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A B S T R A C T

Existing building performance models (existing BPMs) often lack the capability for addressing human-building
interactions in future buildings or buildings under design because they are mainly derived using data in existing
buildings. The limitation may contribute to discrepancies between simulated and actual building performance.
In a previous study, the authors discussed a framework using an artificial neural network (ANN)-based greedy
algorithm which combines context-aware design-specific data obtained from immersive virtual environments
(IVEs) with an existing BPM to enhance the simulations of human-building interactions in new designs. Although
the framework has revealed the potential to improve simulations, it cannot determine the appropriate combi-
nation between context-aware design-specific data and the existing BPM.

In this paper, the authors present a new computational framework (the GAN-based framework) to determine
an appropriate combination based on a given performance target to achieve. Generative adversarial networks
(GANs) are used to combine data of an existing BPM and context-aware design-specific data using a performance
target as a guide to produce an augmented BPM. The effectiveness and the reliability of the GAN-based framework
were validated using an IVE of a single occupancy office. Thirty people participated in an experiment on the
simulation of artificial lighting switch uses using the IVE. Their light switch uses data under different work area
illuminance were collected and analyzed. The building performance models (BPMs) proposed by Hunt and Da
Silva were selected as the existing BPM and the performance target respectively. The data of each participant was
used to generate an augmented BPM using the GAN-based framework and an updated BPM using the previous
framework (i.e., ANN-based greedy algorithm framework). The thirty pairs of the augmented and updated BPMs
were compared. Specifically, the errors measured between the updated BPMs and the performance target (E1) and
the errors measured between the augmented BPMs and the performance target (E2) were analyzed using t-tests
(α = 0.05). In 22 out of 30 cases, the performance of the augmented BPMs was significantly better than the
updated BPMs, and in four cases, the performance of the two was similar. Only in four other cases, the perfor-
mance of the updated BPMs was better. The results confirmed the efficacy of the framework. However, future
research is needed to study the performance target and uncertainties associated with IVE experiments to better
understand and control the reliability of the framework.

1. Introduction

The design stage of a building project is a critical step to make
decisions and establish directions for engineering building components,
affecting the characteristics, functions, and performance of a building.
To optimally translate design goals and objectives into the performance
of a building, designers and engineers usually apply building perfor-
mance models (BPMs) during the design stage such as simulations of
building energy consumptions and human-building interactions to un-
derstand, investigate, and predict building performance, as well as

support decision-making. Nevertheless, the application of BPMs cannot
eliminate the significant performance discrepancies between the si-
mulated and the actual performances that have been widely reported
[1–3]. For example, studies have reported as much as 150% of differ-
ences between predicted and the actual performance of a building [4].

Many factors influence the simulations of building performance,
especially human-building interactions such as occupant responses to
building contexts and occupant habitual behaviors [5]. Human-
building interactions are highly context-depended and sensitive to
several contexts [6,7] in which contexts are described by situational
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factors that are not directly included in a model or simulation [8].
These situational factors are often assumed to remain constant across
different applications of the model or simulation. For instance, “con-
text” may be physical or natural factors (e.g., building characteristics,
building surrounding and environmental factors, and climate condi-
tions), and socio-technical factors (e.g., participant's cultural back-
ground, racial/ethnicity, and tasks to perform), which may not be in-
cluded as variables in a BPM. However, such factors can have an impact
on analysis using the BPM during the design of a specific space, whose
situational factors may be different from what the BPM has assumed
and cannot be treated as constant across different applications. In such
cases, these situational factors in relation to any BPM need to be
identified, analyzed, and integrated in building performance analyses.
Often, BPMs are developed using data obtained from existing buildings,
where the contexts of which differs from the contexts of a building
under design. Applying such BPMs to understand, investigate, and
predict human-building interactions in a building under design may
contribute to the discrepancy between predicted and actual perfor-
mance. Therefore, being able to address human-building interactions
responding to specific contexts in new designs (e.g., the context em-
bodied) can potentially enhance the accuracy of BPMs leading to re-
ductions of the discrepancy between predicted and actual performance
of a building.

Immersive virtual environments (IVEs) have demonstrated their
potential in simulations and data collections in many disciplinary areas,
especially engineering fields such as emergency evacuations [9,10],
building designs [11], and human-building interactions [12–14]. IVEs
provide several advantages over other data collection methods such as
sensing, field studies, and surveys. For instance, IVEs can replicate
certain context for buildings under design, especially when the contexts
cannot be possibly, cost-effectively, or safely replicated in reality. Ad-
ditionally, IVEs allow users to fully handle experimental conditions,
and customize experimental models as desired. Human-building inter-
actions in buildings under design may not be directly observed and
analyzed. As a result, the application of IVEs can be an alternative for
generating and examining the context-aware design-specific data of a
new design. Following Sowa's definition of context [8], “context-aware”
refers to the capability of a method, simulation, or model to address the
impact of identified contextual factors in analysis. Therefore, by using
the method, simulation or model, users are able to consider human-
building interactions responding to contexts of a specific design. For
example, in the application discussed in the paper, the context-aware
design specific data of the proposed computation framework included
contextual factors such as types of office task and locations of light
switch.

To improve the accuracy of existing building performance models
(existing BPMs), the authors have offered a framework for customizing
existing BPMs to address contextual factors of a building under design.
The framework using an artificial neural network (ANN)-based greedy
algorithm has been developed to combine an existing BPM with context-
aware design-specific data obtained from IVE experiments [15]. The
framework has shown the potential to enhance the prediction accuracy
of an existing BPM. However, its major limitation is that it lacks the
capability to determine the appropriate combination of an existing BPM
and context-aware design-specific data in a principled way rather than
through trial and error, that can entail excess resource and time con-
sumption. Hence, the principal goal of this study is to improve the
capability of the framework to be able to determine the appropriate
combination without trial and error. The new computational frame-
work applies generative adversarial networks (GANs) to combine an
existing BPM with context-aware design-specific data obtained from IVE
experiments, and uses a performance target as a guide during compu-
tation to determine the appropriate mix without trial and error. The
GAN-based framework produces an augmented building performance
model (an augmented BPM) representing the appropriate combination
that satisfies the performance target.

In the following, the authors first discuss comparison of the GAN-
based framework and the ANN-based greedy algorithm framework, and
then provide the research objective followed by an expression of the
GAN-based framework and the explanation of applying the framework
on a single-occupancy office to validate the framework. The design and
administration of the IVE experiment are explained in detail. Finally,
results, discussions, and limitations of the study, as well as conclusions
and directions of future work are provided.

