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Abstract—In this paper, we propose an effective, multi-view,
generative, transfer learning framework for multivariate time-
series data. While generative models are demonstrated effective
for several machine learning tasks, their application to time-series
classification problems is underexplored. The need for additional
exploration is motivated when data are large, annotations are
unbalanced or scarce, or data are distributed and fragmented.
Recent advances in computer vision attempt to use synthesized
samples with system generated annotations to overcome the lack
or imbalance of annotated data. However, in multi-view problem
settings, view mismatches between the synthetic data and real
data pose additional challenges against harnessing new anno-
tated data collections. The proposed method offers important
contributions to facilitate knowledge sharing, while simultane-
ously ensuring an effective solution for domain-specific, fine-
level categorizations. We propose a principled way to perform
view adaptation in a cross-view learning environment, wherein
pairwise view similarity is identified by a smaller subset of source
samples that closely resemble the target data patterns. This
approach integrates generative models within a deep classification
framework to minimize the gap between source and target data.
More precisely, we design category specific conditional, generative
models to update the source generator in order for transforming
source features so that they appear as target features and
simultaneously tune the associated discriminative model to dis-
tinguish these features. During each learning iteration, the source
generator is conditioned by a source training set represented as
some target-like features. This transformation in appearance was
performed via a target generator specifically learned for target-
specific customization per category. Afterward, a smaller source
training set, indicating close target pattern resemblance in terms
of the corresponding generative and discriminative loss, is used to
fine-tune the source classification model parameters. Experiments
show that compared to existing approaches, our proposed multi-
view, generative, transfer learning framework improves time-
series classification performance by around 4% in the UCI multi-
view activity recognition dataset, while also showing a robust,
generalized representation capacity in classifying several large-
scale multi-view light curve collections.

Index Terms—Generative Model, GAN, LSTM, RNN, Multi-
view Classification, Transfer Learning, Distributed Time-Series
Analysis, Deep Learning

I. INTRODUCTION

Multi-view time-series data are prevalent in many fields
including finance, medicine, security, surveillance, and as-
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Fig. 1. In a distributed learning environment, the proposed method facilitates
a structured view adaptation by defining pairwise view similarity in terms
of a smaller subset of source samples that closely resemble the target data
patterns, which are then transformed by means of a learned conditional GAN
model to appear as target features.

tronomy. In fact, several specialized metrics like Dynamic
Time Wrapping (DTW) [1], edit distance [2], elastic distance
[3], and several others, e.g., [4], are proposed to overcome
specific challenges associated with time-series classification.
However, the basic assumption in most existing literature is
the availability of a large collection of labeled data samples.
In fact, most of these methods rely exclusively on sophisti-
cated, hand-crafted features to capture the local data patterns.
Therefore, the efficiency and precision of these classification
approaches are heavily dependent on the availability of large
collections of labeled data that capture the entire spectrum of
data characteristics and the quality of the hand-crafted features
used to define a comprehensive descriptor.

In contrast to the shallow feature-based models [3], [4],
deep neural networks recently have shown an outstanding
performance over nearest neighbor approaches when cou-
pled with DTW for the Time Series Classification (TSC)
problem [5]. However, despite their impressive performance,
such models are prone to overfitting, particularly when the
number of training samples is not large or when data patterns
continuously evolve over time [5].
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As a scalable alternative, the use of synthetic data for
learning, via Generative Adversarial Networks (GANs) has
shown great promise by designing generative models via
adversarial training [6]. While GAN models have been very
successful in computer vision related tasks such as generating
realistic-looking images, there has been limited work to date
that proposes a GAN framework for sequential data (e.g.
[7], [8]). The initial successes of GAN efforts for realistic
complex problem settings in an adversarial fashion, however,
are producing encouraging results. In this paper, we propose a
multi-view, generative, transfer learning framework to conduct
structured view adaptation in a distributed environment for the
classification of multivariate time-series data.

While transfer learning has been widely used for various
tasks in computer vision, [9], [10], social media analytics
[11]-[13], anomaly detection [14], the applicability of transfer
learning to time-series classification problems is underex-
plored. In fact, the development of deep learning models
for time-series data — models that adequately address the
practical challenges of changing data patterns and the need for
sufficiently large annotated data collections where annotation
is costly or difficult — is plagued with open research questions.

The proposed method employs an efficient multi-phased
learning strategy that combines generative models within a
deep classification module to compensate for the dearth of
annotated data at a source site, thereby enabling a scheme
for smooth knowledge sharing within a distributed, multi-
view environment. For each category, an initial view-specific,
multivariate GAN is learned at a target site and shared with
networked peer-views at a source site to facilitate knowledge
transfer as well as effective view adaptation of the source
multiclass, deep learning model prior to transfer.

Unlike traditional deep learning architectures, which typ-
ically require a large number of annotated samples as well
as extensive training, the proposed method offers a more
efficient alternative to expedite two-phased learning, wherein
target-specific GAN metadata are transfer to a source site,
thereby enabling compact knowledge sharing without having
to share target samples. In particular, we propose a principled
approach to a semi-supervised, view adaptation that transforms
the feature maps of the source site so that the samples appear
as if they were from the target site, while maintaining their
semantic spatial layouts. At every learning iteration, the source
generative model (conditioned by the target-view generative
model) and the source discriminator compete against each
other so that the source generator learns to produce target-
like features by successfully fooling the source discriminator.
Afterward, a smaller collection of source samples that closely
resembles the target site, evaluated in terms of corresponding
generative and discriminative losses, is used to fine-tune the
baseline source classification model prior to transfer. This
produces a more discriminative, multi-view, deep transfer
model without requiring each view in the network to be
retrained from scratch.

