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Abstract

Termination checking is a classic static analysis, and, within
this focus, there are type-based approaches that formalize
termination analysis as type systems (i.e., so that all well-
typed programs terminate). But there are situations where
a stronger termination property (which we call strongly-
bounded termination) must be determined and, accordingly,
we explore this property via a variant of the simply-typed
λ-calculus called the bounded-time λ-calculus (BTC). This
paper presents the BTC and its semantics and metatheory
through a Coq formalization. Important examples (e.g., hard-
ware synthesis from functional languages and detection of
covert timing channels) motivating strongly-bounded termi-
nation and BTC are described as well.
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1 Introduction

In the classic example of a covert timing channel, the value
of b in if b then c1 else c2 leaks when ci have different ter-
mination behaviors. Determining that the program is timing-
channel free, however, requires knowing more than whether
both ci terminate, but also that, when they both terminate,
they do so in precisely the same number of steps. This is
the basic insight underlying compiler strategies for elimi-
nating timing channels [3]. The latter timing-aware notion
of terminationÐwhich we call strongly-bounded termination

(SBT)Ðis stronger than the one generally considered in the
literature (e.g., Dershowitz and Manna [11] and their descen-
dants).
We introduce the bounded-time λ-calculus (BTC), a vari-

ety of the simply-typed λ-calculus, in which the type system
enforces SBT: all BTC terms of type t are guaranteed to ter-
minate within a fixed number of steps encoded within the
type t itself. This restricted expressiveness facilitates the Coq
verification of interesting metatheoretic properties of our
systemÐe.g., type safety and strong normalization [32]. In
developing BTC, we are motivated primarily by two exam-
ples that require precise bounds on termination. The first
example is the covert timing channel analysis [3] illustrated
above. The second example concerns the high-level synthesis
(HLS) of hardware circuits from functional languages that
takes functions (e.g., in host languages like Haskell [4, 13, 30]
or Scala [5]) and attempts to compile them to hardware cir-
cuitry. The remainder of this section comments on related
work. Section 2 presents an overview of BTC and its syn-
tax and semantics. Section 3 presents its metatheory, all of
which is formalized in Coq (source available upon request).
Section 4 discusses our two motivating examples in light of
the formal development of BTC and Section 5 outlines future
work and conclusions.

Related Work. The ReWire functional hardware descrip-
tion language is a tool for producing high assurance hard-
ware [30]. ReWire is a subset of the Haskell functional pro-
gramming language: every ReWire program is a Haskell
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program, but not necessarily vice versa. A recent publica-
tion presents a type-effect system for ReWire and a related
operational semantics mechanized in Coq [33] and it is this
formal ReWire semantics that is the original point of de-
parture for BTC. The ReWire type-effect system accounts
for space usage in a manner reminiscent of effect systems
for region-based analysis [28], albeit in a restricted form. In
ReWire, łregionsž are of fixed size and number, and access
to a łregionž is controlled via the state monad transformer.
Space usage in ReWire is also strictly bounded via restric-
tions on data and control recursion. BTC was developed as a
means of exploring both the easing of recursion restrictions
and the formalization of synthesizability for ReWire and the
authors expect that BTC, in some form, will be integrated
with the ReWire effect system soon.

Ghica and Jung [15] provide a categorical semantics for a
class of digital circuits in terms of monoidal categories and
are motivated by the need for supporting syntactic, equa-
tional reasoning. Another categorical presentation of digital
circuits is found in Megacz [25], who uses generalized ar-
rows as a basis for hardware description. Linear Types are
used to measure and control resource usage in Brunel, et
al. [8] and Ghica, et al. [16]. By contrast with this categorical
approach, ReWire specifications are, more or less, ordinary
functional programs that are compiled into circuits. ReWire
specifications may be reasoned about equationally in the
usual manner of functional languages; this was the approach
taken in our previous ReWire verification work [20, 30].

Whereas other type-based termination analyses examine
more expressive languages [9, 27, 31], we focus on a lim-
ited extension of the simply-typed λ-calculus because of its
relevance to HLS generally and ReWire in particular. The
trade-off in expressiveness facilitates the use of standard
machinery to prove interesting metatheoretic properties of
our system. To the best knowledge of the authors, the BTC
formalization presented here is the first such type-based ter-
mination analysis to have been fully mechanized and verified
in Coq.
Functional language HLS must determine if a function

may be represented as circuitry. This question is non-trivial
because compiling functional languages to hardware is not
possible for arbitrary programs because hardware’s finite
storage capacity can accommodate neither unbounded data
nor control. Functions that are to be represented as combina-
tional circuitry must exhibit SBT (as we discuss in Section 4),
which neither Haskell nor Scala’s type systems can discern.
BTC types have been augmented with natural numbers as
a representation of computation time so that, for any BTC
type t, there is an n ∈ N such that, for any closed term e : t,
then e normalizes in no more than n steps. The natural n
is, then, the notion of łsizež of the type t in the BTC type
system. Sized types were introduced as a means of perform-
ing type-based termination analysis [2, 6, 21, 26, 35] and this

paper explores the sized type approach to strongly-bounded
termination analysis and its formalization in Coq.
Type based approaches to termination add size parame-

ters to type system as a means to guarantee that recursive
functions terminate. The typing rule ListFix illustrates a
(simplified) type-based approach to using size variables in
recursive definitions (adapted from [6, 35]):

