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Abstract. Late gadolinium enhanced (LGE) cardiac magnetic res-
onance (CMR) imaging is the current gold standard for assessing
myocardium viability for patients diagnosed with myocardial infarction,
myocarditis or cardiomyopathy. This imaging method enables the iden-
tification and quantification of myocardial tissue regions that appear
hyper-enhanced. However, the delineation of the myocardium is ham-
pered by the reduced contrast between the myocardium and the left
ventricle (LV) blood-pool due to the gadolinium-based contrast agent.
The balanced-Steady State Free Precession (bSSFP) cine CMR imag-
ing provides high resolution images with superior contrast between the
myocardium and the LV blood-pool. Hence, the registration of the LGE
CMR images and the bSSFP cine CMR images is a vital step for accu-
rate localization and quantification of the compromised myocardial tis-
sue. Here, we propose a Spatial Transformer Network (STN) inspired
convolutional neural network (CNN) architecture to perform supervised
registration of bSSFP cine CMR and LGE CMR images. We evaluate our
proposed method on the 2019 Multi-Sequence Cardiac Magnetic Reso-
nance Segmentation Challenge (MS-CMRSeg) dataset and use several
evaluation metrics, including the center-to-center LV and right ventricle
(RV) blood-pool distance, and the contour-to-contour blood-pool and
myocardium distance between the LGE and bSSFP CMR images. Specif-
ically, we showed that our registration method reduced the bSSFP to
LGE LV blood-pool center distance from 3.28 mm before registration
to 2.27 mm post registration and RV blood-pool center distance from
4.35 mm before registration to 2.52 mm post registration. We also show
that the average surface distance (ASD) between bSSFP and LGE is
reduced from 2.53 mm to 2.09 mm, 1.78 mm to 1.40 mm and 2.42 mm
to 1.73 mm for LV blood-pool, LV myocardium and RV blood-pool,
respectively.
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1 Introduction

Myocardial infarction, cardiomyopathy and myocarditis represent common car-
diac conditions associated with significant morbidity and mortality worldwide
[1]. The assessment of myocardium viability for patients who experienced any of
these diseases is critical for diagnosis and planning of optimal therapies. Accu-
rate quantification of the compromised myocardium is a crucial step in deter-
mining the part of the heart that may benefit from therapy [20]. LGE CMR
imaging is the most widely used technique to detect, localize and quantify the
diseased myocardial tissue, also referred to as scar tissue. During the typical LGE
CMR image acquisition protocol, a gadolinium-based contrast agent is injected
into a patient, and the MR images are acquired 15–20 min post-injection. In
the LGE CMR images, the compromised LV myocardial regions appear much
brighter than healthy tissue, due to the trapping and delayed wash-out of the
contrast agent from the diseased tissue regions. As a concrete example, in case
of myocardial infarction, LGE-MR imaging helps assess the transmural extent
of the infarct, which helps predict the success of recovery following revascu-
larization therapy and also provides additional insights about other potential
complications associated with the disease [11].

In a clinical set-up, radiologists and cardiologists visually assess the viability
of the myocardium based on the LGE CMR images. However, the gadolinium-
based contrast agent reduces the contrast between the myocardium and the LV
blood-pool. Although useful to identify scarred myocardium regions, LGE CMR
images do not allow accurate delineation between the LV blood-pool and the LV
myocardium. On the other hand, the bSSFP cine CMR images provide excellent
contrast between myocardium and blood-pool (Fig. 1), and can be successfully
employed to identify the myocardium and blood-pool, but they cannot show
the scarred regions. Therefore, the LGE and bSFFP CMR images show com-
plementary information pertaining to the heart, but neither image type, on its
own, enables the extraction, quantification and global visualization of all desired
features: LV blood pool, LV myocardium, and scarred regions.

