
Deciding Differential Privacy for Programs with
Finite Inputs and Outputs

Gilles Barthe
MPI Security and Privacy and IMDEA

Software Institute
Germany

gjbarthe@gmail.com

Rohit Chadha
University of Missouri

USA
chadhar@missouri.edu

Vishal Jagannath
University of Illinois at
Urbana-Campaign

USA
vishalrjagan@gmail.com

A. Prasad Sistla
University of Illinois at Chicago

USA
sistla@uic.edu

Mahesh Viswanathan
University of Illinois at
Urbana-Campaign

USA
vmahesh@illinois.edu

Abstract

Differential privacy is a de facto standard for statistical com-
putations over databases that contain private data. Its main
and rather surprising strength is to guarantee individual pri-
vacy and yet allow for accurate statistical results. Thanks to
its mathematical definition, differential privacy is also a nat-
ural target for formal analysis. A broad line of work develops
and uses logical methods for proving privacy. A more recent
and complementary line of work uses statistical methods for
finding privacy violations. Although both lines of work are
practically successful, they elide the fundamental question
of decidability.

This paper studies the decidability of differential privacy.
We first establish that checking differential privacy is un-
decidable even if one restricts to programs having a sin-
gle Boolean input and a single Boolean output. Then, we
define a non-trivial class of programs and provide a deci-
sion procedure for checking the differential privacy of a pro-
gram in this class. Our procedure takes as input a program
P parametrized by a privacy budget ϵ and either establishes
the differential privacy for all possible values of ϵ or gener-
ates a counter-example. In addition, our procedure works for
both to ϵ-differential privacy and (ϵ, δ)-differential privacy.
Technically, the decision procedure is based on a novel and
judicious encoding of the semantics of programs in our class

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

LICS ’20, July 8ś11, 2020, Saarbrücken, Germany

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7104-9/20/07. . . $15.00

https://doi.org/10.1145/3373718.3394796

into a decidable fragment of the first-order theory of the
reals with exponentiation. We implement our procedure and
use it for (dis)proving privacy bounds for many well-known
examples, including randomized response, histogram, report
noisy max and sparse vector.

CCS Concepts: • Security and privacy→ Logic and ver-

ification.

Keywords: differential privacy; decision procedure; sparse
vector

ACM Reference Format:

Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla,

and Mahesh Viswanathan. 2020. Deciding Differential Privacy for

Programs with Finite Inputs and Outputs. In Proceedings of the 35th

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS

’20), July 8ś11, 2020, Saarbrücken, Germany. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3373718.3394796

1 Introduction

Differential privacy [18] is a gold standard for the privacy
of statistical computations. Differential privacy ensures that
running the algorithm on any two ładjacentž databases yields
two łapproximatelyž equal distributions, where two databases
are adjacent if they differ in a single element, and two dis-
tributions are approximately equivalent if their distance is
small w.r.t. some metric specified by privacy parameter ϵ
and error parameter δ . Thus, differential privacy delivers a
very strong form of individual privacy. Yet, and somewhat
surprisingly, it is possible to develop differentially private
algorithms for many tasks. Moreover, the algorithms are
useful, in the sense that their results have reasonable accu-
racy. However, designing differentially private algorithms
is difficult, and the privacy analysis can be error-prone, as
witnessed by the example of the sparse vector technique.

This difficulty has motivated the development of formal
approaches for analyzing differentially private algorithms
(see [7] for a survey and the related work section of this

LICS ’20, July 8ś11, 2020, Saarbrücken, Germany Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla, and Mahesh Viswanathan

paper). Broadly, two successful lines of work have emerged.
The first line of work develops sound proof systems to es-
tablish differential privacy and uses these proof systems
to prove the privacy of well-known and intricate exam-
ples [1, 5, 6, 8, 16, 21, 31, 33, 34]. The second line of work
searches for counter-examples to demonstrate the violation
of differential privacy [9, 17]. Unfortunately, both lines of
work elide the question of decidability. As previous experi-
ence in formal verification suggests, understanding decidable
fragments of a problem not only help advance our theoretical
knowledge, but can form the basis of practical tools when
combined with ideas like abstraction and composition.
The goal of this paper is, therefore, to study the decision

problem for differential privacy, and to make a first attempt
at delineating the decidability/undecidability boundary. As
a first contribution, we show that, as expected, checking
differential privacy is computationally undecidable. Our un-
decidability result holds even if one restricts to programs
having a single Boolean input and a single Boolean output.
Given the undecidability result, we then consider the task of
identifying a rich class of programs, that encompasses many
known examples, for which checking differential privacy
nonetheless is decidable. We impose two desiderata:

1. the class of programs must include programs with real-
valued variables, and more generally, with variables
over infinite domains. This requirement is critical for
themethod to cover a broad class of differential privacy
algorithms;

2. the programs themselves are parametrized by the pri-
vacy parameter ϵ (throughout the paper, we assume
that the error parameter δ is a function of ϵ), and the de-
cision procedure should decide privacy for all possible
instances of the privacy parameter ϵ . This requirement
is motivated by the fact, supported by practice, that dif-
ferential privacy algorithms are typically parametrized
by ϵ , and well-designed algorithms are private not only
for a single value of ϵ , but typically for all positive val-
ues of ϵ .

We focus our attention on programs whose input and
output spaces are finite. Note that such programs need not
be finite-state, as per our first requirement, they could use
program variables ranging over infinite (even uncountable)
domains to carry out the computation. We introduce a class
of programs, called DiPWhile, which are probabilistic while
programs, for which the problem of checking differential
privacy is decidable. We succeed in carefully balancing de-
cidability and expressivity, by judiciously delineating the
use of real-valued and integer-valued variables. Intuitively,
the main restriction we impose is that these infinite-valued
variables be used only to directly influence the program
control-flow and not the data-flow that leads to the compu-
tation of the final output. More precisely, in an execution,
the program output value depends only on the input, values

sampled from user-defined distributions and the exponen-
tial mechanism, and the branch conditions on the control
flow path taken. The sampled values of real/integer vari-
ables affect only the branch conditions. Thus, the output
values depend only on the branch conditions satisfied by the
sampled real/integer variable values, but not on their actual
sampled values. This restriction, though severe, turns out
to capture many prominent differential privacy algorithms,
including Report Noisy Max and Sparse Vector Technique
(see Section 8 on experiments).

Key observations that enable us to establish decidability
of DiPWhile programs are as follows. The first result is that
the semantics of DiPWhile-programs can be defined using
parametrized, finite-state Markov chains 1. The fact that the
semantics is definable using only finitely-many states is a
surprising observation because our programs have both in-
teger and real-valued variables, and hence a naïve semantics
yields uncountably many possible states. Our crucial insight
here is that a precise semantics for DiPWhile-programs is
possible without tracking the explicit values of the real and
integer-valued variables. Since real and integer variables
are intuitively used only in influencing control-flow, the se-
mantics only tracks the symbolic relationships between the
variables. Second, we show that the transition probabilities
of the Markov chain are ratios of polynomial functions in ϵ
and eϵ , where e is the Euler’s constant; this was a difficult
result to establish. These two observations together, allow
us to reduce the problem of checking the differential pri-
vacy of DiPWhile-programs to the decidable fragment of the
first-order theory of reals with exponentials, identified by
McCallum and Weispfenning [28].

We leverage our decision procedure to build a stand-alone
tool for checking ϵ- or (ϵ, δ (ϵ))-differential privacy of mech-
anisms specified by DiPWhile-programs, for all values of
ϵ . We have implemented our decision procedure in a tool
that we call DiPC (Differential Privacy Checker). Given
DiPWhile-program, our tool constructs a sentence within
the McCallum-Weispfenning fragment of the theory of reals
with exponentials. It then calls Mathematica® to check if
the constructed sentence is true over the reals. Since our de-
cision procedure is the first that can both prove differential
privacy and detect its violation, we tried the tool on exam-
ples that known to be differentially private and those that
are known to be not differentially private including variants
of Sparse Vector, Report Noisy Max, and Histograms. DiPC
successfully checked differential privacy for the former class
of examples and produced counter-examples for the latter
class. Our counter-examples are exact and are more compact
than those discovered by prior tools.

1A parametrized Markov chain is a Markov chain whose transition proba-

bilities are a function of the privacy budget.

Deciding Differential Privacy for Programs with Finite Inputs and Outputs LICS ’20, July 8ś11, 2020, Saarbrücken, Germany

As a contribution of independent interest, we also demon-
strate how our method yields a theoretical complete under-
approximation method for checking differential privacy of
programs with infinite output sets. For such programs, it is
possible to discretize the output domain into a finite domain,
and to use the decision procedure to find privacy violations
for the discretized algorithm (by post-processing, privacy
violations for the discretized algorithms are also privacy vio-
lations for the original algorithm). The discretization yields
a method for generating counter-examples for algorithms
with infinite output sets.

We briefly contrast our results with prior work, and refer
the reader to Section 9 for further details. Overall, we see
our decidability results as complementary to prior works in
checking differential privacy. In general, existing methods
for proving or disproving differential privacy, although inher-
ently incomplete due to the undecidability of checking differ-
ential privacy, are likely to be more efficient because they can
trade-off efficiency for precision. However, the decision pro-
cedures for a sub-class of programs, like the one presented
here, maybe more predictable Ð if a decision procedure fails
to prove privacy, then it shall produce a counter-example
that demonstrates that the algorithm is not differentially
private. Moreover, counter-example search methods work
for a fixed (ϵ) privacy parameter. As the counter-example
methods are usually statistical, they may generate both false
positives and false negatives. In contrast, our decision proce-
dures work for all values for the privacy parameter and do
not generate false positives or false negatives.