Γ, f : [a]n → b ⊢ e : [a]n+1 → b

Γ ⊢ fix(λ f .e) : [a]∞ → b
(ListFix)

where n is a size variable and [a]n denotes the type of lists
(with elements of type a) of a size no greater than n. This
requires each instance of f to be defined on lists smaller than
e , and hence, each recursive call reduces the size parameter.

Using types as a basis for termination analysis dates as
far back as Mendler [26]; see Abel [1] and Sacchini [34]
for full discussion of this idea. The underlying motivation
for using sized types is that it aids in termination checking,
as subsequent calls may be type checked for reduced size.
Hughes et al. [21] incorporate sized types into a functional
language. In the system introduced in [21] each name for a
datatype, i.e., List, Stream, represents a collection of nat-
indexed datatypes such as Listn where n is a size bound. In
this system, sizes are a linear function of size variables and
typing rules reinforce a requirement that each input gener-
ates an output of a smaller size. This supports a basic check
for responsiveness of programs in a reactive system because
programs that are well-typed in this system will satisfy a
liveness propertyśthat every input eventually produces an
output.
Building on the system introduced in [21], Pareto [29]

examines an extension of Haskell with sized types. This ex-
tension utilizes linear sized typesśincluding addition and
constants and provides a type-checking algorithm as well.
Giménez [18] considers an extension of the Calculus of Con-
structions [10] in which sizes are not explicitly represented
but are still present nonetheless. Other type systems involve
more complex size algebras. For example, a more expressive
language using linear sized types was introduced in [35]
by extending the Calculus of Inductive Constructions with
(co-)inductive types and size annotations. Other systems in-
troduce sizes as upper bounds [2, 7], or add sized types in a
dependently typed framework with polymorphism and in-
dexed types [40]. Each of these systems has more expressive
power than our own.

Functional language approaches to hardware description
and synthesis frequently take the form of domain-specific
languages embedded in a general purpose functional lan-
guage like Haskell or Scala [4, 5, 13, 30]. With this approach,
one must distinguish between programs that describe hard-
ware (i.e., those in the embedded DSL) and those that do not
(i.e., host functional programs that cannot be represented in
hardware), but that distinction is not made formal in previ-
ous work. This work identifies SBT as an important property
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prior to hardware realizability and formalizes its basic type-
theoretic machinery.
Type-theoretic machinery has been used in timing chan-

nel analysis in the context of imperative programs (see, for
example, [14, 37, 38, 41]). These approaches typically com-
bine information flow analysis with timing channel analysis.
For information flow, the program variables are attached to
security levels, and the type systems ensure that information
does not flow from high-level security variables into low-
level security variables. For reasoning about timing channels
analysis, Smith and Volpano [37, 38] assume that each re-
duction of operational semantics takes a single time unit.
By assuming that time is an explicit low-level security vari-
able which is assigned to inside a program, Smith and Vol-
pano [38] can exploit the information flow analysis to show
that well-typed programs are free of timing channels. On
the other hand, Smith [37] explicitly decorates each instruc-
tion type with the number of steps it takes to execute the
instruction. Thus, the approach of Smith [37] is analogous
to ours, except that it applies to imperative programs. The
type system in Zhang et al. [41] identifies fragments of code
that may have timing channels when implemented in hard-
ware. The identification allows the programmers to mitigate
timing channels by making sure that these fragments take a
fixed amount of time in hardware. In Ferraiuolo et al. [14],
a secure hardware-description language, ChiselFlow, is de-
scribed with type annotations that inform a custom-made
processor architecture, HyperFlow, when to mitigate infor-
mation leakage (including timing leakage).

2 The Bounded Time Calculus

In this section, we introduce a variant of the simply-typed
λ-calculusÐcalled the bounded-time λ-calculus (BTC)Ðwith
a sized type system enforcing strongly-bounded termination.
The BTC type system has been augmented with natural
numbers representing a coarse grained approximation of
computation time.
The type system in this section shall only enforce that

a well-typed program takes at most n computation steps
in all possible executions, where n is the natural number
decorating the type of the program. For the application to
timing channel analysis, we shall consider a more restricted
type system in Section 4.1, which will ensure that a well-
typed program (in the restricted type system) takes the same
number of steps in all executions.
This calculus extends a standard Church-style type sys-

tem of the simply-typed λ-calculus in two ways. We focus
here on a Church-style approach to typing as opposed to a
Curry-style type system [? ? ]. First, in the BTC type system,
function types are the only types themselves that have tim-
ing decorations in a manner similar to the ListFix example
above. Other types, such as products, sums and unit remain
unchanged. Second, type judgments incorporate a timing

decoration as part of the judgment. The formalization con-
tains proofs of many standard properties of the simply-typed
λ-calculus such as type safety and strong normalization. The
Coq development is available from the codebase [32]; every
theorem, lemma, and corollary in this paper has been verified
in Coq.

