Verification Methods for the Computationally Complete
Symbolic Attacker Based on Indistinguishability

GERGEI BANA, University of Missouri, USA and University of Luxembourg, Luxembourg
ROHIT CHADHA, University of Missouri, USA

AJAY KUMAR EERALLA, University of Missouri, USA

MITSUHIRO OKADA, Keio University, Japan

In recent years, a new approach has been developed for verifying security protocols with the aim of com-
bining the benefits of symbolic attackers and the benefits of unconditional soundness: the technique of the
computationally complete symbolic attacker of Bana and Comon (BC) [8]. In this paper we argue that the real
breakthrough of this technique is the recent introduction of its version for indistinguishability [9] because,
with the extensions we introduce here, for the first time, there is a computationally sound symbolic technique
that is syntactically strikingly simple, to which translating standard computational security notions is a
straightforward matter, and that can be effectively used for verification of not only equivalence properties,
but trace properties of protocols as well. We first fully develop the core elements of this newer version by
introducing several new axioms. We illustrate the power and the diverse use of the introduced axioms on
simple examples first. We introduce an axiom expressing the Decisional Diffie-Hellman property. We analyze
the Diffie-Hellman key exchange, both in its simplest form and an authenticated version as well. We provide
computationally sound verification of real-or-random secrecy of the Diffie-Hellman key exchange protocol
for multiple sessions, without any restrictions on the computational implementation other than the DDH
assumption. We also show authentication for a simplified version of the station-to-station protocol using
UF-CMA assumption for digital signatures. Finally, we axiomatize IND-CPA, IND-CCA1 and IND-CCA2
security properties and illustrate their usage. We have formalized the axiomatic system in an interactive
theorem prover, Coq, and have machine-checked the proofs of various auxiliary theorems, and security
properties of Diffie-Hellman and station-to-station protocol.

CCS Concepts: » Security and privacy — Logic and verification.
Additional Key Words and Phrases: authentication, secrecy, computational model, Dolev-Yao model, computa-
tional soundness, first-order logic

ACM Reference Format:

Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada. 2020. Verification Methods for the
Computationally Complete Symbolic Attacker Based on Indistinguishability. ACM Trans. Comput. Logic 1, 1
(September 2020), 43 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Security protocols are analyzed with respect to “attacker models”, which formalize the capabilities
of the attacker. There are primarily two approaches to rigorously model the capabilities of the

Authors’ addresses: Gergei Bana, Rohit Chadha, and Ajay Kumar Eeralla, University of Missouri, Department of Electrical
Engineering and Computer Science, Columbia, MO, 65211, USA; Mitsuhiro Okada, Keio University, Department of Philosophy,
Tokyo, 108-8345, Japan.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1529-3785/2020/9-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

2 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

attacker. The first approach, inspired by the theory of computational complexity, essentially says
that a protocol is secure if an attacker, modeled as a polynomially-bounded probabilistic Turing
machine, can break the security property only with negligible probability. The second approach,
inspired by the theory of logic and programming languages, assumes perfect black-box cryptography
and nondeterministic symbolic computation by the attacker. It is common to call the former model
the computational model while the latter the Dolev-Yao model.

The computational model generally provides far stronger security guarantees than the Dolev-Yao
model. However, proofs of security in the computational model tend to be complex and error-prone.
The Dolev-Yao model on the other is simpler and intuitive, and several tools are available for
automatically proving security in the Dolev-Yao model, such as PROVERIF [14], SCYTHER [21], and
TAMARIN [28].

Given that proofs in the computational model tend to be long and error-prone, it is desirable to
have machine-assisted proofs. Two main research directions have been considered in the literature to
achieve this goal. The first one is to establish computational soundness results (see [2, 4] for example),
which show that under certain conditions, the Dolev-Yao model is fully abstract with respect to the
computational one and thus it is sufficient to analyze protocols in the Dolev-Yao model. Another
approach is to carry out symbolic proofs of correctness directly in the computational model with
the help of formal provers as is the case with CRYPTOVERIF [15] and EAsYCrYPT [12]. Both of these
approaches have limitations. Computational soundness results require strong assumptions on the
computational implementation, calling into question their utility. Furthermore, when considering
additional primitives, one has to establish the soundness results for the whole system again. As
the proofs of computational soundness results are rather complex, this imposes a significant burden.
Because of these issues, although once a research direction receiving much attention, it has largely
been abandoned by now. The efforts of most researchers currently go into developing tools that
work directly in the computational model. However, the current state-of-the-art formal provers are
often not able to complete the proofs in computational model, even for secure protocols. When the
provers fail to complete the proof, it is not clear if the failure is due to a protocol flaw or due to the
limitations of the prover.

A third approach advocated by Bana and Comon (BC) in [8, 9] (and developed in [5, 9, 10,
26]), uses first-order logic for the verification of complexity-theoretic properties of protocols and
for discovering attacks if verification fails. The notion of symbolic attacker is kept, but instead
of specifying a restricted list of function symbols (with specific interpretation such as pairing,
encryption) the attacker can use as is the case in the Dolev-Yao model, the BC technique only
specifies the facts that the attacker cannot violate. More precisely, attacker computation in the
BC technique for indistinguishability [9] is represented by function symbols fi, f2, which can
satisfy anything that does not violate the aforementioned facts. These facts come from the nature
of probabilistic polynomial time computation and the underlying cryptographic assumptions. The
facts are called axioms and form a recursive set of first-order formulas. Without any axiom, the
symbolic attacker is allowed to do anything (i.e. attacker messages can satisfy any property), and
all protocols are insecure. Adding axioms limits the attacker and makes verification of protocols
possible. Once verification is done with a set of axioms, the protocol is secure with respect to any
implementation that satisfies the axioms. For the rest of the paper, we shall call this approach the
BC technique.

When verifying security of protocols with the BC technique, one tries to prove the security goal
expressed as a first-order formula from axioms using first-order inference rules. If one manages to
build a complete proof tree, then a proof of security in the computational model follows, as long as
the axioms are computationally valid. However, when a proof tree does not exist, a branch of the
incomplete tree that does not reduce to an axiom yields an abstract first-order model - an Herbrand

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 3

model - with an abstract domain together with an interpretation of function symbols on this domain,
including the function symbols representing adversarial messages, which a computational attacker
may perform to launch an attack (e.g. in [5] a new attack on the NSL protocol found with this
technique was presented). Furthermore, all computational attacks are symbolically accounted for
as any computational attack yields a model in which both the axioms and negation of the security
goal are true. It is for the latter reason that [8] have coined the term computationally complete
symbolic attacker for the symbolic attacker in this approach. Whether the found attack corresponds
to an actual PPT attack - that is, the symbolic interpretation of adversarial function symbols can be
PPT executed - depends on how complete the axioms are.

Thus, the BC technique overcomes significant limitations of the Dolev-Yao technique when it
comes to computational soundness, while maintaining its simplicity. As compared to the aforemen-
tioned tools working directly in the computational model, if a proof fails in the BC framework then
a possible attack is constructed. If the proof succeeds, then it provides a set of formulas, without
any implicit assumptions, that, if satisfied by the implementation, result in a secure protocol. Fur-
thermore, this approach is not stricken by the commitment problem (see e.g. [25]), an issue with all
other symbolic verification techniques.

While the initial papers on the computationally complete symbolic attacker focussed on deducibil-
ity properties, [9] extended the approach to indistinguishability properties: two protocols ITy, IT,
are said to be computationally indistinguishable if for each probabilistic polynomial-time attacker,
the difference in the probability that it outputs 1 when interacting with II; and the probability
that it outputs 1 when interacting with II, is negligible. Several standard security properties are
modeled as indistinguishability properties. These include strong flavors of confidentiality, privacy,
anonymity, real-or-random secrecy.

Our contributions. While [9] sets up the framework (first-order logic based on a predicate ~
representing indistinguishability of terms) needed to model the computationally complete symbolic
attacker for indistinguishability properties, the set of axioms introduced therein were only sufficient
to prove one session of a simple protocol they considered. In this paper we introduce several further
axioms, grouped in two: core axioms that are independent from the protocols and primitives and
just formalize indistinguishability, random generation etc, and cryptographic axioms that formalize
hardness assumptions (such as the decisional Diffie-Hellman assumption), and standard security
assumptions about cryptographic primitives (such as CPA, CCA etc.). We then use the axioms to
verify fairly complex protocols by hand, and with Coq.

One of the important contributions of this work is to axiomatize the if _then _else _ constructor.
We illustrate through a number of perhaps surprising examples in Section 7 the power of the
axioms. They are basic, general axioms, not designed with any particular protocol on our minds.
We present a completeness theorem for the axiomatization of if _ then _ else _ . The full set of
core axioms presented is likely not complete, but we do believe that they cover most situations
relevant for protocol equivalence in general. The axioms are independent. They are also modular
and addition of the axioms will not destroy their validity.

The next group of main contributions are the axiomatization of the Decisional Diffie-Hellman
(DDH) assumption, the verification of secrecy of the Diffie-Hellman (DH) protocol for multiple
sessions, the axiomatization of security of digital signatures, and the verification of authentication
of an authenticated DH protocol. The formalization of real-or-random secrecy and authentication
in the BC framework for equivalence properties is also our novel contribution.

We then show how real-or-random secrecy [3] of the exchanged key can be formalized and
verified in the BC framework. This is carried out for the case when each agent can participate in 2
sessions (both allowed to play the initiator as well as the responder role). Our proof can be easily
generalized to any bounded number of sessions and more than two parties.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

4 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

We axiomatize existential unforgeability against chosen message attacks (UF-CMA) [24] of digital
signatures, and show that the technique and our axioms can also be used to verify a trace property:
authentication. Towards this end, we present an authenticated version of the DH protocol, which is
a simplified version of the station-to-station protocol (STS), formalize authentication in the current
framework and verify authentication from the responder’s view. Generalizations to arbitrary
bounded number of sessions and agents are a straightforward matter in this case as well.

We have formalized the syntax and the axiomatic system in Coq, an interactive theorem-
prover [29], and utilized the axiomatization to obtain machine-checked proofs of various auxiliary
theorems, the derivation of the DDH assumption for three participants from the DDH assumption
of two participants, real-or-random secrecy of the DH protocol, and authentication of the STS
protocol in Coq. For the DH and STS protocol, we consider only one session each of responder and
initiator in order to keep the formula small. All the machine-checked proofs are available at [22].
While we were able to translate the proofs directly into Coq, a challenge was posed by the equality
predicate = (actually an abbreviation constructed from ~) defined between terms (see Section 2),
which represents not identity but equality that can fail with negligible probability, and which
serves as a congruence in the logic. The native equality relation of Coq forces two terms of our
syntax to be equal (in the sense of native Coq equality relation) if and only if they are syntactically
identical. This assumption would be unsound for our semantics, where syntactic difference does not
necessarily entail inequality. Hence, we define our own equality relation and use morphisms [29]
to model the defined relation as a congruence relation. This allowed us to reuse native Coq tactics
such as rewrite and replace seamlessly.

Our final contribution is a common axiomatization of IND-CPA, IND-CCA1 and IND-CCA2
security properties of encryptions. An axiom for IND-CPA was also presented in [9], the two are
equivalent. The IND-CCA1 and IND-CCA2 axioms are new. We also illustrate with an example
how to use the IND-CCA2 axiom.

We would like to highlight that in the BC framework based on indistinguishability, the standard
cryptographic notions seem to translate very smoothly to axioms, such that the axiom is sound if
and only if the computational security property holds. This is indicated by our DDH, UF-CMA, IND-
CPA, IND-CCA1 and IND-CCAZ2 axioms. Note further that although the authors of [9] designed this
technique for indistinguishability properties, it can also be conveniently used for trace properties
such as authentication.

Related Work. There are other attempts in the literature for computationally sound analysis of
Diffie-Hellman-based protocols. Most notably, in [23], the authors explain how in computational
PCL they can only verify Diffie-Hellman based protocols as long as terms are non-malleable. For
that reason, they need to sign their Diffie-Hellman terms for the verification of secrecy. We do not
need any such assumption. CRYPTOVERIF [15] has also been used to verify signed Diffie-Hellman
key exchange protocols. AKE protocols have been verified using the EAsYCRYPT[12] proof assistant,
with Computational DH assumption [11].

CrYPTOVERIF [15] is a fully automated tool which specifies protocols in a process-based notation.
It attempts to carry out proofs of protocols using in-built game transformations. It is however
not guaranteed to terminate. Failure of termination does not mean that the protocol is insecure
and in that case the tool does not provide an attack. Strengthening assumptions on cryptographic
primitives and parsing of terms may help in termination.

EasyCrypT[12] is a semi-automated tool, and protocols are specified as programs in WHILE-style
language with random assignments. The reasoning engine in uses EASYCRYPT uses Probabilistic
Relational Hoare logic as its reasoning engine to relate the distributions induced by two programs.
The security proofs in EAsYCRYPT are carried out using game transformations. However, the needed
game transformations have to be explicitly specified by the user. One advantage of EAsYCRYPT is

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 5

that it can explicitly manipulate security parameter and probabilities. Thus, it can give estimates
on concrete security. However, like CRYPTOVERTIF, it does not find attacks.

Both CrYPTOVERIF and EAsYCRYPT verify protocols for a polynomial number of sessions (in
the security parameter). BC technique for indistinguishability, on the other hand, reasons only
for a fixed number of sessions. However, as opposed to game transformation techniques such as
CrypTOVERIF and EAsyCRrYPT, BC technique has explicit attacker representation in the form of
function symbols fi, f etc. which are interpreted in the symbolic attacker model when there is no
proof of security, and provide an attack on the protocol. CRYPTOVERIF and EAsYCRYPT do not have
explicit attacker representation, and a failure of proof does not provide an attack. Furthermore,
the reasoning can be carried out in first-order logic without resorting to probabilities, which often
simplifies the proofs.

Most of the materials in this paper (except Section 11 on formalization in Coq) first appeared in
the e-print publication [6], and the axioms motivated later works such as [27], [18], [20], and [7].

2 SYNTAX

We shall follow closely the notation in [9]. We summarize the salient features of the syntax and the
semantics of the logic below, and the reader is referred to [9] for details. We shall introduce the
additional syntax needed for the Diffie-Hellman key exchange through running examples.

2.1 Terms

Let S be a finite set of sorts that includes at least the sorts bool and message. X is an infinite set of
variable symbols, each coming with a sort s € S.

The set N of names (for random seeds) is an infinite set of symbols that are treated as functions
symbols of arity 0 and sort message. The set of elements of NV shall be interpreted as random bit
strings.

In addition, we assume a (fixed) set of function symbols, #. Each element of # has a type, which
is an element of the set S* X S. When type(f) = (sq, ..., Sn,s), we also write f : sy X ... X s, — s
and call n the arity of f. We assume that ¥ includes at least the basic symbols such as 0, true,
false, EQ(_,), and if _then _else _ with the typing rules as follows:

e 0 : message represents the empty message.
e Boleans

true : bool false : bool.
e Polymorphic equality test

message X message — bool

FQC,) bool X bool — bool.
e Polymorphic conditional branching
bool X message X message — message

if _then _else _ : bool x bool x bool — bool.

We also use the following abbreviation:
f
(1) not(d) d§ if b then false else true.

Example 2.1. Since in this work we consider the Diffie-Hellman key exchange, we shall need
exponentiation. Although not necessary for the DH protocol, we also include pairing and projection
functions as it shall be useful for combining messages. Accordingly, we shall also include in ¥ the

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

6 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

following function symbols:

exp (,_): message X message X message —> message
o) message X message — message
mi (L), ma () : message — message.

The subscript of exp takes G that stands for a cyclic group, the first argument g is for an element of

def
the group, and the second argument is the exponent. We shall use the abbreviations g* = expg(g, a)

def
and g?* "= (g%)’. Note that we do not write G explicitly in the abbreviation.
We also need function symbols for the algorithms that generate groups, their generators, and
exponents so that their distributions satisfies the DDH assumption. We introduce

e generate group specification and generator
ggen(_) : message — message
e generate exponent (the “r" stands for ring)
r(_) : message — message.
The function symbol ggen is for the algorithm that generates a pair consisting of the description of
a cyclic group G and a generator g of the group. We shall write G(_) for ;(ggen(_)), and g(_) for
my(ggen(_)). r is to denote the algorithm that generates an exponent randomly. We specified them
as being given on message, but honest agents shall only apply them on names in N.

We shall use the variables g, g1, g2, . . . to abbreviate a term of the form g(x). We shall also use the
variables a, b, c, d, . .. to abbreviate terms of the form r(x) in the exponents of g’s. When ggen(_)
and r(_) are applied correctly on N then they will satisfy the DDH assumption.

