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A B S T R A C T
Building design involves the optimization of factors affecting building performance such as building functions,

comfort, safety, and energy. Building performance models (BPMs) help designers to evaluate and optimize such
factors. However, the lack of design capabilities to validly describe human-building interactions for buildings
under design may contribute to the development of inaccurate BPMs and the performance discrepancy between
predictions and actual buildings. To address this challenge, a computational framework is proposed to increase
the estimations performance of BPMs. The framework uses artificial neural networks (ANNs) to combine an
existing BPM and context-aware design-specific data describing design-specific human-building interactions
captured by using immersive virtual environments (IVEs). The framework produces an augmented BPM that can
predict building performance taking human-building interactions specific to a new design into consideration. It
incorporates a feature ranking technique allowing designers to assess impacts of contextual factors on human-
building interactions. The paper focuses on providing details of theories, experiment and data collection designs,
and algorithms behind the framework as a companion paper of [1].

� A framework for combining contextual factors with building performance models to enhance their predictive
performance.

� Computation for determining impacts of contextual factors on human-building interaction.
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Specifications Table

Subject Area: 
Engineering

More specific subject area: 
Building performance models (BPMs)

IVE for studying human-building interactions

Method name: 
A framework for combining context-aware design-specific data and building performance

models to improve building performance predictions during design

Name and reference of
original method:
[14] C. M. Bishop, Neural networks for pattern recognition. 1995
[10] S. Saeidi, C. Chokwitthaya, Y. Zhu, and M. Sun, “Spatial-temporal event-driven modeling
for occupant behavior studies using immersive virtual environments,” Autom. Constr., vol.
94, no. May, pp. 371–382, 2018.
Resource availability: 
The framework is evaluated by using two main data sources.
[8] D. R. G. Hunt, “Predicting Artificial Lighting Use- A Method Based Upon Obseved Patterns
of Behavior,” Light. Res. Technol., vol. 12, no. 1, pp. 7–14, 1980.
The paper provides an existing building performance model.
[10] S. Saeidi, C. Chokwitthaya, Y. Zhu, and M. Sun, “Spatial-temporal event-driven modeling
for occupant behavior studies using immersive virtual environments,” Autom. Constr., vol.
94, no. May, pp. 371–382, 2018.
The paper provides the procedure to design experiment in an immersive virtual
environment (IVE) and collect context-aware design-specific data.
Overview

During design, designers widely use building performance models (BPMs) to analyze,
understand, and predict building systems, energy usages, occupancy comfort, safety, and health.
BPMs are usually constructed based on data of human-building interactions obtained using
traditional data collection methods (e.g., surveys, sensors, and laboratories). These methods are
heavily reliant on existing buildings. Consequently, data of human-building interactions collected
in such a manner does not effectively describe those interactions in new designs. This often
contributes to the discrepancy between estimations and real building performance, which has
often been cited as a major impediment towards the achievement of building performance
objectives [2–4].

To that end, the authors have offered a computational framework to reduce the above-
mentioned discrepancy by improving the prediction accuracy of BPMs. The framework enhances
the prediction accuracy of existing BPMs by incorporating context-aware design-specific data
associated with new designs, which allows designers to finetune existing BPMs using the context
information in new designs. Immersive virtual environments (IVEs) are used to simulate building
contexts of building under design as well as observe and collect human-building interactions.
Artificial neural networks (ANNs) combine an existing BPM with context-aware design-specific data
acquired by using IVEs.

The paper focuses on details of theories, algorithms, experimental designs, and data collections of
the framework. Full research and validations of the framework can be found in [1].



Fig. 1. The computational framework [1].
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Method details

Computational framework

There four main elements included in the computational framework (see Fig. 1); (1) an existing
building performance model (an existing BPM), (2) context-aware design-specific data obtained from
IVE experiments, (3) computation, and (4) an augmented BPM. In the following, theories, algorithms,
experimental designs, and data collections of the components are elaborated in detail.

Existing building performance model

An existing building performance model (an existing BPM) presents relationships between
dependent variables such as human-building interactions and independent variables such as interior
configurations, locations of building components, and outdoor environments. Existing BPMs can be in a
variety of forms such as statistical models (e.g., regression) and occupancy data [5–7].