Syntax. The BTC type, term, and value syntax is just that of
the simply-typed λ-calculus with one exception. The func-

tion type is decorated with a natural number; e.g., (T
n

→ U ).
The decoration on the function type represents a restriction
on the time it takes to convert an argument to its correspond-
ing output and we will return to its significance below. The
type syntax is stated below in Definition 2.1. We adopt the
following conventions. We use s, t,u to denote terms,v,w to
denote values, x,y, z to denote arbitrary variables, and T ,U
for types.

Definition 2.1 (Types). The set Ty of BTC types is defined
thusly:

T ,U ∈ Ty ::= T
n

→ U | T ×U | T +U | ()

where n denotes an arbitrary natural number.

Terms and values are given standard definitions (Defini-
tion 2.2).

Definition 2.2 (Terms). The set term of BTC terms is de-
fined thusly:

s, t,u ∈ term ::= x | app t u | λ x T t | nil | pair t u

| π1 t | π2 t | inl t T | inr t T | case s t u

Definition 2.3 (Values). The set value of BTC values is
given by the following:

v,w ∈ value ::= λ x T t | nil | pair v w | inl v T | inr v T

The definitions of free variable and substitution (Defini-
tions 2.4 and 2.5) are standard and given below. Term t is
closed when FV (t) = ∅.

Definition 2.4 (Free Variables). For any term t , the set of
free variables in t , FV (t) is defined as:

FV (x) = {x}

FV (app t u) = FV (t) ∪ FV (u)

FV (λ x T t) = FV (t) \ {x}

FV (pair t u) = FV (t) ∪ FV (u)

FV (case s t u) = FV (s) ∪ FV (t) ∪ FV (u)

FV (nil) = {}

FV (π1 t) = FV (t)

FV (π2 t) = FV (t)

FV (inr t U ) = FV (t)

FV (inl u T ) = FV (u)
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Definition 2.5 (Substitution). Substitution of value v for
free occurrences of x in t is defined by:

y[x := v] =

{

y y , x

v otherwise
(app t u)[x := v] = app (t[x := v]) (u[x := v])

nil[x := v] = nil

(λ x T t)[x := v] =

{

λyT (t[x := v]) y , x , y < F V (v)

λ x T t otherwise

(pair t u)[x := v] = pair (t[x := v]) (u[x := v])

(π1 t)[x := v] = π1 (t[x := v])

(π2 t)[x := v] = π2 (t[x := v])

(inr t U )[x := v] = inr (t[x := v])U

(inl uT )[x := v] = inl (u[x := v])T

(case s t u)[x := v] =

case (s[x := v]) (t[x := v]) (u[x := v])

Type System. Typing rules for terms are given in Defini-
tion 2.6. Typing judgments take the form Γ ⊢ t :T n where
Γ = {x1 :T1, . . . ,xm :Tm} such that for each assumption
x i :Ti , x i denotes a term variable unique to Γ and Ti is a
type (as defined in Definition 2.1). The set Γ is commonly
referred to as a context or environment. In cases where Γ is
empty, we write {}. Additionally, we write Γ,x :T as short-
hand for Γ ∪ {x :T }. The syntax of decorators is given by the
following grammar:

n,m ∈ N ::= n | n +m | max(n,m)

We say that n decorates the type T in T n . Though restric-
tive, this linear structure suffices for our needs here. The
expression that decorates function types is more restrictiveÐ
only allowing natural numbers as decorators.

Definition 2.6 (Type Inference System).

Γ,x :T ⊢x :T 0
(Var)

Γ,x :T ⊢ t :U n

Γ ⊢ λ x T t : (T
n
→ U )0

(Abs)

Γ ⊢ f : (T
n
→ U )m Γ ⊢ t :T p

Γ ⊢ app f t :U (n+m+p+1)
(App)

Γ ⊢ nil : ()0
(Nil)

Γ ⊢ t :T n
Γ ⊢ u :Um

Γ ⊢ pair t u : (T ×U )n+m
(Pair)

Γ ⊢ t : (T ×U )n

Γ ⊢ π1 t :T
(n+1)

(Pi1)
Γ ⊢ t : (T ×U )n

Γ ⊢ π2 t :U
(n+1)

(Pi2)

Γ ⊢ t :T n

Γ ⊢ inl t U : (T +U )n
(Inl)

Γ ⊢ u :U n

Γ ⊢ inr u T : (T +U )n
(Inr)

