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ABSTRACT

Polarization measurements done using Imaging Polarimeters such as the Robotic Polarimeter
are very sensitive to the presence of artefacts in images. Artefacts can range from internal
reflections in a telescope to satellite trails that could contaminate an area of interest in the
image. With the advent of wide-field polarimetry surveys, it is imperative to develop methods
that automatically flag artefacts in images. In this paper, we implement a Convolutional
Neural Network to identify the most dominant artefacts in the images. We find that our model
can successfully classify sources with 98 per cent true positive and 97 per cent true negative
rates. Such models, combined with transfer learning, will give us a running start in artefact
elimination for near-future surveys like WALOP.
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1 INTRODUCTION

RoboPol (Ramaprakash et al. 2019) is a four-channel optical
polarimeter installed on the 1.3 m telescope at the Skinakas Ob-
servatory in Crete, Greece that is primarily used for polarimetry of
point sources in the R band. Its successor the Wide Area Linear
Optical Polarimeter (WALOP) is under development at the Inter-
University Center for Astronomy and Astrophysics (IUCAA) in
Pune, India. Images contain artefacts resulting from dust patterns,
cosmic ray hits, satellite trails, and pixel bleeding contaminating
information from celestial objects. With the increasing number of
images taken every night from such instruments, it is necessary to
automate the analysis of data. However, with humans taken out of
the loop it is possible for artefacts to get misidentified as a source
and be used in the analysis. This would lead to erroneous results so
the detection of such artefacts is imperative.

Early work on detection of artefacts in astronomical images dates
to the early 2000s when Storkey et al. (2004) used computer vision
techniques such as the Hough Transform to detect linear artefacts
like satellite trails, scratches, and diffraction spikes near bright stars.
These methods were concerned with detection of linear features and
highlighted some of the difficulties of using the Hough Transform
when dealing with light-density variations.

Later on the focus shifted to object identification followed by
extracting features for the objects and then classification using these
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features to separate out artefacts with methods like decision trees
and random forests (Donalek et al. 2008). Recent years have seen
the compilation of terrestrial data sets like ImageNet consisting of a
million labelled images with a thousand categories such as human
faces, digits, vehicles, flowers, animals etc. Deng et al. (2009)
followed by the development of deep learning libraries and models
using these data sets e.g. the VGG16 architecture (Simonyan &
Zisserman 2014).

With deep learning it is possible to skip the sometimes subjective
step of feature extraction and go straight to classification after
obtaining a labelled data set (see e.g Cabrera-Vives et al. 2017;
Duev et al. 2019a,b). This is at the cost of explainability, but with
proper validation and test data sets, the results are still reliable.
Additional ways to improve the robustness, and faster convergence
using techniques like Mask R-CNN and linear scaling combined
with normalization are discussed in some recent papers such as He
et al. (2017), Gonzalez, Absil & Van Droogenbroeck (2018), and
Burke et al. (2019).

Our task here is to classify objects in RoboPol images into stars
and artefacts. RoboPol images contain reflections of bright stars
due to the interface between the two Wollaston Prisms used in the
instrument and it is this dominant class of artefacts that we target
here. The interface between the Wollaston Prisms is shown in the
diagram of the optical instrument design described in Ramaprakash
et al. (2019), and an example of the reflection artefact in Fig. 1.
The green box in the upper left quadrant shows two horizontally
extended artefacts separated vertically. A few stars in the vicinity
also got included in the box.
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Figure 1. The region within the orange lines describes the restricted area
from where we do not extract stars or artefacts. Similarly the regions outside
the white lines are restricted areas. Note that the lines are exaggerated only
for the purpose of representation.

In this paper, we propose to solve the problem of artefact detection
for RoboPol images using an appropriately designed Convolutional
Neural Network (CNN). In Section 2, we introduce our approach
to the problem of detecting artefacts in RoboPol images. We detail
the implementation of our method including pre-processing steps,
CNN architecture, and visualization of the output, and in Section 3
we discuss our findings and future possibilities.

2 APPROACH

The RoboPol data base consists of tens of thousands of images taken
between 2013 and 2019. We first generate a data set containing stars
and artefacts and then develop a CNN to perform the classification.
The following is an outline of our method:

(1) Create training data for artefacts and stars from RoboPol
images through manual labelling. This includes data for validation
and testing. The manual labelling was done by visually inspecting
about 100 images and recording the pixel coordinates of the
artefacts.

(2) Develop a CNN Architecture tuned through hyperparameter
variation.

(3) Train the model using training data obtained in step 1.

(4) Validate the model using validation and testing data.

(5) Implement the model to find artefacts in an arbitrary RoboPol
image.