Furthermore, as we want to consider multiple sessions as well, we need a way for the attacker to
instruct an agent to start a new session. For this, we shall include

e start new session: new : message
o specify action: act(_) : message — message
e message body: m(_) : message — message.
A call by the attacker for starting a new session is then expressed by EQ(act(x), new) = 1 for input
variable x. The main message part, where g¢ is supposed to come from the other agent is m(x).
Equational theory: we also postulate that the above functions satisfy the following equations:

m((xnx)) = xp fork=1,2; g% = gbe.

At this point, these are just strings of characters, but they will become axioms as EqTheo in Table 1.
O

While # contains function symbols necessary for the system and also those representing crypto-
graphic primitives, an additional set of function symbols G represents adversarial computation.
G contains countably many symbols: for every natural number n at least one whose type is
message” — message. In the BC technique, a message from the adversary always has the form
f(t1,...,tn), where f € G and t4, ..., t, are the messages from honest agents sent earlier. As in this
technique, there is no Dolev-Yao-type pattern matching, the adversarial message is not a term
created from function symbols in 7. As we shall see later, f € G is allowed to satisfy any property
that does not contradict the axioms.

We shall also use f : s, ..., 55, — 57, ..., 5, to denote a vector of functions {f; : s1,...,sp — s/} ..

We assume that 7, G, N, X are disjoint. Terms are built using 7, G, N, X, following the sort
discipline: for each s € S, let To(F, G, N, X) be the smallest set such that

e if n € N, then n € Thessage(F, G, N, X), and if x € X has sort s, then x € T((F, G, N, X)
and

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 7

o if f :51X...Xs, — sisasymbolof FUG,and t; € T, (F, G, N,X), ..., tn € T5 (F, G, N, X),
then f(t1,...,ty) € Ts(F, G, N, X).
We do not have implicit coercion: a term of sort bool cannot be seen (also) as a term of sort
message.

Example 2.2. Given ¥ as defined in Example 2.1, variables g, a, and f € G, then
if EQ(act(f(g)), new) then g“ else 0

is a term of sort message. This means that if the message f(g) (computed from the public g) from
the adversary indicates the start of a new session, then a new a is generated and g is sent. O

REMARK 1. In order to display the formulas more concisely, we use the abbreviations

def
if bthent = if bthentelse0,
def,
b1 & by = if by then b, else false
def
by || by = if by then true else b, O.
2.2 Formulas
We have for every sequence of sorts sy, . . ., s, a predicate symbol that takes 2 X n arguments of sort
(s1X...Xs,)?, which we write as t1, ..., t, ~ uj, ..., u, (overloading the notations for the predicate
symbols with different types). t1,...,t, ~ uy, ..., u, represents computational indistinguishability
of the two sequences of terms ty, ..., ¢, and uy, ..., u,.

Our set of formulas, which will be used both for axioms and security properties are first-order
formulas built on the above atomic formulas.

When we do not explicitly quantify variables, we shall mean universal quantification. Further-
more, any first order formula Vg.0[g] is an abbreviation for Vx.0[g(x)], Va.0[a] is an abbreviation
for Vx.0[r(x))] (similarly for b).

Example 2.3. The following is a formula: g, g% ¢*, g% ~ g, 9%, ¢°. ¢°.
This is actually almost the form of the Decisional Diffie-Hellman assumption, except that we will
need to make sure that g, a, b and c are independently, correctly generated. This shall be discussed
when we state our DDH axiom. O

We shall use the following abbreviation:

e
e x =y = EQ(x,y) ~ true. This represents computational equality of terms. The choice of the
equality symbol for this abbreviation is motivated by the fact that this functions as equality:

it is a congruence relation with respect to our syntax (see Remark 3 and Section 5).

REMARK 2. We extend the abbreviation = to sequences of terms as follows:

Hyoously = Up, ... Uy if and only if Vi. t; = u;.

3 SEMANTICS

In the BC technique, two semantics are considered for the first-order formulas. The first is compu-
tational semantics: in order for the formulas to be interpreted computationally and to be able to
consider their computational validity, computational semantics is needed. The other is abstract
first-order semantics. In this technique, a symbolic attack means consistency of the axioms with
the negation of the security property, which is equivalent to the existence of an abstract first-order
model satisfying the axioms and the negation of the security property. We follow closely the
definitions given in [9].

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

8 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

3.1 Abstract first-order interpretation

As usual in first-order logic: The domain D of the interpretation can be anything (and in our case it
has subsets of bools and messages). Function symbols can be freely interpreted as some functions
over this domain, predicates again freely interpreted as relations over this domain. Interpretation
of logical constants, namely, negation, entailment, conjunction, disjunction, quantification are fixed
to be the usual Tarskian interpretation.

3.2 Computational interpretation

A computational model M€ is a particular first-order model in which the domain consists of
probabilistic polynomial-time algorithms. The interpretation of function symbols is limited to poly-
nomial-time algorithms such that the outputs of the machines interpreting the domain elements
are inputs to these algorithms. The interpretation of the predicate ~ is fixed to be computational
indistinguishability of probability distributions. More precisely, it is defined the following way:
1. The domain of sort message (denoted by Dpessage OF Dy in short) is the set of deterministic
Turing machines A equipped with an input (and working) tape and two extra tapes (that are used
for the random inputs). All tapes carry bit strings only, the additional tapes contain infinitely long
randomly generated bit strings. We require that the computation time of A is polynomial in the
worst case w.r.t the input (not the content of the extra tapes). One of the extra tapes is shared by
honest agents for drawing random values, while the other is used by the attacker when it draws
random values. We write A(w; p1; p2) for the output of the machine A on input w with extra tape
contents pq, pa.

The domain of sort bool is the set of such machines whose output is in {0, 1}. We denote this by
Dpool (or Dy, in short).
2. A function symbol f € F UG, f : sy X... X s, — s is interpreted as a mapping [f] :
Dy, X ... x Ds, — Dg defined by some polynomial time (deterministic) Turing machine Ay such
that for (dy,...,dn) € Ds, X ... X Dy, :

o If f e F,then [f](ds,...,dn) is the machine that on input w and extra tapes p;, pz, outputs

[F1(ds, dn)(W; p1; p2) = Ap(dr(w; p1; p2)s - - - dn(W; p1; p2))

In other words, the way [[f1 acts on (di, . . .,d,) is that we compose the machine Ay with
the machines dj, . . ., d,,. Note that the machine Ay cannot use directly the tapes p1, p2.
o Ifge G, [gll(di,...,dy)is the machine such that, on input w and extra tapes p1, pa, it outputs

[gll(d1, du)(w; p1; p2) := Ag(di(w; p15 p2), - - - du(W; p1; p2); p2)

Note that the machine A, cannot use directly the tape p;: the interpretations of function
symbols in G are chosen by the attackers who cannot use directly the possibly secret values
generated from p;, but may use extra randomness from p;.
e For all computational models, we require fixed interpretations of the following function
symbols:
— [[#rue] is the algorithm in D}, outputting 1 on all inputs.
- [[false] is the algorithm in Dy, outputing 0 on all inputs.
— [[0] is the algorithm in Dy, terminating with no output.
— if _then _else _ is interpreted as a function [[if _then _else _] : Dy X Dy X Dyyy = Dy,
such that on the triple (d, di, d2) € Dp X Dy X Dy, it gives the algorithm
[if _then _else _]|(d, d;, d>) with
.] diwsprsp2) i d(wspisp2) =1
[if _then _else _1I(d, di, d2)(w; p1; p2) := { dy(w: pi: pa) i d(w pr: ps) = 0
If di, d; € Dy, then [[if _then _else _](d, d;,d;) € Dy.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 9

- EQ(_,_) is interpreted as the function [EQ(_, _)]| : Dy, X Dy, — Dy, such that
[EQ(_,)](d1, d>) is the algorithm with
v if di(ws pas p2) = da(ws prs p2)
IIEQ(?,?)]](dl,dz)(W, pls ,DZ) C { 0 lf dl(W;pl;pZ) + dZ(W;pl;PZ)

3. Aname n € N is interpreted as the machine [n] = A, that, given a word of length 7, extracts a
word of length p(n) from p; for some non-constant polynomial p. This machine does not use p.
Different names extract disjoint parts of p;, hence they are independently generated. We assume
that p is the same for all names, that is the semantics is parametrized by this p. This way, all names
are drawn independently, uniformly at random from {0, 1}2(7).
4. Given a term t, an assignment o of the free variables of ¢, taking values in the corresponding
domains Ds, a security parameter 77 and a sample p (p is a pair p1; p2), [t]]] , is defined recursively
as:

e foravariable x, [x]l , := (xo)(17; p) (the output of the algorithm xo on 17; p, or, equivalently,

the output of the machine interpreting x on the input 17, with random tapes p),

e for a name n, [[n]]g’p is the output of the machine A, on 17 and tape p,

e for a function symbol f € F, [f(t1,. ...ty , == LFItIT oo - - - (22117, p)-

e for a function symbol g € G, [g(t1, . .., ta)]l7 , == [gl([t: 15 . - - - [£a]l7, 5. P2)-
5. The indistinguishability predicate ~ is interpreted as computational indistinguishability ~ of
sequences of elements in D of the same length. Thatis: d;, ...,d, = d},. .., d;, iff for any polynomial
time Turing machine A,

[Prob{p : A(di(1";p),...,dn(1"; p); p2) = 1} = Prob{p : A(d;(17;p),...,d,(1"; p); p2) = 1}|

is negligible in 7. In particular, given an assignment o of free variables in Ds, and an interpretation
[-1 of the function symbols as above, ~ is interpreted as the relation ~ between sequences of the
same length, which is defined as follows: [[#1, ..., t,]| = [ui, . . ., u,] iff for any polynomial time
Turing machine A,

[Prob{p : A([t:17 .- -, [ta]l7 s p2) = 1} = Prob{p : A([wlly ;.- .. [ually ps p2) = 1}

is negligible in . We write M o |= t;...t, ~ u1...uy, and say that M€, o satisfies t;...t, ~
U1 ... uy. Satisfaction of compound formulas is defined from satisfaction of atomic formulas as
usual in first-order logic. We write M€, o |= 0 if M, o satisfies the first-order formula 0 in the
above sense. If X is the list of free variables in 0, then M€ |= 0 stands for M¢ |= V¥.0. A formula is
computationally valid if it is satisfied in all computational models.

REMARK 3. It is easy to see that with these definitions, satisfaction of the equality abbreviation
tyeoosly = U, ..., uy by MC, o turns out to hold if and only if

PrOb{P : IItl]]g,p = [[ul]]g,pa R [[tﬂ]]g,p = [[un]]g,p}

is overwhelming (that is, it is negligibly different from 1). In other words, the interpretations of
ti,...,tp and of uy, . .., u, may only differ by negligible probability. Note that this is much stronger
than indistinguishability, which requires only the distributions of the interpretations of ¢4, ..., t,
and of uy, ..., u, to be indistinguishable, not the random variables themselves. As we require
function symbols to be interpreted as PPT algorithms, nothing in our semantics can distinguish
terms that are equal except for negligible probability and hence = serves as a congruence relation.
O

Example 3.1. We have introduced a number of function symbols in Example 2.1, which we shall
use for analyzing the Diffie-Hellman key exchange protocol. We do not fix the computational
implementations of these function symbols, but assume that whatever the interpretations are, they

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

10 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

operate on bit strings, and they satisfy the equations we assumed about them. It is notable that the
DDH assumption is for randomly generated groups (group schemes, see [16]), and group generators
of those groups. Moreover, the exponents must also be randomly generated. For that reason, the
function symbols ggen and r act on names, the interpretation of which are random. We are going
to assume that these random groups are such that they satisfy the DDH assumption. O

4 PROTOCOLS

The authors of [9] treated protocols as abstract transition systems without committing to any
particular way of specifying protocols. They could be specified for instance in the applied pi-
calculus [1] or any other process calculus. The authors of [9] also assumed a bounded number
of sessions: each protocol comes with an arbitrary but fixed bound on the number of steps in
its execution. It would be possible to define the protocols without such a bound, but the general
soundness result (Theorem 1 of [9]) holds only for computational adversaries that exploit bounded
number of sessions in the security parameter. Therefore, without loss of generality we can just as
well put the bound in the protocol for simplifying the formulation.

4.1 The transition system

We shall now introduce the abstract transitions systems used in [9]. Observe that in our transition
systems, we shall also decorate the states with the names generated in the transition. A protocol is
an abstract transition system defined by:

e A finite set of control states Q with a strict partial ordering >, an initial state gy and a set
Qr C Q of final states.
e For each state g € Q, a linearly ordered (finite) set T(q) of transition rules

¢ (Now N1y oo Np),) 5 ¢/ (Nou N1, ooy Nu N, s, (%,)
- X =xy,...,%, and x are variables.
- Ny, Ny, ..., N, N are lists of names.
— 0 is a term of sort bool with variables in x1, ..., x,, x
- ¢q,q’ € Q are such that ¢ > ¢’
— s is a term with variables in xq, . .., x,, x.
T(q) is empty if and only if g € Q. Otherwise, T(q) contains a maximal transition, whose
guard 0 is true.
e An initial knowledge ¢,.

Intuitively, a transition g, (Ny, N, ..., Ny,), (X) A q’, (No, N1, ..., N, N), s, (¥, x) is a guarded
transition which changes the state from g to ¢’ upon receiving the message x; the variables x, . . . x,,
store the messages sent by the attacker so far, N; is the list of names generated upon the receipt
of x;, and the Boolean condition 0 specifies the condition under which the transition can be fired
(namely, the conditions under which a participating agent moves forward). The term s specifies the
message being sent out in the transition, that is, the message sent by the agent with new names in
N. The partial ordering on states ensures progress and hence termination. The linear ordering on
transitions specifies in which order the guards have to be tried. The ordering on the states thus
rules out any non-determinism in the protocol itself.

Example 4.1. The Diffie-Hellman key exchange protocol is the following (see e.g. [16]):

e A group description G and a group generator element g are generated honestly, according to
a randomized algorithm, and made public.
e The Initiator generates a random a in Z4| and sends g*.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 11
e The Responder receives g“, generates a random b in Z4| and sends g, and computes (¢%)°.
e The Initiator receives g°, and computes (g%)%.

Here we shall consider two honest parties running two parallel sessions, each of which may be
initiator and responder. More sessions can be analyzed similarly: the terms would be much bigger,
but there would not be any qualitative difference. As mentioned earlier, the protocol formulation
of [9] rules out any non-determinism. The above protocol however is not necessarily determinate
for the following reason: For example, when agent A has initiated two sessions of the protocol and
he receives a response, then it is not clear to which session he will accept the incoming message.
For this, we assume that the message coming from the adversary specifies which session the agent
should assign it to. Note, the adversary can, of course, direct messages to incorrect sessions thereby
creating confusion.

Accordingly, since we want to consider two sessions for each participant, we introduce four
session identifiers (message constants in ¥): two for agent A: id, id;, and two for agent B: ids
and ids. We further introduce a function symbol to : message — message which extracts from
an incoming message the session. As for their semantics, the session identifiers can be any fixed,
distinct bit strings and to is a function that extracts from a bit string a part that is agreed to be the
position for the session identifier. On a bit string that is of the wrong form, the interpretation of to
can give an error. We also assume that the session identifiers are distinct: EQ(id,, id ﬁ) ~ false
for sessions a # . Here we use a, f§ to denote any of 1, 2, 3, 4. Finally, to ensure that the Initiator
also responds something at the end of its role so that execution of other sessions can continue, we
introduce an accept message acc : message.

Then the initiator role of A for session id, is the following:

e Areceives a message into xj.

e If to(x;) = idy, and x; instructs A to start a new session, then A generates an a in Zyg), and

sends g?.

e Areceives message into xj.

e If to(x;) = idg, then A computes m(x;)¢ and sends acc.
The responder role of A is the following:

e Areceives a message into y;.

e If to(y;) = idg, then A generates an a in Z,;, computes m(y;)* and sends g*.
We can translate this to a transition system the following way. The set of states Q are given by
(a5 3200 K ke, ks, ks € {0,1, 2}, 16otsty € {0,1}} U {g).

Here k, numbers the rounds of session id, that has been completed if it is an initiator session,
and ¢, numbers the round of session id, that has been completed if it is a responder session.

Clearly, both k, and I, cannot be nonzero at the same time for a state. qgggg is the initial state qp.
kikzksks

tienenr, States where for

The state g is the final state where the system jumps if all tests fail. Those g
each «a, either k, or I, is maximal are also final.

