

1 **Title:** Arctic and Antarctic sea ice mean state in the Community Earth System Model
2 Version 2 and the influence of atmospheric chemistry

3 **Authors:** Alice K. DuVivier¹, Marika M. Holland¹, Jennifer E. Kay², Simone Tilmes¹,
4 Andrew Gettelman¹, David A. Bailey¹

5 ¹ National Center for Atmospheric Research, Boulder, CO

6 ² Department of Atmospheric and Oceanic Sciences and Cooperative Institute for
7 Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO

8 **Date of re-submission:**

9 July 2020, JGR-Oceans

10 **Corresponding author:**

11 Alice K. DuVivier, CGD, P.O. Box 3000, Boulder, CO 80307

12 Email: duvivier@ucar.edu

13 **Key Points:**

- 14 1. Simulated sea ice matches Arctic and Antarctic observed mean extent and
15 volume, and Arctic observed historic trends.
- 16 2. The Arctic sea ice state differs significantly in two model configurations from
17 cloud-aerosol chemistry impacts on surface radiation.
- 18 3. Seasonality of Arctic liquid clouds drives differences in the ice-albedo feedback
19 and the amount of summer ice loss.

20 **Abstract**

21 Arctic and Antarctic sea ice has undergone significant and rapid change with the changing
22 climate. Here, we present preindustrial and historical results from the newly released
23 Community Earth System Model Version 2 (CESM2) to assess the Arctic and Antarctic
24 sea ice. Two configurations of the CESM2 are available that differ only in their
25 atmospheric model top and the inclusion of comprehensive atmospheric chemistry,
26 including prognostic aerosols. The CESM2 configuration with comprehensive atmospheric
27 chemistry has significantly thicker Arctic sea ice year-round and better captures decreasing
28 trends in sea ice extent and volume over the satellite period. In the Antarctic, both CESM
29 configurations have similar mean state ice extent and volume, but the ice extent trends are
30 opposite to satellite observations. We find that differences in the Arctic sea ice between
31 CESM2 configurations are the result of differences in liquid clouds. Over the Arctic, the
32 CESM2 configuration without prognostic aerosol formation has fewer aerosols to form
33 cloud condensation nuclei, leading to thinner liquid clouds. As a result, the sea ice receives
34 much more shortwave radiation early in the melt season, driving a stronger ice-albedo
35 feedback and leading to additional sea ice loss and significantly thinner ice year-round.
36 The aerosols necessary for the Arctic liquid cloud formation are produced from different
37 precursor emissions and transported to the Arctic. Thus, the main reason sea ice differs in
38 the Arctic is due to the transport of cloud-impacting aerosols into the region, while the
39 Antarctic remains relatively pristine from extra-polar aerosol transport.

40

41 **Plain Language Summary**

42 Arctic and Antarctic sea ice has undergone significant and rapid change with the
43 changing climate. Here we assess Arctic and Antarctic sea ice in a new state-of-the-art
44 Earth System Model, the Community Earth System Model Version 2 (CESM2). In
45 particular, we explore how the atmosphere impacts the sea ice. When the CESM2 model
46 does not include chemistry of particles in the atmosphere, we find that Arctic clouds are
47 thinner, which allows more sunlight to reach the sea ice at the surface in the spring and
48 summer. As a result, the sea ice melts more so that it covers less of the Arctic Ocean
49 surface and is overall thinner than in CESM2 simulations that do include chemistry of
50 particles. In contrast, inclusion or lack of particle chemistry does not lead to large
51 differences in the Antarctic sea ice thickness or surface area covered by sea ice. The
52 reason for the opposite results in the hemispheres is that the particles that impact clouds
53 are produced outside the Arctic and Antarctic. These particles are transported
54 successfully to the Arctic, but the Antarctic remains relatively pristine from external
55 particle transport.

56 **1. Introduction**

57 Recent rapid and substantial changes in the polar regions include warming oceans and
58 transformation of the Arctic and Antarctic sea ice cover (Meredith et al., 2019; Parkinson,
59 2019). The Arctic sea ice cover has become thinner (Lindsay & Schweiger, 2015; Kwok,
60 2018) and less extensive (Stroeve & Notz, 2018). Satellite observations since 1979 show
61 that decreases in Arctic sea ice extent occur in all months, and all minima since the large
62 loss of sea ice in 2007 have been lower than anything seen before 2007 (Richter-Menge
63 et al., 2019). In the Antarctic, after decades of increasing Antarctic sea ice extent, there
64 was a dramatic decrease in ice extent in 2016 (Stuecker et al., 2017; J. Turner et al., 2017;
65 Meehl et al., 2019; Parkinson, 2019).