2.1 Training data for artefacts and stars

Reflection artefacts and stars in RoboPol images have x and y
extents from several pixels to a few tens of pixels. We chose a
size of 64 x 64 pixels for our cutouts, with the artefacts and stars
centred. Each star appears at four locations due to splitting of light
from a single source within the instrument, with the locations lying
at the vertices of a diamond. A detailed design implementation is
available in Ramaprakash et al. (2019).
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For each image we generate a catalogue of sources (including
stars, reflection artefacts, and any other connected brightness
peaks) using Sextractor.! We have roughly 10 artefacts and about
250 stars per image. The catalogue comes with flags indicating
various conditions such as saturation, proximity to another source,
proximity to edge of image etc.> About 70 per cent of the visually
inspected artefacts had no error. This indicated that relying on just
flags is not sufficient to separate artefacts. To obtain training data
of stars we make sure that from every image we extract stars of
varying brightness and not just from a narrow brightness range. In
each image, we chose this range to be one star per magnitude-bin
for up to five magnitudes in each image. Likewise, our training data
would contain an uniform distribution of magnitudes of brightness
and ensure that we are not biasing our neural network by providing
training images from a limited magnitude range. We do not use all
sources so that the sets of stars and artefacts can stay roughly equal,
and hence balanced for the classification process. Fig. 2a and 2b
show a sample collection of the training images.

Unlike typical astronomy images, RoboPol images contain a
mask (Fig. 1). More details about the mask can be found in
Ramaprakash et al. (2019). The code repository and documentation
are available at https://github.com/delta-papa/Robopol-artifacts

2.2 CNN architecture

We follow the now standard image classification model developed
by the Visual Graphics Group (VGG) at Oxford, UK (Simonyan &
Zisserman 2014). Our implementation uses three convolution lay-
ers, three max-pooling layers, and two fully connected layers (see
Fig. 3). The hidden layers are activated using a ReLU (Rectified
Linear Unit) activation. Finally we use a sigmoid activation at the
output layer. The first, second, and third convolution layer consist
of 32, 64, and 128 filters respectively each with a kernel size of
3x3 and stride length of 1. The max-pooling layers use a kernel
size of 2x2 pixels. At the end of the 3rd max-pooling layer we use
a dropout layer with a probability of dropping a node as 0.4 for
regularization ensuring no single parameter of the neural network
has a very high coefficient (Srivastava et al. 2014). The total number
of trainable parameters in our configuration are 2452993 and we
use an Adam optimizer to perform back-propagation (Kingma &
Ba 2014). The loss function used is a binary cross-entropy loss.

2.3 Data augmentation and training

While going through the images we saw that most of the artefacts
are due to internal reflections and had a horizontal streak-like shape.
For proper training of the neural network we need to generate a large
data set of training images. Therefore, to augment the number of
images for training, we rotated the cutouts by 180 degrees so that
the horizontal nature of the artefacts is preserved.

To split the data into training and validation we used a 80-20
ratio and shuffled the data set randomly while splitting to avoid
bias. For training, we had a total of 836 images of stars and 925
images of artefacts. The training data were augmented using the
ImageDataGenerator class in the high-level Keras® API of PYTHON.
We performed horizontal and vertical flipping, width and height
shifts and shearing. The shifts were applied to account for possible

Thttps:///sextractor.readthedocs.io
Zhttps://sextractor.readthedocs.io/en/latest/Flagging html
3www.keras.io
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(a) Cutouts of Stars used as training images.
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(b) Cutouts of Artefacts used as training images.

Figure 2. Training images for stars (a) and artefacts (b).
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Figure 3. The CNN model consists of three convolutional layers, three max-pooling layers, two fully connected layers, and a dropout layer for regularization.
In case of the convolutional and max-pooling layers, the size of the layer and the filter size used are also mentioned. For the dense layers, the total number of

nodes are shown. The input is a 64 x 64 pixel PNG image.

inaccuracies in centring of the samples. The validation and training
images were both normalized to [0,1] by dividing by 255, the
maximum value of an 8 bit image.

The hardware used for performing training was a 2.3 GHz Intel
Core i5 processor and the total training time was 40 min.

2.4 Training performance

The total number of images chosen for training the model was 1408
(80 percent of the 1761 images), and the remaining 353 images
were reserved for validation. Training data were used to update the
parameters of the model while validation data were used to only
evaluate the model’s performance after every update. The batch
size used was 4. A total of 100 epochs were used in the training and
the steps per epoch was set to 1408/4 i.e. 352. We used a learning
rate of 0.001. The training accuracy reached about 95 per cent while
the validation accuracy was close to 96 per cent at the end of 100
epochs as seen in Fig. 4.

