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ABSTRACT

Cine cardiac magnetic resonance imaging (CMRI), the current gold standard for cardiac function analysis,
provides images with high spatio-temporal resolution. Computing clinical cardiac parameters like ventricular
blood-pool volumes, ejection fraction and myocardial mass from these high resolution images is an important
step in cardiac disease diagnosis, therapy planning and monitoring cardiac health. An accurate segmentation
of left ventricle blood-pool, myocardium and right ventricle blood-pool is crucial for computing these clinical
cardiac parameters. U-Net inspired models are the current state-of-the-art for medical image segmentation.
SegAN, a novel adversarial network architecture with multi-scale loss function, has shown superior segmentation
performance over U-Net models with single-scale loss function. In this paper, we compare the performance of
stand-alone U-Net models and U-Net models in SegAN framework for segmentation of left ventricle blood-pool,
myocardium and right ventricle blood-pool from the 2017 ACDC segmentation challenge dataset. The mean
Dice scores achieved by training U-Net models was on the order of 89.03%, 89.32% and 88.71% for left ventricle
blood-pool, myocardium and right ventricle blood-pool, respectively. The mean Dice scores achieved by training
the U-Net models in SegAN framework are 91.31%, 88.68% and 90.93% for left ventricle blood-pool, myocardium
and right ventricle blood-pool, respectively.
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1. INTRODUCTION

Cardiac magnetic resonance imaging (CMRI), a non-invasive and non-ionizing radiation imaging modality, pro-
vides high resolution 3D images (parallel short axis slices stacked together) of the cardiac anatomy with superior
soft tissue details. This makes CMRI the current gold standard for cardiac function analysis.!»? The analysis of
the ventricular structure and function is an important step in cardiac disease diagnosis, treatment and prognosis.
Cardiac function indices like stroke volume, ejection fraction, cardiac output, myocardium thickness and strain
analysis play a crucial role in predicting and planning therapy for diseases like myocardial infarction, ischemia,
arrhythmogenic right ventricular cardiomyopathy, pulmonary hypertension, dilated and hypertrophic cardiomy-
opathy.? The calculation of these cardiac function indices requires accurate delineation of the left ventricle
endocardium, the left ventricle epicardium and the right ventricle endocardium. In order to avoid inter- and
intra-expert variability that occurs in manual delineation, a robust automated segmentation method is necessary.

The automated segmentation of the cardiac chambers is challenging due to the fuzzy boundaries of the ven-
tricular cavities, motion artifacts, banding artifacts, presence of trabeculae and papillary muscles, and shape
variation across phases and pathologies. Prior to deep learning, a number of automated segmentation algorithms
for segmentation of the cardiac chambers from CMR images have been proposed.?? These non-deep learning
algorithms require considerable manual or semi-manual interactions (thresholding, clustering, region growing
and edge-based methods®*), fail to accurately delineate ventricles in basal and apical slices (graph based meth-
ods), and require extensive computational time (active shape models and active appearance models®%). The
inadequacies of these segmentation methods render them unsuitable for clinical applications.
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In recent years, deep learning techniques have shown exceptional performance in image classification and
segmentation. With the availability of large number of medical images for supervised training, fully convolutional
networks (FCN) significantly improved the medical image segmentation performance. The introduction of U-
Net by Ronneberger et al.,” a fully convolutional network with a downsampling network that captures context
information and an upsampling network that enables accurate localization of the annotated objects is currently
the most popular method used for biomedical image segmentation. A majority of the medical image segmentation
algorithms introduced in the past few years are variants of the U-Net model.

Generative adversarial networks (GAN)® are a type of adversarial networks in which two neural networks
compete against each other in a min-max game to generate new image which is as close as possible to the original
training image. This inspired algorithms like cycle-GAN for automated segmentation of epithelial tissue from
microscopic Drosophilia embryos images which outperformed the U-Net models.? Xue et al.'% proposed SegAN,
an end-to-end adversarial network architecture that achieved better Dice score than the U-Net models in the
MICCAI BRATS (2013 and 2015) brain tumor segmentation challenge dataset.

In our previous work, we showed that the U-Net models, when combined with the SegAN architecture
(Fig. 1), performs better in segmenting left ventricle blood-pool from CMR images than standalone U-Net
training.!’ Here, we combine a U-Net model” and one of its variant, a modified U-Net (mod U-Net)!® with
the SegAN adversarial architecture to segment the left ventricle (LV), myocardium (MC) and right ventricle
(RV) simultaneously and show its effect on clinical cardiac parameters like stroke volume, ejection fraction
and myocardial mass, using the image dataset made available through the 2017 Automatic Cardiac Diagnosis

Challenge (ACDC).