The transition system is then such that there is a transition corresponding to each pair
Jksky KIKLKLK, . o .
(qlgllzzti .4, ¢ p') Where the primed indices are the same as the unprimed ones except for one
1727374

where the primed is 1 greater than the unprimed. Moreover, for each non-final qllflll(fzzgé *, there is a

transition to § guarded by true when all tests fail, which is the last according to the ordering >.
We do not list all transition rules here as they are rather straightforward but long. We only give
some examples:

Consider for example the transitions from q

1002
o110

1002 it 2002 1012
o10s- The only possibilities are to gg;,¢, to g,1p5 t0

and to §. The transitions are with this ordering:

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

12 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

EQ(to(xs),id1) 5409
— o100’
> EQ(to(xs),id3)&EQ(act(xs),new) N X

a2 (N), (%) qaonz, (N, (n5)), g(no)" ", (%, xs)

> . EQ(to(xs),ids) > -
q(l)(l)gg’ (N)’ (x) _— q(l)(l)(l)g’ (Na (ns))7 g(no)r(nS)’ (x7 x5)
- . true _ - =
o100 (N), (X) — . (N,()), 0, (%, x5)
where X¥ = x1, x3, X3, x4, and N = Ny, N1, Ny, N3, Ny with each N, either a fresh name or an empty
list. Note here that ng is the name used to generate the Diffie-Hellman group description.
Clearly, from {59 there are 8 possible transitions by increasing any of the 0’s to 1, and there is
an additional transition to g. They are the following as @ = 1,2,3,4

1002 (R7) (%) (N, (), acc, (%, xs)

95100

EQ(to(x1),1dg)&EQ(act(x),new) ko=
Qggg& ((no)), () : : %0001, ((no), (nl))7 g(no)r(nl)’ (xl)

0000 EQ(to(x1),ida) 000

g%, ((n0)). () ———= g%, (o). (n1)).&(n0)" ™), (x1)
422 (1)), () —5 g, (ng,), 0, (x1).

That is, if the adversary calls for a new session id,, then a new initiator session is started. If
the adversary sends to sessions id, but does not call for a new session, then the agent starts a
responder session, and assumes the incoming message is from the initiator.

In order to make notation more accessible, we present a transition diagram that represents the
DH key exchange protocol for two honest agents A and Bwith two sessions id; and id; in Figure 1.
As expected, a state q](fllfzz
is an initiator then k; (k, respectively) will be 1 if waiting for a response and 2 otherwise. If A
(B respectively) is a responder then ¢; (£, respectively) will be 1. The diagram illustrates three
possible branches of the DH protocol. The right-most branch of ¢}y simulates the situation where
Aacts as an initiator and B plays the responder role whereas the left-most branch simulates the
other scenario where Bplays the initiator role and A plays the responder role. The middle branch
illustrates the scenario when all the initiator moves of A happen before the responder moves of B.
At the initial state, the honestly generated description of a cyclic group G(n) and a generator of the
group g(n) are generated honestly and made available to the attacker. This initial knowledge of the
attacker is represented by the frame ®,. 6;s represent the conditions that the agent checks if he
was instructed to start a new session upon receiving the message x; in the session id; while 6; 8
are the conditions that the agent checks if the message x; is for the session id;. The output term
t[y] represents the group exponent computed by an agent y in the protocol. Of course, at the end
of the protocol, the initiator also sends out the message acc to indicate that the protocol has been
completed.

will represent the state of each agent A and B. If A (B respectively)

4.2 Execution and indistinguishability

Computational and symbolic executions were defined precisely in [9]. Instead of repeating the
abstract definitions here, we appeal to the reader’s intuition, and only illustrate through examples
how the executions work symbolically as we carry out the proof there.

We recall first that in case of the symbolic execution, to treat protocol indistinguishability of
protocols IT and IT’, the Dolev-Yao way would be to match the branches of the execution of IT
and that of II” such that the matched branches are statically equivalent (see e.g. [19]).However, as
the authors discussed in [9], obtaining computational soundness through such matching seems
infeasible. Instead, the authors in [9] folded the protocol execution into a single trace, such that the

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 13

t[ng]

t[nal
@0 = G(n), g(n)

0;; = (EQ(to(x;), id;) & EQ(act(x;), new)
0, = (EQ(to(x,). id))

tly] = g(n)"¥

Fig. 1. Diffie-Hellman key exchange protocol with an initiator session id; and a responder session idy

tests of the participating agents at each round on the incoming message were included in the terms
that were sent out with the help of the function symbol if _ then _ else _ . We illustrate this in the
following example.

Example 4.2. The folded symbolic execution of two sessions of the DH protocol between A
initiator and B responder has the following trace:

° ¢OEG,g
e P = oty

where #;

if EQ(to(fo(¢o)), id1) & EQ(act(fo(¢ho)), new)
then g
else if EQ(to(fo(¢o)), id1)
then g™
else if EQ(to(fo(¢o)), id2) & EQ(act(fo(¢o)), new)
then g%
else if EQ(to(fo(¢o)), 1dz)
then g*
else if EQ(to(fo(¢o)), id3) & . ..

else if EQ(to(fy(¢o)), 1ds)
then g*

else 0

e ctc,

where G = m(ggen(ng)) and g = m(ggen(ng)) and ag = r(nm)) for « = 1,2,3,4 and some
increasing function m : N — N. Again remember, if the adversary calls for a new session id,, then
a new initiator session is started. If the adversary sends to sessions id, but does not call for a new
session, then the agent starts a responder session, and assumes the incoming message is from the
initiator. To obtain ¢,, one proceeds the following way. First create a term that lists all conditions

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

14 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

to reach all possible states after the first step:
if EQ(to(fi(¢1)), id1) & EQ(act(fi(¢1)), new)

1000
then gygg0

else if EQ(to(fi(¢1)), id)

0000
then g7y,

else if EQ(to(f1(¢1)), id2) & EQ(act(fi(¢1)), new)

0100
then gygg0

else if EQ(to(fi(¢1)), id,)

0000
then gq140

else if EQ(to(fi(¢41)), id3) & ...

else if EQ(to(fi(¢1)), id4)

0000
then gpog

else 0

Then, the states have to be replaced with the terms that describe the transitions out of the state.
For example, in Example 4.1, we also listed the transitions from gg)pa. The term that corresponds

100°
to these transitions from g} is

if EQ(to(fa(¢4)), id1)

then acc

else if EQ(to(fi(¢4)), ids) & EQ(act(fa(Ps)), new)
then gb1

else if EQ(to(fs(ds)), idyg)then gblelse 0. O

This way, the indistinguishability of two protocols IT and IT” can be reduced to the indistinguisha-
bility of the lists of the sent messages. Let fold(IT) denote the folded execution of protocol II, and
let ®(fold(IT)) denote the sequence ¢y, @1, . . . of folded messages sent on the single symbolic trace.
Then the following general soundness theorem was proved in [9]:

THEOREM 4.3. LetII, IT" be two protocols. Let A be any set of formulas (axioms). If A and ®(fold(I1)) +
®(fold(I1")) are inconsistent, then the protocols IT and I1” are computationally indistinguishable in any
computational model M€ for which M€ |= .

5 CORE AXIOMS

In this section we present the core axioms for our technique. In [9] a few axioms were presented
that were sufficient to prove the protocol they considered for one session. In general though, those
axioms for if _then _ else _ are certainly not sufficient to compare the branching of two protocols.
In this section we present further axioms for if _then _else _, and for = as well. As usual, the free
variables in axioms are assumed to be universally quantified.

The core axioms are listed in Table 1 and explained below. There are broadly four categories of
our axioms. The first category of axioms, axioms for indistinguishability, are useful to reason about
the indistinguishability predicate ~. The second category of axioms, axioms for equality, are useful
to reason about the abbreviation =. Collectively, they justify the use of the equality symbol for the

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 15

Axioms for indistinguishability.

Refl: X ~X

Sym: i~j—y~%

Trans: X~JAY~Z—X~Z

Restr: If p projects and permutes onto a sublist, ¥ ~ §j — p(¥) ~ p(¥)

FuncApp: forany f :sy,....5, — 5], ...,s;n,]? EFUGX~§—X, f(¥)~ ﬁ,f@)
TFDist: - (true ~ false)

Axioms for equality.
EqCong: = is a congruence relation with respect to the current syntax.

EqTheo: = satisfies the equations given by the equational theory.

Axioms for if _then _else .

IfSame: if bthenxelsex = x
IfEval: for any t, t, terms, if b then t1[b] else t,[b] = if b then t,[true] else t,[false]
IfTrue: if truethenxelsey = x
IfFalse: if falsethenxelsey =y
IfBranch: Zb,xi,...x, ~Z,b',x{,....%;, A Z,b,yr,....,yn ~Z, 0", y;,y, —
z if bthen x; if bthenx, > b if b’ then x| if b’ then x;,
s elsey; 777 else yp T elsey; > else y;,

Axioms for names.
FreshInd: for any names nj, n, and lists of closed terms @, w, such that fresh(ny; 0, w)
and fresh(ny; 0, w) holds, o ~ w — ny, 0 ~ ny, w.
FreshNEq: for any name n and a closed term v such that fresh(n; v) holds,
we have EQ(n, v) ~ false.

Table 1. Core Axioms

abbreviation. The third category of axioms, axioms for if _then _else lie at the heart of reasoning
about different branches of protocol execution. The last category of axioms, axioms for names, are
useful to reason about fresh names. These axioms (more precisely, axiom schemas) use the notion
of freshness [9]: For a list of pairwise distinct names N, and a (possibly empty) list of closed terms
0, fresh(N; 0) is the constraint that none of names in N occur in .

Some of these axioms were proven computationally sound in [9]. The others are proven similarly;
we omit their proofs here as they are rather straightforward. Their novelty lies not in the difficulty
of their soundness proofs but in their applicability in protocol proofs. The axioms are independent:

PRropPOsSITION 5.1. The core axioms are independent.

The proof goes as usual: For each axiom 6 an abstract first-order model is constructed that
satisfies all other axioms and the negation of 6.

Note that all axioms we introduce are modular, that is, expanding the logic will not invalidate
the current axioms. Observe also the general nature of the axioms; they are in no way special to
the DH protocol. They are basic properties that allow us to manipulate if _then _else _ branching,

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

16 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

equality and equivalence, and they should be useful in the verification of any protocol. In Section 7
we illustrate their use on simple examples.

Note that the axioms are not necessarily complete. A complete axiomatization would be useful
to ensure that a symbolic attack is also a computational attack (realizable with a PPT algorithm).
To achieve however a complete axiomatization might be very difficult, and it is not an immediate
priority from the verification point of view in the sense that soundness is sufficient to ensure that if
there is no symbolic attack then there is no computational either.Completeness in restricted cases
can be shown though. For example, the following theorem is true (from now on we use I to denote
first-order provability) :

THEOREM 5.2. Suppose the only function symbols in t; and t, areif _then _else _, true and false.
Then t; = t, is computationally valid, if and only if
EqgRefl,EqCong, IfSame, IfEval, IfTrue, IfFalse + t; = t5.

Proor. (1) Suppose first ¢; = t; is computationally valid. We prove that the listed axioms
imply t; = t; by induction on the number of bool variables in the first arguments of instances
of if _then _else _ in the formula t; = t,.

(a) Suppose first that there are zero number of such variables. Thanks to IfTrue, IfFalse, we
can assume that ¢; and ¢; have no if _then _else _ terms at all. Thus, our formula is x = y,
where x and y are either variables or true or false. Clearly, if x and y are syntactically
different (that is, x # y), then x = y is not valid as the variables can just be interpreted as
two constant bit strings, different from 1 and 0. When they are syntactically equal, x = x,
then this is just EqRef1.

(b) Suppose now that we have shown the statement for n different bool variables in t; = t,.
Consider the case n+1. So either 1 or t; has at least one instance of if_then_else_, suppose
w.lo.g. itis ;. That means t; = if bthent] else t? for some b, t}, t?, where by axiom IfEval,
we can assume that neither tll, nor t12 contains b, and by axioms IfTrue and IfFalse we
can assume that there is no true and false in the first argument of if _ then _else _.If t,
has b in the first argument of if _then _else _, then we can move it out to the front so that
t, = if b then tzl else t% for some tzl, tzz, where we can again assume that neither t!, nor l‘z2
contains b, and true and false are removed from the conditions of if _then_else_.If ¢, does
not have b, then by IfSame, we can still write it as t, = if b then t; else t7 witht} =t = t,.
So we can assume w.lo.g. that t, also has this form. We claim that t] = ¢, A % = 2 is
computationally valid. Suppose not, breaking say, ¢! = t.. Then there is a model M° and the
variables in t], t2, 17, t2 have an interpretation o such that M, o |~ ¢ = t,. This means that
[¢{1° and [[#;]” are not equal up to negligible probability: Prob{p : [t;]y , # [;17 ,} is
non-negligible. Remember, ¢}, t2, t;, t7 do not contain b. Let us define the interpretation of
b (extend o to b) such that it is a single bit, generated randomly and independently of all
the interpretations of other variables in ¢}, tZ, ¢}, t>. By the definition of the semantics of
if_then_else_, {p:[[bl],=1 A [[tll]]g,p # [[tzl]]ﬁl’,p} S{p:uly, # (07 ,} Hence

%Prob{p : [[tll]]g’p * [[tzl]]g’p} < Prob{p : [t:]] , # [[©2]I7 ,}. and since the LHS of this
inequality is non-negligible, the RHS is also non-negligible. But that means M€, o |= t; # t,
contradicting our assumption. The proof is analogous when ? = tZ is not valid. So we
have that t! =t and t? = ¢ are both computationally valid. As t] = t; and t* = > do not
contain b any more, by the induction hypothesis, both t! = ¢} and t* = t2 are derivable
from the axioms. Then

EqCong

t; = if b then tl1 else tf if b then tz1 else tg = t.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 17
(2) The converse follows immediately from the computational soundness of EqRef1, EqCong,

IfSame, IfEval, IfTrue, IfFalse.
]

Observe that as an immediate consequence of EqTheo we get:
Example 5.3. For the function symbols in Example 2.1, 7 (x1, x2) = x; and g% = ¢®® are axioms
by EqTheo. i

We could also have defined the axioms differently. The following example indicates that the
very intuitive axiom schema IfEval and IfSame can be replaced by three axioms IfTF, IfIdemp,
IfMorph below. Later, we shall use all of IfSame, IfEval, IfTF, IfIdemp, IfMorph, whichever is

more convenient to apply.

LEMMA 5.4. Let us define the following three axioms
IfIdemp: ifb then (if b then x; elsey,) else (if b then x; else y;) = if b then x; else y;

IfMorph: f(zi,...,ifb thenx elsey, ..., zp) = ifb Z::ﬁzl""’yx’m’zzrs)
s eesUs oees Zn

IfTF: if b then true else false = b

Itiseasytoseethat IfTF,IfIdemp, IfMorph, EqRefl, EqCong + IfSame, IfEval and IfEval, IfSame, IfTrue
To see the first, we need the transitivity of equality with:

IfTF ifbthenti[if b then true else false |

B else t,[if b then true else false |
IfMorph ifb then if b then t,[true] else t;[false]
- else if b then t;[true] else t,[false |

if b then t1[b] else t,[D]

IfId
demp if b then t1[true] else t,[false]

and"

x IfTrue if true then x else if b theny else z

IfMorph
2P if b then (if true thenx elsey) else (if true thenx elsez)

IfTrue if b then x else x

To see the second:

IfSame IfEval

b if b then true else false

ifb thenb elseb

. IfSame ifbthen f(zi,...,ifbthenx elsey, ..., z,)
fz1s o ifbthen x elsey , .., zn) == else f(zq,....ifb thenx elsey, ..., z,)

IfEval ifbthen f(zy,..., iftruethenx elsey, ..., z,)
N else f(z1, ..., if false then x elsey , ..., z,)

IfTrue

IfFalse
= ifb then f(zq,....x, ..., zy) else f(z1, ... Yy ..., Z)

IThis observation is due to Adrien Koutsos

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

18 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

. if true then x;
. if b then x; ifbthenx,\ IfEval ifb then (else y;)
if b then () else () = .
elsey; elsey, else (if false then x;)
elsey,
IfTrue
IfFalse

= if b then x; elsey, . O

5.1 Soundness of the Axioms

The soundness of the axioms for indistinguishability were proven in [9] except for TFDist. But
that is trivial: the interpretation of true is identically 1, the interpretation of false is identically 0,
which can be distinguished by the algorithm that outputs its input.

PRroPOSITION 5.5. Axioms EqRefl, EqCong and EqTheo are computationally sound.

PROOF. x = x is trivial by the semantics of EQ and true.

To see EqCong, note that by the definition of the semantics of EQ and true, M€ |= EQ(x,y) ~ true
means that [[x]] and [[y]] are equal on all inputs except possibly some inputs that have negligible
probability. As any change that affects the outputs only with negligible probability does not affect
the satisfaction of formulas expressed by the current syntax (~ ignores any change with negligible
probability), congruence indeed holds.

Finally, for EqTheo, if the computational semantics satisfies the equations bitwise, then for any
given equation (of the equational theory), the interpretations of the two terms on the two sides
agree on each input. Hence they are equal up to negligible probability as well. O

PRrROPOSITION 5.6. The If axioms are computationally sound.