2. Comparison of the GAN-based framework and the ANN-based
greedy algorithm framework

This section discusses major differences and relationships between
the GAN-based framework and the ANN-based greedy algorithm fra-
mework. In parametric approaches (e.g., Gaussian mixture model),
mixture models mix datasets derived from assumed probability dis-
tribution functions such as normal, binomial, and exponential [16].
Often, datasets do not fully comply with assigned distributions leading
to the generation of inaccurate mixture models. Consequently, the
ANN-based greedy algorithm framework was proposed in the previous
work of the authors [15]. The framework was non-parametric so that
users did not have to assume distributions for the underlying datasets to
be mixed. The framework augmented an existing BPM by combining its
dataset with context-aware design-specific data obtained from IVE ex-
periments. However, this framework had a major limitation. It only
allowed users to apply a linear combination using an assigned mixture
ratio (number between 0 and 1) to mix data from the two datasets.
Thus, if the probability distributions corresponding to the two datasets
were f1 and f2 respectively, the greedy algorithm would produce a
mixture distribution, (1-α)f1+ αf2, where 0 ≤ α ≤ 1. This was called a
linear mixture using α as the mixture ratio. The limitation obstructs the
framework to create a mixture distribution that was close to a perfor-
mance target by nonlinearly mixing the probability distributions of the
two datasets. In addition, the mixture ratio was not directly related to
any performance target. Even in the case of linear mixtures, the frame-
work did not provide any algorithm to determine the appropriate
mixture ratio that generates the “best mix”. Due to this limitation, an
augmented BPM could only be constructed through trial and error. Users
of the framework had to manually define the mixture ratios to combine
datasets. They needed to perform several trials to obtain an appropriate
combination (for deriving an augmented BPM) and, sometimes, appro-
priate combinations might be infeasible to obtain.

To overcome the disadvantages of the ANN-based greedy algorithm
framework, the GAN-based framework is proposed and compared with
the ANN-based greedy algorithm framework. The GAN-based frame-
work uses a generative adversarial network (GAN) [17] to combine an
existing BPM and context-aware design-specific data. Like the ANN-
based greedy algorithm, the GAN allows a nonparametric approach to
generate mixture models, where users do not have to assume any dis-
tribution (e.g., normal) for the underlying datasets getting mixed or for
the mixture. In contrast with the ANN-based greedy algorithm, the
GAN-based framework allows automatic determination of the appro-
priate mixture guided by a building performance target. This enables
avoiding the trial and error techniques required in the ANN-based
greedy algorithm framework and allows users to obtain an appropriate
combination of datasets in one shot.

Filtering based approaches such as Kalman filter [18], requires
manual determination of the filter type (e.g., linear, extended, and
unscented) that will result in an appropriate mixture. In contrast, the
GAN-based framework allows automatic determination of the appro-
priate mixture guided by a building performance target.

3. Research objective

The aim of this study is to create a new GAN-based framework that
enables users to better perform building performance simulations

C. Chokwitthaya, et al. Automation in Construction 119 (2020) 103350

2



during design. To achieve the goal, the objective of this study is two-
fold: 1) to investigate efficacy of the GAN-based framework in enhan-
cing the prediction accuracy of BPMs, and 2) to examine the reliability
of the GAN-based framework using experiments.

To determine the reliability of the framework, the authors con-
ducted experiments on thirty college students to acquire data and sta-
tistically tested thirty comparisons between an augmented BPM and an
updated BPM. The GAN-based framework generates an augmented BPM
and the ANN-based greedy algorithm framework generates an updated
BPM [15]. The comparison is based on the hypothesis that an augmented
BPM is more accurate than an updated BPM. The absolute error mea-
sured discrepancies between predicted outcomes of an updated BPM and
a performance target (E1) and the absolute error measured discrepancies
between predicted outcomes of an augmented BPM and a performance
target (E2) are shown in Table 1 and calculated using Eqs. (1) and (2)
respectively. They are used to develop the hypothesis.

To test the performance of an augmented BPM, we hypothesize:
H0: mean of E1 - mean of E2 = 0
H1: the null hypothesis is not true.
A t-test (α = 0.05) is applied to determine whether the performance

of an augmented BPM is significantly different from that of an updated
BPM.

4. Overview of the computational framework

The five main components of the GAN-based framework (Fig. 1) are:
1) an existing building performance model (an existing BPM), 2) con-
text-aware design-specific data acquired from an IVE experiment, 3) a
performance target, 4) a computation using generative adversarial

network (GAN), and 5) an augmented BPM.
In general, “building performance models (BPMs)” is used to de-

scribe models of building performance at different building scales.
BPMs may include performance models at a small scale such as specific
building systems (e.g., lighting, blind, and window usages) to a large
scale such as whole buildings (e.g., whole building energy consump-
tions). For example, at the building system level, Tahmasebi and
Mahdavi [19] proposed a BPM for predicting window operations; and
Keller et al. [20] developed a BPM to estimate performance of building
systems (e.g., gas, electricity, and water). At the whole building level,
Cho et al. [21] developed a BPM for estimating the whole building
energy performance. Indeed, the framework is parametric, i.e., it takes
three generic inputs, an existing BPM, context-specific data from IVE,
and a performance target. These inputs are not related to a particular
type of performance simulation. Therefore, the framework can be ap-
plied to different types of BPM at different scales and it is not dependent
on the nature of BPMs. In the following, details of the framework are
discussed.

4.1. Existing building performance model

Existing building performance models (existing BPMs) describe his-
torical events and observations, which may not fully consider important
contextual factors corresponding to a new building. Thus, contextual
factors influencing human-building interactions in a new building are
ignored in the existing BPM [15]. In addition, the existing BPM for
predicting human-building interactions may be in different forms such
as statistical models or synthetic datasets (generated by the models).
When synthetic samples of an existing BPM are required, the GAN-based
framework offers an approach to produce samples using a statistical
approach (e.g., Monte Carlo simulation). The dataset associated with
the samples is called an existing BPM dataset [15].

4.2. Context-aware design-specific data

Context-aware design-specific data describe key contextual

Table 1
The definition of the errors to prove the hypothesis.

Error Measurement

E1 | predicted outcomes of an updated BPM – a performance target | (1)
E2 | predicted outcomes of an augmented BPM – a performance target | (2)

Fig. 1. The GAN-based framework.
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conditions of a new design, where human-building interactions take
place. For instance, the Hunt model [22] only models the relationship
between the use of artificial lighting and the work area illuminance. On
the other hand, the types of task (e.g., reading, meeting, and drafting)
and the locations of light switch (e.g., a switch is by a door or on a desk)
influence preferences of occupants interacting with the light switch. In
this case, the types of task and the locations of light switch are con-
textual factors. When a design needs to explicitly consider such con-
textual factors to augment an existing BPM, immersive virtual en-
vironments (IVEs) can be used as tools to obtain context-aware design-
specific data for a new design. Nevertheless, conducting IVE experi-
ments sometimes is time consuming and each experiment session is
often limited to 30–40 min. Therefore, IVE experiments usually result in
small data samples with specific experiment conditions [23–25]. To
overcome such a limitation, the GAN-based framework uses a data
synthesis technique such as the Gaussian mixture model (GMM) to
generate a large independent and identically distributed (IID) dataset,
called a synthetic IVE dataset [15].