In the recent 2019 MS-CMRSeg challenge [21,22], participants were provided
with the segmentation labels for LV blood-pool, LV myocardium, and RV blood-
pool available for the bSSFP cine images to segment the same cardiac chambers
from the LGE images of the same patients. Several studies proposed the gen-
eration of synthetic LGE images from the bSSFP images using cycleGAN [15],
histogram matching [14], shape transfer GAN [17] or style transfer networks like
MUNIT [2]. They use these synthetic LGE images and the annotations provided
for the bSSFP cine images to train various U-Net architectures to segment LV
blood-pool, LV myocardium and RV blood-pool from the actual LGE images.
These methods result in good segmentation performance, however, they are time
consuming, since they rely on a two-step process: training the adversarial net-
works to generate synthetic LGE images from the bSSFP images, followed by
the training of the U-Net architectures (or its variants) on these synthetic LGE
images to segment the cardiac chambers from the original LGE images.
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Fig. 1. Example of (a) bSSFP cine CMR image with its (b) manual annotations - LV
blood-pool (LV) in blue, LV myocardium (MC) in green and RV blood-pool (RV) in
red overlayed on it and (c) LGE CMR image with its (d) manual annotations overlayed
on it. (Color figure online)

An alternative approach to “learning” features from one image type and
using them to segment the other image type is to segment the complementary
features from the cine MRI and LGE-MRI images, then co-register the images
and use the appropriate registration transformation to propagate the segmenta-
tion labels from the cine MRI into the LGE-MRI space or vice versa. Chenoune
et al. [3] rigidly register 3D delay-enhanced images with the cine images using
mutual information as the similarity measure. Wei et al. [20] use pattern inten-
sity as similarity measure leading to accurate affine registration of cine and
LGE images. More recently, Guo et al. [8] proposed employing rigid registration
to initially align the cine images with the multi-contrast late enhanced CMR
images, followed by deformable registration to further refine the alignment. In
summary, all these works employ traditional approaches to iteratively optimize
the registration cost function for a given image pair.

With the advent of deep learning, several groups proposed the utilization
of neural networks to train image registration algorithms using similarity mea-
sures like normalized mutual information (NMI), normalized cross correlation
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(NCC), local Pearson correlation coefficient (LPC), sum of squared intensity
difference (SSD) and sum of absolute difference (SAD) [12]. While the cost func-
tions can be optimized by training large datasets using neural networks, these
unsupervised registration methods do not perform significantly better than the
traditional approaches, as the similarity measures used are the same [13]. Hence,
while these unsupervised machine learning-based registration help in speeding
up the registration process compared to the traditional unsupervised registration
algorithms, they do not necessarily improve registration accuracy beyond that
achieved using traditional unsupervised approaches.

In this paper, we propose a supervised deep learning based registration app-
roach to register bSSFP cine CMR images to its corresponding LGE CMR images
using a STN-inspired CNN. Some literature suggests that supervised registra-
tion techniques entail the use of the displacement field for training [7,16]. Our
proposed method, on the other hand, only uses several segmentation labels to
guide the registration. Hence, here we refer to it as a supervised registration,
although, according to the literature nomenclature mentioned above, it could
also be classified as a segmentation-guided registration.

We train the network on the 2019 MS-CMRSeg challenge dataset using the
provided manual annotations (required only during training) of the LV blood-
pool, LV myocardium, and RV blood-pool and compute a dual loss cost function
that combines the benefits of both the Dice loss and cross-entropy loss. We
compare the accuracy of our proposed rigid and affine supervised deep learning-
based registration to the accuracy of previously disseminated unsupervised deep-
learning-based rigid and affine registrations.

Our proposed method aims to address the limitations associated with the
aforementioned methods as follows: (i) we fully exploit the information per-
taining to the various regions of interest (RoIs) of the cardiac anatomy (i.e., LV
blood-pool, LV myocardium and RV blood-pool) and devise a robust ROI-guided
registration technique that improved registration accuracy beyond the previous
unsupervised techniques; (ii) our method requires minimal preprocessing, specif-
ically it only relies on several segmentation labels that could be obtained using
manual annotation or using available and previously validated accurate, auto-
matic segmentation techniques [5,6,9,18,19]; and (iii) does not require the need
to train additional adversarial networks to generate synthetic LGE-MRI images
[2,14,15,17], therefore reducing network training time without compromising
registration accuracy.