To demonstrate the framework, the authors chose a lighting BPM developed by Hunt [8] as an
existing BPM. The Hunt model is in the form of Probit regression (see Fig. 2). Monte Carlo (MC)
simulation is applied to acquire independent and identically distributed (IID) samples of the existing
BPM. In the MC simulation, work area illuminance (x) is considered as inputs. A uniform distribution is
used to randomly generated work area illuminance with range from 200 lux to 700 lux. The uniform
distribution is used because values of the work area illuminance are assumed to occur with the
same relative frequency. The MC simulation used work area illuminance (lux) and Hunt model to
produce the probabilities of switching on. The obtained IID samples of work area illuminance (lux)
and the corresponding probability of switching on are paired, called the existing BPM dataset, and
comprised of 5000 data points. The number of data points are determined based on the learning
curve approach [9]. The learning curve is a plot between the number of training data and the accuracy
of the trained ANN with a specific number of iterations. Up to a certain point, additional training data
do not significantly increase the accuracy of the trained ANN (called knee point). The number of
training data point is defined based on the knee point. Details of ANNs are explained in the
computation section.



Fig. 2. The diagram of executing the existing building performance model.
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Context-aware design-specific data

Fig. 3 illustrates steps to obtain context-aware design-specific data (IVE data) and how to
synthetically generate IID samples from obtained IVE data (the synthetic IVE dataset). The details of
each step are explained in the following sections.

The physical environment
An office is selected as the physical environment (see Fig. 3). The dimension is 9’ x 12’ x 10’

(width � length � height). The office is equipped with multiple sensors to measure the following: 1)
Fig. 3. Diagram of context-aware design-specific data [1].



Table 1
Descriptions and locations of the sensors installed in the office.

Sensor Measurement Location # in Fig. 3

Onset UX90-005 HOBO occupancy/light The occupancy and the
lighting status

Above the entrance
door

1

Onset UX90-005 HOBO occupancy/light The occupancy and the
lighting status

On the work area
(desk)

3

Onset U12-012 HOBO temperature/relative humidity/
light/ data loggers

The work area illuminance On the work area
(desk)

2

Onset U12-012 HOBO temperature/relative humidity/
light/ data loggers

The outdoor illuminance On the window 4
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indoor and outdoor illuminance (lux), 2) the light switch status (on and off), and 3) the occupancy
statuses (occupy and non-occupy) as described in Table 1. The sensors collect data with 5 s intervals
between September 23rd and October 27th, 2016.

The data of the occupancy obtained from the physical environment are observed with respect to
occupant interactions’ patterns with the light switch. Contextual information of factors influencing
interactions are also investigated and defined (e.g., occupancy status, length of intermediate leaving,
outdoor illuminance, and work area illuminance). Factors influencing human-building interactions on
light switch usages are summarized as shown in Table 2 and they are used to develop the IVE
experiments. Moreover, the data obtained from the physical environment are used as a baseline to
evaluate results of an augmented BPM.

IVE experiment
The IVE experiment is designed by using the Spatial-Temporal Event-Driven (STED) modeling

approach [10] along with the occupancy data obtained from the physical environment. Based on the
STED, the IVE experiment is constructed by using four major variables, i.e., states, contexts, events, and
human(H)-building(B) interactions. States are the statuses of operations in the building at the certain
point of time, i.e., light on and off in the IVE experiment (see Table 2). Contexts are situations of
independent variables and the contextual factors in Table 2, which describe conditions of the building
at the certain point of time. Events are occurences such as events during a day (arrival, intermediate
leaving, and departure) that set contexts as well as influence the occupant interacions changing
or maintaining the state. H-B interactions refer to occupant interactions with building components
(e.g., light switch), which are triggered by the occurances of events.
Table 2
Contextual factors, independent, and dependent variables in the case study.

Contextual Factor (Observation) Status

Occupancy Non-occupy (False)
Occupy (True)

Intermediate Leaving No-leave
Short intermediate leave (shorter than an hour)
Long intermediate leave (longer than or equal to an hour)

Outdoor Illuminance Dark
Normal
Bright

Independent Variable (Observation) Status
Work Area Illuminance Dark (200 Lux)

Normal (500 Lux)
Bright (700 Lux)

Dependent Variable (State) Status
Light Switch On (S1)

Off (S2)



Table 3
The sequence of the IVE experiment.