4.3. Performance target

During design, designers often consider and balance different cri-
teria such as comfort, cost, energy efficiency and sustainability to sa-
tisfy design objectives [26]. Based on such objectives, various perfor-
mance metrics do exist such as the energy intensity of a building.
However, for the GAN-based framework to work, building performance
metrics need to be converted into operational performance targets to
support computations. This process is still an open question, which
requires further research attention.

In this study, the authors assumed an operational performance target.
The performance target may be created using empirical performance
data of similar buildings and represented in the form of a statistical
model or a set of data. On the other hand, since a performance target is
used to evaluate with data generated by an existing BPM, components in
both performance target and existing BPM need to be comparable.

4.4. Computation

4.4.1. Generative adversarial networks (GANs)
Since Goodfellow et al. [17] proposed the generative adversarial

networks (GANs) in 2014, the method has been successfully applied in
various domains, especially in deep learning-based studies [27–30],
and image syntheses and analyses [31–33].

GANs have two parts: a generator, and a discriminator. The gen-
erator is an ANN that attempts to learn a probability distribution and
tries to generate an output that follow a target distribution. The dis-
criminator is an ANN discriminating the output of the generator and the
target distribution. Conceptually, the generator and the discriminator
play a two-player minimax game, where they undermine each other.
The undermining continues until an equilibrium point is reached,
where the generator and the discriminator do not change their perfor-
mance regardless of what the opposition may do. Theoretically, in each
epoch, the generator tries to produce the output that follows the target
distribution. The discriminator observes the output of the generator as
well as the target distribution. It tries to accurately discriminate the
output of the generator whether they are from the target distribution.
The feedback from the discriminator is used to train the generator
through backpropagation. In every epoch, the generator keeps trying to
produce an output that is follows the target distribution, while the
weights of the discriminator are adjusted through backpropagation to
accurately discriminate the generator outputs. The process continues
until it reaches an equilibrium point, where the generator produces an
output whose distribution is close to the target distribution and the
discriminator accurately discriminate the generator's outputs and the
target distribution [34].

In the GAN-based framework, the generator is trained using

combinations of data associated with the existing BPM and context-
aware design-specific data. The discriminator is trained using the gen-
erator's predictions and the performance target dataset. The generator
has the responsibility to produce an output that is close to the perfor-
mance target dataset. The discriminator has responsibilities to dis-
criminate the output of the generator and the performance target dataset.
A prediction of the generator that is closest to the performance target is
considered as an augmented BPM.

In GANs, the performance of the discriminator relatively relies on
the complexity and dimension of the input. If the input is complex and
has only one dimension, the discriminator may be inferior to dis-
criminate the generator's predictions and the performance target dataset
[35]. To avoid such circumstances and enhance the performance of the
framework, the concept of conditional GANs [36] is applied to condi-
tion on the generator as well as the discriminator, i.e., the inputs of the
generator are fed into the input layer of the discriminator.

5. Application of the GAN-based framework

The application aims at understanding the efficacy and the relia-
bility of the GAN-based framework by testing the hypothesis. The ap-
plication used the lighting predictions in a single occupancy office as
the studied case. An IVE configuration was created based on general
recommendations of office designs [37], simulating situations related to
variables of a BPM, and contextual factors (i.e., work area illuminance
(lx), office tasks including reading, having a break, having a meeting,
and drafting, and the location of a light switch such as by a door and on
a desk). Thirty people participated in the IVE experiment. An existing
BPM was the Hunt model for predicting lighting uses [22]. The prob-
ability of switching on, a Probit model, provided in Da Silva et al. [38]
was used as a performance target. After computation, augmented BPMs
were compared with updated BPMs obtained using the ANN-based
greedy algorithm framework [15] to evaluate the efficacy and the re-
liability of the GAN-based framework.

5.1. Existing building performance model

The selections of the light uses prediction model proposed by Hunt
[22] was relied on reasons including: 1) It has been cited and used as a
baseline lighting BPM in lighting use studies [38–41]; 2) It has been
applied in several building performance software packages (e.g., ESP-r,
DAYSIM, and RADIANCE); and 3) It has only one independent variable,
namely work area illuminance allowing the authors to study and de-
monstrate the inclusion of other factors as contextual factors. One of the
successful applications of Hunt model is that it was used as the un-
derlying theory to develop an algorithm (Lightswitch-2002) for simu-
lating dynamic daylight used in DAYSIM and RADIANCE software.
Currently, both software packages have been widely used in not only
academic but industrial fields. The selection of the Hunt model was
only for demonstrating and testing the framework. In fact, the GAN-
based framework is generic, which can take any BPM as an existing
BPM.

Hunt collected data associated with human-building interactions on
light switches using the time-lapse photography method in six rooms
(e.g., multi-person offices, school classrooms, and open-plan teaching
area). The obtained data were fitted using a Probit model as Eq. (3) to
predict the probability of switching on using work area illuminance (lx)
as an independent variable. Fig. 2 shows the relationships of the
probability of switching on and the work area illuminance of the Hunt
model. The authors applied Monte Carlo technique to generate samples
of the Hunt model as an existing BPM dataset. Monte Carlo simulation is
a random process to mimic a behavior of real-life systems [42]. It has
been widely accepted as a standard technique for generating in-
dependent and identically distributed (IID) samples for models in sev-
eral works [43–45]. The proper number of samples was determined by
using a learning curve technique [46,47]. In general, the learning curve
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technique investigates impacts of number of samples used to train the
ANN on the accuracy of predictions of the trained ANN. The technique
continuously increases the number of samples until additional samples
do not significantly increase in the performance of predictions of the
ANN (i.e., reached the knee point). The number of samples at the knee
point is taken as the number of samples. The application excluded the
analysis of the learning curve since it was demonstrated in Chokwit-
thaya et al. [47] and the number of samples in the existing BPM dataset
was carried over from the work.