66

67 In the Earth system, changes to sea ice have the capacity to impact local boundary layer
68 clouds, temperature, and humidity, which can feed back on sea ice evolution (Kay &
69 Gettelman, 2009; Boisvert & Stroeve, 2015; Morrison et al., 2018; Huang et al., 2019)
70 and the large-scale atmospheric circulation (e.g., Alexander, 2004; Barnes & Screen,
71 2015; Deser et al., 2016). Changing sea ice impacts ecosystems and human infrastructure
72 (Hunter et al., 2010; Kovacs et al., 2011; Jenouvrier et al., 2014; Moon et al., 2019). In
73 order to assess possible future sea ice changes and their impacts with confidence, we
74 must evaluate our historical climate model representations of the sea ice state as well as
75 their representation of variability and trends.

76

77 The Community Earth System Model (CESM) and its various iterations have been used
78 widely to understand the changing Arctic and Antarctic. Recent work has highlighted the

79 impact of internal climate variability on the possible range of Arctic and Antarctic sea ice
80 conditions (e.g., Mahlstein et al., 2013; Swart et al., 2015; Jahn et al., 2016). Previous
81 versions of the CESM have performed well in capturing the Arctic mean sea ice state,
82 trends, and variability (e.g., Holland et al., 2006; Kay et al., 2011a; Jahn et al., 2012;
83 Barnhart et al., 2015; Jahn et al., 2016; DeRepentigny et al., 2016; Labe et al., 2018). In
84 the Antarctic, however, previous versions of CESM have too extensive sea ice cover and
85 are unable to replicate observed trends in sea ice extent, even when accounting for
86 potential effects of internal variability (Landrum et al., 2012; Mahlstein et al., 2013).
87 Indeed, no CMIP5 model has replicated the observed trends of increasing Antarctic sea
88 ice extent (Polvani & Smith, 2013; J. Turner et al., 2013; Shu et al., 2015). Additionally,
89 extensive work has been done to assess the impact of clouds on Arctic climate change
90 and place cloud feedbacks in the context of other processes and feedbacks (e.g., Kay et
91 al., 2012; Pithan & Mauritsen, 2014; Goosse et al., 2018). Detailed process-level
92 assessment is essential to understand the contribution of clouds to simulated Arctic
93 change in models and assess their realism. Some versions of the atmospheric model with
94 CESM (i.e., CAM5) have credibly represented cloud-sea ice feedbacks for the right
95 reasons (Morrison et al., 2019), while others (i.e., CAM4) have not (Kay et al., 2011b).
96 CESM version 2 (CESM2) has been publicly released and data from two configurations –
97 CESM2(CAM6) and CESM2(WACCM6) (hereafter called CAM6 and WACCM6) – are
98 freely available.

99

100 The purpose of this manuscript is to 1) document the Arctic and Antarctic sea ice in the
101 two CESM2 configurations over the historical and preindustrial (PI) periods, and 2)

102 investigate the source of differences in the sea ice state between these configurations.
103 Many other aspects of the sea ice simulation in CESM2 and comparisons with previous
104 versions of the model must be explored for fuller understanding but are beyond the scope
105 of this paper, and relevant complementary sea ice studies will be referenced when
106 appropriate. Section 2 describes the two CESM2 configurations used in this analysis and
107 highlights the differences in simulations. We examine the PI and historical sea ice in the
108 Arctic and Antarctic in section 3. In section 4, we focus on the Arctic and investigate the
109 differences in PI sea ice surface energy budget, mass budget, and clouds. A discussion
110 and conclusions are presented in section 5.

111

112 **2. Data and Methods**

113 *2.1 The Community Earth System Model Version 2 (CESM2)*

114 The CESM2 is a freely available, community-developed fully coupled earth system
115 model. The model components are atmosphere, ocean, land, sea ice, and land ice models
116 that exchange information through a flux coupler. The major new features and
117 capabilities of CESM2 have been documented by Danabasoglu et al. (2020) and
118 additional details about the CESM2 experiments contributed to the Coupled Model
119 Intercomparison Project Phase 6 (CMIP6) can be found there as well. In this manuscript
120 we will discuss in detail only the components relevant to the analysis presented.