The proposed multi-view, generative transfer learning
framework for multivariate time-series data offers important
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advances that begin to address some of these open questions,
referenced above. Unlike the traditional time-series classi-
fication models, the conditional GAN-trained discriminators
learn to detect the realistic samples for each category across
multiple views under consideration. In contrast to the existing
multi-view methods that align two domains [15], [16], the
proposed transfer learning framework can facilitate accurate
knowledge sharing over networked peer-views by means of a
comprehensive yet compact set of learned GAN parameters
to define target-specific model requirements. By fine-tuning
the generic baseline source view multiclass deep classification
model on an in-house selected smaller subset that closely
resemble the target data patterns, the proposed framework en-
sures more effective classification performance across multiple
independent views. Figure 2 illustrates the overall workflow,
which demonstrates an improved classification performance by
roughly 4% in the UCI multi-view activity recognition dataset,
while also showing a robust, generalized representation ca-
pacity in classifying several large-scale multi-view light curve
collections.

Figure 1 describes an overview of the proposed method.
The rest of the paper is organized as follows: Section II briefly
describes the related works. Section III describes the proposed
method. Section IV and Section V present the experimental
results and concluding thoughts respectively.

II. RELATED WORKS

In this section, we describe recent related research from
three areas: 1) Generative Learning methods for representing
and analyzing sequential data; 2) Deep Learning methods for
time-series classification; and, 3) Transfer Learning methods
for time-series classification.

Since their inception, Generative Adversarial Networks
(GANSs) [6] have received significant research attention with
much of their application focused on analyzing image data
[17]-[19]. In a recent work, Choi et al. [20] propose a GAN
to generate synthetic electronic health record (EHR) datasets.
Yu et al. [21] design a sequential data generation with GANs
trained using Reinforcement Learning. Morgen [7] generates,
using a GAN with LSTM generator and discriminator, contin-
uous valued sequences that aim to produce polyphonic music.
Conditional GAN models condition the learned model on
additional constraints and therefore drive the data generation
process in a more customized manner [22], [23]. Li et al.
[24] propose a GAN architecture for dialogue generation
process. The fundamental difference between our work and
these efforts is architectural. First, our GAN-based models
are designed for a transfer framework, where a target site
generator represents the entire data patterns in a distributed
learning environment. Second, we introduce conditional GAN
learning to customize the initial baseline source GAN model
to produce more accurate target-like samples as a way to
compensate the lack of target data during learning.

Deep learning methods for time-series classification also
have received significant research attention. [25]. Yi ei al. [25]
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have proposed using Multi-channel Deep Convolutional Neu-
ral Network (MC-DCNN) for multivariate time-series classi-
fication, wherein, input from each variable is used to obtain
latent features, which are then fed in a Multi-Layer Perceptron
(MLP) to perform classification. Karim et al. [26] augment
existing LSTM-FCN and ALSTM-FCN with a squeeze and
excitation block for an improved performance. Wang et al.
[5] introduce a three layer deep convolutional neural network
architecture, accompanied by average pooling for time-series
classification. Fawaz et al. [27] propose different data augmen-
tation techniques to avoid overfitting and learn a generalized
model. Geng & Luo [28] offer a cost-sensitive learning strat-
egy to modify the temporal time-series learning models. Ziat et
al. [30] propose dynamical spatio-temporal model formalized
as a recurrent neural network for forecasting time-series of
spatial processes, wherein the model learns spatio-temporal
dependencies through a structured latent dynamical compo-
nent, while a decoder predicts the observations from the latent
representations. At the intersection of generative methods and
time-series classification, in a recent work, Nweke et al. [31]
have reviewed classification and evaluation procedures and dis-
cussed their applicability on several publicly available datasets
for mobile sensor human activity recognition. Che et al. [32]
analyze Electronic Health Records (EHRs) sequential data by
combining a generative model together with a Convolutional
Neural Network (CNN) prediction model to improve risk
prediction performance with limited data. A comprehensive
review of state-of-the-art methods proposed for time-series
classification can be found [29]. A comprehensive review of
the state-of-the-art methods proposed for this problem can be
found in [29]. Our work is distinguished from these efforts
through its unique and effective application of generative
models with deep learning models in a distributed context.

In this context, transfer learning methods for time-series
data mining tasks have been explored, where models are
learned on source data and then transferred to target data
to minimize the effect of cross domain discrepancies [33],
[34]. Transfer learning methods have been used for anomaly
detection [35], time-series forecasting [36] and recognition
[37]. However, unlike existing deep learning methods for time-
series classification, the proposed framework demonstrates
the benefits of fine-tuning from a selected smaller subset of
informative source data that present patterns similar to the
target data for more precise classification performance upon
transfer.

Despite the above advances, the fundamental challenge of
learning effectively from large data resources across multiple
sites prevails. The ultimate goal remains to identify effective
and efficient techniques for time-series classification on large
distributed data.