Proor. IfSame, IfEval, IfTrue, IfFalse: These axioms are all of the form t; = #, with t; and
t, terms varying from axiom to axiom. Assume that o is an assignment of the variables of #; and £,
to algorithms taking values in the corresponding domains. Let 7 be a security parameter. In each
case, by the definition of [if _then _else _]|, it is a trivial matter to verify that [tl]]g,p = |[t2]]f77’p .
Then, by the definition of [EQ(_, _)]| and [#rue], we have that EQ(t;, ;) ~ true is satisfied and
that completes the proof.

=4 =7 ’ ’ ’ g =7 ’ ’ ’

IfBranch:z,b,x1,...x, ~2',0',x],...,x;, A Z,b,y1,...,yn ~ 2,0y, ..., Yy, —
H B Y ’ e ’

0 if bthen x; if bthen x, Y if b’ then x| if b’ then x;,
z,0, I e l z,0, I /AR RIRR] l ’

else y; else y, else y; else y;,

. . 5

Assume an assignment ¢ of the free variables z, z’, b, b’, x1, . . ., Xp, X[, . . . X0, Yty o - 5 Yns Ups - - 5 Y
taking values in the corresponding domains and a security parameter 7. Assume further that
Z,b,x1,...xp ~ 2,0, x{,....,x), and Z,b,y1,...,yn ~ Z,b",y],...,y;. Fix an adversary A. Let

D1 Prs Px» Px» Py and py be defined as follows.

p1 = Prob{p: A([[Z, b, if bthen x; else y; , ..., if b then x, else y,]]g’,];pg) =1},

pr = Prob{p: A([Z’,b’,if b’ then xjelsey;,...,if b" then x; else y;,]]g,”;pg) =1},
px =Prob{p: A([z,b,x1,...,x,] ,:p2) = 1 & [[D]5 ,, = 1},

px =Prob{p: A([Z", V', x],.. Sxpllg sp2) =1&[07]5 , =1},

py =Prob{p : A([Z,b,y1, ..., ynll} ,; p2) = 1 & [P]5 , = O},

py =Prob{p: A([Z".V"y],....y, onip2) =1&[V]5 , =0}

It is easy to see that p; = py + p, and that p, = p, +p,s. Therefore |p; —p,| < |px —pxr| + Py — Py |-
In order to prove the soundness of the axiom we need to show that [p; — p,| is negligible in 5. In
order to prove this, it suffices to show that both |p, — p| are |p, — p,| are negligible in 7.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 19

We now show that |p, — p,| is negligible in 7. Let the sequence m' have the same number of
elements as z. Consider the adversary 8 that on input m!, b, my, . .., m, and random tape p, runs
A(m, by, my, ..., m,) when b; is 1 and outputs 0 otherwise. Now, it is easy to see that

PrOb{p : B([[Z7 baxls . -’xn]]g,;ﬁpZ) = 1} =px

and
Prob{p: B([Z',b',x],....x,]17 ;s p2) = 1} = py.
Thus,
lpx = x| =IProb{p : B([Z,b,x1,...,xn]7 ,; p2) = 1}~
Prob{p: B([Z’,b',x,....x,17 ;3 p2) = 1}.
Now, the latter is negligible in 7 as Z,b,x1,...,x, ~ Z',b’,x],...,x},. Hence, |px — px| is also

negligible in 5. Similarly, we can show that |p, — p,/| is negligible in 7 and the result follows.
]

ProprosITION 5.7. Axioms FreshInd and FreshNEq are computationally sound.

Proor. For FreshInd, note that fresh(ny, ny; 0, w) implies that [[n;]] and [[n,]] are independent
of [, w]] because all names are assumed to use different parts of the random tape p;, and functions
can only use randomness from p;. This means that [[n2, w]| and [[n;, w]| have identical probability
distributions. Hence, if an algorithm A can differentiate [[ny, 9] from [[n,,]|, then A can also
differentiate [[ny, 0] from [[n;, w]). If there is such an A, then there is also a B differentiating [J]|
and [w]], namely the one that generates a random bit string s that has identical distribution with
the interpretation of names, and then gives (s, [7])) or (s, [w]) to A.

To see soundness of FreshNEq, note again that [n]] and [[v]] are independent. As [n]] has uniform
distribution on {0, 1}, there is at most negligible probability for [n]] to agree with [v]], and
hence there is only negligible probability for [EQ(n, v)] to be nonzero, from which soundness
follows. O

6 DDH ASSUMPTION

The BC formalism for indistinguishability properties is very convenient for axiomatizing crypto-
graphic assumptions. Our Decisional Diffie-Hellman (DDH) axiom is a straightforward translation
of the usual DDH assumption to this formalism:

e DDH assumption:
fresh(n, ny, nz, n3) — (G(n), g(n), g(n)" ™, g(n)" "), g(n)r"1(™)) ~ (G(n), g(n),
g(m)" ™), g(n)""), g(n) "))
That is, this property postulates that an adversary cannot distinguish g(n) ™) (") from g(n) (")
even if the items G(n), g(n), g(n)"™), g(n)""2) are disclosed.

PrROPOSITION 6.1. The above axiom is sound if and only if the interpretation of (ggen(_), r(_))
satisfies the Decisional Diffie-Hellman assumption (see for example [16]).

Proor. The proof is almost trivial. According to the semantics of ~ in Section 3.2, violation of
the DDH axiom means there is an A algorithm for which the advantage is non-negligible when it
is fed with the interpretation of (G(n), g(n), g(n)"™, g(n)"™), g(n)r™)r("2)) and the interpretation
of (G(n), g(n), g(n)™™), g(n)"™), g(n)r™)). That is exactly the violation of the DDH assumption
in [16], Definition 2.1. O

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

20 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

7 SHORT EXAMPLES
In this section we illustrate with a few short examples how the axioms we introduced work.
Example 7.1. In the formula below, IfMorph lets us pull out if _ then _else _ from under t1, £,

and IfIdemp lets us get rid of several instances of b. And, as EqRef1 and EqCong imply transitivity
of =, we have

if bthen t;[if bthenxielsey;] _ if bthen #[xy]

[fTdemp, IfMorph, EqRefl, EqCong F else t[if bthenx elsey, | else ty[yz].

Example 7.2. We have that for any constant f € ¥ U G,
Trans, Restr, FuncApp,EqRefl F x ~ f — x = f.

To see this, consider x ~ f. By FuncApp, x, f ~ f, f, and again by FuncApp, x, f, EQ(x,) ~
f, fLEQ(f, f). By Restr, EQ(x, f) ~ EQ(f, f). By EqRefl, f = f, which is a shorthand for
EQ(f, f) ~ true. Then by Trans, EQ(x, f) ~ true, which is x = f. Note that in particular, x = y
iff EQ(x, y) = true. O
Example 7.3. We have
Trans, Restr, FuncApp, IfSame, IfIdemp, IfMorph, IfTF, EqRefl, EqCong F
if EQ(x1, x2) then xy else y = if EQ(xy, x2) then x; else y.
This is because:
if EQ(x1, x2)

. X1,
if EQ(x1, x2) then xy elsey, | IfMorph then EQ(.)
if EQ(xy. x2) then x, else y = if EQ(x1, x2) then x; else y

Y,
e]se EQ(if EQ(xl’ xZ) then X2 eISe Yy)

EQ

Example 7.1
= if EQ(x1, x2) then EQ (x1, x3) else EQ(y, y)

Example 7.2
= if EQ(x1, x2) then EQ (x1, x2) else true

IfEval if EQ(x1, x2) then true else true IfSame true

where EqCong is also used, but we omitted its indication. O
Example 7.4. We prove the following:
IfIdemp, IfMorph, EqRefl, EqCong + if b then x; else y; = if b then x; else y,
—> if b then t[x;] else t'[y;] = if b then t[x;] else t'[ys]
The statement can be proven using Example 7.1 and congruence of the equality:
if b then t[x;] else t'[y;] = if b then t[if b then x; else y; | else t'[if b then x; else y; |
= if b then ¢[if b then x; else y, | else ¢'[if b then x; else ys |
= if b then t[x;] else t'[y2]
Putting this together with Example 7.3, we have in particular that:?
EgBranch = if EQ(x, x2) then t[x;] else t’ = if EQ(x1, x;) then t[x;] else t’.

2This property was first formulated by Adrien Koutsos as one that is particularly useful in proofs.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 21

These two previous examples mean that equality is not only a congruence, but if x; and x, are
equal on a branch, they are interchangeable on that particular branch.

Example 7.5. By the previous examples, we have EQ(true, false) = false as follows:

EQ(true, false) If:TF if EQ(true, false) then true else false

EgBranch IfSame

if EQ(true, false) then false else false = =" false

Example 7.6. By the previous examples, we also have EQ(x, y) = EQ(y, x).
The proof is the following:

EQ(x, y) LETF if EQ(x, y) then true else false
IfE:val if EQ(x, y) then EQ(x, y) else false
EgBranch

if EQ(x, y) then EQ(y, x) else false

IfMorph if EQ(y, x) then (if EQ(x, y) then true else false)
h else (if EQ(x, y) then false else false)

LETF if EQ(x, y) then (if EQ(y, x) then true else false) else false

IfSame if EQ(y, x) then (if EQ(x, y) then true else false) else false

LETF if EQ(y, x) then EQ(x, y) else false
EgB h
geranc if EQ(y, x) then EQ(y, x) else false
IfEval if EQ(y, x) then true else false LfTF EQ(y, x) d

Example 7.7. By the invertibility of pairing, we can also show that for two distinct names n; and

ny, EQ(ny, (ny, nz)) = false.
To see this, note that from the equational theory of the pairing, 7,({ny, nz)) = nz, which, by Axiom

EqTheo, the meaning of = as an abbreviation, and Example 7.2, means EQ(ny, m,({n1, n2))) = true.
Then

EQ(ny, {(ni, ns)) LETF if EQ(ny, (ny, n2)) then true else false

EqTheo

Example 7.2
= if EQ(ny, (n1, nz)) then EQ(ny, m2({n1, n2))) else false

EgB h
qeranch EQ(ni, (n1, nz)) then EQ(nz, my(n1)) else false

FreshNEq

Example 7.2
E if EQ(ny, (n1, n2)) then false else false IfS:ame false O

Example 7.8. Tt is easy to see from the definition of not, that

EqRef1, EqCong, IfMorph, IfTrue, IfFalse F if not(b) then x else y = if b then y else x.

O
ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

22 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

Example 7.9. Axioms IfIdemp and IfMorph reduce terms in the frame significantly for the
following reason. Consider the simple situation when the frame ¢, is defined as follows:

$1 = o, if bi[fi(¢o)] then £[[fi(o)] else t[fi(¢o)]

5y = g, LA then (if BILA(G)] then BILA(G)] else L2 ()])
2 = g else (if b2[fo(1)] then ' [fo(1)] else 1201 fo(1)])

Inside f3, the ¢, also has branching, but by axiom IfIdemp and IfMorph, that branching can be
removed. So the last term in ¢, is equals to

if b1 [fi(go)l then (if by fo(do. ;[fi(d0)])] then & fo(¢o, t; [fi(o) D] else t,2[fa(bo. 11 [f1($0) D])
else (if b3[f2(o. t[f1(0)])] then 51 [fo(do. [f1(do)])] else ;°[falgho, 7 [fi(o) D])

Similarly, even in later terms of the frame, all the branching in the adversary messages (as in the ’s
above) can be removed. Note that because of the way terms were folded in the protocol execution,
the branching is always kept as we go to higher elements of the frame, they only get extended: Just
as above, there is an initial branching by by, then there is a second by b,, then b3, and they all show
up in all later terms as well.) That is, ¢,4; will have the same branching as ¢, plus an additional
layer of branching, and these branchings can all be pulled out to the front of the terms. O

Example 7.10. In this example we show that a three-party version of the DDH assumption can
be derived from the usual DDH assumption. In this case, G, g, g%, gb, g°, g“b, g%, gbc, are all public,
and g?%¢ is secret. We show that with all this public information, g?*¢ is indistinguishable from g*
where e is a freshly generated exponent. More precisely, we show the following:

Gg. 9% g¢° ¢, Gg, g% ¢° ¢
freSh(G’ ,a,b,c,e)—>(a ac c ac)N(a ac c e)
I 9%, g%, g, g% 9%, g%, 9" ¢
(1) Take a d with fresh(G, g, a, b, c, e, d).
(2) Thanks to DDH axiom, we have that G, g, g*, gb, g“b ~ G,g,9% gb, gd.
(3) From line 2 and axiom FreshInd, we get that ¢, G, g, g%, gb, g“b ~¢,G,g,9% gb, gd.
(4) From line 3 and repeated use of axiom FuncApp (for exponentiation with c) we get that c, G,
q, ga’ gb’ gab, gc, gac’ gbc, gabc ~¢,G, g, ga’gb’gd’gc,gac,gbc’gdc
(5) From line 4 and axiom Restr we get that G, g, g%, g%, g°%, g¢, 9%, g*¢, ?%¢ ~ G, g, g%, ¢",
gd’gc’gac’ghc’gdc
(6) By DDH, we get that G, g, gd, g5, gd” ~G,g, gd, 9%, 9°
(7) From line 6 and axiom FreshInd we get that a, b, G, g, gd, g°, gdc ~a,b,G,g, gd, g%, g°¢
(8) Fr(b)m line 7 and r;peated usebof axionbl FuncApp we get that a,b, G, g, gd, g5, gdcg“, g”, g°e,
9’ ~a,b,G,g,9%9°9°9% 9°,9°, ¢°
(9) Since we have postulated that g°® = ¢ and that g°® = ¢%¢, we get thanks to Line 8 and
axiom Restr that G, g, ga’gb, gd’ gc’ gac, gbc’ gdc o G, g, ga,gb’ gd,gc’ gac’ gbc’ ge
(10) Thanks to axiom Trans, lines 5 and 9, we get that G, g, g%, gb, g“b, g9°, g%, gbc, g“b"' ~
G, g, ga’gb’gd’gc,gac’gbc,ge
(11) Now, thanks to line 2 and axiom FreshInd, c, e, G, g, 9% g%, 9%* ~ c,e,G, g,9% g°, g%
(12) Thanks to line 11 and repeated use of axiom FuncApp we get that c, e, G, g, g%, gb, g“b, g°,
ge gac gbc ~c.e.G g ga gb gd gc ge gac gbc
(13) Thanks to line 12, axiom Restr and Sym we get that G, g, g%, gb, gd, g, g9°c, gbc, g° ~
G, g, ga’ gb’ gab’ gc,gac,gbc’ ge
(14) Now, thanks to lines 10, 13 and axiom Trans we get that G, g, g% ¢, g%%, ¢, g*°, g*¢, g°
~ G, g, ga’gb’gab’gc,gac’gbc’ge
The result follows. O

be

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 23

Example 7.11. The Diffie-Hellman assumption does not imply that for fresh(G, g, a, b, ¢, d, e), the
equivalence G, g, g%, gb, g°, g“b, gbc ~G,g, 9% gb, g°, gd, g° holds. However, we do have that for
closed bool term on g, g%, gb ,g¢ and function symbols, if fresh(G, g, a, b, c, d) holds, then

G,g, gu»gh,gc, if § then g“b else gb” ~G,g, ga,gb,gc,gd

This can be derived the following way: from the DDH assumption, G, ¢, 9%, ¢°, g% ~ G, g, g% ¢, g°.
By FreshInd, we also have that c, G, g, g“,gb,g“b ~¢G,g, g“,gb, gd, and by FuncApp and Restr,
G,9,9% %, 9% 9% ~ G,g,9% g%, g%, g%. As B is a closed term on g, g%, g, g¢, by FuncApp and Restr
again, we have G, g, g%, gb, g9, B, g“b ~G,g,9°% gb, g9, B, gd. Similarly, G, g, g%, gb, g9, B,

g% ~ G,g,9% g% g¢¢, B, g%. Then, by IfBranch we obtain G, g, g% ¢°, ¢¢, if B then g?° else g*¢ ~
G,9,9% g", g%, if B then g% else g and finally by IfSame we get what we wanted to prove. O

8 DIFFIE-HELLMAN KEY EXCHANGE

Let us come back now to our running example of the Diffie-Hellman key exchange protocol. In this
section we show that if the group scheme used for the key exchange protocol satisfies the DDH
assumption, then the shared key satisfies real-or-random secrecy. More precisely, we show that
two protocols, one in which the real shared key g® is published at the end and one in which g¢ is
published with a freshly generated d, are indistinguishable. Real-or-random secrecy was introduced
in [3]. According to their definition, the adversary can request an oracle to reveal the shared key of
the honest agents. The oracle either reveals the true shared key, or it reveals a newly generated
random key, and the adversary has to guess whether the real or the freshly generated random key
was revealed. Real-or-random secrecy holds if the attacker guesses correctly with a probability at
most negligibly exceeding 1/2.