= − +

+
−

Probability of switching on

0.0175 1.0361
(1 e )4.0835(log (work area illuminance) 1.8223)10 (3)

5.2. Context-aware design-specific data

5.2.1. Immersive virtual environment (IVE) and experiment
5.2.1.1. The IVE model. A single office was modeled in virtual reality in
accordance with the general recommendation of office designs [37].
The dimension of the office was 5.5 × 4.2 × 3.2 m with a net area of
22 square meters as shown in Fig. 3. AutoCAD software was used to
create a 3D model of the office. Autodesk 3ds Max was used to assign
and render materials of the model. It was also used to estimate the work
area illuminance in the application, since Autodesk 3ds Max has shown
potentials to simulate indoor illuminance for daylighting [48]. Unreal
Engine 4 was applied to simulate the virtual 3D environment (Fig. 4),
allowing participants to interact with building components such as the
light switch.

5.2.1.2. The design of the IVE for experiment. The concept of spatial-
temporal event-driven modeling (STED) [23] was partially applied to
the design of the IVE experiment. The STED models critical events
during a day in a chronological order representing longitudinal
observations in reality to minimize the negative impact of IVE
technologies on participants. It uses categorical values to model such
critical events in IVEs. It involves four major components (i.e., states,
contexts, events, and human-building interactions). In this application,
the design of the IVE experiment ignored the chronological order, so
that events were discretely modeled and do not influence next adjacent

events, i.e., a finished state of an event was not transferred to be an
initial state of a next adjacent event as described in the STED.

According to the STED, the four main components (i.e., states,
contexts, events, and human-building interactions) were defined as
follows for the IVE experiment:

• States were the on/off status of the light switch, which was initially
set to off in all scenarios.

• Contexts were conditional factors describing the states. There could
be many contextual factors. In this study, two commonly identified
factors, office tasks and light switch locations, were selected based
on previous literature discussing the impact of tasks [49–51] and in
particular the location of light switches [12]. Corresponding to the
Hunt model, the factor considered as the independent variable was
work area illuminance. The level of work area illuminance was
defined using the following recommendations: 1) The recommended
lighting levels provided by the U.S. general services administration
(GSA) [52], where 500 lx is the suggested light intensity at work
areas for conducting office tasks, and; 2) Previous studies have
shown a significantly low probability of switching on when the work
area illuminance is higher than 200 lx [5,39,53]. Therefore, the IVE
experiment was designed to use the 500 lx as the maximum work
area illuminance. The work area illuminance between 200 and
500 lx was assigned with a 150-lx interval. The smaller interval of
illuminance (i.e., 50 lx) was assigned between 0 and 200 lx to
capture more possible fluctuations of human-building interactions
on light switching in this range. Table 2 describes details of the
office tasks, light switch locations and work area illuminance con-
sidered in the IVE experiment. However, it has to be noted that even
if the levels of the work area illuminance may be possibly defined
with smaller intervals to simulate continuous illuminance, it will
costly increase the duration of an IVE experiment. The choice of the
interval in this case was based on the consideration to finish an
experiment for each participant within 60 min including a training
session.

• Events were triggers that cause occupants to change or maintain the
states. In this application, combinations of the contextual factors (4

Fig. 2. The Hunt model [15].

Fig. 3. The model of the office.

Fig. 4. The IVE configuration.

Table 2
Variables and their values considered in the IVE experiment.

Contextual factor Independent
variable

Dependent
variable

Office task Light switch
location

Work area
illuminance (lx)

Likelihood of
switching on

Intensive reading By the door 50 Very unlikely
Having a break On the desk 100 Not likely
Having a meeting 150 Neutral
Drafting 200 Likely

350 Very likely
500

Total = 4 Total = 2 Total = 6
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office tasks and 2 light switch locations) and the dependent variable
(6 work area illuminance) led to 4 × 2 × 6 = 48 events.
Accordingly, each participant generated 48 data points, one data
point for each event.

• Human-building interactions (dependent variables) were the like-
lihood of switching on or off (the dependent variable) described in
Table 2.

5.2.1.3. IVE experiment and data collection. The experiment had two
main sessions, namely the training and the experimental session. In the
following, details of the IVE experiment are explained.

The training session was designed to get participants familiarized
with the IVE experiment. This session allowed participants to explore
themselves in the virtual environment along with practices of re-
sponding to questions in the experiment. The training session took
around 10 min for each participant.

In the experimental session, participants initially sat on a chair,
which was at the desk in the virtual environment, as if they were about
to perform some tasks in the office. The participants were told that they
were the sole occupant of the office, who could interact with a light
switch freely. In each event, the participants were exposed with one of
the work area illuminance levels presented in Table 2 and audio cues
presented in Table 3 informing the participants about the current
conditions of the office. After listening to the audio cues, the partici-
pants were asked to determine the likelihood of switching on under the
condition of the office at that moment. There were five available
choices of the likelihood constructed based on Likert scale [54] and the
choices were mapped to the probability of switching on as shown in
Table 4. The following example illustrates how the audio cues and
questions were presented to the participants. If the task and the switch
location were “intensive reading” and “by the door” in a particular event
respectively under any work area illuminance, the audio cue was “You
are going to intensively read research papers for at least an hour. If the light
switch is by the door and you have to walk to turn it on, please select your
need of turning the light on under the provided situation.” The 48 events
mentioned previously were assigned to the participants randomly and
each participant took around 40 min to finish the experiment.

A total of 30 students (18 males, 12 females) participated in the
research study. Before conducting the experiment, the participants had
to sign the consent form and completed the motion sickness screening
questionnaire. The experiment received approval from the local in-
stitutional review board (IRB). The participants used a head-mounted
display to conduct the experiment in IVE during the experiment. Fig. 5
shows a participant exploring the office and making a decision on the
use of the lighting during the experiment.

5.2.2. Generating synthetic IVE data
Since the sample from the IVE experiment was relatively small, the

authors augmented the dataset by creating a synthetic IVE dataset. The
Gaussian mixture model (GMM) [55] has been proven to have higher
performance in clustering data than many other data clustering
methods such as k-means [56], k-nearest neighbor [57], and multi-
variate kernel density (MVKD) [58]. Moreover, it has been used to
generate IID samples in research studies [59,60]. In this application, the
GMM was used to augment the IVE dataset by increasing the number of

IID samples based on the data obtained from the IVE experiment, i.e.,
“synthetic IVE dataset”. The GMM learned the IVE experimental data by
using mixtures of Gaussian, where the data were categorized into z
groups based on the Gaussian (i.e., normal) distribution. Each group
had its own mean (μ) and variance (σ2). It was assumed that each data
point (x) probabilistically belonged to z and the distribution for each
group was separately inferred.