Contributions. We summarize our key contributions.

• We prove the undecidability of the problem of check-
ing differential privacy of very simple programs, in-
cluding those that have a single Boolean input and
output. Though unsurprising, undecidability has not
been previously established in any prior work.
• We prove the decidability of differential privacy for
an interesting class of programs. Our method is fully
automatic that can check both differential privacy and

detect its violation by generating counter-examples.
To the best of our knowledge, this is the first such
result that encompasses sampling from integer and
real-valued variables.
• We implement the decision procedure and evaluate
our approach on private and non-private examples
from the literature.

Due to lack of space, some proofs and other materials have
been omitted. The omitted material can be located in the
arXiv repository [4].

2 Primer on differential privacy

Differential privacy [18] is a rigorous definition and frame-
work for private statistical data mining. In this model, a
trusted curator with access to the database returns answers

to queries made by possibly dishonest data analysts that do
not have access to the database. The task of the curator is to
return probabilistically noised answers, so that data analysts
cannot distinguish between two databases that are adjacent,
i.e. only differ in the value of a single individual. There are
two common definitions: two databases are adjacent if they
are exactly the same except for the presence or absence of
one record, or for the difference in one record. We abstract
away from any particular definition of adjacency.
Henceforth, we denote the set of real numbers, rational

numbers, natural numbers and integers by R,Q,N, and Z
respectively. The Euler constant shall be denoted by e . We
assume given a set U of inputs, and a set V of outputs.
A randomized function P from U to V is a function that
takes an input inU and returns a distribution overV . For
a measurable set S ⊆ V , the probability that the output of
P on u is in the set S shall be denoted by Prob(P(u) ∈ S). In
the case the output set is discrete, we use Prob(P(u) = v) as
shorthand for Prob(P(u) ∈ {v}).

We are now ready to define differential privacy.We assume
that U is equipped with a binary symmetric relation Φ ⊆

U ×U, which we shall call the adjacency relation. We say
that u1,u2 ∈ U are adjacent if (u1,u2) ∈ Φ.

Definition 2.1. Let ϵ ≥ 0 and 0 ≤ δ ≤ 1. Let Φ ⊆ U ×U
be an adjacency relation. Let P be a randomized function
with inputs fromU and outputs inV . We say that P is (ϵ, δ)-
differentially private with respect to Φ if for all measurable
subsets S ⊆ V and u,u ′ ∈ U such that (u,u ′) ∈ Φ,

Prob(P(u) ∈ S) ≤ eϵ Prob(P(u ′) ∈ S) + δ

As usual, we say that P is ϵ-differentially private iff it is (ϵ, 0)-
differentially private. If the output domain is discrete, it is
equivalent to require that for all v ∈ V and u,u ′ ∈ U such
that (u,u ′) ∈ Φ,

Prob(P(u) = v) ≤ eϵ Prob(P(u ′) = v)

Differential privacy is preserved by post-processing. Con-
cretely, if P is an (ϵ, δ)-differentially private computation
fromU toV , and h : V →W is a deterministic function,
then h ◦P is an (ϵ, δ)-differentially private computation from
U toW. In the remainder, we shall exploit post-processing
to connect differential privacy of randomized computations
with infinite output spaces to differential privacy of their
discretizations.

LaplaceMechanism. The Laplacemechanism [18] achieves
differential privacy for numerical computations by adding
random noise to outputs. Given ϵ > 0 and mean µ, let
Lap(ϵ, µ) be the continuous distribution whose probability
density function (p.d.f.) is given by

fϵ ,µ (x) =
ϵ

2
e−ϵ |x−µ | .

Lap(ϵ, µ) is said to be the Laplacian distribution with mean
µ and scale parameter 1

ϵ
. Consider a real-valued function

LICS ’20, July 8ś11, 2020, Saarbrücken, Germany Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla, and Mahesh Viswanathan

q : U → R. Assume that q is k-sensitive w.r.t. an adjacency
relation Φ onU, i.e. for every pair of adjacent values u1 and
u2, |q(u1) −q(u2)| ≤ k . Then the computation that maps u to
Lap(ϵ

k
,q(u)) is ϵ-differentially private.

It is sometimes convenient to consider the discrete ver-
sion of the Laplace distribution. Given ϵ > 0 and mean µ,
let DLap(ϵ, µ) be the discrete distribution on Z, the set of
integers, whose probability mass function (p.m.f.) is

fϵ ,µ (i) =
1 − e−ϵ

1 + e−ϵ
e−ϵ |i−µ | .

DLap(ϵ, µ) is said to be the discrete Laplacian distribution

with mean µ and scale parameter 1
ϵ
. The discrete Laplace

mechanism achieves the same privacy guarantees as the
continuous Laplace mechanism.

Exponentialmechanism. The Exponential mechanism [29]
is used for making non-numerical computations private. The
mechanism takes as input a value u from some input domain
and a scoring function F : U ×V → R and outputs a dis-
crete distribution overV . Formally, given ϵ > 0 and u ∈ U,
the discrete distribution Exp(ϵ, F ,u) on V is given by the
probability mass function:

hϵ ,F ,u (v) =
eϵF (u ,v)

∑
v ∈V eϵF (u ,v)

.

Suppose that the scoring function isk-sensitive w.r.t. some
adjacency relation Φ on U, i.e., for all for each pair of ad-
jacent values u1 and u2 and v ∈ V , |F (u1, r) − F (u2, r)| ≤ k .
Then the exponential mechanism is (2kϵ, 0)-differentially
private w.r.t. Φ.

3 Motivating Example

Before presenting the mathematical details of our results,
let us informally introduce our method by showing how it
would work on an illustrative example.

Sparse Vector Technique. Several differential privacy ex-
amples require that the randomized algorithms sampling
from infinite support distributions (including continuous dis-
tributions). The Sparse Vector Technique (SVT) [19, 27] was
designed to answer multiple ∆-sensitive numerical queries
in a differentially private fashion. The relevant information
we want from queries is, which amongst them are above a
threshold T . The Sparse Vector Technique as given in Al-
gorithm 1 is designed to identify the first c queries that are
above the threshold T in an ϵ-differentially private fashion.

In the program, the integer N represents the total number
of queries, and the arrayq of lengthN represents the answers
to queries. The array out represents the output array, ⊥
represents False and ⊤ represents True. We assume that
initially the constant ⊥ is stored at each position in out . In
the SVT technique, the ⊤ answers account for most of the
privacy cost, and we can only answer c of them until we run
out of the privacy budget [19, 34]. On the other hand, there

Input: q[1 : N]

Output: out[1 : N]

rT ← Lap(ϵ
2∆
,T)

count ← 0

for i ← 1 to N do

r← Lap(ϵ
4c∆
,q[i])

b← r ≥ rT
if b then

out[i] ← ⊤

count ← count + 1

if count ≥ c then
exit

end

else
out[i] ← ⊥

end

end

Algorithm 1: SVT algorithm (SVT1)

is no restriction on the number of ⊥ answers. Please observe
that the SVT algorithm is parametrized by the privacy budget
ϵ . Thus, the SVT algorithm can be considered as representing
a class of programs, one for each ϵ > 0.
Given N , the input set U in this context is the set of

N length vectors q, where the kth element q[k] represents
the answer to the kth query on the original database. The
adjacency relation Φ on inputs is defined as follows: q1 and
q2 are adjacent if and only if |q1[i] − q2[i]| ≤ 1 for each
1 ≤ i ≤ N .

Let us consider an instance of the SVT algorithm when
T = 0, N = 2, ∆ = 1 and c = 1. Let us assume that all array
elements in q come from the domain {0, 1}. In this case, we
have four possible inputs [0, 0], [0, 1], [1, 1], and [1, 0], and
three possible outputs [⊥,⊥], [⊤,⊥], and [⊥,⊤].

For example, the probability of outputting [⊥,⊤] on input
[0, 1] can be computed as follows. Let XT be a random vari-
able with Laplacian distribution Lap(ϵ

2
, 0), X1 be a random

variable with Laplacian distribution Lap(ϵ
4
, 0) and X2 be the

random variable with Laplacian distribution Lap(ϵ
4
, 1). The

probability of outputting [⊥,⊤] is the product of outputting
of outputting ⊥ first, which is Prob(X1 < X0), and the con-
ditional probability of outputting ⊤ given that ⊥ is output,
which is Prob(X2 ≥ X0 |X1 < X0). Note that we really re-
quire the second quantity to be conditional probability as
the events X1 < X0 and X2 ≥ X0 are not independent. This
probability can be computed to be

r1(ϵ) =
24e

3ϵ
4 − 1 + 8e

ϵ

4 + 21e
ϵ

2

48e
3ϵ
4

.

Deciding Differential Privacy for Programs with Finite Inputs and Outputs LICS ’20, July 8ś11, 2020, Saarbrücken, Germany

Similarly, when the input is [1, 1] and the output is [⊥,⊤],
the probability is given by

r2(ϵ) =
−22 + 32e

ϵ

4 − 3ϵ

48e
ϵ

2

.