[II. PROPOSED METHOD

A multivariate time-series representation of a set of time-
series signals {x;}; is defined in terms of an ordered se-
quence f; = {fi1,....,fir} of T time steps, where each
fig = (fl; - 1) € R? is represented using the j*" time
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step response of d (€ N)-streams. For example, the streams of
d statistical features represent the same light curve signal at T’
time steps. Thus, a multivariate time-series f; is represented in
terms of a d x T" matrix, where d is the number of variables (or
feature dimensions) and 7" is the number of observations (or
timestamps). In our multi-view framework, D, = {(x?,¢})}.
represents the annotated sample collection available for view
v € V, where ¢¢ € {1,...,C} is the label for the signal x?!,
represented by f.

Given a collection of annotated samples D = {D,},ey,
the task is to design an effective and efficient transfer learn-
ing framework that learns base models on a source view
dataset and then transfers the learned models (e.g., network
weights) to a target view, for replicating the learning ar-
chitecture (at least partially), in order to initiate a cost-
effective customization with the target data. Such a framework
enables a distributed learning environment and enhances the
generalization capabilities for multi-view classification. The
proposed learning architecture has two important components:
1) Generative Data Representation Module to learn the data
patterns in a distributed environment across multiple views;
and 2) A Transferable Deep Classification Model.

A. Generative Data Representation Module

Given a labeled dataset in a source (or target) view, our
goal is to train a GAN discriminator and generator pair as
two Long Short Term Model (LSTM) based Recurrent Neural
Network (RNN) to learn the multivariate data patterns from
D, [38]. In this section, we describe briefly the construction of
view-specific GANs and explain of the general design of our
proposed conditional GAN model in the context of structured
view adaptation in a distributed environment.

1) View-Specific Generative Model: Given v € VV and the
view-specific annotated sub-collection D¢ {(x¥,¢)}i(C
D, ) representing the specific category ¢ € C, the generator
(GS) generates synthetic time series data with sequences from
a random latent space as input, and passes the generated
sequence samples to the discriminator (M), which then
attempts to distinguish the generated (i.e., ‘fake’) sequences
from the normal (i.e., ‘real’) training sequences. To capture
the latent interactions among feature dimensions within the
learned model, the proposed GAN considers the entire feature
vector (f), in contrast to considering each of its d projection
components independently.

As in the standard GAN training framework, at every
iteration, the parameters of M and G% are updated based
on the outputs of M from the previous iteration to improve
discriminability, while simultaneously preparing G¢ to capture
the hidden multivariate distribution. This enables G to gen-
erate more realistic samples that more closely represent the
subtle multivariate data patterns of category c as observed in
v'" view. Given a collection of multivariate sequences obtained

IPlease note that for different views, the dimension d of fi,j can differ
and therefore the dimension of f representing x; can vary. However, for
simplicity and without loss of generality, we hold d consistent across different
views in this presentation.
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from the latent random space, Z = {z;}; and D¢, the GAN
model is trained using the corresponding two-player minimax
value function defined as:

min mazx V(Go, My) = Bty (g [log (M (£))]+

Ezp.(2)llog(1 — M(G(2)))]

Both M and G¢ are designed using stacked LSTM architec-
tures [38].

2) View-Specific GAN-based Loss Term: In a view-specific
GAN model, both the discriminator (M) and generator (G¢)
learn the category specific data patterns from two complemen-
tary perspectives: representativeness and discriminativeness.
While M learns to evaluate the authenticity of a given test
sample x;, G¢ learns to generate real-like samples representing
category c for view v, viewed as G : Z — Dy, (i.e., represen-
tativeness). In fact, for each z;, € Z generator output G(z;)
is expected to be very similar to some sample x; € D;.Thus,
it is possible to find a corresponding z{ (which we call ‘v-
invert’) to each test sample x; represented by f; in the test
subcollection of D¢, such that Dis(GS(zY), f;) is minimized.

Given a test sample x;, MS(f;) and Dis(G¢(zY),f;) com-
pute its view specific Discriminative Loss and Generative
Loss, respectively. While these loss values offering some
complementary yet insightful evaluations of x’s fitness as an
instance of category c¢ from the perspective of view v, the
overall Fitness Loss is defined as:

L(xi,c,v) = AMS(£;) + (1 — \)Dis(GS(z]),£:)  (2)

where A is a user defined parameter.

Given a sample x; represented by f;, a precise estimation
of z} is obtained by formulating a minimization problem
gzez'g[Dis(Gg(zi),fi)]. Within our framework, starting with
a random initialization of z;, we use gradient descent for
optimization.

3) Generative Transfer Learning for Cross-View Data Rep-
resentation: The category-specific generator at each view aims
to generate sample representations that are very similar to the
real data to address issues including a shortage of annotated
samples for a given category. In fact, the proposed GAN model
enables (for transfer) the generation of target-like synthetic
data resembling genuine, fine-grained, target data patterns,
without having to share the original data in a networked
peer view. As such, the representation of the same category
will vary across multiple independent views (e.g., light curve
representations of a common astronomical object will differ
when captured by different telescopes). Therefore, in order to
reduce the domain gap, we design a conditional GAN fine-
tuning process, that transfers the learned target GAN model
parameters (G¢,, Mf.) to customize the source view GAN
model (G¢,., M¢,) as per the target requirement. It is important
to note that, while it may be infeasible for the target view
to directly share its data repository with other networked
peer-views, dissiminating the learned data representation in
terms of a compact set of encoded parameters (G, Mf,.) is
simpler, more convenient, and thus more feasible. As shown
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in Figure 2, given xj” € D¢ from the category ¢ € C
and its sr-invert z°", G¢,.(z;") employs a target-like masking
to the source sample x;" highlighting critical intraclass data
patterns specific to the target view in consideration. Then