The GMM was constructed according to what was done by
Chokwitthaya et al. [61]. The context-aware design-specific data ob-
tained from the IVE experiments were sourced by each individual
participant, resulting in thirty datasets. To train the GMM, the K-mean
algorithm was used to initialize the GMM parameters [62]. The full
covariance type was applied. The convergence criterion for training the
GMM was 10−2. The trained GMM was implemented to generate IID
samples of the context-aware design-specific data, called the synthetic
IVE dataset. Since thirty datasets were used to train the GMM in-
dividually, there was a total of thirty sets of the synthetic IVE dataset.
Similar to the existing BPM dataset, the learning curve technique de-
termined the number of samples in the synthetic IVE datasets [47].

5.3. Performance target

In this application, the Probit regression model of light switch uses
proposed by Da Silva et al. [38] described in Eq. (4) was selected as a
performance target. The model was selected for the following reasons: 1)
Data used to construct the model were obtained from eight single-oc-
cupancy offices, which were similar to the design of the single occu-
pancy office in this application; 2) Probit regression models were ac-
cepted and applied to represent data associated with human-building
interactions in many research studies [41,63,64]; 3) The model used
work area illuminance as an independent variable similar to the existing
BPM; and 4) The large discrepancy between the Hunt and Da Silva
models set a high target, which increased the challenge for the frame-
work to generate an augmented BPM that could meet the performance
target. The challenge might prevent an augmented BPM to meet the
performance target in some cases, which opened the opportunity for the
authors to explore and discuss such cases. Indeed, the framework can
take any performance model as a performance target. A target is used to
guide the combination of an existing BPM and context-aware design-
specific data in the framework. Therefore, if a different performance
target is used, the framework will generate a different augmented BPM
that is correlated with the characteristics of the new performance target.

=

+
− + − ∗

Probability of switching on 1
(1 e )(2.035 ( 0.003) work area illuminance)

(4)

The authors applied Monte Carlo simulation to generate samples of
the Da Silva model using Eq. (4) and the characteristic of the model is
presented in Fig. 6. The obtained dataset of samples was called a per-
formance target dataset.

5.4. Computation

5.4.1. Data preprocessing
The existing BPM dataset, the synthetic IVE datasets, and the

Table 3
Audio cues of office tasks and switch locations.

Office task Switch location

Task Audio cue Location Audio cue

Intensive reading You are going to intensively read research papers for at least an hour. By the door The light switch is by the door and you have walk to turn it on.
Having a break You are going to have a break in your office for at least an hour. On the desk The light switch is on the desk which is now reachable.
Having a meeting You are going to have a meeting in your office for at least an hour.
Drafting You are going to work on a drafting task for at least an hour.
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performance target dataset were normalized to maintain the compat-
ibility and consistency of datasets during computation. The normal-
ization was done by using Eq. (5) [65]. To reduce the complexity of the
synthetic IVE datasets during computations, each of the synthetic IVE
dataset was split into eight groups of sub-synthetic IVE dataset based on
combinations of the contextual factors (Table 5). The computation used
each of the sub-synthetic IVE datasets to augment the existing BPM.

=Normalized Data
(data–means of the synthetic IVE dataset)

standard deviation of the synthetic IVE dataset (5)

5.4.2. Generative adversarial networks (GANs)
A GAN was applied as the computational component for the fra-

mework. The GAN comprised of two major components, which were a
generator and a discriminator (Fig. 7). Prior to train the GAN, the ex-
isting BPM dataset and the sub-synthetic IVE datasets were split into
training datasets (i.e., the existing BPM training dataset and the sub-
synthetic IVE training datasets) and testing datasets (i.e., the existing BPM
testing dataset and the sub-synthetic IVE testing datasets) with a 70–30
split.

The generator was an ANN with a three-layer perceptron, namely an

input, a hidden, and an output layer. In each training epoch, the existing
BPM training dataset and the sub-synthetic IVE training dataset were used
to train the generator. The generator took data of the work area illu-
minance as the input in the input layer. The hidden layer included 20
hidden neurons with the rectified linear unit activation function
(ReLU). Elastic net regularization, a combination of L1 (Laplacian) and
L2 (Gaussian) penalties, was applied to prevent overfitting [66]. The
input in the output layer of the generator was the probability of
switching on. The output layer applied the sigmoid activation function
since the output was probability. The loss function, learning rate, and
regularization were binary cross entropy (logistic regression), 10−4,
and 10−4 respectively. Before training the GAN, the generator was pre-
trained using the existing BPM training dataset and the sub-synthetic IVE
training dataset to initialize its weights and biases as well as increase the
robustness of its learning. The generator learned the relationship of
work area illuminance and probability of switching on associated with
the existing BPM training dataset and the sub-synthetic IVE training da-
taset. In every training epoch, the generator predicted the probability of
switching on based on the work area illuminance of the existing BPM
testing dataset and the sub-synthetic IVE testing dataset. The probability of
switching on predicted by the generator that was closest to that in the
performance target was used to construct an augmented BPM.

The discriminator was an ANN discriminating the outputs from the
generator and the performance target dataset. The discriminator com-
prised of a three-layered ANN with similar structure as the generator
but different input datasets. Before training the discriminator, the work
area illuminance as the input in the generator was paired with the
probability of switching on predicted by the generator. The paired data
were labeled as 0. The performance target dataset was labels as 1. The
labels were assigned to distinguish the dataset from the generator and
the performance target dataset. Indeed, labels could be any number,
besides 0 and 1. Then, the paired data were concatenated with the
performance target dataset (the purple box in Fig. 7) and used as the
input in the input layer of the discriminator. This step generated con-
ditioning situation on to the generator and the discriminator. The labels
were taken as the input in the output layer.

The synthetic IVE dataset of each participant was applied to train the
GAN resulting in the augmented BPM of a participant. Therefore, a total
of 30 augmented BPMs are obtained.

5.5. Overview of the ANN-based greedy algorithm [15,47]

The ANN-based greedy algorithm framework [15] comprised of four
major elements as shown in Fig. 8: 1) an existing BPM, 2) context-aware
design-specific data obtained from an IVE experiment, 3) computation,
and 4) an updated BPM.

The existing BPM, the context-aware design-specific data, the syn-
thetic IVE datasets and the data preprocessing were identical to those in
the application of the new framework.

The computation uses the ANN to combine the existing BPM dataset
and the synthetic IVE dataset by using a mixture ratio (α) to guide the
combination. The structure of the ANN is illustrated in Fig. 9. In this
application, the ANN was a three-layered perceptron with an input, a
hidden, and an output layer. The ANN took the tasks, light switch lo-
cations, and work area illuminance as inputs in the input layer. The
input in the output layer was the probability of switching on. The
hidden layer had 20 neurons with a rectified linear unit activation
function (ReLU) and the elastic net regularization. The sigmoid acti-
vation function was applied to the output layer. The loss function,
learning rate, and regularization were the binary cross entropy (logistic

Table 4
Choices of the likelihood of switching on and their interpretation.