Γ ⊢ s : (T +U )n Γ ⊢ t : (T
l
→ S)m Γ ⊢ t : (U

r
→ S)p

Γ ⊢ case s t u : S (n+max(l+m,r+p)+2)
(Case)

The types for variables, abstractions and nil each have
0 as a decorator. Pairs inherit the sum of the decorators for
the types of their subterms, while each type for the projec-
tion constructors adds one to the decorator of their subterm

types. Sums possess the same decorators as the types of their
subterms. For the application rule, the natural number deco-
rating the arrow represents the time it takes to reduce a term
of type T to a term of type U . In addition to natural number
indices, function types also receive an outer decoration. This
represents the time for processing the function of that type.
In line with the other term constructors, the decorator for
the resulting term adds 1. The rule for case takes the max

value of the decorators adorning either branch of the evalu-
ation. Because this requires an additional term, it adds 2 to
the decorator for the type of the case expression.
The type system possesses a property common to many

simply-typed λ-calculi. This property is that every well-
typed term has a unique type, as stated in Theorem 2.7.

Theorem 2.7 (Type Uniqueness). If Γ ⊢ t : T n and Γ ⊢ t :

Um , then T = U .

In this typing system, with the addition of decorators, this
property was not guaranteed. Interestingly, the type system
also possesses similar property for decorators, as stated in
Theorem 2.8. This property enforces a uniformity of decora-
tor assignments, so to speak.

Theorem 2.8 (Decorator Uniqueness). If Γ ⊢ t : T n and

Γ ⊢ t : Um , then n =m.

Additionally, well-typed terms in the empty context are
well-typed in any context. Theorem 2.9 provides further as-
surance that the addition of decorators does not drastically al-
ter the traditional properties of the simply-typed λ-calculus’s
type system.

Theorem 2.9. If {} ⊢ t : T n , then Γ ⊢ t : T n .

Our type system and definition of values (from Defini-
tion 2.3) provide us with canonical formsÐthat is, a property
of closed, well-typed values. Many proofs of metatheoretic
properties tend to be organized around canonical forms. This
greatly reduces the cases one needs to consider. Canonical
forms are given by Lemmas 2.10-2.13 below.

Lemma 2.10. If {} ⊢ v : (T
n
→ U )m and v is a value, then

there exists x and u such that v = λ x T u.

Lemma 2.11. If {} ⊢ v : (T ×U )m andv is a value, then there

exists t and u such that v = pair t u.

Lemma 2.12. If {} ⊢ v : (T +U )m andv is a value, then there

existsw such that v = inlw U or v = inrw T .

Lemma 2.13. If {} ⊢ v : ()0, then v = nil.

Substitution (given in Definition 2.5 above) preserves typ-
ing judgments. This requires that if free variables occur in
well-typed terms, then there must be a typing assignment for
those variables relative to the context (Lemma 2.14 below).

Lemma 2.14. If x ∈ FV(t) and Γ ⊢ t :T n , then there exists a

U such that {x : U } ∈ Γ.
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From this Corollary 2.15 followsÐnamely, that a term is
closed if it is well-typed in the empty context.

Corollary 2.15. If {} ⊢ t :T n , then t is closed.

Moreover, we have Lemma 2.16 as a consequenceÐthat the
context of a typing judgment does not alter typing judgments,
so long as all each context maintains assignments of types
to any free variable.

Lemma 2.16. If Γ ⊢ t :T n and, if, for all x , x ∈ FV(t), Γ and

Γ
′ assign the same type to x , then Γ

′ ⊢ t :T n .

Finally, we have Theorem 2.17Ðthat is, the substitution
operation preserves typing judgments when the term being
substituted is a value.

Theorem 2.17. If Γ, x :U ⊢ t :T n , value v , and {} ⊢ v :Um ,

then Γ ⊢ (t[x := v]) :T n .

This is a more restricted version than what one typically
sees. In most simply-typed λ-calculi, no additional restriction
is placed on terms being substituted into expressions. Our
version adds the restriction that a value must be substituted.
In theory, all that one needs is to restrict the decorator of
the type for such terms as in Corollary 2.18.

Corollary 2.18. If Γ, x :U ⊢ t :T n and {} ⊢ v :U 0, then Γ ⊢

(t[x := v]) :T n .

In practice, no proof hinges on which version one picks and
the reason for this is simple. In BTC, all well-typed values
have 0 as their decorator (Theorem 2.19).

Theorem 2.19. If {} ⊢ t :T n and value v , then n = 0.

Small-Step Operational Semantics. In this section, we de-
scribe a small-step operational semantics for BTC mecha-
nized in Coq in the style of the popular Software Foundations
series. The single-step reduction relation (⇝) is given by the
rules in Definition 2.20 below.