2 Methodology

2.1 Data

The dataset used in this paper was made available through the 2019 MS-CMRSeg
challenge [21,22]. The available data consisted of LGE, T2-weighted, and bSSFP
cine MRI images acquired from 45 patients who had been diagnosed with car-
diomyopathy. In this work, we utilize the LGE and bSSFP cine MRI images for
registration. The manual annotations of the LV blood-pool, LV myocardium and
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RV blood-pool were performed by trained personnel using ITK-SNAP and cor-
roborated by expert cardiologists. Both the bSSFP and LGE MRI images were
acquired at end-diastole. The bSSFP images were acquired using a TR and TE
of 2.7 ms and 1.4 ms, respectively, and consisted of 8–12 slices with an in-plane
resolution of 1.25 mm × 1.25 mm and a slice thickness of 8–13 mm. The LGE-
MRI images were acquired using a T1-weighted inversion-recovery gradient-echo
pulse sequences with a TR and TE of 3.6 ms and 1.8 ms, respectively, and con-
sisted of 10–18 slices featuring an in-plane resolution of 0.75 mm × 0.75 mm and
a 5 mm slice thickness.

To account for the differences in slice thickness, image sizes and in-plane
image resolution between the bSSFP cine CMR and LGE CMR images, all the
images are resampled to a slice thickness of 5 mm (using spline interpolation),
in-plane image resolution of 0.75 mm × 0.75 mm and then resized to 224 × 224
pixels.

2.2 Spatial Transformer Network (STN) Architecture

The STN consists of three parts - a localisation network, a parameterised sam-
pling grid (grid generator) and a differentiable image sampler. The localisation
network function floc() can be any fully connected network or convolutional
neural network that takes in an input feature map I ∈ RW×H×C with width
W height H and channels C through a number of hidden layers, and outputs θ,
where θ = floc(I), and contains the parameters of the transformation Tθ.

In an effort to explain the proposed algorithm, let us consider a regular grid G
consisting of a set of points with source coordinates (xs

i , y
s
i ). This grid G acts as

input to the grid generator and the transformation Tθ is applied on it i.e. Tθ(G).
This operation results in a set of points with target coordinates (xt

i, y
t
i) which

is altered to translate, scale, rotate, skew etc. the input image depending on the
values of the θ. Depending on the target coordinates (xt

i, y
t
i), the differentiable

image sampler generates a transformed output feature map O ∈ RW×H×C
′
[10].

2.3 STN-Based Registration of Cine bSSFP and LGE MRI Images

In our experiments, we concatenate the bSSFP cine CMR image (224 × 224)
with its corresponding LGE CMR image (224 × 224) and input the resulting
224 × 224 × 2 tensor into a CNN which is analogous to the localisation network.
For a 2D affine registration transformation, the output θ of the CNN is a six-
dimensional vector that results in the transformation matrix Tθ,

Tθ =
[
θ11 θ12 θ13
θ21 θ22 θ23

]
(1)

For a rigid registration transformation, the output θ of the CNN is three-
dimensional i.e. θ = [x, y, z] where z is the rotation parameter and (x, y) are the
translation parameters. This results in the transformation matrix Tθ,

Tθ =
[

cos(z) sin(z) x
−sin(z) cos(z) y

]
(2)
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Fig. 2. Overview of supervised registration of bSSFP cine CMR images and LGE CMR
image using STN. In the training network, the GT LGE image is fed into the image
sampler and the dual-loss function is computed using the transformed GT features
from the LGE and cine bSSFP images. In the testing network, the LGE image slice
is fed into the image sampler and the output consists of a spatially transformed LGE
image slice.

The grid generator outputs a sampling grid Tθ(G) and the differentiable
image sampler transforms the ground truth (GT) map of the LGE CMR image.
The Dice loss and cross-entropy loss are computed using the GT map of the
bSSFP cine CMR image and the transformed GT map of the LGE CMR image.
The computed loss is then used to back-propagate the CNN (Fig. 2).

2.4 Network Training

In this paper, we compare the registration accuracy of four different registration
methods - unsupervised rigid, unsupervised affine, supervised rigid and super-
vised affine.

The unsupervised registration methods are trained using the CNN shows
in Fig. 2, using NMI as a cost function. Our proposed supervised registration
methods, which could also be classified as segmentation-guided image registra-
tion techniques, are trained using the following dual-loss function:

Ldual−loss = α.Lcross−entropy + (1 − α).LDice−loss (3)
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where Lcross−entropy is the cross-entropy loss, Ldice−loss is the Dice loss and α
allows us to modulate the effect of the Dice loss and cross-entropy loss on the
overall dual-loss function.