Observe that r1(ϵ) and r2(ϵ) are functions of ϵ , and hence
the probabilities of outputting [⊥,⊤] on inputs [0, 1] and
[1, 1] vary with ϵ . Our immediate challenge is to automat-
ically compute expressions like r1(ϵ), r2(ϵ) from the given
program, the adjacent inputs, and outputs. Note that this
example involves sampling from continuous distributions
and is a function of ϵ . Nevertheless, we shall establish that
(see Section 6 and Theorem 6.3) that for several programs,
the former can be accomplished by interpreting the program
as a finite-state DTMC whose transition probabilities are
functions parameterized by ϵ even when the randomized
choices involve infinite-support random variables. The set of
programs that we identify (Section 6) is rich enough to model
the most known differential privacy mechanisms when re-
stricted to finite input and output sets.

Having computed such expressions, checking ϵ-differential
privacy requires one to determine if

for all ϵ > 0. (r1(ϵ) ≤ eϵr2(ϵ))

and for all ϵ > 0. (r2(ϵ) ≤ eϵr1(ϵ)).

Note that the particular condition for the SVT example under
consideration above is encodable as a first-order sentence
with exponentials, and thus checking the formula for the
example reduces to determining if such a first-order sentence
is valid for reals, with the standard interpretation of multi-
plication, addition, and exponentiation. Whether there is a
decision procedure that can determine the truth of first-order
sentences involving real arithmetic with exponentials, is a
long-standing open problem. However, a decidable fragment
of such an extended first-order theory has been identified
by McCallum and Weispfenning [28]. The formula for the
considered example lies in this fragment. Indeed, we can
show that all the formulas for the SVT example lie in this
fragment. This observation presents a challenge, namely,
what guarantees do we have that checking differential pri-
vacy is reducible to this decidable fragment. Indeed, we shall
establish that the set of formulas that arise from the class of
programs with finite-state DTMC semantics in Theorem 6.3
also lead to formulas in the same decidable fragment.

Remark. Notice that if one can compute expressions for
the probability producing individual outputs on a given in-
put, we could also check (ϵ, δ)-differential privacy, instead
of just ϵ-differential privacy. The only change would be to
account for δ in our constraints, and to consider all possible
subsets of outputs, instead of just individual output values.
Thus, the methods proposed here go beyond the scope of
most automated approaches, which are restricted to vanilla
ϵ-differential privacy.

4 Preliminaries

In this section, we formally define the problem of differ-
ential privacy verification that we consider in this paper
and also introduce the decidable fragment of real arithmetic
with exponentiation that plays a crucial role in our decision
procedure. The set of reals/positive reals/rationals/positive
rationals shall be denoted by R/R>0/Q/Q>0 respectively.

4.1 The Computational Problem

As illustrated by the example in Section 3, a differential
privacy mechanism is typically a randomized program Pϵ
parametrized by a variable ϵ . Having a parameterized pro-
gram Pϵ captures the fact that the program’s behavior de-
pends on the privacy budget ϵ , intending to guarantee that
Pϵ is (f (ϵ),д(ϵ))-differentially private, where f and д are
some functions of ϵ . The parameter ϵ is assumed to belong
to some interval I ⊆ R>0 with rational end-points; usually,
we take ϵ to just belong to the interval (0,∞). The program
Pϵ shall be assumed to terminate with probability 1 for every
value of ϵ (in the appropriate interval).

The randomized program Pϵ takes inputs from a set U
and produces output in a set V . In this paper, we shall as-
sume that bothU andV are finite sets that can be effectively
enumerated. Despite our restriction to finite input and out-
put sets, the computational problem of checking differential
privacy is challenging (see Section 5.3). At the same time, the
decidable subclass we identify (Section 6) is rich enough to
model most differential privacy mechanisms when restricted
to finite input and output sets. Extending our decidability
results to subclasses of programs that have infinite input and
output sets, is a non-trivial open problem at this time.

The computational problems we consider in this paper are
as follows. Since our programs take inputs from a finite setU,
we assume that the adjacency relation Φ ⊆ U ×U is given
as an explicit list of pairs. In general, when discussing (ϵ, δ)-
differential privacy of some mechanism, the error parameter
δ needs to be a function of ϵ . To define the computational
problem of checking differential privacy, the function δ :

R>0 → [0, 1] must be given as input. We, therefore, assume
that this function δ has some finite representation; if δ (ϵ) is
the constant δ0 (which is often the case), then we represent
δ simply by the number δ0. There are two computational
problems we consider in this paper.

Fixed Parameter Differential Privacy Given a program
Pϵ over inputsU and outputsV , adjacency relation
Φ ⊆ U ×U, and positive rational numbers ϵ0, δ0, t ∈
Q>0, determine if Pϵ0 is (tϵ0, δ0)-differentially private
with respect to Φ.

Differential Privacy Given a program Pϵ over inputs U
and outputs V , interval I ⊆ R>0 with rational end-
points, δ : R>0 → [0, 1], an adjacency relation Φ ⊆

U ×U, and a rational number t ∈ Q>0, determine if

LICS ’20, July 8ś11, 2020, Saarbrücken, Germany Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla, and Mahesh Viswanathan

Pϵ is (tϵ, δ (ϵ))-differentially private with respect to Φ

for every ϵ ∈ I .

Observe that the Fixed Parameter Differential Privacy
problem can be trivially reduced to the Differential Privacy
problem by considering the singleton interval I = [ϵ0, ϵ0]
and δ (ϵ) = δ0, where the goal is to check fixed parameter
differential privacy for constant privacy budget ϵ0 and error
parameter δ0. Thus, an algorithm for checking Differential
Privacy can be used to solve Fixed Parameter Differential
Privacy. Unfortunately, the Fixed Parameter Differential Pri-
vacy problem is extremely challenging even when restricted
to finite input and output setsÐ we show that it is undecid-
able (Section 5.3), and therefore, so is the Differential Privacy
problem. We shall identify a class of programs (Section 6) for
which the Differential Privacy problem (and therefore the
Fixed Parameter Differential Privacy problem) is decidable.
When the differential privacy does not hold, we would

like to output a counter-example.

Definition 4.1. A counter-example of (ϵ, δ) differential pri-
vacy for Pϵ , with respect to an adjacency relation Φ, a func-
tion δ : R>0 → [0, 1] and a value t ∈ Q>0, is a quadruple
(in, in′,O, ϵ0) such that (in, in′) ∈ Φ, O ⊆ V and ϵ0 > 0 and

Prob(Pϵ0 (in) ∈ O) > etϵ0 Prob(P(in′) ∈ O) + δ (ϵ0)

When δ is the constant function 0, then O is {out} for some
out ∈ V .

Remark. For the rest of the paper, unless otherwise stated,
we shall assume that the interval I ⊆ R>0 that contains the
set of admissible ϵs is the interval (0,∞). In our paper, ϵ refers
to the parameter in program Pϵ and not the privacy budget.
In our case, the privacy budget is (tϵ). For example, some
differential privacy algorithms Pϵ are designed to satisfy
(ϵ
2
, 0)-differential privacy, and so in this case t would be

1
2
. In the standard differential privacy definition, łϵž refers

to the privacy budget, and so t does not appear. However,
many theorems for differential privacy algorithms use łϵž
as the program parameter, and then the privacy theorem is
stated as the program being (tϵ, δ)-differentially private. In
most such cases, such a theorem is equivalent to saying that
the program P ϵ

t
(obtained by replacing ϵ by ϵ

t
) is (ϵ, δ (ϵ

t
))-

differentially private.

4.2 Reals with exponentials

As outlined in Section 3, our approach towards deciding dif-
ferential privacy shall rely on reducing the question to the
problem of checking the truth of a first-order sentence for
the reals. Because of the definition of differential privacy,
the constructed first-order sentence shall involve exponen-
tials. It is a long-standing open problem whether there is a
decision procedure for the first-order theory of reals with
exponentials. However, some fragments of this theory are
known to be decidable. In particular, there is a fragment

identified by McCallum andWeispfenning [28], that we shall
exploit in our results.
We will consider first-order formulas over a restricted

signature and vocabulary. We will denote this collection of
formulas as the language Lexp. Formulas in Lexp are built
using variables {ϵ}∪{xi |i ∈ N}, constant symbols 0, 1, unary
function symbol e(·) applied only to the variable ϵ , binary
function symbols +,−,×, and binary relation symbols =, <.
The terms in the language are integral polynomials with
rational coefficients over the variables {ϵ}∪{xi |i ∈ N}∪{e

ϵ }.
Atomic formulas in the language are of the form t = 0 or
t < 0 or 0 < t , where t is a term. Quantifier free formulas
are Boolean combinations of atomic formulas. Sentences in
Lexp are formulas of the form

QϵQ1x1 · · ·Qnxnψ (ϵ, x1, . . . , xn)

whereψ is a quantifier free formula, and Q , Qis are quanti-
fiers. In other words, sentences are formulas in prenex form,
where all variables are quantified, and the outermost quanti-
fier is for the special variable ϵ .

The theory Thexp is the collection of all sentences in Lexp

that are valid in the structure ⟨R, 0, 1, e(·),+,−,×,=, <⟩, where
the interpretation for 0, 1,+,−,× is the standard one on reals,
and e is Euler’s constant; notice that this is an extension of
the first-order theory of reals. The crucial property about
this theory is that it is decidable.