Note, the basic DH protocol does not ensure authentication: agents A and B have no way to
know if they really communicate with each other. For example, if the adversary sends some bit
string s to A, the key that A generates, s* will not be secret. Accordingly, the oracle has to choose
those keys between A and B that were indeed honestly computed and shared. Only those keys have
a chance to remain secret. Hence, the oracle takes a session (specifying the agent as well) as an
input and checks if there is a matching session. If there is no matching session, then it outputs
the key computed by the agent. If on the other hand, there is a matching session, then the oracle
outputs either the real key, or generates a new ¢g¢ and outputs that. To formalize the oracles, we
need a new function symbol, reveal(_) : message — message, and we add a few transitions to
those in Example 4.1 as described below.

e ProtocolI1; is defined such that the oracle always reveals the actual computed key of the requested
session, if there is any: to a state qk1 kzkjk‘_‘ we add the following transitions:

g (N, @) 2, g (N, 0),m(x) ™), (7, x)

where i runs through indices of ¥ = x1, ..., x, s.t. N; # () and
0; = EQ(reveal(x), id,) & EQ(to(x;), idy).

We order the transitions so that they are all applied after those in Example 4.1. The order of
the transitions labeled with 0; decreases with increasing i. If qkl?kj’;“ = q{‘_{’;‘ﬁkjk" then the
transition corresponding to smaller of « and f has higher order. Moreover, to a state ¢, . (,2 “ ;4 ,

we add the following transitions:
qflfzgqu (N) (*) _> qglngja (N (), m(x;)r(nh) (%, x)

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

24 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

where i and h run through all indices of ¥ = xi, ..., x;, such that Nj, # () with the restriction
h <i,and
0;1, = EQ(reveal(x), idy) & EQ(to(x;), idy) & EQ(to(xy), idy)
¬(EQ(act(x;), new)) & EQ(act(xy), new)
We order the transitions so that they are all of higher order than those in Example 4.1, they
decrease by «, and a transition labeled with 6;}, is higher for smaller i, and, within i, 6;, is higher
for smaller h. We also add

kikoksks (o =y Ox - % >
gEeer (N). (&) =5 ¢.(N.0).0,F.x)

if ky < 2and ¢, < 1 with 6, = EQ(reveal(x),id,), again with higher order than those
transitions in Example 4.1.

In other words, in protocol IIy, in each round, first it is checked if there was a reveal(x) request,
and the oracle always reveals the key computed in session reveal(x) if such a key was computed.
If there is no reveal(x) request, then IT; continues executing the DH protocol. The reason for the
high number of transitions is that the oracle has to find the point where the key was computed.

e Protocol II; is defined such that if the oracle request concerns a key that was computed in some
session id,, and there was another session idg in which the same key was computed, then a g¢
is revealed with a freshly generated random n. Otherwise the computed key is revealed if there

Lk

is any: to a state ¢’ et *, besides the transitions of I1;, we add the following transitions:

q "2ﬁ e (W) 2 g (8) o), o)

0)1/6 = EQ(reveal(x) idgy) & EQ(to(xy) idg) & EQ(to(xs), idg)

&EQ(to(xe), idg) & not(EQ(act(xy), new)) & EQ(act(xc), new)

&EQ(n(x5). (no)""e)) & EQ(m(xy). g(n0)" "))

9§ sc = EQ(reveal(x), idg) & EQ(to(xy), idg) & EQ(to(xs), idg)

&EQ(to(x¢), idg) & not(EQ(act(xy), new)) & EQ(act(xc), new)

BEQ(M(xs). g(0)" ")) & EQ(m(xy) g(no) ")
and y > § > e. The new transitions are ordered so that they have a higher order than the
transitions in IT;. Amongst the new transitions of IIy, the transitions are ordered by decreasing
a, then decreasing f, then decreasing i, then decreasing y, then decreasing § and decreasing e.
These checks ensure that if there is a session where they computed the matching keys, then a
newly generated random key g(no)"™ is revealed.

Note, the oracle requests do not interfere with the protocol. Their sole purpose is to model
secrecy of some of the computed keys, namely those for which there is a session with a matching
key. The next theorem states that such keys satisfy real-or-random secrecy.

ProrosITION 8.1. The above two protocols, I1; and 11, allowing two parallel sessions for the DH
key exchange protocol, are computationally indistinguishable as long as the group scheme satisfies the
DDH assumption.

Proor. Consider first IT;, and let us make the following observation. When the protocol is folded,
there are if then else branchings for each conjunct in the conditions 6, including for those that
appear in the oracle requests. However, in 0; above in the oracle move, only EQ(reveal(x), id,)
is a new condition, the condition EQ(to(x;), id,) already appeared earlier in the execution, so
there is already a branching according to the latter. By IfMorph and IfIdemp, just as in Example
7.9, such additional branching can be removed while the output m(x;)""?), takes the value of
the form m(f;(¢;))"™) where EQ(to(fi(¢;)), idg) is satisfied. Only the branching according to

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 25

EQ(reveal(x), id,) remains in the oracle step. When id,, is a Responder session, m(f;(¢;))"") is
the key computed in this session, and revealed by the oracle. The same is true for 6;;, but there id,
is an Initiator session and the oracle output is accordingly m(f;(¢;)) "), where r(nj) is computed
initially in this session, and f;(¢;) is the message that is supposed to be coming from the responder.
In II,, conditions EQ(m(xs), g(n) ")) and EQ(m(x,), g(ng) ")) are also new in the oracle step, so
these branchings cannot be removed. As m(xy)r("e) is the key computed in the Initiator session idy,
while m(xs)""s) is the key computed in Responder session idg, conditions EQ(m(xs), g(ng)r(ne))
and EQ(m(x,), g(ng)""s)) make sure that both are g(n,)"s)r(e),

With this understanding in mind, consider a protocol IT/, which is like II,, but in the transition,
we replace the output g(ng)"™ by m(xs)""s) for i = 2, and by m(xy)r("f) for i = 1. This means
that IT} outputs the same exact messages as II;, ignoring the additional branching. Considering
the frames, that means that ®(fold(II;)) ~ ®(fold(II}')) by several applications of axiom IfSame.
Then, consider the protocol II}, which we obtain from II, by replacing the output g(no)"™ by
g(no)r"s)"(ne) Then, according to the previous paragraph, using the results of Example 7.3 and
Example 7.4, we have ®(fold(I}')) ~ ®(fold(IL})).

The only thing left to prove is ®(fold(IL})) ~ ®(fold(II,)). This relies mainly on the DDH axiom
and the IfBranch axiom: The only difference between ®(fold(II})) and ®(fold(Il,)) is that some
of the final sent messages are g(ng)""s)"("<) in the first, while g(ny)"™ in the second. We cannot
immediately use the DDH axiom, because the values of § and € may vary from branch to branch.
Considering just a single branch of IT/, the complete list of messages that have been sent looks like
G(r(no)), g(r(ng)), g(ne)™ ™, ..., g7, g(n,)""s)r(ne) Because of the DDH assumption, FreshInd,
FuncApp, we have

G(r(n9)), g(r(no)), g(no)™ ™), ..., g(no)" "), g(ng)" (s (e)
~ 6(r(no)), g(r(no)), g(no) ™), .., g(ng)" "), g(ng)r.

All tests 0 in the protocol definition are applied only on messages sent by the adversary (which are
functions applied on public terms) and g(n)" ™, ..., g""™). Hence, for such a test 6, by FuncApp
and Restr we also have

0,6(r(n)), g(r(no)), g(no)™ ™), ..., g(no)" ™), g(ng)r(na)r(ne)
~ 0,6(r(no)), g(r(no)), g(no)™ ™, ..., g(ng)™ ™), g(no)" ™

We can add all the tests along the branch, and we can do the same for all branches, with different
§ and e. Using axiom IfBranch numerous times, all the equivalent branches can be folded into
branching terms, giving us ®(fold(I1;)) ~ ®(fold(IIz)). This completes the proof. |

REMARK 4. Of course, an automated proof would work directly transforming the frames, not
through transforming the protocols. Extension to proofs for higher (but bounded) number of
sessions is a straightforward matter; only the formulas would be longer. The proof for the key
exchange with more than two parties is also entirely analogous once the DDH property for more
parties is derived. We did this for three parties in Example 7.10, and for more parties the derivation
is similar. O

9 DIGITAL SIGNATURES

In order to continue to demonstrate the usability of our technique, we also consider authentication
that signatures can deliver. In this section we introduce an axiom that formalizes UF-CMA secure
digital signatures (see Section 12.2 of [24]). In the next section we demonstrate how to use it
together with the core axioms to verify an authenticated DH key exchange. Accordingly, we shall
also include in ¥ the following function symbols:

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

26 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

k() : message — message
rs(L) : message — message
sign(_,_,_): message X message X message — message
ver(_,_,_): message X message X message — bool

Here k(_) denotes the public-key secret-key pair generation algorithm. An honest key looks like

k(n) where n is a name and pk(x) dEef m1(k(x)) and sk(x) dEef my(k(x)) are the public verification
key and secret signing key parts of k(x) respectively. In order to allow for randomized signatures,
we introduce a symbol rg(_) for random seed generation. sign(y, z, r) is the message z signed with
secret key y and a random seed r. ver(y, z, u) is the verification of signature u on the message z
with the public key y. The co-domain of the function symbol ver is bool as the computational
interpretation of ver outputs a value in {0, 1}.

The signature scheme must satisfy two conditions:

o Correctness: If a message signed with sk(x) is verified with the corresponding pk(x), then the
verification algorithm outputs 1. This is captured by the axiom schema:

ver (pk(x), t, sign(sk(x), t, r5(y))) = true.

e Existential unforgeability under adaptively chosen message attacks (UF-CMA secure): Informally,

this is the security requirement for digital signatures and says that a PPT attacker should not
be able to forge a signature on any message chosen by the attacker, even after requesting an
oracle to show the signatures of at most polynomial number of messages adaptively chosen
by him. The interested reader can find the precise definition in Section 12.2 of [24].
We now state an axiom schema that captures UF-CMA security. Let n be a name and
let t,u be closed terms such that all occurrences of sk(n) in t,u can be enumerated as
sign(sk(n), t1, rs(ny)), sign(sk(n), t, rs(nz)), . . ., sign(sk(n), tg, rs(n¢)). The term sk(n) does not
occur in any other form in ¢, u, and all other occurrences of n in ¢, u are of the form pk(n).

Let b?’u, b%’u, - bf’u be defined recursively as:
b?’u d§f false
j def . j—1
b,, = ifEQ(tt;)then ver(pk(n),t,u)else b, ,

Then, the axiom schema is ver(pk(n), t,u) = bf,u. That is, if t is one of t;, the signature of
which appears in t or u, then the RHS outputs ver(pk(n), t, u). If t is neither of t;, then the
RHS outputs false, expressing the idea that no signature of a new ¢ can be created. We shall
henceforth refer to this axiom schema UF-CMA.

PropoOSITION 9.1. If the interpretation of (k, ver, sign, 71, 7r3) satisfies the UF-CMA property then
the UF-CMA axiom is sound. Conversely, if there is a constant £ € N and an UF-CMA attack ‘A against
the interpretation of (k, ver, sign) such that the number of oracle queries A makes does not exceed €
for any n, then UF-CMA axiom is violated in some computational model (with the given interpretation
of (k, ver, sign, 71, 12)).

Proor. We proceed by contradiction. Assume that there are closed terms ¢, v and a computational
model M€ such that M€ | EQ(ver(pk(n), t, u), bf’u) ~ true where bf’u is defined as in the axiom
UF-CMA. This means that there is a Turing machine A that runs in polynomial time in the security

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 27

parameter 5 such that
Advﬂ(q) =|Prob{p : A([true]l, ,;;p2) =1}~
Prob{p : A([EQ(ver(pk(n), t,u), b;)],z p2) = 1}|

is a non-negligible function in 7.
By definition, [true]l, , = 1 and [EQ(ver(pk(n), t, u), bf’u)]]p,,7 = 1 whenever
[ver(pk(n), t,u)ll,., = [[bf,u]]p,m Thus, Adv?(n) < Prob{p : [[ver(pk(n),t,u)]l, , # [[bf,u]],D,?]}'
Thanks to the semantics of if _ then _else _, we have that the set {p : [ver(pk(n),t,uw)]l, , #
I[bf,u]] ooy} is exactly the set

4
F(p) = {p: [Iver(pk(n),t,w)]l,., = 1, /\[[r]lp,” # [t}

Since Adv”(1) is a non-negligible function in 5, Prob{F(5)} is a non-negligible function in .

Then an adversary 8B can win the UF-CMA game against pk(n) as follows. On the security
parameter 7, 8 is given [pk(n)]|,,, by the oracle. 5 generates an interpretation of names that occur
in t, u according to M€. Then 8 computes [[¢]|, ,, [u]l,,; using its interpretation for the names;
whenever it needs to compute a signature sign(sk(n), t;, rs(n;)), it consults the oracle. It is easy to
see that the probability 8 wins the UF-CMA game is exactly Prob{F(r)} which is a non-negligible
function in 7.

Proving the converse is equally easy. Let us consider an UF-CMA attacker A on the given
interpretation of k, sign, ver, 71, 7, that succeeds with non-negligible probability and makes at most
¢ oracle queries. Let [[k]}, [sign]l, [ver]l, [71], [7z2] be the interpretation of k, sign, ver, 7, 7.

Fix a name n and function symbols fy, fi, ..., fr+1, f(’,+1 € G.Letty, ty, ..., tee1, £, u be defined as
follows:

def

= fo(pk(n)
def . .

tin = fir(pk(n), sign(sk(n), t;, rs(n;)), . . ., sign(sk(n), t1, rs(ny)))
def

t =t

ne:

u f fri1(pk(n), sign(sk(n), te, rs(ne)), . . ., sign(sk(n), t1, rs(ny)).

Fix the interpretation of fo, fi, ..., fe+1, f/,, as follows. [fo]] is the Turing Machine that on input
m and tapes p;; p; simulates the attacker A until it prepares the message query to be submitted to
the signing oracle. At that point [[fo]] outputs the actual query and stops. For 0 < j < ¢, [f;] is the
Turing Machine that on input m, s1, 53, sj—1 simulates the attacker A until it prepares the j-th query
to be submitted to the signing oracle with one minor modification: whenever A submits the i-th
query to the oracle for i < j and gets the signature on the query; [f;]] does not query the oracle
and uses s; instead of the signature. [f;]] outputs the j-th query to be submitted to the oracle and
stops. In a similar fashion, [[fz+] simulates A until A is ready to output a message and a claimed
signature on the message. [[fz+1]] outputs just the message and stops. Likewise, [[f, , | simulates
A until A is ready to output a message and a claimed signature on the message, outputs just the
signature part and stops. It is easy to see that the computational model M€ with this interpretation
of k, sign, ver, 71, 72, fo, fis - - - fe+1, f[,+1 violates the axiom schema: Let F(#) be again defined as:

4
F(p) = {p: [Iver(pk(n),t,w)]l,.y = 1, Aﬁrﬂp,” # [t}

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

28 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

Since A is assumed to break the UF-CMA security, the set F(#) is non-negligible. But, it is again
easy to see that

Fn) = {p: [ver(pk(n), t,w)l,. # [bf T p.n}-
Hence, if we define 8B to be the algorithm that outputs its input, we have that

Ade(r]) =|Prob{p : B([[true]l, ,;p2) =1}-
Prob{p : B(IEQver(pk(n),), b ,)l.y: p2) = 1}

is non-negligible. Hence the converse follows. O

The converse of this proposition means that our axiom is as tight as possible as the technique
works only for bounded number of sessions and hence bounded number of signatures.

10 AUTHENTICATED DIFFIE-HELLMAN KEY EXCHANGE

We apply our core axioms to rather different purpose: authentication. We consider an authenticated
Diffie-Hellman key exchange protocol which is a simplified version of the station-to-station pro-
tocol. Note that the original station-to-station protocol contains key-confirmation as well using
encryption; we omit that now to keep syntax simple. Our version of the protocol is the following:

e A group description G and a group generator element g are generated honestly, according to
a randomized algorithm, and made public. Public verification key, secret signing key pairs
are generated honestly for honest agents and the verifification keys are made public.

o The Initiator, A, selects a responder B, generates a random a in Zyg| and sends (A, B, g%).

e The Responder, B, receives g“, generates a random b in Z4| and sends
<gb, sign(skg, <A, q°, g“> , r)>, and computes (g%)?.

e The Initiator receives <gb, sign(sksg, <A, q°, ga> , r)>, verifies the signature, computes (g°),
and sends sign(ska, <B, g%, gb> ,r).

o The Responder receives sign(ska, (B, g%, gb> , "), verifies the signature, and outputs acc.

Here we can think of triples being constructed from pairs: (x, y, z) := (x, (y, z)), and for projecting
on the components, let 71 := 7y, 75 1= 711 © 7y, T3 1= 7 © TTy.

Real-or-random secrecy for the shared keys can be verified the same way as for the DH protocol,
no new axioms are needed.