In our experiments, of the total 45 bSSFP and LGE MRI datasets, we use
35 datasets for training, leaving 5 datasets for validation and the remaining 5
datasets for testing. During training, we augment both the bSSFP cine CMR
and the LGE CMR images randomly on the fly using a series of translation, rota-
tion and gamma correction operations. We train our networks using the Adam
optimizer with a learning rate of 1e-5 and a gamma decay of 0.99 every alternate
epoch for fine-tuning for 100 epochs on a machine equipped with NVIDIA RTX
2080 Ti GPU with 11 GB of memory.

3 Results

To evaluate our registration, we identify the LV and RV blood-pool centres as
the centroid of the segmentation masks of the LV and RV blood-pool corre-
sponding to both the bSSFP cine CMR and LGE CMR images. The Euclidean
distance between the blood-pool centers i.e. center distance (CD) from these
two images is compared to the blood-pool CD of the bSSFP cine CMR image
and its corresponding transformed LGE CMR image. We also quantify our reg-
istration accuracy using average surface distance (ASD), a popular evaluation
metric for registration, between the LV blood-pool, LV myocardium and RV
blood-pool masks of bSSFP cine CMR image and its corresponding LGE CMR
image, before and after registration.

In Table 1, we show the mean CD and mean ASD before registration, after
unsupervised rigid registration, unsupervised affine registration, supervised rigid
registration and supervised affine registration of the test dataset. Figure 3 shows
the comparison of CD and ASD of all the four above-mentioned registration
approaches. We can observe that the CD is significantly reduced in both the
supervised registration algorithms (rigid and affine) for LV blood-pool (p-value
< 0.005) and RV blood-pool (p-value < 0.05). We can also observe that the ASD
is significantly reduced for the LV blood-pool (p-value < 0.05), LV myocardium
(p-value < 0.05) and RV blood-pool (p-value < 0.005) for both the rigid and
affine supervised registration methods. However, the changes in the CD and ASD
after unsupervised registration (both rigid and affine) is not very significant,
compared to before registration.

Figure 4 shows an example of the manual annotations of LV blood-pool
(green), LV myocardium (blue) and RV blood-pool (yellow) of a bSSFP cine
CMR image overlayed on its corresponding LGE CMR image before registration
and on the corresponding transformed LGE CMR image after unsupervised rigid,
unsupervised affine, supervised rigid and supervised affine registration. Figure 4
also shows that when the LGE CMR image and its associated hyper-enhanced
regions (marked by the enclosed pink contour) is overlaid onto the bSSFP cine
CMR image and its associated labels, the hyper-enhanced regions erroneously
appear as part of the LV blood-pool, instead of the LV myocardium. Never-
theless, following supervised registration, the hyper-enhanced regions correctly
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align with the LV myocardium, where they truly belong. Lastly, Fig. 4 also helps
the reader visually appreciate the performance of each registration algorithm by
showing the LV and RV blood-pool center-to-center distance before and after
each registration algorithm is applied.

4 Discussion

In this paper, we present a STN inspired CNN architecture to register the bSSFP
cine CMR images to its corresponding LGE CMR images in a supervised man-
ner using a dual-loss (weighted Dice loss and weighted cross-entropy loss) cost
function. Our experiments show a statistically significant reduction of the CD
between the bSSFP cine CMR images and the LGE CMR images in LV blood-
pool from 3.28 mm before registration to 2.22 mm after supervised rigid registra-
tion and 2.27 mm after supervised affine registration, and in RV blood-pool from
4.36 mm before registration to 2.69 mm after supervised rigid registration and
2.52 mm after supervised affine registration. We also observed a statistically sig-
nificant improvement in the ASD between the bSSFP and LGE MRI images in
LV blood-pool from 2.53 mm before registration to 2.14 mm after supervised rigid
registration and 2.09 mm after supervised affine registration, in LV myocardium
from 1.78 mm before registration to 1.42 mm after supervised rigid registration
and 1.40 mm after supervised affine registration, and in RV blood-pool from
2.42 mm before registration to 1.72 mm after supervised rigid registration and
1.73 mm after supervised affine registration. These results are achieved with min-
imal pre-processing i.e. resampling all the images to a slice thickness of 5 mm

Table 1. Summary of registration evaluation. Mean (std-dev) center-to-center distance
(CD) and average surface distance (ASD) for LV blood-pool (LV), LV myocardium
(MC) and RV blood-pool (RV). Statistically significant differences between the regis-
tration metrics before and after registration were evaluated using the Student t-test
and are reported using * for p < 0.05 and ** for p < 0.005. The best evaluation metrics
achieved are labeled in bold.