Likelihood of switching on Very unlikely Not likely Neutral Likely Very likely
Probability of switching on (%) 1 25 50 75 99

Fig. 5. A participant exploring the virtual office and selecting a need of turning
the light on.

Fig. 6. The Da Silva model.

Table 5
Groups of the sub-synthetic IVE dataset.

Group Combination of the contextual factors

1 Intensive reading + Light switch by the door
2 Having a break + Light switch by the door
3 Having a meeting + Light switch by the door
4 Drafting + Light switch by the door
5 Intensive reading + Light switch on the desk
6 Having a break + Light switch on the desk
7 Having a meeting + Light switch on the desk
8 Drafting + Light switch on the desk
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regression), 10−4, and 10−4 respectively. The existing BPM dataset and
the synthetic IVE datasets were divided into training datasets (i.e., the
existing BPM training dataset and the synthetic IVE training datasets) and
testing datasets (i.e., the existing BPM testing dataset and the synthetic IVE
testing datasets) with a 70–30 split.

The training algorithm used an efficient greedy algorithm (Fig. 10)
proposed in Chokwitthaya et al. [15] to determine which training da-
taset to be used to train the ANN (either the existing BPM training dataset
or the synthetic IVE training dataset). In each training epoch, two values
of the mean absolute error (MAE) were calculated: 1) the MAE mea-
suring the difference between the predictions of the ANN and the syn-
thetic IVE testing dataset (MAESI), and 2) the MAE measuring the dif-
ference between the predictions of the ANN and the existing BPM testing
dataset (MAEEX). During training the ANN, a mixture ratio (α) was used
to keep the proportion of MAESI and MAEEX using Eq. (7). If Eq. (7) was

true, the ANN was trained on the synthetic IVE training dataset in the
next epoch. Otherwise, the ANN was trained on the existing BPM training
dataset in the next epoch.

>
− α
α

MAE
MAE

1SI

EX (6)

The computation was performed by using one of the synthetic IVE
datasets at a time resulting in thirty computational cases. A pseudor-
andom number, in the interval [0,1], was generated and used as the
mixture ratio (α) for each case as shown in Table 6. Accordingly, a total
of thirty updated BPMs were generated. The updated BPMs were further
used to test the hypothesis.

Fig. 7. The scheme of the generative adversarial network (GAN) in the application.

Fig. 8. Scheme of the ANN-based greedy algorithm [15].
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6. Results

6.1. The context-aware design-specific data acquired from the IVE
experiment

Fig. 11 presents the means and the standard deviations of the con-
text-aware design-specific data obtained from the IVE experiment of all
participants classified by the office tasks and the light switch locations.
Two observations show the qualitative effectiveness of the data:

1) The probability of switching on under low work area illuminance
was higher than high work area illuminance regardless the assigned
tasks and the light switch locations. This general pattern matched
the previous studies [39,67,68].

2) The probability of switching on with respect to the assigned task of
“having a break” was slightly lower than the probability of switching
on with respect to the other assigned tasks. Previous studies showed
that the lighting needs were different based on task types [50,51],
thus the results showed a certain level of validity qualitatively.

On the other hand, the probability of switching on with respect to

the location of light switches was visually similar under each plot in
Fig. 11. This observation was different from what literature suggests in
general [12], that the location of switches influenced participants' use
of switches.

6.2. Descriptive comparisons between the Augmented BPMs and the
Updated BPMs

Fig. 12 presents plots of the probability of switching on versus the
work area illuminance using the mean of the augmented BPMs, and the
mean of the updated BPMs classified by the office tasks and the switch
locations. The mean was calculated based on the 30 augmented and the
30 updated BPMs respectively. The performance target dataset is also
included in Fig. 12. Several observations can be drawn based on Fig. 12:

• The overall probability of switching on of the augmented BPMs can
be visually noticed that they are greater than the overall probability
of switching on of the updated BPMs, when the augmented BPMs and
the updated BPMs are evaluated with the performance target.

• The probability of switching on of the updated BPMs between 0 and
50 lx is nearer to the performance target compared to the probability
of switching on of the augmented BPMs. One possible cause may be
that the IVE experiment did not include illuminance between 0 and
50 lx, which may impact the computation procedure.

• The augmented BPMs have a lower probability of switching on than
the performance target. The circumstance may imply that the aug-
mented BPMs do not meet the performance target. Some contributing
factors are discussed in the Discussions section.

6.3. Hypothesis testing

To test the hypothesis, two absolute errors were calculated in-
cluding: 1) the absolute errors measured between the probability of
switching on associated with the updated BPM and that associated with
the performance target dataset, i.e., E1 calculated using Eq. (7) in Table 7,
and 2) the absolute errors measured between the probability of
switching on associated with the augmented BPM and that associated
with the performance target dataset, i.e., E2 calculated using Eq. (8) in
Table 7.

6.3.1. Tests on the mean of E1 and E2 in all cases
A two tailed t-test (α = 0.05) was first used to analyze whether E1

and E2 were significantly different. The hypothesis is described as
follow:

H0: mean of E1 - mean of E2 = 0
H1: mean of E1 - mean of E2 ≠ 0
Table 8 shows the statistical test of significant differences between

E1 and E2 of the thirty individuals. In 26 of 30 cases, the differences
between means of E1 and E2 were significant, in which the p-values
were lower than 0.05.

6.3.2. Tests on the mean of E1 and E2 in cases 2, 10, 15 and 18
Specifically, further tests were conducted to determine if the up-

dated BPM was statistically more accurate than the augmented BPM in
the four cases (i.e., cases 2, 10, 15, and 18) as suggested by their means.

Fig. 9. The scheme of the ANN of this application [15].

Fig. 10. Efficient greedy algorithm [15].

Table 6
The mixture ratio (α) of computational cases.

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0.73 0.75 0.18 0.45 0.64 0.59 0.13 0.85 0.34 0.85 0.36 0.84 0.96 0.33 0.61

Case 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

α 0.83 0.40 0.97 0.57 0.54 0.21 0.60 0.20 0.41 0.29 0.05 0.08 0.35 0.14 0.38
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Tests were performed by a one tailed t-test (α = 0.05) with the fol-
lowing hypothesis:

H0: mean of E1 - mean of E2 = 0
H1: mean of E1 - mean of E2 < 0
From Table 9, the null hypotheses were rejected in all cases, which

demonstrate that the updated BPM has significantly better accuracy
compared to the augmented BPM in all four cases.