Definition 2.20 (Step Relation).

value v
app (λ x T t) v ⇝ [x B v]t

(ST AppAbs)

t ⇝ t ′

app t u ⇝ app t ′ u
(ST App1)

value v u ⇝ u ′

app v u ⇝ app v u ′
(ST App2)

t ⇝ t ′

pair t u ⇝ pair t ′ u
(ST Pair1)

value v u ⇝ u ′

pair v u ⇝ pair v u ′
(ST Pair2)

value v value w
π1 (pair v w)⇝ v

(ST Pi1)
value v value w

π2 (pair v w)⇝ w
(ST Pi2)

t ⇝ t ′

π1 t ⇝ π1 t
′

(ST Pi1E)
t ⇝ t ′

π2 t ⇝ π2 t
′

(ST Pi2E)

t ⇝ t ′

inl t T ⇝ inl t ′ T
(ST Inl)

t ⇝ t ′

inr t T ⇝ inr t ′ T
(ST Inr)

s ⇝ s ′

case s t u ⇝ case s ′ t u
(ST Case)

value v
case (inl v T ) t u ⇝ app t v

(ST CaseL)

value v
case (inr v T ) t u ⇝ appu v

(ST CaseR)

The step relation has a useful property that is immediately
provable:

Theorem 2.21 (Deterministic Evaluation). If s ⇝ t and

s ⇝ u, then t = u.

As stated in Theorem 2.21, this property is that the BTC step
relation is deterministic. We discuss more properties of our
semantics in the next section.

3 Metatheory

In this section we discuss the metatheoretic properties of
BTC. In particular, type safety (Section 3.1) and strong normal-

ization (Section 3.2) are covered. In standard approaches to
proving metatheoretic properties of simply-typed λ-calculi,
it is common to define an additional step relation. This is
typically the reflexive-transitive closure of the single step
relation. Because the reflexive-transitive closure provides no
information on the number of steps taken, we do not take
this approach. Our interests demand something different. In

our setting, we use
n
⇝ to denote a natural number indexed

extension of our step relation, stated in Definition 3.1.

Definition 3.1 (Nat Indexed Step Relation).

t
0
⇝ t

(Refl)
s ⇝ t t

n
⇝ u

s
n+1
⇝ u

(Step)

This relation hasmany useful properties. Themost important
of which are stated in Lemma 3.2 and Theorem 3.3.

Lemma 3.2. For s, t,u and i, j , we have the following proper-

ties of the indexed step relation:

(Inclusion) If t ⇝ u, then t
1
⇝ u,

(Transitivity) If s
i
⇝ t and t

j
⇝ u, then s

i+j
⇝ u .

The first property is an inclusion propertyÐit tells us that
the indexed relation includes ⇝. The second property is
a transitivity propertyÐit tells us that indexed relation is
transitive and that the indices are additive. Each of these
properties and Definition 3.1 is used to prove Theorem 3.3.

Theorem 3.3 (Congruence). For each rule stated in Defini-

tion 2.20, there exists a corresponding version with⇝ replaced

by
n
⇝. For rules ST AppAbs, ST Pi1, ST Pi2, ST CaseL, and

ST CaseR,⇝ is replaced by
1
⇝.

3.1 Type Safety

In small-step operational semantics, type safety is the combi-
nation of two properties: progress and preservation. Tradition-
ally speaking, the former is the property that all well-typed
terms are either values or they step to some other term. In
our setting, we incorporate decorators into the mix. In the
case of progress (Theorem 3.4), decorators play no additional
role.
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Theorem 3.4 (Progress). If {} ⊢ t :T n , then either t is a value

or there exists u such that t ⇝ u.

The same cannot be said of preservation (Theorem 3.5).

Theorem 3.5 (Preservation). If {} ⊢ t :T n and t ⇝ u, then

there existsm such thatm < n and {} ⊢ u :Tm .

When well-typed terms take a step, the decorator for the
type of the term stepped-to must be strictly smaller than
that of the decorator for the term stepped-from. That is,
preservation guarantees a reduction in decorators.
When we replace the ⇝ with its indexed counterpart,

we gain a variant of preservation (stated in Corollary 3.6)
that relates decorators to the natural number indexes for the
indexed step relation.

Corollary 3.6. If {} ⊢ t :T n and t
m
⇝ u, then there exists l

such that l +m ≤ n and {} ⊢ u :T l .

This tells us that as a term reduces, the resulting decorator
for its type has an upper bound determined by its initial
decorator minus the number of steps taken.

Progress and preservation guarantee that well-typed terms
never łget stuck,ž so to speak. That is to say, for any term
t , if t cannot step (by some application of rules from Defi-
nition 2.20), and t is not a value, then something has gone
wrong in the process of computing t . Theorems 3.4 and 3.5
guarantee that this situation will not arise with well-typed
terms.

Corollary 3.7 (Soundness). If {} ⊢ t :T n and t ⇝ u, then u

is either a value or there exists v such that u ⇝ v .