We shall show that with the help of the UF-CMA axiom, we can also prove authentication of
the authenticated key exchange. We concentrate on the responder’s non-injective authentication
of the initiator, and the initiator’s authentication of the responder can be handled similarly. We
assume that there are two honest agents A and B. Public key, secret key pairs (pk(na), sk(ng)) and
(pk(ng), sk(ng)) are generated honestly for A and B. respectively. For simplicity, we assume that all
sessions of A are initiator sessions and all sessions of B are responder sessions. We also assume
that there are no other agents, (this is actually not really a restriction because the adversary can
simulate other agents), but there can be other agent id’s and associated public keys. We assume
that finite number of agent id - public key pairs (A, pk(na)), (B, pk(ng)) (for honest agents) and
(01, pk(c1)), (Q2, pk(cz)), ... (for dishonest agents) are publicly available to associate agent id’s with
public keys. The function symbols ¢, c;, etc are adversarial constants. We assume that the agent
ids A, B, Q1, Qz, . . . are pairwise distinct.

When A is instructed to start an initiator session then it is given the agent id of the responder. A
checks that the agent name is in the list of available agent ids and can then extract the corresponding
public keys. In order to simplify presentation, we assume the following abbreviations to accomplish
the above:

check(Q) = EQ(Q, A) [| EQ(Q, B) | EQ(Q, Q1) || - -

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 29

and
pkey(Q) = if EQ(Q, A)then pk(na)
else if EQ(Q, B) then pk(ng)
else if EQ(Q, Q1) then pk(c)

else 0

The responder similarly checks if the initiator in the first message is in the list of available agent
ids.

We present a transition diagram that represents the authenticated DH protocol with two par-
ticipants, an initiator A and a responder B, in Figure 2. For simplicity, we illustrate the case when
there is only one initiator session id; and one responder session id,. The diagram illustrates three
possible branches of the protocol. The right-most branch simulates the situation where the initiator
A moves first and then the responder B moves next whereas the left-most branch simulates the
other scenario that B moves first followed by A. The middle branch illustrates the scenario when
all the moves of A happen before the moves of B. The frame ®, represents the initial knowledge of
the attacker which includes a description of a cyclic group G(n), a generator of the group g(n), the
honest agent-ids, A, B, and their respective public keys pk(n4) and pk(np). The initial frame also
includes finite number of ids of dishonest agents, Qy, Q», - - - and their public keys pk(cy), pk(cz), - - -
respectively. On the input message x;, the conditions 6} checks if the input message x; is for A
and he has instructed to start a new session with agent m(x;). This transition also checks that
if the received agent id m(x;) is valid. If the checks succeeded, then A extracts the public key
pkey(m(x;)) of the agent m(x;). t; represents the A’s initial message, i.e, the triple consisting of
the initiator agent-id A, the received agent-id m(x;), and the computed group element g¢ in the
protocol. Gilj checks that the received message x; is for A and verifies that it is a valid response by
checking the signature using the public key pkey(m(x;)) which he has computed in the previous
round of the protocol. tilj represents the final message for A in the protocol, i.e, the signed message
sign(sk(na), (m(xj), g%, Jrl(m(xl-))> , rs(n3)) of A using his own secret key sk(n4) and a random seed
rs(ns). Similarly, in 6? we check that the message x; is for B, r1(m(x;)) is a valid agent and that
B is the intended responder. If these checks succeeded, then the responder B extracts the public
key pkey(ri(m(x;))) of the agent 71(m(x;)). t7 is the initial response by B, ie, the pair that consists
of the group element g” and the signed message sign(sk(np), (ty(m(x;)), b, zs(m(x;))) , rs(ng)). 91.2].
checks that if the message x; is for B and checks that the received message is the expected final
message of the protocol by verifying the signature on the message using public key of the initiator
pkey(ri(m(x;))). Of course, at the end of the protocol, the responder B also sends out the message
acc to indicate that the protocol has been completed. We skip other branches for lack of space.

Now, we explain how authentication can be modeled in our framework. Please note that we are
considering two initiator sessions for A and two responder sessions for B in the following. Our
methods can be easily extended to any fixed number of sessions. Responder’s authentication of the
initiator means that if B received and verified a message that looked like sign(sk(na), <B, Y, gb> ,r’)
for some input y, then A has a matching initiator session: A has a session in which he sent
sign(sk(ny), (Q, g%, x) ,r’") for some x message and agent Q (and as implied by A’s role also sent
(A, Q, g%) before that) before B received it on the same branch, which is the same branch that A
received a message that looked like (x, z), the verification ver(pkey(Q), (A, x, g*) , z) succeeded,
and EQ(x, ¢*) & EQ(y, g*) & EQ(Q, B) is satisfied on this branch.

There are various possibilities to express responder’s authentication of the initiator in our
language, we present one. Namely, similarly to our modeling of secrecy, we can define an oracle
query that takes a session id, as input, and if id, is a completed responder session and there is no

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

30 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

@y = G(n), g(n), A, pk(na), B, pk(ng), O1, pk(cr), -
9[1 = (EQ(to(x;), 1d1) & EQ(act(x;), new) & check(m(x,))
g% = g(n)"); g = g(ny ")
t,l = (A, m(x;), g%)
= (EQ(to(x;), id1)&
Vef(ﬁkey(m(xj)) (A, my(m(x;)), g%) , ma(m(x;))
j }, = sign(sk(na), (m(x;), g%, m(n(x;))) , rs(ns))
07 = (EQ(to(xl) idy) & check(rl(m(xl))) & EQ(2(m(x;)), B)
2 t? = (g”, sign(sk(np), (r1(m(x;)), g, T3(m(x1))) , rs(na)))
07; = (EQ(to(x;), idz) &

acc | g2

ver(pkey(ri(m(x;))), <B, r3(m(x;)), gb> , m(x;))
Fig. 2. Authenticated Diffie-Hellman key exchange protocol with two agents A and B

matching initiator session in the above sense then the oracle outputs 1 (that is, true symbolically),
meaning there is an attack against authentication. Otherwise it outputs 0 (that is, false symbolically).
Let the protocol that ends with such an oracle query be called Hel‘”th. We can also define H;”th such
that the oracle always outputs 0. These oracles can be formalized as in the case of secrecy. Then,
the authentication property can be formalized as:

d(fold(IT2"tY)) = d(fold(T12"t)).

Observe that we used equality, and not indistinguishability. This means that H‘i‘”th cannot output 1
with non-negligible probability.

ProrosITION 10.1. LetH"i‘“th and Hg”th be the two protocols as defined above. Assuming the signature
scheme satisfies the UF-CMA assumption, ®(fold(T12"th)) = @(fold(IT3uth)).

Proor. (Sketch.) If on a branch of dD(fold(H‘i‘”th)) there is a true as the final output, then by
the definition of the oracle this branch lies on the true side of the branching where the condition
EQ(z((fi($:))), A) and the condition ver(pkey(zy (m(fi(¢:))), (B, r3(m(fi(¢:))), °) , m(f;(¢))) at the
last move of the responder are true. Here f;(¢;) is the message that B is supposed to have received
from A earlier and whose body is supposed to be (A, B, g°), while the message f;(¢;) is supposed to
be from A with body sign(sk(na), (B, g%, g”) ,r"). Since EQ(71(m(fi(¢:))), A) is true on this branch,
we can always replace 7;(m(f;(¢;))) by A and pkey(z;(m(fi(¢$;))) by pk(n4) on this branch. According
to UF-CMA and EqCong, ver(pk(na), <B, s (M(fi (1)), gb> ,m(fj(¢;)) can be rewritten as a branching
term, which gives false (and hence the final output is also false by axioms IfMorph and IfIdemp
and the definition of the oracle) unless ¢; (and hence the earlier ¢;) contains a term sign(sk(na), t, ")
for some t such that EQ((B, s (M(fi(¢:)))s gh> , 1) evaluates to true. By the role of A, sign(sk(n), t, r’)
must be of the form sign(sk(na), (m(fe(d¢)), 9%, T1(M(fu(Pr)))) , r’) for an a that A generated at the
beginning of the role in response to the message fr(¢¢). Here f;,(¢n) is supposed to be the initial
response received by A. In the subsequent proof, we abbreviate m(fz(¢¢)) by Q. Now, we are on the
true side of the EQ((B, s (m(fi(¢:)))s gb> , {0, 9% 11(M(fn(¢r))))) branching. In the final oracle step,
there is a branching according to EQ(zz(m(fi(¢:))), %) & EQ(zi(m(f(¢r))) g°) & EQ(Q, B), which
must fail for the oracle to output true, because otherwise there is a matching session. In the rest of
the argument we show that if we are on the true side of
EQ(<B, s (m(fi(¢:)))s gb> , {0, 9% 11(M(fn(¢r))))), then in the final oracle step the branching
EQ(zs(m(fi(¢:))), g%) & EQ(z1(m(fi($r))), ¢°) & EQ(Q, B) can be replaced with true, and hence the

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 31

final output is always false. By the equational theory of pairs, and congruence of equality, the term

EQ(zs(m(fi($:))), g%) &EQ(z1 (m(fi(¢n))), 9”) & EQ(Q, B) can be rewritten as

EQ(ni({Q, g ra(m(fu($n)))), (B, za(m(fi (1)), g"))) &
EQ(zz((B, z3(m(fi(¢:))), 9 D) 22((Q, g%, mu(m(fin(Pn)))) &
EQ(z3((Q, g° ra(m(fu($n)))): 73((B, 7 (m(fi(¢)), 9))))

As we are on the true side of EQ((B, s (m(fi(¢:)))s gb> , {0, 9%, t1(M(fr(¢r))))), using Example 7.3
and Example 7.4 the above checks can be replaced by

EQ(r1((Q. g%, r(m(fn($n)))). 1((Q 9°, T (m(fin(¢Pn)))))) &
EQ(r2((Q. g%, r(m(fn($n)))): 2(€Q. 9°, T (m(fin(¢Pn)))))) &
EQ(z3((Q, g%, ra(m(fn(Pn)))) 13(4Q; g%, 7o (m(fn($1))))))

which in turn can be replaced by true by EqRef1 and EqCong. This means fD(fold(Hi‘“th)) is equal
to a frame where all final outputs are false. Then, by axiom IfSame and congruence, all branchings
of the final oracle step can be collapsed and thus we obtain @(fold(Hg“th)), and that is what we
needed. O

Secrecy. We note that secrecy of the exchanged key for STS should have a different formalization
than the secrecy of the DH discussed in Section 8. In particular, we are interested in formalizing
the property that if an honest agent completes a session ostensibly with another honest agent,
then the shared key computed by the agent must be secret. This can again be modeled as an
indistinguishability of two protocols I13* and II5*°. In both protocols, we enhance the transition
system for the STS protocol with an oracle query for revealing a shared key. In IT3*, if the oracle
query is to reveal the key in a completed session id, for A (B resp.) then the oracle replies with
the key computed by A (B resp.) in that session. In IT3*¢, if the oracle query is to reveal the key in
a completed session id, for A (B resp.) then the oracle checks if A (resp.) completed this session
ostensibly with B (A resp.): if it indeed is the case then the oracle generated reveals a random key ¢¢,
otherwise it outputs the computed key. II{* and II3* can be easily shown to be indistinguishable
as follows.

First, I13* can be easily transformed into a protocol, in which the oracle query before revealing
A’s (B’s resp.) computed secret in a completed session id, for A (B resp.) checks if the other agent
is ostensibly B (A resp.). Whether the check succeeds or not, the oracle query still reveals the
computed key. Now, in the branch when the aforementioned check passes, we can show in a
manner similar to the proof of Proposition 10.1 that A (B resp.) must be exchanging the secret
with one of the two sessions of B (A resp.) and the secret must be of the form (¢%)? ((3%)” resp.)
where a and b are the exponents in the corresponding sessions of A and B. Thus, the folded term
representing the protocol IT3* can be transformed into one in which the oracle query results in 5
different possible conditional outputs, 4 for the keys exchanged between the honest agents and one
for all other cases. Similarly, the folded term representing the protocol II3*“ can also be transformed
into one in which the oracle query results in 5 different possible conditional outputs, 4 of them
being g¢ when the two honest agents are involved in the exchange and one for all other cases. Now,
these two terms can be proved to be indistinguishable using the computational DDH assumption
along the same lines as the proof of ®(fold(II})) ~ ®(fold(Il,)) in the proof of Proposition 8.1.

11 FORMALIZING THE PROOFS IN COQ

We formalized the machine-checked proofs of the theorems, real-or-random secrecy of the Diffie-
Hellman (DH) protocol, and authentication of the Station-to-Station (STS) protocol in Coq, an
interactive theorem-prover [29]. In particular, we formalized the real-or-random secrecy of the DH

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

32 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

protocol and for authentication of the STS protocol for one session each of responder and initiator.
We did only one session to keep the size of the formulas small, but the idea for any fixed number of
sessions is similar.

We also formalized the auxiliary theorems, for example, the derivation of the DDH assumption
for three participants, and hence for any number of participants, using the assumption for two
participants. All the machine-checked proofs are available at [22].

There are three kinds of specifications that Coq supports, abstract types, mathematical collec-
tions, and logical propositions. These specifications are represented by sorts, Type, Set, and Prop
respectively.

11.1 Types

As presented in Section 2, the set of sorts S has at least two sorts message and bool. Using the
feature of mutually inductive types [17] in Coq, we define message and bool types. The syntax is
as follows:

Inductive message: Type :=

| Mvar: nat — message

| O: message

| N: nat — message

| ifm_then_else_: bool? — message — message — message
with bool: Type :=

| Bvar: nat — bool

| TRue: bool

| FAlse: bool

| egm: message — message — bool

| egb: bool — bool — bool

| ifb_then_else_: bool — bool — bool — bool.

As described in [17], ilist is a type that takes length of the list as an argument and produces a
length-indexed list. They define polymorphic length-indexed lists. Following [17], we formalize the
polymorphic length-indexed list below.

Inductive ilist (A:Type) : nat — Type :=
| Nil: ilistA O
| Cons: foralln, A— ilistAn — ilist A(Sn).

Where the arguments A and nat represent type and length of the ilist respectively. As described in
Section 2, lists contain message, bool, or both. We needed a type that refers to either of the types.
We call it oursum, and is defined inductively on message and bool.

Inductive oursum: Type:=
| msg: message — oursum
| bol: bool — oursum.

A frame is modeled as a length-indexed list of type oursum. This is declared as type mylist n,
where n is length of the list.

Definitionmylist: nat— Type:=ilist oursum.

3In order to avoid clash with built-in type in Coq, bool is represented as Bool.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 33

11.2 Formalizing Indistinguishability Relation

A binary relation on a type A is formalized in Coq as
Definition relation (A:Type):= A — A — Prop.
In order to increase the readability, we introduce few notations as follows:

(x* ifm_then_else_ *)
Notation "'If' c1 'then' c2 'else' c¢3":=(ifm_then_else_c1 c2c3)
(at level 200, right associativity,
format "'[v ' 'If' ¢1 '/" '[' "then' c2 '] '/' '[' 'else' c3 ']'" '1'").
(*x ifb_then_else_ *)
Notation "'IF' c1 'then' c2 'else' c¢3":=(ifb_then_else_c1 c2c3)
(at level 200, right associativity,

format"l[v ' ;IF; C1 |/v l[l vthen; C2 n]r |/v l[l velse; C3 l]l |:||n).
(** pair x)
Notation"(x , y , .. , z)":=(pair.. (pairxy) .. 2z).

Definition 11.1 (copied verbatim from [29]). A parametric relation R is any term of type
V(x; : T)...(xy : Ty), relation A. The expression A, which depends on x; ... x,, is called the
carrier of the relation and R is said to be a relation over A; the list x1, . . ., x, is the (possibly empty)
list of parameters of the relation.

We model indistinguishability as a parametric relation on length-indexed lists of type oursum,
mylist n, where the length n is a parameter of the relation. We write the indistinguishability
relation as EQI, denoted as ~. The formalization of EQI is achieved using the following command.

Parameter EQIL: forall n, relation (mylist n).

An instance of a parametric relation EQI with a parameter is a term (EQI n) where n is a natural
number, and models indistinguishabilty relation amongst frames of length n. The equivalence
property of EQI is formalized as below.

Axiom EQI_equiv: forall n, equiv (mylist n) (@EQI n).

The axiom EQI_equiv states the fact that EQI is an equivalence relation. The properties reflexivity,
symmetry, and transitivity of equivalence relation EQI are formalized in the theorems EQI_ref,
EQI_sym, and EQI_trans respectively. For example, the theorem EQI_ref is formalized as below.

Theorem EQI_ref: forall {n:nat} (ml: mylist n), ml ~ ml.

Similarly, other theorems are formalized. The parametric equivalence relation EQI can be declared
with the following command.