6.3.3. Tests on the rest of cases
For the rest 22 cases, their means showed that the augmented BPMs

were more accurate than the updated BPMs. Since the augmented BPMs
were expected to have significant smaller errors than the updated BPMs,
the hypothesis was defined as follow:

H0: mean of E1 - mean of E2 = 0
H1: mean of E1 - mean of E2 > 0
A one tailed t-test (α = 0.05) was applied to test the hypothesis. The

results of the hypothesis testing are shown in Table 10.
The results of the hypothesis testing in Table 10 show that the p-

values were smaller than 0.05 for all 22 cases, in which the null hy-
pothesis was rejected. The tests suggested that the probability of
switching on predicted by the augmented BPMs was significantly better
than that predicted by the updated BPMs.

7. Discussions

The hypothesis testing at individual level shows mixed results. In
the following, discussions regarding the context-aware design-specific
data, the augmented BPMs, and the results of hypothesis tests are pre-
sented.

• The context-aware design-specific data involved variances asso-
ciated with the probability of switching on (Fig. 11). As mentioned
in literature (e.g., [15,69]), participants are clearly a source of the
variances since different people may respond to the IVE experiment
differently. In addition, factors such as the uses of virtual cues and
experimental settings (e.g., the display quality such as brightness
and color, and participants' perception about the IVE) may con-
tribute to the variances of the context-aware design-specific data.
Such variances can affect the accuracy of the augmented BPMs.

• Although in most individual cases (i.e., 26 out of 30 cases), the
augmented BPMs did not underperform compared to the updated
BPMs, the means of the individual augmented BPMs were not close to
the performance target (Fig. 12). This result does not necessarily
discount the effectiveness of the augmented BPMs. The discussion of
the issue may begin with the existing BPM. If the existing BPM sig-
nificantly lacks the ability to address the characteristics of a design
such as building configurations and occupant profiles, by using the
existing BPM, the augmented BPM may be significantly biased by data

Fig. 11. The context-aware design-specific data.
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Fig. 12. Plots of the mean of the augmented BPMs, the mean of the updated BPMs, and the performance target.
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from the existing BPM and not reflect the performance target. Fur-
thermore, the IVE experiment may fail to address contextual factors
that the performance target addresses, which in turn affects the
augmented BPM. Finally, the performance target may be unrealistic
and impossible to achieve. As a result, a thorough investigation and
evaluation of this issue is needed.

• In the four cases, where the updated BPMs had better performance
than the augmented BPMs, the mixture ratios (α) are high (i.e., 0.75,
0.85, 0.61, and 0.97 corresponding to the cases 2, 10, 15, and 18
respectively). In those cases, the updated BPMs were constructed
using more knowledge of the synthetic IVE datasets than the knowl-
edge of the existing BPM datasets. In addition, the probability of
switching on of the synthetic IVE datasets of those cases was close to
or higher than the performance target. Consequently, high αs and the
probability of switching on of the synthetic IVE datasets caused the

updated BPMs closer to the performance target than the augmented
BPMs. Nevertheless, high αs contribute to heavily biases of the up-
dated BPMs toward the synthetic IVE datasets, which may not always
generate better results, if the existing BPM datasets are closer to the
performance target. On the other hand, the GAN-based framework
tries to appropriately mix (i.e., with minimum bias) the existing BPM
dataset and the synthetic IVE dataset toward the performance target,
therefore, the augmented BPM incorporate balanced knowledge of
the existing BPM dataset and the synthetic IVE dataset.

• Even though the previous studies stated that office tasks [49–51]
and switch locations [12] influence human-building interactions on
lighting uses, the context-aware design-specific data showed a
consistent pattern compared to previous studies with respect to tasks
but not switch locations. The situation with respect to light switch
locations may be explained by several reasons: 1) The effectiveness
of stimuli (e.g., visual and audio cues): The experiment assigned the
office tasks to the participants by using audio cues as stated pre-
viously. The participants did not perform actual tasks. By using only
audio cues, the participants might not be stimulated enough to
realize how much lighting intensity they really need; 2) The data
collection procedure: For the switch locations, the experiment in-
formed the participants about where the switch was by using audio
and visual cues. The participants did not actually interact with the
switch (e.g., walking to the switch at the door). Therefore, the
participants might not attempt to differentiate the difference in
terms of access to the switch at different locations; and 3) The choice
of locations: It is also possible that indeed the two locations should
not have any difference.

• The selection of the contextual factors (i.e., types of office task and
locations of light switch) depends on the application and the
knowledge of new contextual factors in literature. In addition, the
selection depends on the virtual reality technologies because the
contextual factors need to be model and experimented on in IVE.
Therefore, to demonstrate and test the framework, in the meantime
not to be limited by the time and resource needs for developing
IVEs, we chose the two contextual factors that have been commonly
identified in literature [12,49–51].

The framework does not limit the number or types of contextual
factor that can be included. If other contextual factors are identified to
have significant influence on human-building interactions related to
lighting switch uses, they can be considered in this study. Their

Table 7
The absolute errors to prove the hypothesis.

Error Measurement

E1 |The probability of switching on from the updated BPM
-
The probability of switching on from the performance target dataset|

(7)

E2 |The probability of switching on from the augmented BPM
-
The probability of switching on from the performance target dataset|

(8)

Table 8
The summary of tests of significant difference between E1 and E2.

Case Mean E1 Std. E1 Mean E2 Std. E2 p-Value Ho

1 0.259 0.186 0.181 0.128 0.597 Accept
2 0.159 0.147 0.213 0.156 < 0.05 Reject
3 0.388 0.206 0.219 0.176 < 0.05 Reject
4 0.589 0.186 0.238 0.189 < 0.05 Reject
5 0.279 0.146 0.208 0.183 < 0.05 Reject
6 0.557 0.221 0.275 0.187 < 0.05 Reject
7 0.572 0.196 0.247 0.153 < 0.05 Reject
8 0.328 0.152 0.291 0.171 < 0.05 Reject
9 0.572 0.206 0.350 0.184 < 0.05 Reject
10 0.078 0.055 0.153 0.108 < 0.05 Reject
11 0.586 0.193 0.288 0.206 < 0.05 Reject
12 0.327 0.175 0.268 0.149 < 0.05 Reject
13 0.215 0.211 0.260 0.201 0.178 Accept
14 0.585 0.191 0.363 0.158 < 0.05 Reject
15 0.312 0.144 0.335 0.154 < 0.05 Reject
16 0.347 0.226 0.295 0.132 0.068 Accept
17 0.584 0.192 0.273 0.188 < 0.05 Reject
18 0.295 0.154 0.325 0.176 < 0.05 Reject
19 0.346 0.212 0.338 0.191 < 0.05 Reject
20 0.497 0.131 0.470 0.193 0.067 Accept
21 0.587 0.186 0.215 0.162 < 0.05 Reject
22 0.551 0.236 0.191 0.177 < 0.05 Reject
23 0.573 0.209 0.251 0.189 < 0.05 Reject
24 0.586 0.168 0.178 0.204 < 0.05 Reject
25 0.578 0.193 0.232 0.202 < 0.05 Reject
26 0.582 0.199 0.328 0.210 < 0.05 Reject
27 0.585 0.186 0.300 0.180 < 0.05 Reject
28 0.573 0.178 0.332 0.203 < 0.05 Reject
29 0.581 0.195 0.121 0.164 < 0.05 Reject
30 0.584 0.186 0.126 0.111 < 0.05 Reject

Table 9
The summary of tests of significant difference between E1 and E2.