LV CD
(mm)

LV ASD
(mm)

MC ASD
(mm)

RV CD
(mm)

RV ASD
(mm)

Before
registration

3.28
(1.83)

2.53
(1.23)

1.78
(0.78)

4.36
(3.79)

2.42
(1.20)

Unsupervised
rigid

3.12
(1.79)

2.53
(1.13)

2.17
(1.58)

2.48
(3.78)

2.45
(1.26)

Unsupervised
affine

2.78
(1.65)

2.44
(1.58)

1.85
(1.56)

3.87
(3.75)

2.30
(1.23)

Supervised
rigid

2.22
(1.08)**

2.14
(1.20)*

1.42
(1.48)*

2.69
(2.51)*

1.72
(1.06)**

Supervised
affine

2.27
(1.38)**

2.09
(1.14)*

1.40
(1.12)*

2.52
(2.66)*

1.73
(1.02)**
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Fig. 3. Comparison of (a) mean CD and (b) mean ASD values before registration,
after unsupervised rigid registration, unsupervised affine registration, supervised rigid
registration and supervised affine registration

(using spline interpolation), pixel spacing of 0.75 mm × 0.75 mm and then resiz-
ing them to a common resolution of 224×224 pixels. Another major advantage of
our proposed method is the time required for training (80 s to train each epoch).

Our proposed supervised method outperforms both the unsupervised rigid
and unsupervised affine registration methods. The registration results of unsu-
pervised methods are obtained by training our network using NMI as cost-
function. We also experimented with structural similarity image measure (SSIM)
loss as a cost function, which yielded similar results. The manual annotations
of LV blood-pool, LV myocardium and RV blood-pool used during supervised
training enables the network to focus on registering the images accurately around
the regions of interest, improving the overall registration accuracy.

We also experimented using only the manual annotations of LV blood-pool
and LV myocardium, however the rotational transformation of the registration
fails due to the circular nature of the LV blood-pool and LV myocardium.
Hence, one potential drawback is the need for annotations of cardiac struc-
tures for training. While the LV blood-pool, LV myocardium and RV blood-
pool labels used here were available through the challenge, there exist numerous
sufficiently accurate and robust cardiac image segmentation methods, such as
[5,6,9,18,19], that can be leveraged to annotate the desired structures from
the bSSFP CMR images to provide sufficient rotational asymmetry for optimal
registration. Lastly, another minor drawback is the possibility of losing certain
critical information around the cardiac structures during image resampling prior
to registration, but such challenges have always been faced in image registration,
an example being atlas construction from images featuring different in-plane res-
olution and slice thickness.

We would like to address the insignificant difference between the supervised
rigid and supervised affine registration approach. Note that both the bSSFP
cine CMR and the LGE CMR images are acquired during the same imaging
exam, using the same scanner, without changing the patient position, and while
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Fig. 4. Panel 1-1: Unregistered LGE CMR image and associated hyper-enhanced
regions marked by pink contour and LV and RV blood-pool centers marked by red dots;
Panel 2-1: before registration (CD: 2.72 mm, ASD: 2.24 mm); overlaid unregistered LGE
CMR image and features (from Panel 1-1) onto the bSFFP image showing the RV and
LV blood-pools and their centers (marked by blue dots) and the LV myocardium (MC)
marked on the bSSFP image (Note: The hyper-enhanced regions enclosed by pink con-
tour erroneously appear over the LV blood-pool, not the LV myocardium, where they
truly belong); Panel 1-2: overlaid LGE CMR image onto the bSSFP image following
unsupervised rigid registration (CD: 2.56 mm, ASD: 2.20 mm); Panel 2-2: unsupervised
affine registration (CD: 2.52 mm, ASD: 2.18 mm); Panel 1-3: supervised rigid registra-
tion (CD: 1.56 mm, ASD: 1.64 mm); and Panel 2-3: supervised affine registration(CD:
1.68 mm, ASD: 1.76 mm). (Note: The accurate overlay of the hyper-enhanced regions
marked by the pink contour over the LV myocardium, as well as significantly improved
LV and RV blood-pool center-to-center distance following supervised registration in
Panel 1-3 and Panel 2-3). (Color figure online)

also employing ECG gating for end-diastole image capture, resulting in similar
shapes and sizes of the cardiac structures.