Besides making small changes to the hyper parameters above,
we also implemented a network with two and four convolution
layers to see whether there was any advantage in using shallower
(two layers) or deeper (four layers) CNNs. The training accuracy
and validation accuracy reached about 90 per cent in the shallower
network while it reached about 96 per cent in the deeper network.
Although training and validation accuracy may be good indicators
of the proper working of a CNN in a binary classification problem
there are other important parameters we need to consider when the
costs of misclassification are high. For example, we are interested
in knowing the false positive rate (sources wrongly classified as
stars), the false negative rate (sources falsely classified as artefacts),

0.95 -
0.90 -
0.85 -
0.80
0.75 A
—— Training accuracy
0.70 4 —— Validation accuracy
0 20 40 60 80 100
Epochs

Figure 4. Training and validation accuracy for the final model.

as also the precision (fraction of sources correctly classified) and
recall (fraction of stars correctly classified). These numbers are
summarized through two metrics viz. F1 score and Matthew’s
correlation coefficient, and indicate whether our model is working
as expected or not.

We need our system to have a high precision and recall score and
the F1 score summarizes the two scores by taking their harmonic
mean. The Matthew’s Correlation Coefficient (MCC) is akin to a
correlation coefficient measure between the predicted labels and
true labels. A value of 41 indicates perfect positive correlation
between the two quantities. Equations (1)—(4) give the formulae for
Precision, Recall, F1 score, and MCC, respectively. Note that TP, FP,
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Figure 5. Confusion matrix for the binary classification performed using
our model. The normalized numbers are given in brackets. Out of 353
images, 170 were True Positives, 175 were True Negatives, 5 False Positives,
and 3 False Negatives. The False Positive Rate is 3 percent and False
Negative Rate is 2 per cent.
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Figure 6. ROC Curve for our final model.

TN, FN, stand for True Positives, False Positives, True Negatives,
and False Negatives, respectively.

.. TP
Precision = ——— (1)
TP + FP
TP
Recall = ———— (@)
TP + FN
F1 score — 2 - precision - recall 3)

precision + recall
TP % TN — FP % FN
MCC = . 4)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)
Figs 5 and 6 show the confusion matrix and ROC curve,
respectively. The Confusion Matrix tells us the number of true
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Figure 7. Zoom in of ROC (Fig. 6) to highlight the non-ideal area.

Table 1. Performance comparison of CNN models with dif-
ferent layers. Here FPR is False Positive Rate, FNR is False
Negative Rate, MCC is Matthew’s Correlation Coefficient.

Three Four
Parameter Two layers layers layers
Training accuracy 0.90 0.95 0.90
Validation accuracy 091 0.96 0.95
FPR 0.07 0.03 0.02
FNR 0.13 0.02 0.05
Precision 0.88 0.98 0.95
Recall 0.93 0.97 0.98
F1 Score 0.90 0.98 0.96
MCC 0.80 0.95 0.93

positives, true negatives, false positives, and false negatives. The
Receiver Operating Characteristics (ROC) curve is a measure of the
trade-off between the true positive rate and false positive rate for
different values of the threshold used in the classifier. The threshold
is a value between 0 and 1. If the probability of the source being a
star is greater than the value of the threshold, we classify the source
as a star else as an artefact. Our threshold is set to 0.5. Ideally,
we want the false positive rate to be 0 and true positive rate to be
1. Ideally we expect our ROC curve to have an area (under the
curve) to be equal to 1. The Area Under the Curve (AUC) for our
model is 0.996 while that for a random classifier is 0.5 as shown by
the red dotted line. A zoom-in of Fig. 6 is shown in Fig. 7 which
shows the values True Positive Rates and False Positive Rates at
different thresholds. It shows that our threshold of 0.5 coincides with
0.75 indicating that our classifier can confidently achieve the same
True Positive Rate and False Positive Rate at a higher threshold.
Table 1 compares the performance of our model with a shallower
and deeper neural network. Based on this comparison, we chose the
model with three convolution layers as the model with four layers
actually shows a reduction in F1 score and MCC with a deeper and
hence computationally more expensive network, possibly due to
overfitting. Figs 8 and 9 show some of the false negatives and false
positives.
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Figure 8. Some of the False Negative classifications where stars were
classified as artefacts.
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Figure 9. Some of the False Positive Classifications where artefacts were
classified as stars. We see that the artefacts here did not have a prominent
streak-like shape. Also, the first artefact has a star near the centre and the
artefact is slightly away from the centre.
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Figure 10. Histogram of prediction probabilities for 91 000 sources.

2.5 Testing and implementation

We used our model to test 100 randomly chosen images — distinct
from the training set — from the 40 000 images of RoboPol taken
during the years 2013 and 2014. Our goal was to classify all the
sources in each of the 100 images into stars and artefacts and analyse
the results. For each image, we obtained a list of sources, their
positions, instrumental magnitudes, and extraction flag error by
using Sextractor. A histogram of the predicted probability of the
sources being stars is shown in Fig. 10. Out of 91000 sources,
we have 88000 sources classified as stars (90 to 100 per cent
probability of being a star) and 2500 sources classified as artefacts
(0 to 10 percent probability of being a star). The inset plot
shows that in the remaining prediction probability range there are
fewer than 10 objects in each bin of size 10 per cent. This means
that ~ 0.05 per cent of the sources had probabilities in the range
between 10 and 90 per cent.