Case Mean E1 Std. E1 Mean E2 Std. E2 p-Value Ho

2 0.159 0.147 0.213 0.156 < 0.05 Reject
10 0.078 0.055 0.153 0.108 < 0.05 Reject
15 0.312 0.144 0.335 0.154 < 0.05 Reject
18 0.295 0.154 0.325 0.176 < 0.05 Reject

Table 10
The summary of the hypothesis testing.

Case Mean E1 Std. E1 Mean E2 Std. E2 p-Value Ho

3 0.388 0.206 0.219 0.176 < 0.05 Reject
4 0.589 0.186 0.238 0.189 < 0.05 Reject
5 0.279 0.146 0.208 0.183 < 0.05 Reject
6 0.557 0.221 0.275 0.187 < 0.05 Reject
7 0.572 0.196 0.247 0.153 < 0.05 Reject
8 0.328 0.152 0.291 0.171 < 0.05 Reject
9 0.572 0.206 0.350 0.184 < 0.05 Reject
11 0.586 0.193 0.288 0.206 < 0.05 Reject
12 0.327 0.175 0.268 0.149 < 0.05 Reject
14 0.585 0.191 0.363 0.158 < 0.05 Reject
17 0.584 0.192 0.273 0.188 < 0.05 Reject
19 0.346 0.212 0.338 0.191 < 0.05 Reject
21 0.587 0.186 0.215 0.162 < 0.05 Reject
22 0.551 0.236 0.191 0.177 < 0.05 Reject
23 0.573 0.209 0.251 0.189 < 0.05 Reject
24 0.586 0.168 0.178 0.204 < 0.05 Reject
25 0.578 0.193 0.232 0.202 < 0.05 Reject
26 0.582 0.199 0.328 0.210 < 0.05 Reject
27 0.585 0.186 0.300 0.180 < 0.05 Reject
28 0.573 0.178 0.332 0.203 < 0.05 Reject
29 0.581 0.195 0.121 0.164 < 0.05 Reject
30 0.584 0.186 0.126 0.111 < 0.05 Reject
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inclusion may completely change the characteristics of context-aware
design-specific data. Consequently, the augmented BPM may change as
well. Other types of contextual factor may increase the complexity of
input parameters. However, the complexity of input parameters does
not affect the application of the framework. With the limitation of IVE
at this moment, some types of contextual factor (e.g., senses and cli-
mates) may not be easy to effectively simulate in IVE. Furthermore, the
more contextual factors included in IVE experiments, the higher de-
mand for experimental cost, resources, and times. To demonstrate the
efficacy of the framework and due to limitations of IVE technologies,
we only considered two contextual factors (i.e., the office tasks and the
light switch locations) in the experiment. In summary, the framework
does not preclude any additional contextual factors. Nevertheless, users
of the framework need to consider the tradeoff between the desired
number of contextual factors and the increase in time and resource
needs, and complexity.

• The framework is generic and parametric. It can take any BPM and
context-aware design-specific data. For example, if there is a BPM
modeling the performance of a multioccupancy space and effective
and reliable IVE to observe human-building interactions in such a
space, the framework can generate an augmented BPM for modeling
the performance of the multioccupancy space. Therefore, char-
acteristics of BPMs and the nature of human-building interactions do
not affect the performance of the framework. However, the com-
plexity in the development of BPMs and data collection of human-
building interactions may vary, which influences the application of
the framework. For instance, developing BPMs and collecting data
in IVE for analyzing building performance in multioccupancy spaces
is more complex. If such models and IVE data are available, the
framework can produce an augmented BPM. Unfortunately, virtual
reality technologies currently lack the capability to simulate human-
building interaction scenarios in multioccupancy spaces. This is the
reason we chose a space with a single occupancy, since the goal of
the application is to show the efficacy of the framework.

8. Limitations of the study

Major limitations of the study can be discussed in the following:

• An approach to establish a performance target is not included in the
framework. An approach to map design goals and objectives of
buildings into a computational target is needed.

• As mentioned in the discussion, the most appropriate mixture may
be obtained when context-aware design-specific data are relatively
close to a performance target. If a target is unrealistic and context-
aware design-specific data are relatively close to a performance
target, an augmented BPM may be unrealistic as well. However, the
framework does not yet have a method to assess whether a perfor-
mance target is realistic.

• Since IVE experiments cannot be conducted for long period of time,
the capability of IVEs for collecting longitudinal data is limited
[23,70]. Accordingly, the IVE experiment is constructed using dis-
crete events, which may not thoroughly cover all possible situations.

• Currently, visual simulation is one of the most matured IVE cap-
abilities. To simulate other sensations (e.g., thermal, and scent),
there is a need to integrate IVE with other equipment or devices
(e.g., an external heating/cooling device to simulate thermal sen-
sation). With limited resources (e.g., times, costs, and tools), we
selected lighting performance to demonstrate the efficacy of the
framework. Future work is needed to test the performance of the
framework using different categories of building performance
models.

• Uncertainties of the components in the framework such as the ex-
isting BPM, the context-aware specific data, the performance target,
and structures of the computation may affect the development of an

augmented BPM. The framework lacks uncertainty and sensitivity
analyses for the components. Being able to analyze the uncertainty
and sensitivity of the framework can significantly contribute to the
improvement of the framework.

9. Conclusions and future work

The results of the hypothesis tests have shown that in most cases the
augmented BPM has higher accuracy than the updated BPM, which
suggests that the GAN-based framework is in general better in perfor-
mance than the previous ANN-based greedy algorithm. However, in a
few cases, the opposite is observed. Causes of the instability in perfor-
mance of the framework require further research. In general, the se-
lection of the performance target and the IVE experiments are potentially
the main causes. Therefore, further research is needed to create a
technique that can analyze the uncertainty, sensitivity, and robustness
of the framework including data from IVE experiments, and a method to
map performance targets between the design level and the computational
level. Furthermore, methods to effectively and efficiently identify
contextual factors (e.g., causality analysis [71], unsupervised ap-
proaches [72], and feature ranking [15]) need more research attention.
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