¢.(z") is combined with f" (feature descriptor of x{" in
the source view) via a nonlinear operator Op(, ). The resulting
gl” = Op(G¢.(z5"),£7") as a transformed feature descriptor
for x;" preserves some low-level pattern information of both
views (sr and tr), while making the transformed representative
appear more like an instance from the target view tr. In this
work, we use max-pool operator to define Op(,). Finally,
the initial source view GAN model (G¢,, M¢,) is fine-tuned
by conditioning it on the entire collection [LGJC{(g,fT,c)}Z-]
of the transformed feature descriptors, and théreby enabling
the source system generate a more target-like representations,
while retaining sufficient patterns informations specific to
source views as well.

4) Multi-View GAN-Based Loss Term: Important to note
that transfer learning is performed by moving limited metadata
(e.g., learned weights, architecture details, tunable parameters,
etc.) between a source view sr and an independent target
view tr. Therefore, in order to facilitate knowledge sharing
without requiring the transfer of large data, it is critical
for the source to gain insights on the subtle yet critical
category-specific target data patterns that contribute to the
large intraclass variances often observed in such distributed
learning environments. To achieve this end, we first identify
a subset Dy C D, that closely resembles the data patterns
observed at target view tr.

Given the source view collection D, = gCDgr where each

Cc
D, represents the subcollection of the source data repository
describing each category ¢ € C, a composite loss term (L2
evaluating the fitness of each x;" € D, is defined as:

L (x7) = aL(x™, c,tr) + (1 — a)L(x*", ¢, sr)  (3)

where « is a user defined parameter balancing the relative im-
portance of each view-specific loss terms. In our experiments,
we set a = 0.6.

For each category c in the source view (sr), the top k source
samples with least composite loss terms are retained within the
selected sample subset (Dy C Ds,.); these are samples more
similar to the class-specific data patterns observed within the
target view (¢r). Notice that, although this is a greedy approach
with no guarantee of optimality on Dy, with size kC, we found
this simple strategy works well in practical cases. Throughout
all the experiments reported in the paper, we use k& = 30
samples per category for fine-tuning prior to transferring to
the target view tr. The exprimental results reported in Section
IV-D demonstrate the performance stability of the proposed
method within a range of neighboring values for k.

B. View-Specific Deep Classification Module

Given {fY};, a Long Short-Term Memory (LSTM) net-
work model, which is a variant of Recurrent Network Model
(RNN), is adopted for learning the time-series descriptor.
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Fig. 2. Overview of the Proposed Generative Transfer Learning Method.

RNNs are a form of neural networks that display temporal
behavior through the direct connections between individual
layers. Given x; and its d-dimensional temporal representative
sequence f, RNNs are designed in an iterative learning
phase, to propagate historical information via a chain-like
neural network architecture that simultaneously takes into
consideration of the current input as well as the hidden
state at each time step [39]. However, standard RNNs face
a vanishing gradient problem and are unable to learn long-
term dependencies as time steps become large. To address this
challenge, Long Short-Term Memory (LSTM) has emerged as
an efficient alternative that integrates the gating functions into
its state dynamics [38]. In this work, stacked LSTM models
are used as the feature extraction modules to obtain view-
specific representations, which are then fed into a stack of
Fully Connected (FC) layers for view-specific classification.
The proposed deep classification model uses three FC
layers. While adding more layers makes the network more
expressive, it becomes harder, at the same time, to train due to
increased computational complexity, vanishing gradients, and
model overfitting. In order to address the issue of overfitting,
dropout-based regularization is employed, which randomly
chooses a percentage « of hidden units during the forward
backpropagation step. This technique is used to cancel the
contribution of some randomly chosen weight vectors in the
network. A scaled version of the learned weight (wts. = x-wt)
without applying the dropout, is used at the inference step. The
standard back propagation algorithm is employed to update
FC layer weight parameters in W". More specifically, if F'
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denotes the loss function defined as follows:

> e LZ’{‘ N{¢; = cHog p(c; = c|x¥; W?)
2

F(W") =—
“)

where N{.} is the indicator function, W represents the CNN
weight parameters, and the prob(c! = c|x¥; W") computes
the probabilistic score of the sample x7 for the class c. The
task is formulated as solving a minimization problem defined
as: ﬂ%’l} F(WV). The activation of the last FC layer is fed into

a softmax layer to obtain the probabilistic class membership
scores.

Finally, prior to transferring, the pre-trained model W*"
learned at the source view sr, is fine-tuned with D, to
customize it for the target view tr that can produce a more
discriminative classification performance at transfer.

IV. EXPERIMENTS
A. Dataset

The performance of the proposed method is evaluated by
analyzing the results of several experiments conducted for two
types of tasks: (1) Light Curve Classification, and (2) Daily
Activity Recognition. These testbed choices are influenced by
their unique application-specific challenges, which make the
corresponding classification task more complex.

