a more
robust effect on T3SS inhibition as it was active against
both T3SS systems, making it a stronger candidate for
future study in acute animal infection models and VACT.
However, before such studies take place, it is necessary to
test the mutagenicity of HINP1750 with an Ames test or its
equivalent—nitroaromatic groups have been linked to
mutagenicity and HINP1750 contains 2 nitro groups
attached to an aromatic ring.126

The iT3SS injectosome needle is composed of repeated
subunits of a single protein termed PscF. Before PscF is
secreted to form the needle, it is protected by two
chaperonins, PscE, and PscG. Without protection from the
chaperonins, PscF will degrade in the cytosol, and the
injectosome needle will not form. Thus, inhibiting the
interactions between PscF and the chaperonins will prevent
biogenesis of the iT3SS and its resulting cytotoxicity.80,111

This effect is confirmed by PscE/PscG knockout studies.111 In
July 2019, Feng and colleagues made a serendipitous
discovery that non-bactericidal tanshinones compete with
PscF for PscE-PscG binding.80 They found that
dihydrotanshinone 1 (dHTSN1) demonstrated an IC50 of
0.68 μM, and dihydrotanshinone (dHTSN) demonstrated an
IC50 of 1.5 μM in a fluorescence polarization (FP) assay. In
addition, the compounds were found by Western Blot to
decrease ExoS secretion at concentrations of 100 μM in Ca2+

depleted (T3SS stimulating) conditions. Western blot also
revealed that the tanshinones repressed P. aeruginosa-
induced macrophage lysis by reducing bacterial caspase-1
release. Caspase-1 is normally released by the T3SS, further
suggesting that the tanshinones inhibit T3SS biogenesis.127

In mouse models, 90% of mice challenged with LD70 of PA01
survived when dosed with either dHTSN or dHTSN1. These
mice showed less bacteria in their lungs, lower levels of
inflammation, and less alveolar damage. The impressive anti
virulence properties of tanshinones demonstrated in vitro
and in vivo make them prime candidates for VACT
exploration.

Fig. 5 The T3SS secretes effector toxins into the host cytoplasm.

Fig. 6 Promising T3SS inhibitors for future VACT study.
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Conclusions

Despite a cornucopia of promising academic work in the
development of virulence inhibitors such as QSIs, EPS
repressors, and T3SS inhibitors, these compounds have yet to
progress to clinical trials. One potential explanation for this
disconnect is that large pharmaceutical companies are likely
deterred by the financial risk of such an endeavor for two
reasons. 1) The path by which such a compound would pass
phase 3 is unclear and has yet to be evaluated and 2) testing
molecules that specifically inhibit virulence and not bacterial
growth in humans might raise some ethical questions.
However, with antibiotic resistance on the rise, failing to
pursue non-bactericidal options, even in combination with
approved drugs, is potentially both dangerous and a missed
opportunity to revolutionize our antiquated approach to
treating infectious disease.

Virulence inhibitors (notably QSIs and EPS repressors)
have demonstrated a strong ability to potentiate
antipseudomonal antibiotics in both in vitro and animal
models. There is a long road from in vitro and murine model
experimentation to clinical testing. However, the early
promising results of VACT merit further exploration: first,
synergy testing of known and novel QSIs and EPS inhibitors
is needed to identify new and potent VACT combinations.
Computational screening methods can be used to identify
highly specific, multi-target virulence inhibitors for such
testing. Second, labs must begin testing VACT regimens in
conditions that replicate the CF lung. For example, in the
presence of alginate, CF sputum,128 or in genetically
engineered mouse models (GEMM) with CFTR defects. Third,
VACT studies with T3SS (and other virulence) inhibitors
demand exploration. It is our hope that the next generation
of chemists will use virulence-inhibiting small-molecules to
resuscitate antibiotics and annihilate resistant bacteria.
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