2. METHODOLOGY
2.1 SegAN Architecture

The conventional GAN consists of two convolutional neural networks - a generator G and a discriminator D.
The generator G aims to produce an image that is similar to the image from the training dataset and the
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Figure 1. SegAN Architecture'’
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discriminator D aims to differentiate between the real image and the fake image generated by generator G.® This
generative adversarial network inspired Xue et al. to propose an adversarial architecture SegAN for segmentation
of biomedical images. The SegAN adversarial architecture consists of two networks - segmentor and critic. The
segmentor network can be any encoder-decoder type fully convolutional neural network that produces a predicted
class probability map from a raw image input. The critic network is the encoder part of the segmentor network. It
requires two inputs - a raw input image masked by ground truth and a raw input image masked by predicted class
probability map produced by the segmentor network (See Fig. 1). The features are extracted from multiple layers
of the critic network and concatenated to calculate the L; loss function.'® This multi-resolution approach to
feature extraction enables the SegAN model to learn the dissimilarities between the segmentor network predicted
segmentation maps and the ground truth across multiple layers of the critic network.

The L, loss function is given by -

N
min max L(0s,0c) = Z mae(fo(Tn 0 S(xn)), fo(Tn o yn)), (1)

0s Oc

where g and O¢ are the parameters of segmentor network and critic network, respectively and N is the number
of training images. fc(zy, 0 S(xy)) and fo(x, o y,) are the features extracted from ground truth masked input
image and segmentor predicted class probability map masked input image, respectively. The mean absolute error
lmae 18 given by -

L
Imae(fo (@), f Z |f& (@) = fe(@)h, (2)

where L represents the number of layers in the critic network.'°

The segmentor and critic networks are trained in an alternating fashion, with the segmentor network aiming
to minimize the multi-scale Ly loss function and the critic network aiming to maximize the the multi-scale L;
loss function, resembling a min-max game.

2.2 Experiments and Implementation Details

The focus of our experiment is to compare the results of a stand-alone 2D U-Net architecture with a SegAN
architecture. In our experiments, we train the U-Net” model by back propagation using cross entropy loss as
cost function and compare its results with SegAN architecture, where, the U-Net model is used as the segmentor
network and the downsampling part of this U-Net model is used as the critic network (SegAN + U-Net).
The SegAN architecture is trained using multi-scale Lq loss as cost function. We perform our experiments on
two stand-alone U-Net models - an original U-Net” and a modified U-Net (mod U-Net).!? In the modified
U-Net, the downsampling part consists of convolutional layers with kernel size 4x4 and stride 2, while the
upsampling part consists of convolutional layers with kernel size 3x3 and stride 1. The segmentation results
obtained using this modified U-Net are compared with its SegAN integration, i.e., the modified U-Net model is
used as the segmentor network and the downsampling part of the modified U-Net model is used as the critic
network (SegAN + mod U-Net).

For stand-alone 2D U-Net model training, the images are resized to 224x224 and fed into the network in
batches of 10. The U-Net model is trained using Adam optimizer with a learning rate of 0.0001 for 100 epochs.

In SegAN architecture, the input to the segmentor network is a 224x224x1 resized CMR image and the output
is a 224x224x3 predicted class probability map, where the three layers correspond to the three different segmented
classes - left ventricle blood-pool (LV), myocardium (MC) and right ventricle blood-pool (RV). Here, we train
three different critic networks, one for each label class. The segmentor network and the three critic networks
are trained using the average loss computed from the three different critic networks. Since we are training four
networks (one segmentor network and three critic networks) per epoch, the images to SegAN network are fed in
batches of two to avoid memory allocation issues. The SegAN network is trained using Adam optimizer with a
learning rate of 0.00001 for 50 epochs. All the experiments were performed on a machine equipped with NVIDIA
RTX 2080 Ti GPU with 11GB of memory.
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Figure 2. Examples of segmentation of the left ventricle blood-pool (blue), myocardium (green) and right ventricle blood-
pool (red) in mid, apical and basal slices (top to bottom)

2.3 Dataset

The Automated Cardiac Diagnosis Challenge (ACDC) dataset was released during the MICCAI 2017 conference
in conjunction with the STACOM workshop. The dataset consists of short axis cine cardiac MR images for 100
subjects evenly distributed into five subgroups - normal, previous myocardial infarctions, dilated cardiomyopathy,
hypertrophic cardiomyopathy and abnormal right ventricle. The image dataset corresponding to each subject
consists of two image volumes, one at end-diastole and one at end-systole, with each containing 8-12 slices,
leading to a total of 1,902 images.

In our experiments, we divide the ACDC dataset into 80% training data and 20% validation data with five
non-overlapping folds for cross validation. During training, we augment the dataset using translation, rotation,
gamma correction and flipping operations.