In order to classify large collections of periodic light curves
[40] generated from multiple independent surveys, one of
the major challenges is the variance in the measurements
frequently observed for similar light curves obtained from
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different telescopes. For our experiments, the first collection
of light curves is taken from Catalina Real-Time Transient
Survey (CRTS). A set of ~ 50k periodic variables from
the CRTS North (CRTS-N) survey builds one view-specific
sub-collection of D. Other view-specific sub-collections of
D include ~ 37k samples from CRTS-South [41], ~ 15k
samples from Palomar Transient Factory (PTF) [42], and
~ 17k samples from the 2018 Gaia Data Release2 [43].
The fourth view-specific collection, Gaia Data Release2 (Gaia
DR2), contains synthetically generated samples describing the
celestial positions and the apparent brightness at three different
bands: White-Light ‘G’; Blue Prism (‘BP’); and, Red Prism
(‘RP’). A separate set of multi-view experiments with this
dataset uses subsets of each of these samples as a single
view data collection; thus, the entire multi-view collection D
contains the Gaia DR2 data at all three different bands. The
released PTF and Gaia DR2 collection have 5 and 6 such
classes, respectively with at least 500 representative samples
to constitute the training collection. CRTS-N contains samples
from 17 classes in the entire sample collection. Any class
with fewer than 500 samples is added entirely to the training
collection. There are 7 such small classes. The proposed
method is tested on the remaining collection of 10 classes. In
contrast to excluding samples from these 7 classes completely
from the experimental settings, by adding them to the training
collection we create a more challenging multiclass learning
environment for the system. This also ensures learning of an
effective model, also capable of classifying future samples
from those minority classes for which number of samples was
less in the present version of the data release, without needing
a complete model update. CRTS-S uses the same asteroid-
finding cadence as CRTS-N and also has an open filter. In
order to evaluate the proposed transfer learning framework,
the classes, which are common to CRTS-N and CRTS-S, are
identified from the whole collection of CRTS-S to build the
CRTS-S test collection.

The second dataset used in this work is the UCI Daily and
Sports Activity Dataset [44], which contains motion sensor
data of 19 daily and sports activities (listed as Al, ..., A19)
such as sitting, standing, walking, running, jumping, etc. Each
activity is performed by 8 subjects (4 males and 4 females)
within the age range [20,30] for 5 minutes. The subjects
were asked to perform the activities freely in their own styles,
resulting in considerable intraclass variations observed within
each activity type in terms of speed and amplitude, which
created additional challenges for precise classification. This
dataset contains data from 9 sensors, placed at each of 5
different units: torso, right arm, left arm, right leg, and left
leg (45 sensors in total). Each sensor is calibrated to acquire
data at a 25 Hz sampling frequency. The 5-minute time-series
collected from each subject is divided into 5-second segments.
Therefore, each segment has in total 125 samples, from which
50 random samples are chosen to define a single database
segment. While there are (15205) such choices, we select 20 of
them to build a sufficiently large set of representative samples
per activity. Samples from similar activities (like standing and
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standing in an elevator) are treated as the same activity class.
Therefore, the dataset has 11 classes: Sitting (A1), Standing
(A2, A7), Lying (A3, A4), Going up and down the staircase
(A5, A6), Walking (A8, A9), Walking on a treadmill (A10,
A11) Running (A12), Exercising (A13, Al4), Cycling (A1S5,
A16), Rowing (A17) and Jumping (A18, A19). The activity
samples obtained from 4 subjects are used to build the training
collection, while the samples obtained from the remaining 4
subjects constitute the test collection.

B. Feature Processing

The proposed transfer learning framework is generic. Its
efficacy is independent of feature selection. While more
sophisticated features are expected to improve classification
performance, in this work our primarily goal is to evaluate
the framework. Therefore, for the reported experiments we
define each light curve using a lower dimensional (d = 8)
descriptor consisting of a small set of computationally
efficient, statistical measures. We adopt the feature processing
scheme proposed by Mahabal et al. [40] to represent each x;
in terms of an ordered sequence f; with T = 27 time steps.
For example, the light curves are represented in terms of
brightness variations (expressed here in the traditional inverse
logarithmic scale - Mags) as a function of time (expressed
here in days - MJD). While the timestamps in these raw data
are different for different light curves, the proposed feature
processing step is initiated by computing the difference
curve of length (pz) for each x; of length p;. For this
dataset, we have x; = [xMA¢ xMJD] and its corresponding
difference curve is represented as dx; = [dxMAC dxM7D].
dxM7D is aggregated within a binned window B
[ T 1 T 350 20 525 1.5,2.5,3.5,4.5,5.5, 7, 10, 20,
30, 60, 90, 120, 240, 480, 720, 960, 2000, 3000, 4000, 5000],
which can be represented as:

dxAY = [k, s 1. dx}49k] € By] 5)
dx%JD [dxMTPIk], s t. k € dxf\éAG}
where B; = [B[j — 1],B[j]], a window ranged within

two consecutive entries B[j — 1] and B[j]. For example,

_ 71 2 —_ 3
B, = [114—5,?] ;md 4B7 = [62—5,17.5].8Then, we compute
fig = Ufij £ij 1o 155 1750 Filgo JijoF 5], where 8 statisti-

cal measures including mean, min, max, standard deviation,
range cumulative sum, kurtosis, skew and mean absolute de-
viations are respectively computed for dx;";”” This represents
each x; in terms of an ordered sequence fi with T' = 27 time
steps. At each time step j, we have a d = 8 dimensional
response f; ;.