3.2 Strong Normalization

Normalization is a property of the step relationÐoften stated
in terms of possible sequences of steps in the reduction of
terms. A step (or reduction) relation is weakly normalizing if
there exists a finite sequence steps ending in a normal-formÐ
an irreducible term. If every such sequence ends in a normal-
form, we say that the step relation is strongly normalizing. In
BTC, all values are normal-forms, so we use łvaluež in place
of łnormal-formž without any issues. Because evaluation
in BTC is deterministic, proving strong normalization is
equivalent to proving that BTC is terminating.

Though not every λ-calculus is strongly normalizing, BTC
is and we show this by establishing, using methods discov-
ered independently by Tait [39] and Girard [19], that all
well-typed BTC terms terminate (in the sense stated in Defi-
nition 3.8).

Definition 3.8 (Termination). For any term t , t terminates

iff there exists v,n such that t
n
⇝ v and v is a value.

Our step and indexed step relations preserve termination
(as stated in Lemma 3.9).

Lemma 3.9. For all terms t,u,

1. If t ⇝ u, then t terminates iff u terminates.

2. If t
n
⇝ u, then t terminates iff u terminates.

Definition 3.10 defines our notion of reducibility sets. The
final clause for unit types is included only for completeness.
Because only nil has unit as its type, and nil is a value, nil

terminates since we have nil
0
⇝ nil.

Definition 3.10 (Reducibility Sets). For any term t , such
that {} ⊢ t :T n and t terminates, t ∈ RT is determined by T :

(T isU
m
→ V ) t ∈ R

(U
m
→V )

∀w, ifw ∈ RU , then (app t w) ∈ RV

(T isU ×V ) t ∈ R(U×V )

∃mw, value w, t
m
⇝ w, π1(w) ∈ RU & π2(w) ∈ RV

(T is ()) t ∈ R()

∃mw, value w & t
m
⇝ w

(T isU +V ) t ∈ R(U+V )

∃mw, value w, (t
m
⇝ inl w U &w ∈ RV )

∨ (t
m
⇝ inr w V &w ∈ RU )

For BTC if we had base, or atomic types, we would add
the following clause to Definition 3.10; this clause for atomic
types and the clause for unit types are equivalent:T is atomic

means t ∈ RT iff t terminates. Lemma 3.11 collects some
facts about reducibility setsÐR sets for shortÐthat follow
from Definition 3.10. Girard [19] refers to the properties enu-
merated in Lemma 3.11 instead as conditions on reducibility
setsÐnamed ‘CR’ properties. Ours differ slightly, but remain
close in spirit.

Lemma 3.11. For all terms t,u arbitrary n,m, and T ,

1. If t ∈ RT , then t terminates,

2. If t ∈ RT , then there exists l such that {} ⊢ t :T l ,

3. If t ⇝ u and t ∈ RT , then u ∈ RT ,

4. If t
n
⇝ u and t ∈ RT , then u ∈ RT ,

5. If {} ⊢ t :Tm , t ⇝ u and u ∈ RT , then t ∈ RT ,

6. If {} ⊢ t :Tm , t
n
⇝ u and u ∈ RT , then t ∈ RT .

From Lemma 3.12Ðthe R-Substitution LemmaÐ it follows
that the BTC is strongly normalizing. This lemma is more
commonly referred to as the łSubstitution Lemma.ž

Lemma 3.12 (R-Substitution). Let v1, . . . ,vn be values such

that for each i = {1, . . . ,n},vi ∈ RVi . If {x1 :V1, . . . , xn :Vn} ⊢

t :T j , then (t[x1 := v1] . . . [xn := vn]) ∈ RT .

By property 2 of Lemma 3.11, the assumption in
Lemma 3.12 entails that for each vi there exists an l such
that {} ⊢ vi :V

l
i , because for each vi , we have vi ∈ RVi (by

assumption). TheR-Substitution property (from Lemma 3.12)
entails the Strong Normalization Theorem (stated in Theo-
rem 3.13) by using the empty context for the typing judg-
ment.
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Theorem 3.13 (Strong Normalization). If {} ⊢ t :T n , then t

terminates.

4 Applications of Bounded Time
λ-Calculus

This section elaborates further on the application of the
BTC and SBT analysis to the motivating examplesÐtiming
channel analysis and functional hardware description (resp.,
Sections 4.1 and 4.2)Ðintroduced earlier in Section 1. The
presentation in this section is at a high-level and we leave
the full development of these case studies to future work.
However, sufficient detail is presented to illustrate the rele-
vance of SBT analysis and its formalization in the BTC type
system to these application domains.