Event Sequence of IVE Experiment in a Sequence

Light Status Before
Interaction

Virtual and Auditory Cues Exposed
to the Participant

Interaction Light Status After
Interaction

Arrival at the Office Initial light status Participant interacts
with light switch

Light status of
the event

Intermediate Leave Light status of the
previous event

Participant interacts
with light switch

Light status of
the event

Returning from the
Intermediate Leave

Light status of the
previous event

Participant interacts
with light switch

Light status of
the event

Departure Light status of the
previous event

Participant interacts
with light switch

Light status of
the event
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IVE experiments are arranged in sequences. Each sequence is comprised of multiple events, namely
initial, arrival, intermediate leaving, coming back from intermediate leaving, and departure (see
Table 3). The unique combination of factors in the IVE experiment are defined by events described in
Fig. 4. Three events of the arrival, two events of the intermediate leave, three events of the returning
from intermediate leave, and two events of the departure lead to 3 � 2 � 3 � 2 = 36 sequences. For
example, the first sequence represents: (1) at arrival, bright illuminance and occupy, (2) at
intermediate leave, long intermediate leave and non-occupy, (3) at returning from intermediate leave,
bright illuminance and occupy, and (4) at departure, normal illuminance and non-occupy.

In the IVE experiment, visual and auditory cues are exposed to the participant to inform the
participant about the situations of variables in Table 2. The prticipant is a male faculty member in
Louisiana State University, who also occupies the physical environment. During the IVE experiment,
the roll of the participant is to select the light switch status based on given events. There are three
alternative light switch statuses for the participant to select, namely switch on, off, and maintain the
light switch. The IVE experiment occurs in two sessions and lasts 140 min in total. Occupancy status,
work area illuminance, outdoor illuminace, and intermediate leaving status data as well as the
selections of the light switch status are recorded throughout the experiment. The recorded data are
called context-aware design-specific data.

Generating IID samples from IVE experiment
Since the sample size of context-aware design-specific data is relatively small, IID samples are

generated by using a Hidden Markov Model (HMM) Baum-Welch [11]. The HMM learns the
relationship between factors influencing human-building interactions (i.e., occupancy, intermediate
leaving, work area and outdoor illuminance) and human-building interactions (i.e., light switching).
The HMM assumes that, in each sequence, the current state at time t (St) influences occurrence of the
adjacent state at time t + 1 (St+1). The state changes from the current state at time t to the next state at
time t + 1 is describe as a state transition [12]. The time steps of data collected from the IVE experiment
Fig. 4. Diagram of factors included in the IVE experiment [1].



Table 4
Time steps of data collected from the IVE experiment.

Time step

t t+1

Event Initial Arrival at the Office
Arrival at the Office Intermediate Leave
Intermediate Leave Returning from the Intermediate Leave
Returning from the Intermediate Leave Departure
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are presented in Table 4. For instance, if the light is on (St) at the arrival event (t), the situation of the
light on may influence the occupant to turn off the light or leave the light on (St+1) at the intermediate
leaving event (t + 1). The probabilities of state transitions are analyzed. A transition probability matrix
is used to present the probabilities of state transitions. The observations are sets of contexts occurring
under particular events. For example, at the arrival event (t), the observation is occupied office, no
leave, dark outdoor and work area illuminance. The probabilities of observations are calculated and
simplified in an observation probability matrix.

The IVE experiment data are classified into the states and the observations of events (see Table 2). The
states are the statuses of the light switch. The other variables are observations. Each observation is
encoded in a vector form and represented as an ordinalvariable. The example of an encoded observations
is described as follow: occupancy, no intermediate leave, bright work area illuminance, and bright
outdoor illuminance are represented as “Occupy + No leave + Bright + Bright”. Then, it is represented by
“1”. After that, the initial-state, transition probabilities and observation probabilities are analyzed.

Initial-state probabilities are probabilities that states (sn) in Table 2 occur at initial events in 36
sequences (p(sn)), which can be calculated using (1).
Table 5
Transit

St oc
pðsnÞ  ¼ Number of  times the Sn occurs in initial events
total number of  intial events

ð1Þ
In this study, the initial light status is randomly assigned with light on and off equally likely
throughout the 36 sequences. Therefore, the initial-state probabilities are 0.5 for both light switch on
(S1) and light switch off (S2).