In the case of the UCI Daily Sports and Activity dataset
analysis, each activity is represented in terms of 60 segments
spanning over 5 minutes. Therefore, in this case, the differ-
ence curve computation followed by binning formalization (as
described in Equation (5)) is not required for the feature pro-
cessing. As such, we directly compute the statistical features
describing each segment.
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The stacked LSTM model representing a specific view
v € V, has L = 3 LSTM layers. Each layer is followed by an
immediately by a drop-out layer. The number of hidden units
in each of the LSTM layers is set to be 128, while the drop-
out ratio for each of the corresponding dropout layers is set
to be 0.2. Each FC layer of the multi-view deep classification
module, is designed with 128 units and defined with Rectified
Linear Unit (ReLU) activation. In order to reduce the risk
of overfitting, each FC layer is followed by a dropout layer
with its dropout ratio fixed as x = 0.5. The learning of each
view-specific stacked LSTM model occurs with 80 epochs and
20% of the training samples are used for validation at every
learning epoch. In case of UCI Daily Sports and Activity
dataset analysis, each activity is represented in terms of 60
segments spanning over 5 minutes. We, compute the same
statistical features describing each segment.

C. Implementation in a Distributed Learning Environment

The design of our distributed, multivariate deep learning
framework for time-series data is motivated in part by the
cost and associated challenges of moving data for analysis.
More specifically, our objective is to promote frameworks
for analysis that make previously distributed, fragmented,
and un-shareable data more accessible without requiring the
movement or direct exposure of raw data.

Traditional data fabrics require data to be moved to central
locations for analysis. When data are large or distributed,
transfer costs can be prohibitive; when data are un-shareable,
analysis may be completely unfeasible. The proposed multi-
variate deep transfer learning framework can efficiently utilize
virtual information fabrics like that proposed by Talukder et
al. [45]. Within such an information fabric, deep learning
algorithms are encapsulated inside reusable, lightweight con-
tainers that can be seamlessly deployed and executed in a
distributed fashion. Thus, to support transfer learning, analysis
is distributed across the network (as enabled by the virtual
information fabric) to the source and target data locations
(rather than having to transfer source and target data). Only
limited data are shared under this approach, the size of which,
in this instance, is further optimized by our compact context
descriptor representation.

The Virtual Information Fabric Infrastructure [45] (VIFI) al-
lows researchers to perform analyses using a transfer learning
workflow. Transfer learning workflows allow analysis across
distributed datasets (possibly separated by great distances)
to facilitate an iterative deep learning process on distributed
data. Each workflow step executes inside a container that is
transmitted to the location of a specified dataset. Under a
transfer learning workflow, a model is learned on source data
at one location, transferred to a target location, where it is
refined on target data. We have implemented the proposed
deep learning framework within VIFI environment to validate
the efficacy of our distributed framework within a virtual
information fabric.
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Training Proposed Proposed
Set Bands Framework Framework
Test CRIS-N| PTF sr=CRTS-N, sr=PTF,
Band tr=PTF tr=CRTS-N
CRTS-N 0.764 0.73 0.751 0.784
PTF 0.644 0.848 0.836 0.845
Average 0.704 | 0.789 0.794 0.815
TABLE T

COMPARATIVE PERFORMANCE OF THE PROPOSED TRANSFER
CLASSIFICATION FRAMEWORK IN CRTS/PTF LIGHT CURVE COLLECTION
AGAINST SINGLE VIEW CLASSIFIERS OVER ALL CLASSES OF CRTS-N
AND PTF SURVEYS USING AVERAGE AUC SCORES AS THE PERFORMANCE

METRIC.
Training Proposed Proposed
Set Bands Framework Framework
Test CRTS-N | CRTS-S sr=CRTS-N, | sr=CRTS-S,
Band tr=CRTS-S tr=CRTS-N
CRTS-N 0.764 0.442 0.797 0.78
CRTS-S 0.412 0.856 0.877 0.84
Average 0.588 0.649 0.837 0.81
TABLE T

COMPARATIVE PERFORMANCE OF THE PROPOSED TRANSFER
CLASSIFICATION FRAMEWORK IN CRTS LIGHT CURVE COLLECTION
AGAINST SINGLE VIEW CLASSIFIERS OVER ALL CLASSES OF CRTS-N
AND CRTS-S SURVEYS USING AVERAGE AUC SCORES AS THE
PERFORMANCE METRIC.

D. Results

1) Light Curve Classification: In order to handle the large
variances in sample populations representing different classes,
the same set of experiments is performed multiple times and
the average performance details are reported in Table IV and
Table V. In this work, we use the Receiver Operating Char-
acteristic (ROC) curve for evaluation. Unlike overall accuracy
scores for pairwise binary classification performances reported
by Mahabal et. al. [40], which is dependent on one specific
cut-point, the ROC curve investigates the performance of the
multiclass classification task at a broader range, trying several
cut-points to analyze the pattern of changes observed for the
False Positive Rate with a varying True Positive Rate. The
Area Under Curve (AUC) scores computed for these ROC
curves, therefore, are found to be more insightful and useful
as the evaluation metric.