Add Parametric Relationn: (mylistn) (@EQI n)
reflexivity proved by (EQI_ref)

symmetry proved by (EQI_sym)

transitivity proved by (EQI_trans)

as EQI_rel

Where the name EQI_rel uniquely identifies the relation and is used to generate fresh names,
EQI_rel_Reflexive, EQI_rel_Symmetric, for automatically provided lemmas.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

34 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

11.2.1 Formalization of =. Recall the abbreviation = defined in Section 2, which serves as a
congruence. If we use the built-in equality of Coq to model this abbreviation together with its
built-in axiomatic system, then we end up with an unsound extension of the Coq logic. This is
because the Coq inequality forces two syntactically unequal terms of our logic to be unequal which
will contradict our axioms (for example, IfTrue). Instead, we model = as a pair of equivalence
relations: EQm for modeling = amongst terms of type message and EQb for modeling = amongst
terms of type bool.
The formalization of EQm and EQb is achieved with the following commands:

Definition EQm: relation message :=

fun (m1 m2: message) = [bol (egm m1 m2)] ~ [bol TRue].
Definition EQb : relation bool :=

fun (b1 b2: bool) = [bol (egb b1 b2)] ~ [bol TRue].

For the rest of the paper, we write EQm as # and EQb as ##.

Even if we do not use the native =, we still would like to use native Coq tactics which exploit
the fact that Leibniz equality is a congruence. Thus, we declare EQm and EQb as morphisms which
allows us to exploit their congruence properties.

Definition 11.2 (Morphism (copied verbatim from [29])). A parametric unary function f of type
forall (x; : Ty)...(xp : Ty), A1 — A, covariantly respects two parametric relation instances Ry
and R, if, whenever x, y satisfy Ry x y, their images (f x) and (f y) satisfy R, (f x) (fy) . An f
that respects its input and output relations is called a unary covariant morphism. The sequence
X1, . . ., X represents the parameters of the morphism.

Example 11.3. The constructor pair takes two terms of type message and gives a term of type
message. We have the following axiom:

Axiom pair_Cong: forall (m1 m2 m1' m2: message), m1 # m1' — m2 #m2" — (m1, m2) # (m1', m2').

We add a morphism pair_mor of the function pair that respects the relation EQm as follows. The
morphism pair_mor is declared using the following commands.

Add Parametric Morphism: (@ pair) with
signature EQm = EQm = EQm as pair_mor.
Proof. intros. apply pair_Cong; assumption. Qed.

The command declares pair as a morphism of the signature EQm = EQm = EQm. The identifier
app_mor gives a unique name to the morphism. The command also requires us to prove that
the function pair respects the relations identified by the signature. The proof uses the axiom
pair_Cong. Similarly morphisms for other functions are formalized.

11.3 Axioms, Theorems, and Verification

We present the details of the formalization of the axioms that are required to prove the real-or-
random secrecy of the DH protocol.

We formalize the axioms presented in the Table 1 and the DDH axiom. For example, we formalize
the axiom IfSame as follows:

Axiom IFSAME_M: forall (b:Bool) (x : message), (If b then x else x) # x.
Axiom IFSAME_B: forall (b:Bool) (b1 : Bool), (IF b thenbl elsebl) ## b1.

Two axioms are used to distinguish the cases when x is a message and a bool. All other axioms in
the Table 1 are similarly formalized.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 35

The DDH axiom states that, for given messages ¢g"+ and ¢g"?, where ng, np, and n, are freshly
generated random numbers, the terms g"”<"* and g™ are indistinguishable. We formalize the axiom
as the following:

AxiomDDH: forall (n na nb nc: nat), (Fresh[n, na, nb, nc] []) = true —
[msg (G n), msg (g n), msg(n""na), msg (n*"nb), msg (exp (G n) (n""na) (r nb))]
~ [msg (G n), msg (g n), msg(n""na), msg (n""nb), msg (n""nc)].

where we have leveraged the following the notation:
Notation "x '**' y":=(exp (G x) (g x) (ry)).

The function Fresh captures the notion of freshly generated random numbers and each number in
the list [n; na; nb; nc] is freshly generated. We also introduced a notation to compact the t

Example 11.4. Using the axiom IFSAME_B, we proved the following theorem.

Theorem IFTF: forall (n:nat), (IF (Bvarn) then TRue else FAlse) ## (Bvar n).
Proof.

intros.

rewrite « (IFSAME_B (Bvar n) (Bvar n)) at 2.

rewrite — IFEVAL_B with (b1 := (Bvar n)).

simpl.

rewrite <« beqg_nat_refl.

reflexivity.

Qed.

where beq_nat_refl is a lemma that states, for any natural number n, true = (beq_nat n n).

As described in Section 8, real-or-random secrecy is modeled as indistinguishability of two
protocols, I1y, in which the real shared key is revealed, and IlI,, in which a randomly generated
number is revealed. The formalization of this is achieved by proving that the two frames ®(fold(I1;))
and ®(fold(I1,)) are indistinguishable. The formalization of the frame ®(fold(Il;)) is the following:

Definition phi1@:=[msg (G 0) ; msg (g 0)].
Definition phi11:=phi10 ++ [msg t10].

Definition phil15:= phi14 ++ [msg t14].

We use phi15 to represent the frame ®(fold(Il;)) and it contains the list of messages available
to attacker at the end of the protocol. The frame phi10@ represents the initial knowledge of the
attacker where as the frames phi11, phi12, and phi13 represent the attacker knowledge during
the protocol execution. Of course, the symbol ++ stands for concatenation of two lists. Similarly
the frame phi25 that represents ®(fold(Il;)) is formalized. The following theorem illustrates the
real-or-random secrecy of one matching session of the DH protocol.

Theorem Pi1_Pi2: phil15 ~ phi25.

We also formalized the authentication of the STS protocol using the axiom schema, existential
unforgeability against chosen message attacks (UF-CMA), and the correctness axiom of digital
signatures. The axioms UF-CMA and correctness are formalized below:

Section ds_axioms.

(x* Digital Signaturesx)

(*x Correctness %)

Axiom correctness: forall (n:nat) (t t': message), (ver (pk n) t (sign(skn) t t') ## TRue.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

36 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

(x* Existential unforgeability against chosen message attacks (UFCMA) *)
Fixpoint unforgb (j:nat) (n:nat) (ml: list message)(t u :message): Bool :=
match j, ml with
| 0, _ = FAlse
| S_, [] = FAlse
| S 3, h:tl = matchhwith
| (sign(skn) t1 t2) = IF (egmt t1) then (ver (pk n) t1 u)
else (unforgb j' n tl t u)
| _ = FAlse
end
end.
Axiom UFCMA : forall (n :nat)(t u: message), (closMylist [msgt, msg u] = true) A
(insec_n_mylis n [msgt, msg u] = false) —
let j := length(list_skn_in_sign n ((subtrmls_msg t) ++(subtrmls_msg u))) in
let ml := distsigntrms n ((subtrmls_msg t) ++(subtrmls_msg u)) in
(ver (pk n) t u) ## (unforgb jn ml t u).
End ds_axioms.

The authentication property of the STS protocol is modeled as proving the two frames CID(fold(H;i‘”th))
and (D(fold(HZ‘“th)) are equal. The frame fD(fold(Hel‘“th)) is formalized as below:

Definition sphi1@ :=[msg (G n); msg (g n); msg A; msg (pk nA); msg B; msg (pk nB); msg Q1;
msg (pk c1); msg Q2; msg (pk c2)].

Definition sphil1 :=sphi1@ ++[msg s10].

msg s11].

msg s12].

msg s13].

msg s14].

Definition sphi12 :=sphill ++
Definition sphi13:= sphi12 ++
Definition sphil4 := sphil3 ++
Definition sphi15 := sphil4 ++

—_ — — —

The frame sphi15 represents the frame @(fold(Hal‘”th)) and it contains the messages that are available
to the attacker at the end of the protocol. sphi1@ represents the initial frame, sphi11, sphil2,
sphi13, and sphi14 represent the attacker knowledge during execution of the protocol. Similarly,
the frame sphi25 that represents CD(fold(H;‘“th)) is formalized.

The authentication property of STS protocol is illustrated by the following theorem.

Theorem IND_DH_AUTH: sphi15 = sphi25.

Where the symbol = represents the equality of the two frames sphi15 and sphi25.

12 SECURITY OF ENCRYPTIONS AND FURTHER VERIFICATION RESULTS

We shall now show that the standard IND-CPA, IND-CCA1 and IND-CCAZ2 security notions for
encryption (see e.g. [13]) can be easily translated to the BC framework, illustrating the convenience
of the BC framework. We assume the function symbol k and abbreviations sk, pk are as in Section 9.

12.1 Encryptions

Let {_}- : messagexmessagexmessage — message and dec(_, _) : messageXmessage — message
and r(_) : message — message be function symbols for encryption, decryption and random
seed generation satisfying dec({x};k(y), sk(y)) = x. (r is not to be confused with r we used for
group exponentiation.) Let L : message — message be a function symbol for length such that
[LTI(@)(w; py; po) := 1140wP1p2)| where for a bit string s, |s| denotes its length. Let 7 [x] be a list of

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 37

terms with a single variable x. For a closed term v, let f [v] denote the term that we obtain from
f[x] by replacing all occurrences of x by v. Let u, u’, u”’ be closed terms. Consider the formula
t[if EQ(L(u), L(u")) then {u};(lzzn)l) elseu” | ~ £[if EQ(L(u), L(u")) then {u’};(k'a)l) elseu’’ |
in which n; € N occurs only as k(n;), sk(n;) only occurs in decryption position (that is, as in
dec(_, sk(ny))), and ny, n3 do not occur anywhere else. We call the above formula
® Enccpa if sk(n;) does not occur anywhere,
e Encccay if for any t/[x] subterm of 7[x] with x explicitly occurring in t’[x], the term
dec(t’[x], sk(ny)) is not a subterm of 7 [x], and
® Encccay if for any t'[x] term with x explicitly occurring in t'[x], the term dec(¢’[x], sk(n1))
occurs only as

if EQ(t'[x], x) A EQ(L(u), L(u")) then t"'[x] else dec(t’[x], sk(ny)).

Formally, the formula above is Encccay if each component term t;[x] of the vector f[x] is
(n1,u,u”) — Encecaz compliant as defined (recursively) below. We say that a term t[x] is
(n,u,u”) — Encccaz compliant if one of the following holds:

- t[x] is a ground term, not equal n.

- t[x] = pk(n).

- t[x] is the variable x.

- There is a function symbol f € FUG and terms t![x], ..., t"[x] such that t[x] = f(¢t![x], t*[x], ..., t"[x])
and for any t’[x] term containing x, t[x] # dec(t'[x], sk(n)) and t'[x] is (n, u, u") — Encccaz
compliant for each i =1,...,r.

- There are (n,u,u’) — Encccaz compliant terms t'[x], t"'[x], such that ¢[x] is

if EQ(t'[x], x) A EQ(L(u), L(u")) then t”[x] else dec(t'[x], sk(n)).

Intuitively, x represents the place for the left-right encryption oracle response in the security game
for encryption. Terms that can be computed before using the left-right encryption oracle are those
that do not contain x. As CPA security does not allow decryption oracle, we allow no decryption.
CCA1 allows decryption request before the encryption request, hence decryption can be applied
to terms without x. In CCA2, we have to make sure that if decryption is applied on t'[x] term
containing x, then #'[x] is not the encryption oracle response, namely, x, and if it is, then the
decryption returns 0, and some t”'[x] # dec('[x], sk(n1)) is used. In fact, this definition of Encccag
is equivalent with the one in [9].

TueoreMm 12.1. If[[k(), {_}-, dec(_,)] is CPA secure, then Enccpy is computationally sound.
If it is CCA1 secure, then Enceca; is computationally sound. If it is CCAZ2 secure, then Encecaz is
computationally sound. Conversely, if there is a constant { € N and a CPA (or CCA1 or CCA2
respectively) attack A against [k(_), {_}-, dec(_, _)] such that the number of oracle queries A
makes does not exceed { for any n, then Encepa (or Enceca; orEncecas respectively) axiom is violated
in some computational model with the given interpretation [k(_), {_}-, dec(_,)]

Proor. We prove the validity of Encccaz, the others are analogous but simpler. We proceed by
contradiction. Assume that there is a list of terms ?[x] with a single variable x, and closed terms u,
u’, u” as well as names ny, n,, n3, and a computational model M€ such that

MC % 144 ~ t 144
elseu elseu

- | IfEQ(L@). L(w) then {u};ﬁ;)l)l al if EQ(L(w), L(u')) then {u'}'(")

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

38 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

This means that there is a Turing machine A that runs in polynomial time in the security
parameter 7 such that

Adv?(n) = |Prob{p : A([7[if EQ(L(x),L(u’)) then {u};(k'zzn)l) elseu” |Np,n:p2) = 13—

Prob{p : A([[7[if EQ(L(w), L(u")) then {u'};jk';;{) else u” 11l,.; p2) = 1}

is a non-negligible function in 7. Then an adversary 8 can win the IND-CCA2 game against k(n,)
as follows. As usual in the IND-CCAZ2 security definition, on the input 17, the encryption oracle
first generates an internal bit b randomly, and a public-key secret-key pair (pk, sk). B is given pk by
the oracle. 8 generates bit strings for the names that occur in ?[x], u,u’,u” (except for ny, ny, ns)
according to the way names are generated in M€. Using these, B then computes the interpretations
of u, u’, u”, and subterms of ?[x] that do not contain x: the only thing B does not have access to in
these terms is the interpretation sk of sk(n;), but according to our assumption, that only occurs in
decryption positions. So those interpretations are computed by submitting the interpretation in the
cyphertext position to the decryption oracle. (The case of Enccca; is the same, while the Enccpa
axiom does not allow sk(n;) to occur at all.) Once all these terms are computed, if the interpretation
of u and the interpretation of u” have the same length, then B submits the two interpretations to
the encryption oracle, which then returns the encryption of one of them, c. The oracle generates
the interpretation of n, or n3 depending on which plaintext it encrypts. If the two lengths disagree,
then let us call ¢ the interpretation of u”’. Then B continues computing all of the interpretation of
t[x] by substituting ¢ for x. This computation in the Encccaz axiom may again contain decryptions
by sk(n), but as they are assumed to be guarded by the assumptions that those decrypted terms
are not equal to the value returned by the encryption oracle, again submission to the decryption
oracle is possible. (In Enccca; and Encepa cases here sk(n;) is not allowed to occur any more.)
When 8 finishes the computation of the interpretation of #(x), it hands the result over to A. When
A finishes, B outputs the output of A. By the construction of B,

[if EQ(L(u), L(u"))]
Prob{B(17,pk) =1 A b =0} = Prob{p : A([f | then {u};(krzzn)l) lp.p;p2) =1} and
| else u” |
[if EQ(L(u), L(u"))]
Prob{B(17,pk) =1 A b =1} = Prob{p: A([f | then {u'}gk’gjl) Up.ip2) = 1}.
| else u” |
Thus, the quantity |Prob{8B(17,pk) =1 A b =1} —Prob{B(1"7,pk) =1 A b =0})| isnon-negligible
by our assumption. Now,

[Prob{B(1", pk) = b} — 1| = [Prob{B(17,pk) = 1 A b =1} + Prob{B(1",pk) =0 A b =0} - 1
= [Prob{B(17,pk) =1 A b =1} + (3 — Prob{B(1",pk) =1 A b=0}) — 1|
= |Prob{B(17,pk) =1 A b =1} — Prob{B(1",pk) =1 A b =0})|.

As the quantity [Prob{B(17,pk) =1 A b =1} — Prob{B(17,pk) =1 A b = 0})| is non-negligible,
IND-CCAZ2 security is broken by 8.

The proof of the converse is the following. Let us consider an IND-CCA2 attacker A on the given
interpretation of k(_), {_}-, dec(_, _) that succeeds with non-negligible probability and makes at
most £ oracle queries. Note that the actual number of oracle requests may vary by 5 and p, but
we can always add requests the answers of which are ignored, so without loss of generality, we
can assume that there are uniformly ¢ submissions, of which the m’th is the submission to the
encryption oracle.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 39

Fix a name n and function symbols fy, fi, ..., fin=1, fns fons foms fm+1s - f € G.Letty, ta, ooy tm—1, U,
u',u”, tme1[x], ..., te[x] be defined as follows:

A

e CE f L (pk(n), dec(ty, sk(n)), .., dec(ty, sk(m)))

u dgf fm(pk(n), dec(ty, sk(n)), ..., dec(tp,—-1, sk(n)))
u’ d;f o (pk(n), dec(ty, sk(n)), ..., dec(tm—-1, sk(n)))
u” dsef ' (pk(n), dec(ty, sk(n)), ..., dec(tm-1, sk(n)))
tivax] dgf fi+1(pk(n), dec(ty, sk(n)), ..., x, ..., ¢j)

S def

t[x] = te[x]

Where forj=m, ..., — 1,
¢j = if EQ(t;[x], x) A EQ(L(u), L(u")) then 0 else dec(t;[x], sk(ny))

Let M€ be a model with the following the interpretations of the function symbols fy, ..., fe.