Theorem 4.2 (McCallum-Weispfenning [28]). Thexp is de-
cidable.

Finally, our tractable restrictions (and our proofs of decid-
ability) shall often utilize the notion of functions definable
in Thexp; we, therefore, conclude this section with its formal
definition.

Definition 4.3. A function f : (0,∞) → R is said to be
definable in Thexp, if there is a formula φf (ϵ, x) in Lexp with
two free variables (ϵ and x) such that

for all a ∈ (0,∞). f (a) = b iff

⟨R, 0, 1, e(·),+,−,×,=, <⟩ |= φf (ϵ, x)[ϵ 7→ a, x 7→ b]

5 Program syntax and semantics

We consider randomized algorithms written as simple prob-
abilistic while programs. We introduce the syntax of these
programs, along with their łnaturalž semantics given using
Markov kernels [14, 30]. We show that the problem of check-
ing differential privacy is undecidable for these programs.

5.1 Syntax of Simple programs

We introduce a class of programs we call Simple. Programs
in Simple are probabilistic while programs in which vari-
ables can be assigned values by drawing from distributions
typically used in differential privacy algorithms. Programs
in Simple obey some syntactic restrictions; these syntactic

Deciding Differential Privacy for Programs with Finite Inputs and Outputs LICS ’20, July 8ś11, 2020, Saarbrücken, Germany

Expressions (b ∈ B, x ∈ X, z ∈ Z, r ∈ R,d ∈ DOM, i ∈
Z,q ∈ Q,д ∈ FBool , f ∈ FDOM):

B ::= true | false | b | not(B) | B and B | B or B | д(Ẽ)

E ::= d | x | f (Ẽ)

Z ::= z | iZ | EZ | Z + Z | Z + i | Z + E

R ::= r | qR | ER | R + R | R + q | R + E

Basic Program Statements (a ∈ Q>0, ∼∈ {<, >,=, ≤, ≥},
F is a scoring function and choose is a user-defined
distribution):

s ::= x← E | z← Z | r← R | b← B | b← Z1 ∼ Z2 |

b← Z ∼ E | b← R1 ∼ R2 | b← R ∼ E |

r← Lap(aϵ, E) | z← DLap(aϵ, E)|

x← Exp(aϵ, F (x̃), E) | x← choose(aϵ, Ẽ)|

ifB then P else P end |WhileB do P end | exit

Program Statements (ℓ ∈ Labels)

P ::= ℓ : s | ℓ : s ; P

Figure 1. BNF grammar for Simple. DOM is a finite discrete domain.

FBool , (FDOM resp) are set of functions that output Boolean values (DOM

respectively). B, X, Z, R are the sets of Boolean variables, DOM variables,

integer random variables and real random variables. Labels is a set of pro-

gram labels. For a syntactic class S , S̃ denotes a sequence of elements from

S . DiPWhile (see Section 6) is the subclass of programs in which the assign-

ments to real and integer variables do not occur with the scope of a while

statement.

restrictions are introduced to make it easier to describe the
decidable fragment in Section 6. Despite these restrictions,
the problem of checking differential privacy is undecidable
for the language introduced here.
The formal syntax of Simple programs is shown in Fig-

ure 1. Programs have four types of variables: Bool = {true,
false}; finite domain DOM 2 that we assume (without loss of
generality) to be {−Nmax, . . . 0, 1, . . .Nmax}, a finite subset of
integers 3; reals R; and integers Z. The set of Boolean/DOM/
integer/real program variables are respectively denoted by
B/X/Z/R. The set of Boolean/DOM/integer/real expres-
sions is given by the non-terminal B/E/Z/R in Figure 1. We
now explain the rules for such expressions. Boolean expres-
sions (B) can be built using Boolean variables and constants,
standard Boolean operations, and by applying functions from
FBool . FBool is assumed to be a collection of computable func-
tions returning a Bool . We assume that FBool always con-
tains a function EQ(x1, x2) that returns true iff x1 and x2 are
equal. DOM expressions (E) are similarly built from DOM

variables, values in DOM, and applying functions from set
of computable functions FDOM. Next, integer expressions

2Though not necessary to distinguish between Booleans and finite domains,

having such a distinction makes our future technical development easier.
3Our decidability results also hold if DOM is taken to be a finite subset of

the rationals.

(Z) are built using multiplication and addition with integer
constants and DOM expressions, and additions with other
integer expressions. Finally, real expressions (R) are built us-
ing multiplication and addition with rational constants and
DOM expressions, and additions with other real-valued ex-
pressions. Notice that integer-valued expressions cannot be
added or multiplied, in real-valued expressions; this syntactic
restriction shall be useful later.

A program in Simple is a triple consisting of a set of (pri-
vate) input variables, a set of (public) output variables, and
a finite sequence of labeled statements (non-terminal P in
Figure 1). The private input variables and public output vari-
ables take values from the domain DOM. Thus, the set of
possibles inputs/outputs (U/V), is identified with the set of
valuations for input/output variables; a valuation over a set
of variables X ′ = {x1, x2, . . . , xm} ⊆ X is a function from X ′

to DOM. Note that if we represent the set X ′ as a sequence
x1, x2, . . . , xm then a valuation val over X ′ can be viewed as
a sequence val(x1),val(x2), . . . ,val(xm) of DOM elements.
We assume every statement in our program is uniquely

labeled from a set of labels called Labels. Basic program state-
ments (non-terminal s) can either be assignments, condition-
als, while loops, or exit. Statements other than assignments
are self-explanatory. The syntax of assignments is designed
to follow a strict discipline. Real and integer variables can
either be assigned the value of real/integer expression or
samples drawn using the Laplace or discrete Laplace mech-
anism. DOM variables are either assigned values of DOM
expressions or values drawn either using an exponential
mechanism (Exp(aϵ, F (x̃), E)) or a user-defined distribution

(choose(aϵ, Ẽ)). For the exponential mechanism, we require
that the scoring function F be computable and return a ratio-
nal value. Both of these restrictions are unlikely to be severe
in practice. In the case of the user defined distribution, we
demand that the probability with which a value d in DOM is
chosen (as a function of the privacy budget ϵ), be definable

in Thexp, and that there is an algorithm that on input a, d̃,v
returns the formula defining the probability of sampling

d ∈ DOM from the distribution choose(aϵ, d̃) where d̃ is a
sequence of values from DOM. This restriction is exploited
in Section 6 to get decidability for a sub-fragment.

Finally, we consider assignments to Boolean variables. The
interesting cases are those where the Boolean variable stores
the result of the comparison of two expressions. The syntax
does not allow for comparing real and integer expressions.
This restriction is exploited later in Section 6 when the de-
cidable fragment is identified. Finally, we will assume that
in any execution, if a variable appears on the right side of an
assignment statement, then it should have been assigned a
value before. This assumption is not restrictive but is techni-
cally convenient when defining the semantics for programs.

LICS ’20, July 8ś11, 2020, Saarbrücken, Germany Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla, and Mahesh Viswanathan

5.2 Markov Kernel Semantics

We briefly sketch a łnaturalž semantics for Simple using
Markov kernels. A key step in proving our decidability re-
sult is to define a semantics using finite-state (parametrized)
DTMCs for the sub-fragment DiPWhile defined in Section 6.
The DTMC semantics may not seem natural on first reading.
The point of the semantics in this section is, therefore, to
argue the correctness of our decision procedure on the basis
of the equivalence of these two semantics for DiPWhile (Sec-
tions 6 and 7). The details for this section are omitted due of
space constraints and because understanding this semantics
is not critical to our decidability proof. The omitted details
can be found [4].

Given a fixed ϵ > 0, the states in the Markov kernel-based
semantics for a program Pϵ will be of the form (ℓ,hBool ,hDOM,
hZ,hR), where ℓ is the label of the statement of Pϵ to be ex-
ecuted next, the functions hBool , hDOM, hZ and hR assign
values to the Boolean, DOM, real and integer variables of
the program Pϵ respectively. Given an input state in, the ini-
tial state will correspond to one where DOM-valued input
variables get the values given in in, and all other variables ei-
ther get false or 0, depending on their type. Observe that for
a program Pϵ with k program statements, i Boolean variables,
j DOM variables, s integer variables, t real variables a state
(ℓ,hBool ,hDOM,hZ,hR) can be uniquely identified with an el-
ement of the setDPϵ = {1, . . . ,k}×F

i
Bool
×DOMj ×Zs ×Rt .

The łnatural" Borel σ -algebra on DPϵ induces a σ -algebra
on the states of Pϵ .
The semantics of Simple programs can be defined as a

Markov kernel over this σ -algebra on states. Intuitively, the
Markov kernel Kϵ corresponding to a program Pϵ is such
that for a state s and a measurable set of states C , Kϵ (s,C) is
the probability of transitioning to a state in C from s . The
precise definition of this Markov kernel can be found in [4].

Executions are just sequences of states, and the σ -field on
executions is the product of the σ -field on states. TheMarkov
kernel defines a probability measure on this σ -field. Given
all these observations, we take Probnatural (Pϵ (in) = out) to
denote the probability (as defined by the Markov kernel of
Pϵ) of the set of all executions that start in the initial state
corresponding to in and end in an exit state with out as the
valuation of output variables. For the rest of the paper, we
will assume that our programs terminate with probability 1.

5.3 Undecidability

The problem of checking differential privacy for Simple pro-
grams is undecidable.