This study was conducted using LGE and bSSFP cine MRI images from
patients diagnosed with cardiomyopathy. Nevertheless, the proposed methods
are useful for registering any gadolinium-enhanced and cine MRI images of
any patient provided their cardiac conditions is visible and appropriate for
gadolinium-enhanced imaging during diagnosis. Such conditions include, but are
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not limited to, myocarditis or myocardial infarction, or other diseases that show
hyper-enhancement of the compromised myocardial regions.

To reduce the reliance on manual annotations to conduct the RoI-guided reg-
istration, in our future work we plan to investigate the use of previously validated
machine learning-based segmentation techniques [5,6,9,18,19] to automatically
extract the required ROI labels (as manual annotated labels are not typically
available for large datasets), then proceed with the proposed segmentation-
guided registration. As a further mitigation strategy, we also plan to devise
and test the effectiveness of using a CNN-based weakly-supervised registration
method.

Another area of improvement for our future work is to correct for slice mis-
alignment during MR image acquisition prior to stacking up the segmented and
registered image slices in the effort to build 3D models that help quantify and
visualize the compromised myocardial regions using 3D maps, leveraging the
methods by Dangi et al. [4].

5 Conclusion

In this work, we show that the proposed STN based RoI-guided CNN can be
used to register bSSFP cine CMR sequence and LGE CMR sequence accurately
and in a time-efficient manner. Our proposed method outperforms unsupervised
deep learning algorithms trained using popular similarity metrics such as NMI.
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Nonrigid image registration using multi-scale 3D convolutional neural networks.
In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne,
S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 232–239. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66182-7 27

17. Tao, X., Wei, H., Xue, W., Ni, D.: Segmentation of multimodal myocardial images
using shape-transfer GAN. arXiv preprint arXiv:1908.05094 (2019)

18. Upendra, R.R., Dangi, S., Linte, C.A.: An adversarial network architecture using
2D U-Net models for segmentation of left ventricle from cine cardiac MRI. In:
Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds.) FIMH 2019. LNCS,
vol. 11504, pp. 415–424. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-21949-9 45

19. Upendra, R.R., Dangi, S., Linte, C.A.: Automated segmentation of cardiac cham-
bers from cine cardiac MRI using an adversarial network architecture. In: Medical
Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling,
vol. 11315, p. 113152Y. International Society for Optics and Photonics (2020)

https://doi.org/10.1007/978-3-030-12029-0_6
https://doi.org/10.1007/978-3-030-12029-0_6
https://doi.org/10.1007/978-3-030-32245-8_38
http://arxiv.org/abs/1909.05488
https://doi.org/10.1007/978-3-030-39074-7_31
https://doi.org/10.1007/978-3-030-39074-7_31
https://doi.org/10.1007/978-3-319-66182-7_27
http://arxiv.org/abs/1908.05094
https://doi.org/10.1007/978-3-030-21949-9_45
https://doi.org/10.1007/978-3-030-21949-9_45


220 R. R. Upendra et al.

20. Wei, D., Sun, Y., Chai, P., Low, A., Ong, S.H.: Myocardial segmentation of late
gadolinium enhanced MR images by propagation of contours from cine MR images.
In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp.
428–435. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-
6 53

21. Zhuang, X.: Multivariate mixture model for cardiac segmentation from multi-
sequence MRI. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells,
W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 581–588. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46723-8 67

22. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining
multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2933–2946
(2018)

https://doi.org/10.1007/978-3-642-23626-6_53
https://doi.org/10.1007/978-3-642-23626-6_53
https://doi.org/10.1007/978-3-319-46723-8_67

	A Supervised Image Registration Approach for Late Gadolinium Enhanced MRI and Cine Cardiac MRI Using Convolutional Neural Networks
	1 Introduction
	2 Methodology
	2.1 Data
	2.2 Spatial Transformer Network (STN) Architecture
	2.3 STN-Based Registration of Cine bSSFP and LGE MRI Images
	2.4 Network Training

	3 Results
	4 Discussion
	5 Conclusion
	References