[foll is the Turing Machine that on input sy and tapes p;; p, simulates the attacker A until it
prepares a message query to be submitted to the decryption oracle. At that point [[fo]] outputs
the actual query and stops. For 0 < i < m, [f;] is the Turing Machine that on input so, s1, Sz, Si—1
simulates the attacker A until it prepares the i-th query to be submitted to the decryption oracle.
Let s; be the response of the decryption oracle. [.1, [f,,] and [f,,/]] simulate A until A is ready
to output the pair of messages to the encryption oracle. [f;,,]] outputs the first, [f,,,]] outputs the
second of the pair to be submitted to the encryption oracle if they have the same length, while
the output of [f,/] is used in further computations if their lengths differ. [f;]] for j > m is similar,
[fi] is the Turing Machine that on input s, s1, S2, Sm—1, C, Sm+1, ..., $j—1 Simulates the attacker A
until it prepares the j-th query s; to be submitted to the decryption oracle. Here ¢ is what the
encryption oracle returns, while s’s are what the decryption oracle returned. We claim that with
these definitions,

e 7| QU@ LW)) then {uye) lw?l if EQ(L(u), L(w)) then {u'}')
else u”’ else u”

Let B be the algorithm that simply outputs its first input. Then

[if EQ(L(u),L(u"))]
Prob{p : B([7 | then {u};(k"(ﬁl) Tp.yi p2) = 1} = Prob{A(17,pk) =1 A b =0} and
| elseu”]
[if EQ(L(u),L(u"))]
Prob{p : B([7 | then (W} |1,y p2) = 1} = Prob{A(",pk) =1 A b=1}.
else u”

But just as before;
[Prob{A(17,pk) =1 A b =1} — Prob{A(1",pk) =1 A b =0})| = |Prob{A(17, pk) = b} — %l.

According to our assumption, A violates IND-CCAZ2 security, hence |Prob{A(17, pk) = b} — %| is
non-negligible, hence so is

[Prob{p : B(IF[if EQL(w), L") then {u}) else u” 1],y p2) = 1}~

Prob{p : B([f[if EQ(L(u),L(u")) then {u'};(k'zzn)l) elseu” 1ll,,p: p2) = 1}

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

40 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

and that completes the proof. O

Example 12.2. Suppose that nonce and key generation are such that there are 0-ary function
symbols £nonce and £spey such that L(n) = €honce and L(sk(n)) = Lsey, and suppose also that pairing
is length regular, that is, L(x;) = L(x2) A L(y1) = L(y2) — L({x1,x2)) = L({y1,y2)). Note also
that from the definition of the interpretation of L, the formula L(L(x)) = L(x) is sound. Consider

real-or-random secrecy of n (let k; = k(n;), r; = r(n;y2)):

ki, s}l o (dec(f({ska,ns}) ske)). n}pzk n)
(1

~ {sku.ns)7, {nz(dec(f({skl, ns}ii) skz)), ”}pk; n’

with f € G. It is easy to show that the core axioms together with Encccaz and the above properties
of L, and the equations for pairing—projections, encryption—decryption imply this formula. The
intuition of course is that sk; is hidden by the encryption with pk,, the decrypted message in
the second encryption is ns, hence no key cycle occurs encrypting with pk;, and so the second
encryption does not reveal information about n. The key point of the proof is to transform first the
terms so that Encccaz can be applied. For example, since dec acts on f(...), we have to make sure
that there is a conditioning as we required in the definition of Encccaz. So we start the proof by
rewriting f({ski, ”5};r>lk2) according to
F(skrns),) = if EQUf (fskr, s},) sk, s},) then f({ski.ns),) else f({sky. ns)Ty
by IfSame, and then applying IfMorph and the equations for encryption and pairing, we obtain

my(dec(f({ski, ns})). ska))
Ty (dec (if EQ(f({sk, n5};‘k2), {skj, n5}'r31k2) then f({sks, ”5};r)lk2) else f({skj, ns};kz) , skz))
Ty (dec (if EQ(f ({ski, n5};‘k2), {skq, ”5};1k2) then {ski, n5};1k2 else f({ski, "5};1k2) , skz)) IfMgr‘ph

EqCong

Ex.7.3

if EQ(f({ski, n5};1k2)’ {ski, n5};k2) if EQ(f({ski, ns};kz), {ski, n5};‘k2)
then my(dec({ski, ”5},;1k2’ sks)) = thenns
else ma(dec(f({ski, n5};1k2), skz)) else my(dec(f({ski, ns};kz), skz)).

Let us define 7[x] := x, {if EQ(f(x), x) then ns else my(dec(f(x), sky)), n};fk1 ,n. Note that 7 for k,

satisfies the conditions for Encccaz, because the only decryption term (with the decryption key
skz) containing x is dec(f(x), skz)), but this term occurs only under

if EQ(f(x), x) then ns else my(dec(f(x), skz)) ,

f(x) corresponding to ¢’[x] in the definition of Encccaz and ns corresponding to ¢”. Now let i be
the same list of terms as f except that it ends with n’ instead of n. Hence # similarly satisfies the
conditions of Encccas. Note then that the formula (1) is the same as

(s msry |~ [(skimshy |

Note also that because of our assumptions on the length (at the beginning of this example), for a
fresh ng,

L((ski, ns)) = L({sk(ne), ns)).
By the definition of = and Example 7.2,

EQ(L((sky, ns5)), L({sk(ne), ns))) = true,

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 41

and so by IfTrue,
{skq, ns}:)lk2 = if EQ(L({sky, ns)), L({sk(ng), ns))) then {sky, n5};;1k2 else 0

and
{sk(ns), ”5};(2 = if EQ(L({sk1, ns)), L({sk(n), ns5))) then {sk(ne), ns}:,lkz else 0
Using this, EqCong and Encccaz, we get that

ko msh | ~ F[tsktng)ns) | @
and
i | {ska,ns)f | ~ @ | {sk(ne). s}, | ©)

With these moves, we have removed sk; from under the encryptions in formula (1). Now,

I

F|{sk(ng)ns}, | = {sk(ng)ns) {ma(dec(F({sking) ms} oske) omf - on

Py

And again by the length assumptions, for a fresh nonce ny,

L((mo(dec(ftskne),ns}y). ske)).)) = L((mo(dec(ftskne), ns}y). ske)). my))

Hence, applying Encccaz for a second time just as before, but now for k;, we obtain that

{sk(ne), n5}lr>1kz’ {”2 (dec(f({Sk(ns), ns}:)lkz), Skz))’ n}rzk NG

PKy
~ ©)
{sk(n6), ns}7 . {2 dec(f ({sk(ne), ns)y). ska)).naf om

1

Putting together formulas (2), (4), and (5), with Trans and EqCong, we have that

[tk ms)t, | ~ okl ns} {ma(dec(F({skineh ms}y)oska) o} n (o)

Py
The same way we can derive that

r2

i [{skisns) | ~ {sk(ne)ns} . fma(dec(F({sking) ns})oske))oma} - o')

PKy

But the right-hand sides of formulas (6) and (7) are equivalent as an immediate consequence of
axioms FreshInd and Restr. Finally again transitivity delivers

I [{Skl, ”5};(2] ~ i [{Skl’ n5};’1k2]

which is what we wanted to show.

The axioms for IND-CPA, IND-CCA1, IND-CCAZ2 and the proof of the above example have also
been mechanized in Coq.

REMARK 5. Example 12.2 illustrates the advantage of the BC technique for indistinguishability
over the BC technique for reachability [8] for CCA2 encryption. In the BC technique for reachability,
the proof that n cannot be computed from the two encrypted messages can be only done with the
complicated key-usability notion in [10]. Here we could simply use Encccaz and no new predicate was
needed.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

42 Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada

13 CONCLUSIONS

We have introduced key extensions to the core of computationally complete symbolic attacker based
on indistinguishability first introduced in [9] that are necessary to apply the technique to analyze
protocols allowing multiple sessions. Towards this end, we introduced a number of new axioms for
the if _then _else _ function symbol, a core element of the technique. We have illustrated how
these axioms work through several small examples. We also introduced axioms expressing DDH
assumption, UF-CMA unforgeability of signatures, IND-CPA, IND-CCA1 and IND-CCA2 security of
encryptions that are immediate translations of the corresponding computational properties to the
framework. Through the verification of real-or-random secrecy of the DH key exchange protocol
and the verification of authentication of a simplified version of the STS protocol, we showed how
the model can be used to tackle multiple sessions, algebraic properties, real-or-random secrecy,
and even trace properties. The axiomatic system and the proofs of auxiliary theorems and security
properties of protocols have been mechanized in Coq.

One direction that we plan to investigate is to extend the Computationally Complete Symbolic
Attacker technique to deal with an arbitrary fixed number of sessions. For this, we intend to formalize
induction in the Computationally Complete Symbolic Attacker technique. Other directions of future
work are decidability results and automation. We believe that our logic is undecidable in general, but
tractable for verification of interesting class of protocols. The latter belief is based on the procedures
and techniques designed in [26] for verification of reachability properties in the BC framework.
For reachability, verification for a large classes of protocols turns out to be decidable in co-NP [26].
Finally, we also plan to investigate extending the technique to reason about a polynomial number
of sessions.

ACKNOWLEDGMENTS

We are indebted to Hubert Comon-Lundh and Adrien Koutsos for the invaluable discussions. We
also thank anonymous reviewers who have provided useful comments. Part of the research was
carried out while Gergei Bana was at INRIA Paris and then at the University of Luxembourg. Gergei
Bana was partially supported by the ERC Consolidator Grant CIRCUS (683032) and by the National
Research Fund (FNR) of Luxembourg under the Pol-Lux project VoteVerif (POLLUX-1V/1/2016).
Rohit Chadha and Ajay Kumar Eeralla were partially supported by NSF CNS 1314338 and NSF CNS
1553548. Mitsuhiro Okada was partially supported by JSPS KAKENHI Grant 17H02263, 17H02265,
and JSPS-AYAME (2016-2018).

REFERENCES

[1] M. Abadi and C. Fournet. 2001. Mobile Values, New Names, and Secure Communication. In Proceedings of the 28th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL *01). ACM, 104-115.

[2] M. Abadi and P. Rogaway. 2002. Reconciling Two Views of Cryptography (The Computational Soundness of Formal
Encryption). Journal of Cryptology 15, 2 (2002), 103-127.

[3] M. Abdalla, P-A. Fouque, and D. Pointcheval. 2005. Password-Based Authenticated Key Exchange in the Three-party
Setting. In Proceedings of the 8th International Conference on Theory and Practice in Public Key Cryptography (PKC’05).
Springer, 65-84.

[4] M. Backes, B. Pfitzmann, and M. Waidner. 2003. A composable cryptographic library with nested operations. In
Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS °03). ACM, 220-230.

[5] G.Bana, P. Adao, and H. Sakurada. 2012. Computationally Comlete Symbolic Attacker in Action. In IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’12) (LIPIcs). Schloss
Dagstuhl, 546-560.

[6] G.Bana and R. Chadha. 2016. Verification Methods for the Computationally Complete Symbolic Attacker Based on
Indistinguishability. Cryptology ePrint Archive, Report 2016/069. (2016). http://eprint.iacr.org/2016/069.

[7] G.Bana,R. Chadha, and A K. Eeralla. 2018. Formal Analysis of Vote Privacy Using Computationally Complete Symbolic
Attacker. In Computer Security - 23rd European Symposium on Research in Computer Security, ESORICS 2018. Springer,

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

Verification Methods for the CCSA Attacker 43

(8]
(9]
[10]
[11]
[12]

[13]

[14]
[15]

[16]
[17]

(18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]

[26]
[27]
[28]

[29]

350-372.

G. Bana and H. Comon-Lundh. 2012. Towards Unconditional Soundness: Computationally Complete Symbolic Attacker.
In Proceedings of the First International Conference on Principles of Security and Trust (POST’12). Springer, 189-208.

G. Bana and H. Comon-Lundh. 2014. A Computationally Complete Symbolic Attacker for Equivalence Properties. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS ’14). ACM, 609-620.
G. Bana, K. Hasebe, and M. Okada. 2013. Computationally complete symbolic attacker and key exchange. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security (CCS’13). ACM, 1231-1246.

G. Barthe, J. M. Crespo, Y. Lakhnech, and B. Schmidt. 2015. Mind the Gap: Modular Machine-checked Proofs of
One-Round Key Exchange Protocols. Cryptology ePrint Archive, Report 2015/074. (2015). http://eprint.iacr.org/.

G. Barthe, B. Grégoire, S. Heraud, and S. Zanella-Béguelin. 2011. Computer-Aided Security Proofs for the Working
Cryptographer. In Proceedings of the 31st Annual Conference on Advances in Cryptology (CRYPTO’11). Springer, 71-90.
M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. 1998. Relations Among Notions of Security for Public-Key
Encryption Schemes. In Proceedings of the 18th Annual International Cryptology Conference on Advances in Cryptology
(CRYPTO ’98). Springer, 26-45.

B. Blanchet. 2005. An Automatic Security Protocol Verifier based on Resolution Theorem Proving (invited tutorial). In
20th International Conference on Automated Deduction (CADE-20). Springer.

B. Blanchet. 2008. A Computationally Sound Mechanized Prover for Security Protocols. IEEE Transactions on Dependable
and Secure Computing 5, 4 (2008), 193-207.

D. Boneh. 1998. The Decision Diffie-Hellman Problem. In Algorithmic Number Theory (ANTS’98). Springer, 48—63.
Adam Chlipala. 2013. Certified Programming with Dependent Types - A Pragmatic Introduction to the Coq Proof Assistant.
MIT Press. I-XII, 1-424 pages. http://mitpress.mit.edu/books/certified-programming-dependent-types

H. Comon and A. Koutsos. 2017. Formal Computational Unlinkability Proofs of RFID Protocols. In 2017 IEEE 30th
Computer Security Foundations Symposium (CSF). 100-114.

H. Comon-Lundh and V. Cortier. 2008. Computational Soundness of Observational Equivalence. In Proceedings of the
15th ACM Conference on Computer and Communications Security (CCS "08). ACM, 109-118.

V. Cortier, C.C. Dragan, F. Dupressoir, B. Schmidt, P. Strub, and B. Warinschi. 2017. Machine-Checked Proofs of Privacy
for Electronic Voting Protocols. In IEEE Symposium on Security and Privacy. 993-1008.

C. Cremers. 2008. The Scyther Tool: Verification, Falsification, and Analysis of Security Protocols. In Proceedings of the
20th International Conference on Computer Aided Verification (CAV °08), Vol. 5123. Springer, 414-418.

Ajay Kumar Eeralla. 2019. Coq formalization of Computationally Complete Symbolic Attacker. https://bitbucket.org/
ajayeeralla/machine-checked-proofs/src/master/. (2019). Accessed: 2019-15-05.

P. Gupta and V. Shmatikov. 2005. Towards Computationally Sound Symbolic Analysis of Key Exchange Protocols. In
Proceedings of the 2005 ACM workshop on Formal methods in security engineering (FMSE 05). ACM, 23-32.

J. Katz and Y. Lindell. 2007. Introduction to Modern Cryptography. Chapman & Hall/CRC Press.

R. Kiisters and M. Tuengerthal. 2009. Computational Soundness for Key Exchange Protocols with Symmetric Encryption.
In Proceedings of the 2009 ACM Conference on Computer and Communications Security (CCS’09). ACM, 91-100.
Guillaume Scerri. 2015. Proofs of security protocols revisited. These de doctorat. Laboratoire Spécification et Vérification,
ENS Cachan, France. http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/scerri-phd15.pdf

G. Scerri and S-O. Ryan. 2016. Analysis of Key Wrapping APIs: Generic Policies, Computational Security. In IEEE 29th
Computer Security Foundations Symposium, CSF 2016. IEEE Computer Society, 281-295.

B. Schmidt, S. Meier, CJ.F. Cremers, and D. A. Basin. 2012. Automated Analysis of Diffie-Hellman Protocols and
Advanced Security Properties. In 25th IEEE Computer Security Foundations Symposium (CSF’12). 78-94.

The Coq Development Team. 2016. The Coq Proof Assistant Reference Manual. (December 2016).

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: September 2020.

	Abstract
	1 Introduction
	2 Syntax
	2.1 Terms
	2.2 Formulas

	3 Semantics
	3.1 Abstract first-order interpretation
	3.2 Computational interpretation

	4 Protocols
	4.1 The transition system
	4.2 Execution and indistinguishability

	5 Core Axioms
	5.1 Soundness of the Axioms

	6 DDH Assumption
	7 Short Examples
	8 Diffie-Hellman Key Exchange
	9 Digital signatures
	10 Authenticated Diffie-Hellman Key Exchange
	11 Formalizing the proofs in Coq
	11.1 Types
	11.2 Formalizing Indistinguishability Relation
	11.3 Axioms, Theorems, and Verification

	12 Security of Encryptions and Further Verification Results
	12.1 Encryptions

	13 Conclusions
	Acknowledgments
	References