Theorem 5.1. The Fixed Parameter Differential Privacy prob-

lem and the Differential Privacy problem for programs Pϵ in

Simple is undecidable.

The proof of Theorem 5.1 reduces the non-halting problem
for deterministic 2-counter Minsky machines to the Fixed
Parameter Differential Privacy problem. More precisely, we

show that given a 2-counter Minsky machineM (with no
input), there is a program PMϵ ∈ Simple such that

• PMϵ has only one input xin and one output xout taking
values in DOM = {0, 1};
• PMϵ terminates with probability 1 for all ϵ ∈ R>0;

• PMϵ is (ϵ, 0)-differentially private with respect to the
adjacency relation Φ = {(0, 1), (1, 0)} if and only ifM
does not halt.

This construction shows that Differential Privacy is undecid-
able. Undecidability of Fixed Parameter Differential Privacy
is obtained by taking ϵ to be any constant rational number,
say 1

2
. The formal details of the reduction are in [4].

6 DiPWhile: A decidable class of programs

We now discuss a restricted class of programs, for which
we can establish decidability of checking differential privacy.
The class of programs that we consider are exactly those
programs in Simple that satisfy the following restriction:

Bounded Assignments We do not allow assignments to
real and integer variables within the scope of a while
loop. This restriction ensures that assignments to such
variables happen only a bounded number of times dur-
ing execution. Thus, without loss of generality, we
assume that real and integer variables are assigned
at most once as a program with multiple assignments
to a single real and variables can always be rewritten
to an equivalent program with each assignment to a
variable being an assignment to a fresh variable.

We refer to this restricted class as DiPWhile. The DiPWhile

language is surprisingly expressive Ð many known random-
ized algorithms for differential privacy can be encoded. We
give an example of such encodings in DiPWhile. We omit
labels of program statements unless they are needed.

Example 6.1. Algorithm 2 shows how SVT can be encoded
in our language with T = 0,∆ = 1,N = 2, c = 1. In the
example we are modeling ⊥ by 0 and ⊤ by 1. Though for-
loops are not part of our program syntax, they can modeled
as while loops, or if bounded (like here), they can be unrolled.

We can also encode the standard exponential distribution
in DiPWhile (See [4]). Other examples that can be encoded
in our language (and for which the decision procedure ap-
plies) include randomized response, the private smart sum
algorithm [10] with finite discretization of output space (See
Section 7.1), and private vertex cover [23].
The decidability of checking differential privacy for DiP-

While shall rely on two observations. First, the semantics
of DiPWhile programs can also be defined as finite-state
discrete-time Markov chains (DTMC), albeit with transition
probabilities parameterized by ϵ . This observation is sur-
prising because DiPWhile programs have real and integer

Deciding Differential Privacy for Programs with Finite Inputs and Outputs LICS ’20, July 8ś11, 2020, Saarbrücken, Germany

Input: q1,q2
Output: out1,out2

1 T ← 0;

2 out1 ← 0;

3 out2 ← 0;

4 rT ← Lap(ϵ
2
,T);

5 r1 ← Lap(ϵ
4
,q1);

6 b← r1 ≥ rT ;

7 if b then
8 out1 ← 1

else
9 r2 ← Lap(ϵ

4
,q2);

10 b← r2 ≥ rT ;

11 if b then
12 out2 ← 1

end

end

13 exit

Algorithm 2: SVT for 1-sensitive

queries with N = 2,c = 1 and T = 0.

The numbers at the beginning of a line

indicate the label of the statement.

.

.

.

9: q1 : u , q2 : v , T : 0,

out1 : 0, out2 : 0, b : ⊥

rT : (1
2
, 0) r1 : (

1
4
, u)

r1 < rT

10: q1 : u , q2 : v , T : 0,

out1 : 0, out2 : 0, b : ⊥

rT : (1
2
, 0) r1 : (

1
4
, u) r2 : (

1
4
, v)

r1 < rT

11: q1 : u , q2 : v , T : 0,

out1 : 0, out2 : 0, b : ⊤

rT : (1
2
, 0) r1 : (

1
4
, u) r2 : (

1
4
, v)

r1 < rT , r2 ≥ rT

11: q1 : u , q2 : v , T : 0,

out1 : 0, out2 : 0, b : ⊥

rT : (1
2
, 0) r1 : (

1
4
, u) r2 : (

1
4
, v)

r1 < rT , r2 < rT

.

.

.

.

.

.

1

p q

Figure 2. Partial DTMC semantics of Algorithm 2 showing the steps when lines 9 and 10 are

executed. q1 and q2 are assumed to have values u and v , respectively. Only values of assigned

program variables is shown. Third line in state shows parameters for the real values that were

sampled. Last line shows the accumulated set of Boolean conditions that hold on the path.

values variables, and so the natural semantics has uncount-
ably many states (See Section 5.2). The key insight in es-
tablishing this observation is that an equivalent semantics
of DiPWhile programs can be defined without explicitly
tracking the values of real and integer-valued variables. Sec-
ond, all the transition probabilities arising in our semantics
are definable in Thexp. These two observations allow us to
to establish decidability of checking differential privacy of
DiPWhile programs. The rest of the section is devoted to es-
tablishing these observations. We start by formally defining
parametrized DTMCs.

6.1 Parameterized DTMCs

Definition 6.2. A parametrized DTMC is a pairD = (Z ,∆),
where Z is a (countable) set of states, and ∆ : Z × Z →

(R>0 → [0, 1]) is the probabilistic transition function. For any
pair of states z, z ′, ∆ returns a function from R>0 to [0, 1],
such that for every ϵ > 0,

∑
z′∈Z ∆(z, z ′)(ϵ) = 1. We shall call

∆(z, z ′) as the probability of transitioning from z to z ′.

A definable parametrized DTMC is a parametrized DTMC
D = (Z ,∆) such that for every pair of states z, z ′ ∈ Z , the
function ∆(z, z ′) is definable in Thexp.
A parametrized DTMC associates with each (finite) se-

quence of states ρ = z0, z1, . . . zm , a functionProb(ρ) : R>0 →
[0, 1] that given an ϵ > 0, returns the probability of the
sequence ρ when the parameter’s value is fixed to ϵ , i.e.,

Prob(ρ)(ϵ) =
∏m−1

i=0 ∆(zi , zi+1)(ϵ). For a state z0 and a set of
states Z ′ ⊆ Z , once again we have a function that given a
value ϵ for the parameter, returns the probability of reaching
Z ′ from z0. This can be formally defined as Prob(z0,Z

′)(ϵ) =
∑

ρ ∈z0(Z \Z ′)∗Z ′ Prob(ρ)(ϵ). In other words, Prob(z0,Z
′)(ϵ) is

the sum of the probability of all sequences starting in z0,
ending in Z ′, such that no state except the last is in Z ′.

6.2 Parametrized DTMC semantics of DiPWhile

The parametrized DTMC semantics of a DiPWhile program
Pϵ shall be denoted as [[Pϵ]]. We describe [[Pϵ]] informally
here. As mentioned above, the key insight in defining the se-
mantics of aDiPWhile program as a finite-state, parametrized
DTMC, is that the actual values of real and integer variables
need not be tracked. A state of [[Pϵ]] is going to be a tuple of
the form (ℓ, fBool , fDOM, fint, freal,C) where ℓ is the label of
the statement of Pϵ to be executed next. [[Pϵ]] is an abstrac-
tion of the set of all concrete states that are compatible with
it. The partial functions fBool and fDOM assign values to the
Bool and DOM variables, respectively; this is just like in the
natural semantics.
Let us now look at the partial function freal. Intuitively,

freal is supposed to be the łvaluationž for the real variables.
But instead of mapping each variable to a concrete value in R,
we shall instead map it into a finite set. To understand this
mapping, let us recall that in DiPWhile, a real variable is as-
signed only once in a program. Further, such an assignment

LICS ’20, July 8ś11, 2020, Saarbrücken, Germany Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla, and Mahesh Viswanathan

either assigns the value of a linear expression over program
variables, or a value sampled using a Laplace mechanism. In
the former case, freal maps a variable to the linear expression
it is assigned; and in the latter case, the value of the parame-
ters of the Laplace mechanism used in sampling. In the latter
case, since the first parameter is always of the form aϵ , we
need to note only a in the mapping. Notice that the range of
freal is now a finite set as Pϵ contains only a finite number of
linear expressions, and the parameters of sampled Laplacian
take values from the finite set DOM. Similarly, the partial
function fint maps each integer variable to either the linear
expression it is assigned or the parameters of the sampled
discrete Laplace mechanism. The last state component C is
the set of Boolean conditions on real and integer variables
that hold along the path thus far; this shall become clearer
when we describe the transitions. Since the Boolean condi-
tions must be Boolean expressions in the program or their
negation,C is also a finite set. These observations show that
[[Pϵ]] has finitely many states. Intuitively, a state of [[Pϵ]] is
an abstraction of the set of all concrete states that respect
the Boolean conditions in C and the constraints imposed
by assignments of real and integer expressions to real and
integer variables, respectively.
We now sketch how the state is updated in [[Pϵ]]. Up-

dates to DOM variables shall be as expected Ð it shall be
a probabilistic transition if the assignment samples using
an exponential mechanism or a user-defined distribution,
and it shall be a deterministic step updating fDOM otherwise.
Assignments to real variables are always deterministic steps
that change the function freal. Thus, even if the step sam-
ples using the Laplace mechanism, in the semantics, it shall
be modeled as a deterministic step where freal is updated
by storing the parameters of the distribution. Similarly, all
integer assignments are deterministic steps as well.