4.1 Timing Channel Analysis

As mentioned in the Introduction, the execution time of a
program may leak confidential information about inputs if
the program takes different time to compute for different
inputs. If the timing behavior of a program leaks informa-
tion, then we say that the program has a timing channel.
To rule out timing leaks, we have to ensure that the execu-
tion time of a program is independent of confidential inputs.
In type-based approaches to timing channel analysis (see,
for example, [37, 38]), the typing discipline guarantees that
well-typed programs take the same amount of time to com-
pute regardless of inputs. We describe here how the BTC
framework can be used to achieve similar goals.
We consider the same BTC syntax (including Terms and

Values), types, and reduction relation⇝. We identify the set
of programs (with inputs) in BTC as a subset of the values:

Definition 4.1 (Values). The set proдram of BTC values is
given by the following:

v,w ∈ program ::= λ x T t

Intuitively the program λ x T t takes an input of the type
T and computes t . Observe that since we have product types,
programs with multiple inputs can also be modeled in the
same framework.
We assume that the time taken by a program f ≡ λ x T t

on an inputu of typeT is the number of steps that it takes for
app f u to evaluate to a value v . Observe that since the step
relation is deterministic (see Theorem 2.21) and terminating
(see Theorem 3.13), the time taken by f on u is well-defined.
However, the type system as given in Definition 2.6 does
not guarantee that the time take by f is independent of the
inputs.

Example 4.2. Let B ≡ () + (), false ≡ inr nil () and
true ≡ inl nil (). Given terms t1, t2, t3 let ite t1 t2 t3 ≡

case t1 λ z () t2 λ z () t3. Intuitively B models the type
Booleans, false and true model falsehood and truth re-
spectively, and ite t1 t2 t3 models the conditional expression.

Consider the program and1 defined as:

and1 ≡ λ x B×B (ite π1x (ite π2x true false) false).

The program and1 takes as input a pair of Boolean val-
ues and outputs the conjunction of the components of the
pair. It is easy to see that and1 has a timing channel as
(and1 (pair true true)) takes 7 evaluation steps to compute
to a value and (and1 (pair false true)) takes 4 steps.

On the other hand, consider the program and2 defined as:

and2 ≡ λ x B×B (ite π1x π2x π1x).

The program and2 also computes the conjunction of the
components of a pair of Boolean values. The program and2
takes the same time to compute for all possible pairs of
Boolean values.

Thus, for identifying BTC programs that do not leak tim-
ing information, we need to restrict the set of well-typed
terms. The reason for the possibility of timing channels is
the case expression which permits different timings for the
different alternatives of the case expression. Modifying the
typing rule for the case expression to further require the case
alternatives to have the same łexecution timež ensures that
well-typed programs are free of timing channels. Let us con-
sider the typing system ⊢tc for BTC programs, whose typing
rules are the same as type inference system in Definition 2.6
with one exception. The typing rule Case of Definition 2.6 is
replaced by the typing rule:

Γ ⊢tc s : (T +U )n Γ ⊢tc t : (T
l
→ S)m

Γ ⊢tc t : (U
r
→ S)p l +m = r + p

Γ ⊢tc case s t u : S
(n+l+m+2)

(Case)

Please see Fig. 1 for the formal definition of ⊢tc .
All theorems discussed in Section 2 and Section 3, stated

with the typing relation ⊢ replaced by ⊢tc, continue to hold.
In fact, we get a stronger version of type preservation:

Theorem 4.3 (Preservation for ⊢tc). If {} ⊢tc t :T n and t ⇝

u then n > 0 and {} ⊢tc u :T
n−1
.

The variant of preservation stated in Corollary 3.6 takes
the form:

Corollary 4.4. If {} ⊢tc t :T
n and t

m
⇝ u, thenm ≤ n and

{} ⊢tc u :T
n−m .

Well-typed programs (with respect to ⊢tc) are free of tim-
ing channels:

Theorem 4.5 (Timing Channel Freedom). Let f be a pro-

gram and u1,u2 be ground terms such that {} ⊢tc f : (T
n
→

U )0, {} ⊢tc u1 : T
m
, {} ⊢tc u2 : T

m
. Then for values v1, v2

and natural numbers r1, r2 such that app f u1
r1
⇝ v1 and

app f u2
r2
⇝ v2, it must be the case that r1 = r2 = n +m + 1.

Proof. By definition of ⊢tc, we have that {} ⊢tc
app f u1 : U

n+m+1 and {} ⊢tc app f u2 : U
n+m+1

. Thanks
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Γ,x :T ⊢tcx :T
0

(Var)

Γ,x :T ⊢tc t :U
n

Γ ⊢tc λ x T t : (T
n
→ U )0

(Abs)

Γ ⊢tc f : (T
n
→ U )m Γ ⊢tc t :T

p

Γ ⊢tc app f t :U (n+m+p+1)
(App)

Γ ⊢tc nil : ()
0

(Nil)

Γ ⊢tc t :T
n

Γ ⊢tc inl t U : (T +U )n
(Inl)

Γ ⊢tc u :U
n

Γ ⊢tc inr u T : (T +U )n
(Inr)