The proposed cross-view transfer learning strategy was
investigated in several different experimental settings. As seen
in Tables I, II (please see Column 2 and 3), and Table III,
while single-view classifiers perform well in identifying test
samples from its corresponding view, they are not equiva-
lently robust in classifying samples across views. However,

Training Set Bands ‘G BP’ RP’
Test Band
‘G’ 0.91 | 0.87 0.86
‘BP’ 0.81 | 0.89 0.84
‘RP’ 0.81 | 0.83 0.88
Average 0.84 | 0.86 0.86
TABLE 1IT

COMPARATIVE PERFORMANCE OF THE PROPOSED TRANSFER
CLASSIFICATION FRAMEWORK IN GAIA DR2 LIGHT CURVE COLLECTION
AGAINST SINGLE VIEW CLASSIFIERS OVER ALL CLASSES OF GAIA DR2
SURVEYS USING AVERAGE AUC SCORES AS THE PERFORMANCE METRIC.
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Learning vs:Gaia-’RP’ | vs:Gaia-’BP’ | vg,:Gaia-’G’ | vgpr:Gaia-’'BP’ | vs,-:Gaia-’G’ | vg,-:Gaia-’RP’
Configuration vp: Gaia-’G’ | vy: Gaia-’G’ |vgy: Gaia-’RP’|vy,-: Gaia-’RP’ |vy,-: Gaia-’BP’ |vy,-: Gaia-’BP’
AUC 0.895 0.88 0.82 0.851 0.82 0.879

TABLE IV

PERFORMANCE SUMMARY OF THE PROPOSED TRANFER LEARNING FRAMEWORK IN GAIA DR2 LIGHT CURVE COLLECTION.

Learning sr: CRTS-N sr: CRTS-N sr: CRTS-N sr: PTF sr: PTF sr: PTF
Configuration tr: CRTS-S[#] tr: CRTS-S[*] tr: CRTS-S[]] tr: CRTS-S[#] tr: CRTS-S[*] tr: CRTS-S[]]
AUC 0.841 0.792 0.837 0.855 0.824 0.872

Learning sr: CRTS-S sr: CRTS-S sr: CRTS-S sr: PTF sr: PTF sr: PTF
Configuration tr: CRTS-N[#] tr: CRTS-N[#] tr: CRTS-N[]] tr: CRTS-N[#] tr: CRTS-N[#] tr: CRTS-N[]]
AUC 0.806 0.787 0.811 0.82 0.806 0.815

Learning sr: CRTS-N sr: CRTS-N sr: CRTS-N sr: CRTS-S sr: CRTS-S sr: CRTS-S
Configuration tr: PTF[#] tr: PTF[x] tr: PTF[]] tr: PTF[#] tr: PTF[x] tr: PTF[]]
AUC 0.81 0.808 0.794 0.836 0.811 0.857

TABLE V

PERFORMANCE SUMMARY OF THE PROPOSED TRANFER LEARNING FRAMEWORK IN CRTS-N, CRTS-S AND PTF LIGHT CURVE COLLECTION. EACH
COLUMN REPORTS AN AVERAGE AUC SCORE OVER THE ENTIRE TEST COLLECTION OF s7 AND t7 FROM ALL CLASSES.[#] COLUMN (COLUMN 2 AND 5)
REPRESENT A TEST SCENARIO IN WHICH THE BASELINE MODEL IS LEARNED AT THE SOURCE VIEW sr, THE MODEL IS SHARED WITH TARGET VIEW tr,
AND FINE-TUNING IS PERFORMED BY THE ENTIRE TRAINING COLLECTION Dy, OF tr. [x] COLUMN (COLUMN 3 AND 6) REPORT THE PERFORMANCE OF

THE EXPERIMENTS, WHEN A RANDOM SUBSET (WITH k SAMPLES PER CATEGORY) OF Dy, IS SELECTED TO BUILD Dg, WHICH WAS THEN USED FOR

FINE-TUNING AT THE SOURCE VIEW PRIOR TO TRANSFER TO THE TARGET VIEW.[{] COLUMN (COLUMN 4 AND 7) SHOW THE PERFORMANCE OF THE

PROPOSED METHOD WHERE THE TARGET DATA PATTERN INFORMATION IS SHARED IN A COMPACT MODEL FORMAT WITH ¢r. AS DESCRIBED IN SECTION
I1I-A4, A SELECTED SUBSET Dy C Dg,- IS USED FOR CUSTOMIZE THE MODEL AT v¢, PRIOR TRANSFERRING.

a cross-view deep classifier learned utilizing the proposed
generative transfer learning strategy is proved to be equally
competitive in categorizing samples across different surveys
(i.e. views). As observed in Table I, the proposed generative
transfer learning strategy offers about 6% improvement (please
compare column 2 with 4, and column 3 with 5) over the
corresponding single baselines of CRTS-N and PTF. Another
promising performance improvement was observed in Table
II, where the proposed method ensures an average of 19%
performance gain over its corresponding single view baselines.

As shown in the Table V, compared to traditional transfer
learning approaches, the proposed framework utilizes a smaller
source sample collection Dy C D, that closely resembles the
class specific data patterns observed within vy, for customizing
the generic baseline source model as a part of pre-processing
prior to transfer. In fact, as seen by comparing the column
2 with column 4 (and also column 5 with column 7), with
a small set of selected samples in Dy (note that we have
|Do| = 0.1 % |Dg,.|), the proposed method achieves a nearly
equivalent average classification performance across multiple
experimental settings. As observed, comparing the pairwise
performances, as reported in columns (3,4) (and columns
(5,6)), we can see that the proposed method shows significant
promise by reporting an impressive AUC score (which on
average is 3% higher). We also observe by pairwise com-
parison of the corresponding rows of column 4 with column
7 that the proposed transfer framework presents a consis-
tently robust generalization capacity of the learned models
irrespective of the choice of the baseline source view. Figure
3 demonstrates the performance stability of the proposed
generative transfer learning strategy against different values
of k € [20, 30, 40, ..., 100].