Figs 11 and 12 show the results of classification on test images.
Each image contains a single source with known label. At the
top of each image is the probability of the source being a star.
Sources in Fig. 11 are artefacts while those in Fig. 12 are stars.
In both categories, our classification rates are almost always above
90 per cent.

Eliminating artefacts with deep learning ~ 5155

0.11% 0.01% 2.15%

40.71% 0.0%

7.52% 0.19% 1.12% 15.53% 0.11%

Figure 11. Result of testing the classifier on images of artefacts. All
artefacts have been classified correctly with high classification probabilities.
The classification probability of a source being a star is shown on the top of
each cutout.
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68.35%

- ™ .

Figure 12. Result of testing the classifier on images of stars. The classi-
fication probability of a source being a star is shown on the top of each
cutout.

The implementation pipeline takes an input image and the
corresponding Sextractor file as its arguments and produces a list of
locations of the detected artefacts along with their location marked
in the original image with an associated probability. A decision
logic diagram is shown in Fig. 13.

2.6 Visualization with saliency maps

A saliency map helps us find the locations of the pixels in input
images which need to be changed the least to activate the output
filter. This means we find the gradient of the input image with
respect to the output score. To visualize a saliency map, positive
gradients are chosen that would give us the locations of the pixels
activating the output filter. In other words this gives us the location
of the object of the relevant class in the input image. A saliency map
thus gives us the salient features of the class-specific input image
that maximize the class score. A detailed mathematical treatment
can be found in Simonyan, Vedaldi & Zisserman (2013). Fig. 14
shows the saliency maps for nine different input images. Observe
that for the image in row 3, column 3, only the artefact is visualized

MNRAS 491, 5151-5157 (2020)
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Figure 13. A flow chart showing the decision logic of the pipeline.

Figure 14. Saliency map visualization (left-hand panel) for nine different
input images (right-hand panel) of artefacts. The saliency map shows the
positive gradients of the image with respect to the artefact class score
and thus the locations of the artefacts in the image. These maps show
that indeed the classifier is activated by the artefacts themselves and
not their background. Figure plotted using Keras Visualization Toolkit
(Kotikalapudi & contributors et al. 2017).

in the saliency and not the star at the top right corner of the image.
Sextractor’s ellipticity measure alone is not sufficient to separate
the artefacts.

3 DISCUSSION

We used convolutional neural networks to solve the problem of
detecting artefacts in polarimetric images. Although the use of
CNNs in astronomical image classification is not new, this is the first
time that they have been used for detecting artefacts in polarimetric
images. The efficiency of the method shows its suitability for use
in upcoming polarimetry surveys such as the polar areas stellar
imaging in polarization high accuracy experiment (Tassis et al.
2018), which will use the novel wide area linear optical polarimeter
(WALOP). Our implementation suggests that this method can be
reliably used for detecting other kinds of artefacts as well given
enough training data. The RoboPol instrument operates down to
16th magnitude in the R1 band. Fig. 15 shows that our deep learning
model can classify stars down to 15.9 magnitude with a prediction
probability better than 0.9. We have also plotted the signal-to-noise
ratio (SNR) of the stars on a separate axis. We see that our model
works up to SNRs of 15. Thus, our implementation works well with
objects within the magnitude range RoboPol observes.

In this paper, we do not use the spatial correlation for stars
appearing as a diamond pattern in RoboPol images. That is because
the diamond structure in each image of RoboPol is specific to the
RoboPol polarimeter design and would not be present in a single
image of future polarimeters such as WALOP.

MNRAS 491, 5151-5157 (2020)
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Figure 15. Scatter plot of prediction probability and signal to noise ratio
(SNR) of visually inspected stars from a single image versus the apparent
R1 magnitude. The 42 stars span a magnitude range from 12 to 16.

In the RoboPol data set, we had majority of artefacts due to
scattering of light from off-axis stars at the interface of the Wollaston
prisms (Ramaprakash et al. 2019). Our method demonstrates that
a binary classifier trained on images of stars and artefacts can
successfully differentiate between them. Our training data does
not contain enough examples for artefacts such as satellite trails
or bleeding pixels and as a result deep learning them is non-trivial
without aggressive data augmentation. There already exist methods
to remove such artefacts. Out-of-distribution detection networks
(Huang et al. 2019) can also be used to detect such infrequent
outliers. The final pipeline can incorporate such methods to deliver
artefact-free products.
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