Γ ⊢tc t :T
n
Γ ⊢tc u :U

m

Γ ⊢tc pair t u : (T ×U )n+m
(Pair)

Γ ⊢tc t : (T ×U )n

Γ ⊢tc π1 t :T
(n+1)

(Pi1)
Γ ⊢tc t : (T ×U )n

Γ ⊢tc π2 t :U
(n+1)

(Pi2)

Γ ⊢tc s : (T +U )n Γ ⊢tc t : (T
l
→ S)m

Γ ⊢tc t : (U
r
→ S)p l +m = r + p

Γ ⊢tc case s t u : S
(n+l+m+2)

(Case)

Figure 1. Type Inference System for Timing Channel Freedom

to Corollary 4.4, we have that r1, r2 ≤ n + m + 1,
{} ⊢tc v1 : U

n+m+1−r1 and {} ⊢tc v2 : U
n+m+1−r2 . Since v1,v2

are values, the variant of Theorem 2.19, for ⊢tc implies that
n +m + 1 − r1 = n +m + 1 − r2 = 0 as desired. □

Example 4.6. Consider the program and1 from Example 4.2
again. We can easily show that there is no typeT and natural
number n such that {} ⊢tc and1 : T n

. Essentially, this holds
because the alternatives in the outermost case expression of
and1 take different times to compute. On the other hand, we

can show that {} ⊢tc and2 : (B × B
4

→ B)0 establishing that
and2 is free of timing channels.

4.2 Functional Hardware Description Languages

Functional languages have long been viewed as an appro-
priate organizing principle for hardware description [36].
One motivation for pursuing a functional language ap-
proach to hardware is to transfer the strengths of functional
programmingÐi.e., its abstractions with their attendant soft-
ware engineering and verification supportÐto hardware con-
struction. Another motivation is that there is an intuitive
correspondence between hardware circuitry and functional
programs; e.g., a combinational circuit seems essentially func-
tional because its outputs depend only on its inputs. But
this correspondence, while useful, only goes so far, because
the models of computation underlying functional languages
and hardware contain some fundamental mismatches. The
BTC type system provides a means for statically detecting
one of these mismatchesÐspecifically the failure of strongly-
bounded terminationÐas we explain below for both combi-
national and sequential circuit designs.

A functional hardware description language is a domain-
specific language for designing and implementing hardware
circuits (Fig. 2, left) that is defined in terms of an expres-
sive Host language (e.g., Haskell [4, 13, 30] or Scala [5]). Its
programs are then compiled (semi-)automatically into a Tar-
get hardware description language (e.g., VHDL or Verilog).
What are the limits on the expressiveness of the embedded
DSL in Fig. 2 (left)? That is, precisely which Host programs
can be compiled faithfully to synthesizable Target designs?
The question is non-trivial because hardware’s finite storage

capacity cannot accommodate unbounded data and control
necessary to compile arbitrary Host programs. This is one of
the aforementioned mismatches that could be detected by an
adaptation of a BTC-like system to the Host’s type system.
One would like to have a precise answer to this hardware-
synthesizability question; e.g., which Haskell programs can
be represented faithfully as synthesizable VHDL/Verilog de-
signs? Or, to put it another way, which Haskell programs
may be considered as embedded FHDL programs and which
ones cannot?

For combinational circuitry, a pure function (e.g., a Haskell
function f :: i → o), does not necessarily correspond to a
combinational circuit because unboundedness either in data
(e.g., the sizes of i and o) or in control (e.g., non-termination of
f ) cannot be accommodated within hardware’s fixed storage
capacity. Termination on all inputs is clearly a necessary
condition for f ’s correspondence to a combinational circuit,
but termination is, as we explain below, not sufficient. The
sufficient condition is that f terminate on all inputs within

n steps, for some fixed n ∈ N, specified as f :: i
n
→ o in a

BTC-like extension to Haskell’s type system.
It is common practice [22] to portray sequential hard-

ware designs as Mealy machines (Fig. 2, right) and the Mealy
machine was originally conceived as a model of hardware
synthesizability [24]. This sequential device takes two in-
puts on each clock cycle, external inputs i and internal state
feedback from storage s. Based on these inputs, combina-
tional logicÐmarked łoutput and next state logicž in Fig. 2
(right)Ðcomputes the external output, o, and the next state
to be stored in storage. That the entire circuit is synchronous
(i.e., łclockedž) is denoted conventionally in the diagram by
the triangle (e.g., the ł◁ž) in the storage bank.
The compilation of function f to sequential hardware

must, one way or another, extract a time slice function (call
it slice(f ) :: (i, s) → (o, s) in Haskell notation) to match the
output and next-state logic of a Mealy machine. Extracting
time slices may be due to explicit time partitioning by the
programmer (e.g., with staging annotations [23] or resump-
tion monads [30]) or be fully automated [13]. Either way,
slice(f ) must exhibit strongly bounded termination because
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