The assignment of a Boolean expression to a Boolean vari-
able is as expected Ð we update the valuation fBool to reflect
the assignment. The unexpected case is b← R1 ∼ R2 when
a boolean variable gets assigned the result of the comparison
of two real expressions; the case of comparing two integer
expressions is similar. In this case, if the probability ofC hold-
ing is 0, then our construction will ensure that this state is
not reachable with non-zero probability. Otherwise, we tran-
sition to a state where R1 ∼ R2 is added toC with probability
equal to the probability that (R1 ∼ R2) holds conditioned on
the fact thatC holds, and with the remaining probability, we
shall transition to the state where ¬(R1 ∼ R2) is added to C .
Thus, Boolean assignments which compare integer and real
variables are modeled by probabilistic transitions. Finally,
branches and while loop conditions are deterministic steps,
with the value of the Boolean variable (of the condition) in
fBool determining the choice of the next statement.
Let ProbDTMC (Pϵ (in) = out) denote the probability that

Pϵ outputs value out on the input in under the DTMC se-
mantics. This is just the probability of reaching an exit state

with out as valuation of output variables from the initial
state with in as the valuation of input variables. We can
show that this probability is the same as the probability
Probnatural (Pϵ (in) = out) obtained by the natural semantics
discussed above.
It is worth noting how key syntactic restrictions in DiP-

While programs play a role in defining its semantics. The
first restriction is that integer and real variables are not
assigned in the scope of a while loop. This restriction is crit-
ical to ensure that the DTMC [[Pϵ]] is finite-state. Since we
track distribution parameters and linear expressions for such
variables, this restriction ensures that we only remember a
bounded number of these. Second, DiPWhile disallows a
comparison between real and integer expressions in its syn-
tax. Recall that such comparison steps result in a probabilistic
transition, where we compute the probability of the compar-
ison holding conditioned on the properties in C holding. It
is unclear if a closed-form expression for such probabilities
can be computed when integer and real random variables
are compared. Hence such comparisons are disallowed.

Probabilistic transitions in our semantics arise due to two
reasons. First are assignments to DOM variables that sam-
ple according to either the exponential or a user-defined
distribution. The resulting probabilities are easily seen to
be definable in Thexp. The second is due to comparisons be-
tween real and integer expressions. We can prove that in this
case also, the resulting probabilities are definable in Thexp;
this proof is non-trivial, and can be found in [4]. All these
observations together give us the following theorem.

Theorem 6.3. For anyDiPWhile program Pϵ , [[Pϵ]] is a finite,

definable, parametrized DTMC that is computable.

Example 6.4. The parametrized DTMC semantics of Al-
gorithm 2 is partially shown in Figure 2. We show only
the transitions corresponding to executing lines 9 and 10
of the algorithm, when q1 = u and q2 = v initially; here
u,v ∈ {⊥,⊤}. The multiple lines in a given state give the
different components of the state. The first two lines give
the assignment to Bool and DOM variables, the third line
gives values to the integer/real variables, and the last line is
the Boolean conditions that hold along a path. Since 9 and
10 are in the else-branch, the condition r1 < rT holds. Notice
that values to real variables are not explicit values, but rather
the parameters used when they were sampled. Finally, ob-
serve that probabilistic branching takes place when line 10
is executed, where the value of b is taken to be the result of
comparing r2 and rT . The numbers p and q correspond to the
probability that the conditions in a branch hold, given the
parameters used to sample the real variables and conditioned
on the event that r1 < rT .

Deciding Differential Privacy for Programs with Finite Inputs and Outputs LICS ’20, July 8ś11, 2020, Saarbrücken, Germany

7 Checking differential privacy for
DiPWhile programs

We shall now establish that the problem of checking differen-
tial privacy for DiPWhile programs is decidable. The proof
relies on the characterization of the semantics of a DiPWhile

program as a finite, definable, parameterized DTMC (See
Theorem 6.3). An important observation about a finite, defin-
able, parametrized DTMC is that the probability of reaching
a given set of states Z ′ from a given state z0 is both definable
and computable.

Lemma7.1. For any finite-state, definable, parametrized DTMC

D = (Z ,∆), any state z0 ∈ Z and set of states Z ′ ⊆ Z , the

function Prob(z0,Z
′) is definable in Thexp. Moreover, there is

an algorithm that computes the formula defining Prob(z0,Z
′).

The proof of Lemma 7.1 exploits the connection between
reachability probabilities in DTMCs and linear program-
ming [2, 32]; details are in [4]. The main result of the paper
now follows from Theorem 6.3 and Lemma 7.1.

Theorem 7.2. The Fixed Parameter Differential Privacy and

Differential Privacy problems are decidable for DiPWhile pro-

grams Pϵ , rational numbers t ∈ Q>0 and definable functions

δ (ϵ). Furthermore, if Pϵ is not (tϵ, δ) differentially private for

some rational number t and admissible value of ϵ then we can

compute a counter-example.

Proof. Let in and out be arbitrary valuations to input and
output variables, respectively. Observe that the function
ϵ 7→ Prob(Pϵ (in) = out) is nothing but Prob(z0,Z

′) in [[Pϵ]],
where z0 is the initial state corresponding to valuation in,
and Z ′ is the set of all terminating states that have valua-
tion out for output variables. Since [[Pϵ]] (Theorem 6.3) and
Prob(z0,Z

′) (Lemma 7.1) are computable, we can construct
a formula φin,out(ϵ, xin,out) of Lexp that defines the function
ϵ 7→ Prob(Pϵ (in) = out).

Let φδ (ϵ, xδ) be the formula defining the function δ . Let
t =

p

q
where p,q are natural numbers. Consider the sentence

ψ = ∀ϵ .∀z.[∀xin,out]in∈U,out∈V .∀xδ .

((ϵ > 0) ∧ (epϵ = zq) ∧ (z > 0) ∧ φδ (ϵ, xδ)∧
in∈U,out∈V φin,out(ϵ, xin,out))

→ (
∧
(in1,in2)∈Φ,O ⊆V∑
out∈O xin1,out < z

∑
out∈O xin2,out + xδ))

It is easy to see Pϵ is (tϵ, δ (ϵ)) differentially private for all ϵ
iffψ is true over the reals. In the syntax of Lexp, we cannot
take qth roots of e; therefore, we introduce the variable z,
which enables us to write the constraints using only eaϵ ,
where a ∈ N. Notice that ψ belongs to Lexp if we convert
it to prenex form. Decidability, therefore, follows from the
decidability of Thexp.

If Pϵ is not differentially private, then the sentenceψ does
not hold. The decision procedure for Thexp will, in this case,

return an ϵ0 that witnesses the privacy violation of Pϵ . Us-
ing ϵ0, the counter-example (in, in′,O, ϵ0) can be easily con-
structed by enumerating in, in′ and O . □

An easy consequence of Theorem 7.2 is that differential
privacy is decidable for the subclass of program in Simple

that do not have integer and real-valued variables. Let Finite
DiPWhile denote this set of programs. Observe that due to
the presence ofWhile loops, Finite DiPWhile programs may
still have unbounded length executions (including infinite
executions).

Corollary 7.3. The Fixed Parameter Differential Privacy and

Differential Privacy problems are decidable for Finite DiP-

While programs Pϵ , rational numbers t ∈ Q>0 and definable

functions δ (ϵ).

We observe that our methods can be employed to analyze
larger classes of programs (than just those in DiPWhile). For
example, a sufficient condition to ensure the decidability is to
consider programs with the property that, for each input, the
probability distribution on the outputs is definable in Thexp.

We conclude the section by showing how our procedure is
useful when reasoning about integer and real-valued outputs.

Remark. We sketch here how the proofs of Theorem 7.2
changes when the set of admissible ϵ is taken to be an in-
terval I with rational end-points. Let Pϵ , t and δ (ϵ) be as in
the proof of Theorem 7.2. When ϵ is restricted to an inter-
val I , we will require the user-definable distributions to be
definable in Thexp only on the interval I . As in the proof of
Theorem 7.2, we can construct a formula φin,out(ϵ, xin,out)
of Lexp that defines the function ϵ 7→ Prob(Pϵ (in) = out).

For simplicity, consider the case when I be the interval [r , s].
Consider the sentence ψI that is obtained from ψ in the
proof of Theorem 7.2 by replacing the subformula (ϵ > 0) by
(a ≤ ϵ) ∧ (ϵ ≤ b). Then Pϵ is (tϵ, δ (ϵ)) will be differentially
private for all ϵ ∈ I iffψI is true over the reals.

7.1 Finite discretization of infinite output spaces

Our decision procedure assumes that the output space is
finite. In several examples, the program outputs are reals or
unbounded integers (and combinations thereof). Neverthe-
less, we argue that our decision procedure is useful for the
verification of differential privacy in this case also. In particu-
lar, our method provides an under-approximation technique
for checking the differential privacy of programs with infi-
nite outputs. Our approach in such cases is to discretize the
output space into finitely many intervals.
We illustrate this for the special case when a program P

outputs the value of one real random variable, say r. Now,
suppose that we modify P to output a finite discretized ver-
sion of r as follows. Let seq = a0 < a1 < . . . an be a sequence
of rationals and let Discseq(x) be equal to a0 if x ≤ a0, equal
to ai (0 < i < n) if ai−1 < x ≤ ai , and equal to an if x > an−1.