Transition probabilities are probabilities of state changes from event e (Si) to event e+1 (Sj) across
the experiment (p(Si, Sj)). The formula to obtain transition probabilities is shown in (2).
pðSi;  SjÞ  ¼ Number of  occurences that Si at event e changes to Sj at event e þ 1 
Total number of  occurences of  Si 

ð2Þ
Transition probabilities of this study are calculated and demonstrated in Table 5, where S1 is light
switch on and S2 is light switch off.

Observation probabilities are probabilities that an observation occurs under each state. The
formula to obtain observation probabilities is shown in (3). The observation probability matrix of this
study is obtained and shown in Table 6.
pðSi;  KÞ  ¼ Number of  occurences of  observation K associated with Si
Total number of  occurences of  Si 

ð3Þ
ion probability matrix of this application.

Transition probability
St+1 occurred at e+1

S1 S2

curred at e S1 0.35 0.65
S2 0.96 0.04



Table 6
Observation probability matrix of this application.

Status of
observations

Observation probability

Non-occupy c No
leave + Dark + Dark

Non-
occupy +
No leave +
Normal +
Normal

Non-
occupy +
No leave +
Bright +
Bright

Non-
occupy +
Short
leave +
Dark +
Dark

Non-
occupy +
Short
leave +
Normal +
Normal

Non-
occupy +
Short
leave +
Bright +
Bright

Non-
occupy +
Long
leave +
Dark +
Dark

Non-
occupy +
Long
leave +
Normal +
Normal

Non-
occupy +
Long
leave +
Bright +
Bright

Occupy +
No
leave +
Dark +
Dark

Occupy +
No
leave +
Normal +
Normal

Occupy +
No leave +
Bright +
Bright

State1
(S1)

0.06 0.06 0.06 0.04 0 0.04 0 0 0 0.25 0.25 0.24

State2
(S2)

0.29 0.29 0.07 0.03 0.07 0.03 0.07 0.07 0.07 0 0 0.01
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Fig. 5. IID samples of the IVE data.
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Then the HMM takes the initial-state, the transition and the observation probabilities calculated
previously, and the 36 sequences of observations as inputs in the training process. Fig. 5 shows IID
samples from the IVE experiment data, where the HMMLearn Python library is used for the training
and application of the HMM [13].

The trained HMM produces 5000 data points of the statuses of the light switch, the independent
variables, and the contextual factors. Like the existing BPM dataset, the number of data points are
determined by using the learning curve approach [9]. The probabilities of switching on are analyzed by
using data of statuses of the light switch. Then, the probabilities of switching on, the IID samples of the
independent variables, and the contextual factors are paired. The paired dataset is called the synthetic
IVE dataset.

Computation

The core of the framework is the computation for biasing an existing BPM dataset by using a
synthetic IVE dataset to enhance the performance of the existing BPM. Fig. 6 demonstrates the major
stages of the computation in the framework (i.e., data pre-processing, combination of the existing BPM
dataset and the synthetic IVE dataset, as well as feature ranking), which are explained in the following.

Data pre-processing
Four major data preprocessing steps are performed, namely missing data generation, data

normalization, data splitting, and adding Additive White Gaussian Noise (AWGN).
Missing data generation: Since the existing BPM dataset does not include contextual factors, data of

contextual factors are randomly generated by replicating contextual factors in the synthetic IVE dataset
(see Fig. 7). The descriptions are as follows:
� 
The data of occupancy are generated by using variables of non-occupancy and occupancy.

� 
The data of intermediate leaving are generated by using variables of non-leave, short intermediate
leave, and long intermediate leave.
� 
The data of outdoor illuminance are generated by using variables of dark, normal, and, bright.

Data normalization: The input data (i.e., an independent variable and contextual factors) of the
existing BPM dataset and the synthetic IVE dataset are normalized with respect to the standard
deviations and means of the synthetic IVE dataset. The probabilities of switching on (outputs) of both
datasets are not normalized.

Data splitting: The normalized existing BPM dataset and synthetic IVE dataset are separated based
on an 80-20 split as follows:
1) 
training datasets, which include:
a the existing BPM training dataset
b the synthetic IVE training dataset



Fig. 6. Flowchart representing the computation of the framework.