Table III reports the performance of the single view classi-
fier. While each of these classifiers shows good discriminative
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PERFORMANCE OVER VARYING k
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Fig. 3. Performance variance observed against different values of & in the
range [20, 30,40, ..., 100]. Each curve (legended as sr/tr) represents the
results over the range of k values, where the proposed method uses the source
view sr and transfers the learned classification module to the target view ¢r.

behavior in terms of classifying the samples from its own band,
the performance deteriorates when identifying samples from
other bands. In order to check the performance of the proposed
deep transfer learning strategy using the Gaia DR2 collection,
we adopt multiple experimental settings, where each of Gaia-
‘G’, Gaia-‘BP’, and Gaia-‘RP’ collections, constitutes an inde-
pendent view of the system. Table IV uses mean AUC scores
(computed over all classes available in the test collection) to
summarize the average performance. In order to minimize the
effect of any bias due to the specific choice of training/test
collection, the same set of experiments is performed 10 times
and the average scores are reported in the table. As seen in
Table IV, the proposed deep transfer learning framework re-
mains consistently stable across multiple experimental settings
and offers a nearly equivalent performance, while introducing
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UCI DAILY SPORTS & ACTIVITY DATASET
PERFORMANCE

mView 1 W View 2

® View 1/View 2

‘ I l | | | | ‘: I.\ B
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Fig. 4. Summarized Performance study of the proposed multi-view learning
framework in UCI Daily and Sports Activity Dataset. The activities indexed
along x-axis are as follows: 1. Sitting (Al), 2. Standing (A2, A7), 3. Lying
(A3, A4), 4. Going up and down the staircase (A5, A6), 5. Walking (A8, A9),
6. Walking on a treadmill (A10, A11), 7. Running (A12), 8. Exercising (A13,
Al4), 9. Cycling (A15, A16), 10. Rowing (A17) and 11. Jumping (A18, A19).
A bar legended as sr/tr reports the performance of the proposed method in a
setting which uses the source view sr and transfers the learned classification
module to the target view tr.

View 2/View 1

an effective fine-tuning scheme utilizing a small set of selected
samples of v that bear close resemblance with the data
patterns at target view vg.. In fact, the proposed method
presents an efficient and precise transfer learning approach
for those use-case settings, where data-sharing in a distributed
environment can be a significant concern for multiple reasons
like data volume, data security, etc.

2) Daily Activity and Sports Recognition: In order to in-
vestigate the performance of the proposed deep multi-view
framework, we follow [46] to design a two-view experimental
setting on the UCI Daily and Sports Activity dataset. Specifi-
cally the first 27 sensors on torso, right arm and left arm are
treated as View-1, while the remaining 18 sensors on right
leg and left leg as View-2. In this application setting, the
activities are observed from two distinct views (i.e., two groups
of sensors) simultaneously. The training set consists of 400
samples representing each activity type from 4 subjects. A test
collection is built using the activity samples collected similarly
from the other 4 subjects. The AUC scores summarized in the
bar graph shown in Figure 4, prove the effectiveness of the
proposed multi-view approach over the single-view classifiers
by displaying an effective classification performance across
all the classes, except a few specific activities like Cycling,
for which single view proved to be more discriminative over
multiple views. The same experiment is repeated 10 times
by selecting a different set of 4 subjects in the training set
that consists of a different set of random 50 samples per
segment and subject for each activity. Table VI reports the
average accuracy scores for comparing the performance of
the proposed approach in the UCI Daily Sports and Activity
dataset, against several state-of-the art results reported by Li
et al. [46]. Accuracy is an evaluation metric that computes
the ratio of the correct predictions over all the predictions
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Method CCA | MvDA | MDBP | Proposed Method
Accuracy | 0.601 | 0.859 0.913 0.953
TABLE VI

COMPARATIVE STUDY ON UCI DAILY SPORTS AND ACTIVITY DATASET,
WHERE THE PROPOSED METHOD IS COMPARED AGAINST CCA [47]
MVDA [48], AND MDBP [46].

made by a classifier. By demonstrating an improvement of
around 4% in the average accuracy, the proposed method
shows significant promise compared to the state-of-the-art
methods in classifying the activity patterns in this dataset.
Also, it is important to note that, in contrast to [46], where
the authors learn the optimized latent subspace for designing
a discriminative representative by utilizing the entire multi-
view data repositories, the proposed method enables learning
within a more distributed context, which makes it more easily
adaptable for several practical application settings.

V. CONCLUSION

In this paper, we present an effective, multi-view, multi-
variate deep transfer learning framework for time-series data.
The proposed framework introduces the concept of pairwise
view-similarity by identifying a smaller set of source data
samples that closely resemble the specific target data under
consideration. The proposed two-phased learning model learns
a generic baseline, which is later fine-tuned utilizing a selected
view-specific similarity representative collection for expediting
the task of knowledge sharing in a distributed environment. A
conditional generative adversarial architecture combined with
deep classification framework minimizes the gap between the
source and target data. Our proposed generative, deep transfer
learning framework demonstrates an improved classification
performance of 4% over the state-of-the-art methods, while
enabling a more efficient distributed learning capacity (e.g., the
ability to operate more efficiently within virtual information
fabrics) and a significant capacity for generalization to a wide
range of applications
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