LICS ’20, July 8ś11, 2020, Saarbrücken, Germany Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla, and Mahesh Viswanathan

Consider the program PDisc,seq that instead of outputting
r, outputs Discseq(r). It is easy to see that if P is differentially
private then so must be PDisc,seq. Therefore, if PDisc,seq is
not differentially private then we can conclude that P is not
differentially private. Thus, if our procedure finds a counter-
example for PDisc,seq, then it also has proved that the program
P is not differentially private. Our method is, therefore, an
under-approximation technique for checking the differential
privacy of P . In fact, it is a complete under-approximation
method in the sense that P is differentially private iff for
each possible seq, PDisc,seq is differentially private.

8 Experimental evaluation

We implemented a simplified version of the algorithm, pre-
sented earlier, for proving/disproving differential privacy of
DiPWhile programs. Our tool DiPC [3] handles loop-free
programs, i.e., acyclic programs. Programs with bounded
loops (with constant bounds) can be handled by unrolling
loops. The tool takes in an input program Pϵ parametrized
by ϵ and an adjacency relation, and either proves Pϵ to be
differentially private for all ϵ or returns a counter-example.
The tool can also be used to check differential privacy for a
given, fixed ϵ , or to check for kϵ-differential privacy for some
constant k . DiPC is implemented in C++ and uses Wolfram
Mathematica®. It works in two phases Ð in the first phase,
a Mathematica®script is produced with commands for all
the output probability computations and the subsequent in-
equality checks and in the second phase, the generated script
is run on Mathematica. Details about the tool and its design
can be found in [4].

We used various examples to measure the effectiveness of
our tool. These include SVT [20, 27], Noisy Maximum [17],
Noisy Histogram [17] and Randomized Response [19] and
their variants. Detailed descriptions of these algorithms and
their variants can be found in [4].

We ran all the experiments on an octa-core Intel®Core i7-
8550U @ 1.8gHz CPU with 8GB memory. The running times
reported are the average of 3 runs of the tool. In the tables,
T1 refers to the time needed by the C++ phase to generate
the Mathematica scripts, and T2 refers to the time used by
Mathematica to check the scripts. Due to space constraints,
we report only a small fraction of our experiments; full details
of all our experiments can be found in [4].
Salient observations about our experiments are follows.

1. DiPC successfully proves algorithms to be differen-
tially private and finds counter-examples to demon-
strate a violation of privacy in reasonable time. Table 1
shows the running time of DiPC on some examples
for 3 queries. We chose to use 3 queries because for
algorithms that are not private, counter-examples can
be found with 3 queries.

2. The time to generate Mathematica scripts is signifi-
cantly smaller than the time taken by Mathematica to

Algorithm
Runtime
(T1/T2)

ϵ-Diff.
Private

SVT 0s/825s ✓

SVT2 0s/768s ✓

SVT5 0s/2s ✗

NMax4 1s/58s ✗

Rand2 0s/0s ✗

Table 1. Runtime for 3 queries for each algorithm searching over ad-

jacency pairs and all ϵ>0, with parameters being [c=1, ∆=1, DOM={-

1,0,1}, seq = (−1 < 0 < 1)]. For SVT, we also have T =0.

Algo |Q| Output Input 1 Input 2 ϵ
Runtime
(T1/T2)

SVT5 2 [⊥ ⊤] [-1 0] [-1 -1] 27 0s/2s
NMax3 3 -1, seq=(-1<0<1) [-1 -1 -1] [0 0 0] 27 0s/310s
NMax4 1 0, seq=(-1<0<1) [-1] [0] 27 0s/2s
Rand2 1 [⊥] [⊥] [⊤] 9/34 0s/0s

Table 2. Smallest Counter-example found for each non-differentially

private algorithm, searching over all adj. pairs and ϵ > 0, with parameters

being [c=1, ∆=1, DOM={-1,0,1}]

check the scripts (i.e., T1≪ T2). Further, most of the
time spent by Mathematica is for computing output
probabilities; the time to perform comparison checks
for adjacent inputs was relatively small. Thus, pro-
grams that do not use real variables (Rand2 in Table 1,
for example) can be analyzed more quickly.

3. For algorithms that are not differentially private, DiPC
can automatically identify the pair of inputs, output,
and ϵ for which privacy is violated. Table 2, shows
the results for the smallest counter-example found by
DiPC for some examples. Further, counter-examples
found by DiPC are much smaller, in terms of queries,
than those found in [17]; the number of queries needed
in the counter-examples in [17] for NMax3, NMax4,
and SVT5 were 5, 5, and 10, respectively, as opposed
to 3, 1, and 2 found by DiPC.

4. DiPC is the first automated tool that can check (ϵ, δ)-
differential privacy. To evaluate this feature, we tested
DiPC on a version of SVT, Sparse [20], which is man-
ually proven to be (ϵ

2
, δsvt)-differentially private for

any number of queries in [20] by using advanced com-
position theorems. Here δsvt is a second parameter in
the algorithm. In our experiments, we tested (ϵ

2
, δsvt)-

differential privacy of Sparse with fixed values of δsvt
for c = 1, 2 and 3 queries, validating the result in [20].
As we were dealing with only 3 queries, we also man-
aged to obtain better bounds on the error parameter.

9 Related work

The main thread of related work has focused on formal sys-
tems for proving that an algorithm is differentially private.

Deciding Differential Privacy for Programs with Finite Inputs and Outputs LICS ’20, July 8ś11, 2020, Saarbrücken, Germany

Such systems are helpful because they rule out the possibil-
ity of mistakes in privacy analyses. Starting from Reed and
Pierce [31], several authors [16, 21] have proposed linear (de-
pendent) type systems for proving differential privacy. How-
ever, it is not possible to verify some of the most advanced
examples, such as a sparse vector or vertex cover, using these
type systems. Moreover, type-checking and type-inference
for linear (dependent) types are challenging. For example,
the type checking problem for DFuzz, a language for differen-
tial privacy, is undecidable [15]. Barthe et al [5, 6, 8] develop
several program logics based on probabilistic couplings for
reasoning about differential privacy. These logics have been
used successfully to analyze many classic examples from
the literature, including the sparse vector technique. How-
ever, these logics are limited: they cannot disprove privacy;
extensions may be required for specific examples; building
proofs is challenging. The last issue has been addressed by a
series of works that provide automated methods for proving
differential privacy automatically. Zhang and Kifer [34] intro-
duce randomness alignments as an alternative to couplings
and build a dependent type system that tracks randomness
alignments. Automation is then achieved by type inference.
Albarghouthi and Hsu [1] propose coupling strategies, which
rely on a fine-grained notion of variable approximate cou-
pling, which draws inspiration both from approximate cou-
plings and randomness alignment. They synthesize coupling
strategies by considering an extension of Horn clauses with
probabilistic coupling constraints and developing algorithms
to solve such constraints. Recently Wang et al [33] develop
an improved method based on the idea of shadow execu-
tions. Their approach is able to verify Sparse Vector and
many other challenging examples efficiently. However, these
methods are limited to vanilla ϵ-differential privacy and do
not accommodate bounds that are obtained by advanced
composition (since δ , 0).
In an independent line of work, Chatzikokolakis, Gebler

and Palamidessi [11] consider the problem of differential
privacy for Markov chains. Later, Liu, Wang, and Zhang [26]
develop a probabilistic model checking approach for verify-
ing differential privacy properties. Their approach is based
on modeling differential private programs as Markov chains.
Their encoding is more direct than ours (i.e. it assumes that
a finite-state Markov chain is given), and they do not pro-
vide a decision procedure with real and integer variables.
Furthermore, the DTMCs are not parameterized by ϵ . Chis-
tikov and Murawski and Purser [12, 13] propose an elegant
method based on skewed Kantorovich distance for checking
approximate differential privacy of Markov chains.
The dual problem is to find violations of differential pri-

vacy automatically. This is useful to help privacy practition-
ers discover potential problems early in the development
cycle. Two recent and concurrent works by Ding et al [17]
and Bischel et al [9] develop automated methods for find-
ing privacy violations. Ding et al. propose an approach that

combines purely statistical methods based on hypothesis
testing and symbolic execution. Bischel et al. develop an ap-
proach based on a combination of optimization methods and
language-specific techniques for computing differentiable
approximations of privacy estimations. Both methods are
fully automated. However, both methods can only be used
for concrete numerical values of the privacy budget ϵ .

Gaboardi et. al [22] study the complexity of deciding differ-
ential privacy for randomized Boolean circuits. Their results
are proved by reduction to majority problems and are incom-
parable with ours: the only probabilistic choices in [22] are
fair coin tosses and eϵ is taken to be a fixed rational number.