Fig. 7. Diagram of generating missing data for the existing BPM dataset.
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Fig. 8. Steps to calculate the AWGN for the synthetic IVE training dataset.
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testing datasets, which include:
2) 
a the existing BPM testing dataset,
b the synthetic IVE testing dataset
Adding noise: five percent of the synthetic IVE training dataset is substituted for Additive white
Gaussian noise (AWGN) to increase the variability of the data and reduce overfitting during the
computation process. The steps of generating AWGN for the synthetic IVE training dataset are explained
in Fig. 8.

Combining the existing BPM dataset and the synthetic IVE dataset
Back Propagation-based Artificial Neural Network (ANN): The framework combines the existing

BPM dataset and the synthetic IVE dataset by using the Back Propagation-based Artificial Neural
Network (ANN) [14]. The computational process is constructed by using the Python language. The
ANN system is built based on the Keras functional application program interface (API) [15]. The three-
layered ANN comprises of the input, hiddens, and output layers (see Fig. 9). The input layer involves
the data of the following: 1) occupancy, 2) outdoor illuminance, 3) work area illuminance, and 4)
intermediate leaving from mixtures of the existing BPM training dataset and the synthetic IVE training
dataset. The output layer takes the data of the probability of switching on from mixtures of both
training datasets. The hidden layers use 300 hidden neurons per layer with rectified linear unit
activation function (ReLU). The output layer uses sigmoid activation function. The regularization is
elastic net regularization (combination of L1 (Laplacian) and L2 (Gaussian) penalties). The loss
function uses binary cross entropy (logistic regression). The regularization and learning rate are 10�6.

Training Algorithm: The ANN is trained by using the algorithm shown in Fig. 10, where notations
are described in Table 7. The ANN is initialized by training it with the existing BPM training dataset (DEX

tr )
for 60,000 epochs (see step 1 in Fig. 10). After initialization, the ANN is trained on the existing BPM
Fig. 9. Scheme of the Back Propagation – based Artificial Neural Network (ANN) [1].



Fig. 10. Training algorithm.
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training dataset (DEX
tr ) and the synthetic IVE training dataset (DSI

tr) for various mixture ratios by following
step 2 described in Fig. 10. A mixture ratio (α), a number between 0 and 1, is defined to determine a
mixture of the existing BPM dataset (DEX

tr ) and the synthetic IVE dataset (DSI
tr). The ANN is trained by using

an efficient greedy heuristic algorithm. The mean absolute errors (MAEs) are used as measurements to
specify whether the ANN should be trained on the existing BPM training dataset or the synthetic IVE
training dataset in each epoch. The MAE is used in the algorithm in two aspects. First, the MAEEX

measures errors between the expected outputs of the existing BPM testing dataset (OEX
ts ) and the

predictions of an updated BPM on the existing BPM testing dataset (PredEX), which can be calculate by
using Eq. (4). Second, the MAESI measures errors between the expected outputs of the synthetic IVE

testing dataset (OSI
ts) and the predictions of an updated BPM on the synthetic IVE testing dataset (PredSI),

which can be calculate by using Eq. (5). The notations used in Eqs. (4) and (5) are described in Table 7.
MAEEX ¼
PNEX

1 OEX
ts � PredEX

�
�
�

�
�
�

NEX
ð4Þ
MAESI ¼
PNSI

1 OSI
ts � PredSI

�
�
�

�
�
�

NSI
ð5Þ
At every epoch, if MAESI

MAEEX
> 1�a

a , the algorithm greedily attempts to reduce MAESI

MAEEX
in this epoch. This is

done by training the updated BPM on the synthetic IVE training dataset in this epoch that reduces the
MAESI and increases the MAEEX. Otherwise, in that epoch, the updated BPM is trained on the existing

BPM training dataset, i.e., MAESI

MAEEX
increases. In this study, the process continues for 400,000 epochs. The

400,000 epochs are defined based on many trials of the number of epochs started from 50,000 with an



Table 7
Notations of variables used in the training algorithm (Fig. 10).

Variables Notation

The existing BPM training dataset DEX
tr

The synthetic IVE training dataset DSI
tr

The existing BPM testing dataset DEX
ts

The synthetic IVE testing dataset DSI
ts

The expected outputs of DEX
ts OEX

ts

The expected outputs of DSI
ts OSI

ts

The number of data points in DEX
ts

NEX

The number of data points in DSI
ts

NSI

Prediction of the ANN on DEX
ts

PredEX

Prediction of the ANN on DSI
ts

PredSI
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interval of 50,000 epochs. The learning curve [9] approach is used to investigate the errors of the
predicted outcomes of the learned ANN by plotting the values of the MAEs (i.e., MAESI and MAEEX) and
the number of epochs. The values of the MAEs remain almost the same, when the number of epochs is
higher than 400,000. Therefore, the 400,000 epochs are used throughout the study.