3. RESULTS AND DISCUSSION

In Table 1, we summarize the segmentation performance of U-Net models with and without SegAN integration.
We can observe that the SegAN architecture, when integrated with both the variants of U-Net models, achieves
better Dice score for left ventricle blood-pool and right ventricle blood-pool segmentation in both end diastole
and end systole phases. However, in case of left ventricle myocardium segmentation, the Dice scores achieved in
the stand-alone U-Net models training are better or similar to the U-Net models trained in SegAN framework.
These segmentation results are in compliance with the results of the brain tumor segmentation in BRATS 2015
dataset.'® The SegAN architecture obtained better Dice score in segmenting the whole brain tumor region, but
had some drawbacks in segmenting the tumor core and Gd-enhanced tumor core. This is attributed to the fact
that the SegAN architecture extracts features from multiple layers of the critic network and the segmentation of
regions of smaller areas, like the left ventricle myocardium, may require more concentration at pixel-level features.
Therefore, U-Net model with cross entropy loss (pixel-level loss) could have better segmentation performance
than SegAN architecture with multi-scale L; loss for segmentation of the left ventricle myocardium. Fig. 2
shows examples of the segmented left ventricle blood-pool, myocardium and right ventricle blood-pool in mid,
apical and basal slices for the two variants of U-Net models, with and without SegAN integration.
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Table 1. Segmentation evaluation, mean Dice score (std-dev) for end diastole (ED) and end systole (ES) for left ventricle
blood-pool (LV), myocardium (MC) and right ventricle blood-pool (RV) segmentation in the 2017 ACDC dataset. Sta-
tistical significance (T-test) of the results of SegAN architecture compared against U-Net models are represented by * for
p < 0.05 and ** for p < 0.005. The best Dice scores achieved are labeled in bold.

LV Dice LV Dice | MC Dice | MC Dice | RV Dice | RV Dice
(ED) (%) | (ES) (%) | (ED) (%) | (ES) (%) | (ED) (%) | (ES) (%)

U-Net 89.04 88.65 90.62 88.17 88.09 88.80

(1.97) (2.03) (2.72) (3.21) (2.05) 1.92

SegAN + U-Net 91.69 90.29 88.19 88.42 91.55 90.06
(1.49)** (1.61)** (4.21) (5.93) (4.19) (1.74)**

mod U-Net 90.14 88.29 91.61 88.89 90.55 87.41

(1.78) (1.55) (2.14) (2.32)** (4.41) (4.78)

SegAN + mod U-Net 92.19 91.09 91.18 87.95 92.06 90.05
(1.67)* | (2.08)* | (3.50) (7.97) (3.41) | (2.02)*

Table 2. Evaluation of clinical indices - LV stroke volume (SV) correlation coefficient, LV ejection fraction (EF) correlation
coefficient, myocardium mass correlation coefficient, RV stroke volume correlation coefficient and RV ejection fraction
correlation coefficient.

LV SV LV EF MC Mass RV SV RV EF

Correlation | Correlation | Correlation | Correlation | Correlation
U-Net 0.923 0.904 0.955 0.899 0.841
SegAN + U-Net 0.941 0.918 0.931 0.944 0.901
mod U-Net 0.937 0.957 0.956 0.908 0.882
SegAN + mod U-Net 0.974 0.963 0.937 0.935 0.921

In our previous work, we showed that U-Net model (and two of its variants) integrated in SegAN framework
improves the segmentation of left ventricle blood-pool from CMR images.!! In this paper, we investigate the
viability of SegAN framework for multi-class segmentation of left ventricles, myocardium and right ventricles
by evaluating the clinical cardiac parameters like LV stroke volume, LV ejection fraction, RV stroke volume,
RV ejection fraction and myocardial mass. In Table 2, we show the correlation coefficient of these clinical
cardiac parameters calculated using the segmentation results obtained from the above mentioned U-Net models
and its SegAN integrated counterparts with the clinical cardiac parameters calculated using the ground truth.
The correlation coefficient values of ventricular stroke volume and the ejection fraction computed from the
segmentation results of SegAN framework are higher than the correlation coefficient values of ventricular stroke
volume and the ejection fraction computed from the U-Net models. However, the correlation coefficient values
of myocardial mass computed from the segmentation results of SegAN framework are lower than the correlation
coefficient values of myocardial mass computed from the U-Net models. These observations are in agreement with
the Dice score results shown in Table 1, where the segmentation of the myocardial tissue using SegAN integration
is not superior to the segmentation using stand-alone U-Net models, i.e., the myocardial mass estimates are
affected since they are directly related to uncertainties present in the myocardium segmentation.

The major drawback of the SegAN architecture in multi-class segmentation is the computational time and the
memory required to train one segmentor network and three critic networks simultaneously. The computational
time required for one epoch for an U-Net model is around 225 seconds, whereas the U-Net model in SegAN
framework requires around 900 seconds (for multi-class segmentation).

4. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate the use of an adversarial architecture, SegAN with multi-scale L; loss function,
to segment the left ventricle blood-pool, myocardium and right ventricle blood-pool from cine cardiac MR
images. This multi-scale L loss function captures features at multiple levels - pixel-level, superpixel-level and
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patches-level. Our experiments reveal that this integration of U-Net models in the SegAN framework leads
to significant improvement of left ventricle blood-pool and right ventricle blood-pool segmentation in the 2017
ACDC segmentation challenge dataset. The adversarial nature of the architecture and the multi-resolution
approach enables the SegAN model to accurately segment the above mentioned heart chambers, which in turn,
enables accurate computation of critical clinical parameters like ventricular stroke volumes and ejection fraction.

We observed that the segmentation result of left ventricle myocardium did not improve with the SegAN
integration. An alternative solution to this could be an integration of a weighted cross entropy loss as cost
function along with the multi-scale L; loss function.
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