10 Conclusions

We showed that the problem checking differential privacy
is in general undecidable, identified an expressive sub-class
of programs (DiPWhile) for which the problem is decid-
able, and presented the results of analyzing many known
differential privacy algorithms using our tool DiPC which
implements a decision procedure for DiPWhile programs.
Advantages of DiPC include the ability to automatically,
both prove algorithms to be private for all ϵ > 0, and find
counter-examples to demonstrate privacy violations. In addi-
tion DiPC can check bounds that are based on concentration
inequalities, in particular bounds that use advanced compo-
sition theorems. Such bounds are out of reach of most other
tools that prove privacy or search for counter-examples.
In the future, it would be interesting to extend this work

to handle programs with input/output variables that take
values in infinite domains, and parametrized privacy algo-
rithms that work for an unbounded number of input and
output variables. Another important problem is developing
decision procedures that can prove tight accuracy bounds,
and detect violations of accuracy bounds. We also plan to
investigate extending the decision procedure to cover algo-
rithms that are currently out of the scope of our decision
procedure such as the multiplicative weights and iterative
database construction [24, 25], and those involving Gaussian
distributions.

Acknowledgments

We thank the anonymous reviewers for their useful com-
ments. Their inputs have improved the paper, especially the
presentation of the semantics. Rohit Chadha was partially
supported by NSF CNS 1553548 and NSF CCF 1900924. A.
Prasad Sistla was partially supported by NSF CCF 1901069
and NSF CCF 1564296. Mahesh Viswanathan was partially
supported by NSF CCF 1901069.

References
[1] Aws Albarghouthi and Justin Hsu. 2018. Synthesizing coupling proofs

of differential privacy. PACMPL 2, POPL (2018), 58:1ś58:30.

[2] C. Baier and J.-P. Katoen. 2008. Principles of Model Checking. MIT

Press.

LICS ’20, July 8ś11, 2020, Saarbrücken, Germany Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla, and Mahesh Viswanathan

[3] Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla,

and Mahesh Viswanathan. 2019. Differential Privacy Checker

(DiPC). https://anonymous.4open.science/repository/febcbe47-1c53-

41db-be91-ea98b4cf18c1/.

[4] Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla, and

Mahesh Viswanathan. 2020. Deciding Differential Privacy for Pro-

grams with Finite Inputs and Outputs. arXiv:1910.04137 [cs.CR]

[5] Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire,

Justin Hsu, and Pierre-Yves Strub. 2016. Advanced Probabilistic Cou-

plings for Differential Privacy. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, Edgar R.Weippl,

Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai

Halevi (Eds.). ACM, 55ś67.

[6] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and

Pierre-Yves Strub. 2016. Proving differential privacy via probabilistic

couplings. In IEEE Symposium on Logic in Computer Science (LICS),

New York, New York.

[7] Gilles Barthe, Marco Gaboardi, Justin Hsu, and Benjamin C. Pierce.

2016. Programming language techniques for differential privacy.

SIGLOG News 3, 1 (2016), 34ś53.

[8] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella-

Béguelin. 2013. Probabilistic Relational Reasoning for Differential

Privacy. ACM Transactions on Programming Languages and Systems

35, 3 (2013), 9.

[9] Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov,

and Martin T. Vechev. 2018. DP-Finder: Finding Differential Privacy Vi-

olations by Sampling and Optimization. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, CCS

2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng

Wang (Eds.). ACM, 508ś524.

[10] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. 2011. Private and

continual release of statistics. ACM Transactions on Information and

System Security 14, 3 (2011), 26.

[11] Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi,

and Lili Xu. 2014. Generalized Bisimulation Metrics. In 35th Inter-

national Conference on Concurrency Theory, CONCUR 2014. Springer

Berlin Heidelberg, 32ś46.

[12] Dmitry Chistikov, Andrzej S. Murawski, and David Purser. 2018. Bisim-

ilarity Distances for Approximate Differential Privacy. In Automated

Technology for Verification and Analysis - 16th International Symposium,

ATVA 2018 (Lecture Notes in Computer Science), Shuvendu K. Lahiri

and Chao Wang (Eds.), Vol. 11138. Springer, 194ś210.

[13] Dmitry Chistikov, Andrzej S. Murawski, and David Purser. 2019. Asym-

metric Distances for Approximate Differential Privacy. In 30th Inter-

national Conference on Concurrency Theory, CONCUR 2019 (LIPIcs),

Wan Fokkink and Rob van Glabbeek (Eds.), Vol. 140. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 10:1ś10:17.

[14] Erhan Cinlar. 2011. Probability and Stochastics. Springer.

[15] Arthur Azevedo de Amorim, Emilio Jesús Gallego Arias, Marco

Gaboardi, and Justin Hsu. 2015. Really Natural Linear Indexed Type

Checking. http://arxiv.org/abs/1503.04522. CoRR abs/1503.04522 (2015).

arXiv:1503.04522

[16] Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, and Shin-ya

Katsumata. 2019. Probabilistic Relational Reasoning via Metrics. In

34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS

2019. 1ś19.

[17] Zeyu Ding, YuxinWang, GuanhongWang, Danfeng Zhang, and Daniel

Kifer. 2018. Detecting Violations of Differential Privacy. In Proceedings

of the 2018 ACM SIGSAC Conference on Computer and Communications

Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, David

Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.).

ACM, 475ś489.

[18] Cynthia Dwork, FrankMcSherry, Kobbi Nissim, and Adam Smith. 2006.

Calibrating noise to sensitivity in private data analysis. In IACR Theory

of Cryptography Conference (TCC), New York, New York. 265ś284.

[19] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and

Salil P. Vadhan. 2009. On the complexity of differentially private data

release: efficient algorithms and hardness results. In ACM SIGACT

Symposium on Theory of Computing (STOC), Bethesda, Maryland. 381ś

390.

[20] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations

of Differential Privacy. Foundations and Trends in Theoretical Computer

Science 9, 3ś4 (2014), 211ś407.

[21] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and

Benjamin C Pierce. 2013. Linear dependent types for differential

privacy. In ACM SIGPLANśSIGACT Symposium on Principles of Pro-

gramming Languages (POPL), Rome, Italy. 357ś370.

[22] Marco Gaboardi, Kobbi Nissim, and David Purser. 2019. The

Complexity of Verifying Circuits as Differentially Private.

http://arxiv.org/abs/1911.03272. CoRR abs/1911.03272 (2019).

arXiv:1911.03272 To Appear in 47th International Colloquium on

Automata, Languages and Programming (ICALP’ 20), 2020.

[23] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and

Kunal Talwar. 2010. Differentially private combinatorial optimization.

InACMśSIAM Symposium onDiscrete Algorithms (SODA), Austin, Texas.

1106ś1125.

[24] Anupam Gupta, Aaron Roth, and Jonathan Ullman. 2012. Iterative

Constructions and Private Data Release. In Theory of Cryptography

- 9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily,

Italy, March 19-21, 2012. Proceedings (Lecture Notes in Computer Science),

Ronald Cramer (Ed.), Vol. 7194. Springer, 339ś356.

[25] Moritz Hardt and Guy N. Rothblum. 2010. A Multiplicative Weights

Mechanism for Privacy-Preserving Data Analysis. In 51th Annual IEEE

Symposium on Foundations of Computer Science, FOCS 2010, October

23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society, 61ś70.

[26] Depeng Liu, Bow-Yaw Wang, and Lijun Zhang. 2018. Model Checking

Differentially Private Properties. In Programming Languages and Sys-

tems - 16th Asian Symposium, APLAS 2018 (Lecture Notes in Computer

Science), Sukyoung Ryu (Ed.), Vol. 11275. Springer, 394ś414.

[27] Min Lyu, Dong Su, and Ninghui Li. 2017. Understanding the Sparse

Vector Technique for Differential Privacy. Proceedings of VLDB 10, 6

(2017), 637ś648.

[28] Scott McCallum and Volker Weispfenning. 2012. Deciding polynomial-

transcendental problems. Journal of Symbolic Computation 47, 1 (2012),

16ś31.

[29] Frank McSherry and Kunal Talwar. 2007. Mechanism Design via

Differential Privacy. In 48th Annual IEEE Symposium on Foundations

of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI,

USA, Proceedings. IEEE Computer Society, 94ś103.

[30] Prakash Panangaden. 1999. The Category ofMarkov Kernels. Electronic

Notes in Theoretical Computer Science 22 (12 1999), 171ś187.

[31] Jason Reed and Benjamin C Pierce. 2010. Distance Makes the Types

Grow Stronger: A Calculus for Differential Privacy. In ACM SIGPLAN

International Conference on Functional Programming (ICFP), Baltimore,

Maryland.

[32] J. M. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. 2004. Mathe-

matical Techniques for Analyzing Concurrent and Probabilistic Systems.

AMS.

[33] Yuxin Wang, Zeyu Ding, Guanhong Wang, Daniel Kifer, and Danfeng

Zhang. 2019. Proving differential privacy with shadow execution. In

Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, (PLD)I. 655ś669.

[34] Danfeng Zhang and Daniel Kifer. 2017. LightDP: towards automating

differential privacy proofs. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages, POPL 2017 2017,

Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 888ś901.

	Abstract
	1 Introduction
	2 Primer on differential privacy
	3 Motivating Example
	4 Preliminaries
	4.1 The Computational Problem
	4.2 Reals with exponentials

	5 Program syntax and semantics
	5.1 Syntax of Simple programs
	5.2 Markov Kernel Semantics
	5.3 Undecidability

	6 DiPWhile: A decidable class of programs
	6.1 Parameterized DTMCs
	6.2 Parametrized DTMC semantics of DiPWhile

	7 Checking differential privacy for DiPWhile programs
	7.1 Finite discretization of infinite output spaces

	8 Experimental evaluation
	9 Related work
	10 Conclusions
	Acknowledgments
	References