Several combinations of the existing BPM dataset and the synthetic IVE dataset are constructed based
on given mixture ratios (α). The obtained results of combinations are “updated BPMs”. Each updated
BPMs is evaluated against the data from the physical building. The updated BPM that has the least
errors when evaluated against the data from the physical building becomes an augmented BPM.

Feature ranking
In this study, factors impacting predictions include: 1) occupancy status, 2) intermediate leaving, 3)

work area illuminance, and 4) outdoor illuminance, which their levels of impacts are certainly
different. Feature ranking determines the relative impact of such factors. The feature ranking uses
three-layered ANN similar to Fig. 9 for evaluating the level of impact of each factor. To evaluate the
impact of each factor, the synthetic IVE training dataset and the synthetic IVE testing dataset are modified
so that the input to the ANN contains only one factor of interest a time. For example, evaluating the
impact of occupancy status on the prediction of probability of switching on can be performed by
having only data of occupancy status as the input to the ANN and the output remains the same (i.e., the
probability of switch on). The ANN is trained by the modified synthetic IVE training dataset for 400,000
epochs. Then, the ANN predicts the outputs on the modified synthetic IVE testing dataset. The
correlation of determinations (R2) statistically indicate how accurate the learning of the ANN by
calculating linear relationships between the expected outputs and predicted outputs [16]. R2 can be in
range from 0 to 1. If R2 is close to or equal to 1, the predictions of the ANN have low or without errors,
meaning a factor strongly impact on the prediction of the ANN. The algorithm of the feature ranking
and notations are demonstrated in Fig. 11 and Table 8 respectively.

Limitation and future work

Several potentials have been demonstrated through the application of the framework [1]. However,
limitations of the framework still exist with respect to the following aspects:
� 
The framework requires users to define mixture ratio manually. The optimal mixture may be
difficult to obtain since users may not accurately approximate the mixture in advance. To enhance
the effectiveness of the framework, a different approach is needed to determine an optimal mixture
without using a trial-and-error method, for example using the energy efficiency goal of a building to
determine the mixture ratio [17,18].
� 
The results of the study are obtained from one participant, which may affect the observational data
significantly. More cases and the variety of participants need to be considered in future studies.



Fig. 11. Feature ranking algorithm.

Table 8
Variables and Notations used in the feature ranking algorithm (Fig. 11).

Variables Notation

The synthetic IVE training dataset with only factor of interest (n) as input DSI
tr n

The synthetic IVE testing dataset with only factor of interest (n) as input DSI
ts n

Prediction of the ANN on DSI
ts n PredSIn
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� 
The numbers of iterations to train the ANN in this application are defined by using a pre-specified
number of epochs, which must be high enough to ensure the proper training and accurate
outcomes. As a result, computational resources (e.g., time, memory space, and storage) may be
excessively consumed. In the future work, an algorithm will be developed to determine the
convergence point for training the ANN, which may reduce the number of epochs and the use of
computational resources. For instance, an algorithm determines the differences of the mean
absolute error (MAE) between a previous and a current epoch (early stopping). If the MAE of the
current epoch is less than the MAE of the current epoch for a specific number (user defined
number), the training is converged.

Conclusions

The paper elaborates the technical details (e.g., theories, experimental and data collection designs,
and algorithms) behind the computational framework discussed in [1]. The main purpose of the
framework is to increase the estimation performance of BPMs. The framework combines an existing
BPM with context-aware design-specific data by using the ANN and produce an augmented BPM. An
augmented BPM has better estimations of human-building interactions than an existing BPM. Human-
building interactions are captured using immersive virtual environments (IVEs). Moreover, the
framework provides designers or researchers the feature ranking technique to investigate the impact
of contextual factors.
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The framework involves the application of different methods, e.g., existing BPMs, context-aware
design-specific data, ANNs, and feature ranking. It is validated using an existing BPM retrieved from [8],
context-aware design-specific data retrieved from [10], and occupancy data retrieved from a physical
environment. The validation of the framework is presented in [1].
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