121

122 Two versions of CESM2 were contributed to the CMIP6 archive ([https://esgf-](https://esgf-node.llnl.gov/projects/cmip6/)
123 [node.llnl.gov/projects/cmip6/](https://esgf-node.llnl.gov/projects/cmip6/)) and differ only in their atmospheric configurations. As
124 described by Danabasoglu et al. (2020), the CAM6 experiments use the Community

125 Atmosphere Model version 6 (CAM6) while the WACCM6 experiments use the Whole
126 Atmosphere Community Climate Model version 6 (WACCM6; Gettelman et al., 2019).
127 Both CESM2 configurations use nominal 1° (1.25° longitude x 0.9° latitude) horizontal
128 resolution, the same finite volume dynamical core, and identical parameterization tuning.
129 A major difference between the atmospheric models is that CAM6 has 32 vertical levels
130 with the model top in the stratosphere at 3.6 hPa (\sim 40 km) while WACCM6 has 70
131 vertical levels with a model top in the lower thermosphere at 6×10^{-6} hPa (\sim 140 km). The
132 vertical level spacing is identical between CAM6 and WACCM6 from the surface to 87
133 hPa. Another major difference is that WACCM6 has comprehensive chemistry with both
134 prognostic chemical species and prognostic aerosols. Those include the formation of
135 secondary organic aerosols (SOA) from precursor emissions using the volatility basic set
136 (VBS) approach (Tilmes et al., 2019) and interactive stratospheric aerosols (Mills et al.,
137 2017). On the other hand, CAM6 has limited chemistry and prescribes tropospheric and
138 stratospheric oxidants that feed the aerosol model. As detailed by Danabasoglu et al.
139 (2020), these oxidants in CAM6 were obtained from WACCM6 simulations in order to
140 use consistent forcings in both CAM6 and WACCM6 simulations.

141
142 The sea ice and ocean models are identical in the CAM6 and WACCM6 configurations,
143 and they share a horizontal grid. The horizontal resolution is a uniform 1.125° in the
144 zonal direction. The resolution varies in the meridional direction: in the Arctic, the
145 minimum resolution is approximately 0.38° in the northwestern Atlantic Ocean while in
146 the northwestern Pacific Ocean the maximum resolution is about 0.64° , and in the
147 Antarctic the resolution is constant at 0.53° . To represent sea ice, CESM2 uses the CICE

148 model version 5.1.2 (Hunke et al., 2015). Both configurations of CESM2 have identical
149 sea ice physics and parameters, and both use the new mushy-layer thermodynamics
150 (Turner & Hunke, 2015; Bailey et al., 2020) as well as the level-ice melt pond
151 parameterization (Hunke et al., 2013). In these experiments, CICE has five categories for
152 the ice thickness distribution, and it uses eight vertical ice layers and three vertical snow
153 layers to represent the vertical salinity and temperature profiles. CESM2 uses the
154 modified Parallel Ocean Program version 2 (Smith et al., 2010; Danabasoglu et al., 2012)
155 with updates as discussed by Danabasoglu et al. (2020). Both the CESM2 configurations
156 use identical ocean physics.

157

158 The CAM6 and WACCM6 PI simulations were integrated for 1200 and 500 years,
159 respectively. The shorter WACCM6 integration is due to the large increase in cost to run
160 this model version and associated computational limitations. Over this period the global
161 mean top of atmosphere heat imbalances were small at +0.05 and +0.06 W m⁻²,
162 respectively, and this gain is reflected only in the ocean component of the model
163 (Danabasoglu et al., 2020). For the historical (1850-2014) period there are 11 CAM6 and
164 three WACCM6 ensemble members. The historical CAM6 and WACCM6 experiments
165 were branched from years in the respective PI experiments as detailed by Danabasoglu et
166 al. (2020). Both the CAM6 PI and historical experiments used realistic chemical and
167 aerosol constituents forcing derived from the WACCM PI control (for PI) and an average
168 of the three historical WACCM6 experiments (for historical).

169

170 When analyzing the sea ice in historical experiments, we focus on the years 1979 to 2014
171 (36 years) in order to compare with the satellite observational record. Additionally, it is
172 important to note that the CMIP6 “historical” experiments end in 2014, as per the CMIP
173 protocol with regards to the forcing datasets. For the PI analysis we analyze the years
174 100-500 in each experiment. We omit the first 100 years of each simulation as the model
175 was spinning up, and we analyze only overlapping years to minimize the likelihood that
176 differences in the CAM6 and WACCM6 experiments are a result of the model drift from
177 the much longer CAM6 PI. We use the variables output for the Sea Ice Model
178 Intercomparison Project (SIMIP; Notz et al., 2016). Welch’s t-test, which does not
179 assume equal variance for the samples, was used to determine significance of differences
180 in mean values; an F-test was used to determine significance between differences in
181 variance.

182

183 *2.2 Reference datasets for comparison*

184 As noted above, the CMIP “historical” experiments end in 2014, so while observational
185 data are available after 2014, for consistency purposes with the model experiments we
186 will treat the historical period as 1979-2014 to overlap with the satellite observational
187 record. Over the entire historical period, we compare the hemispheric average annual sea
188 ice extent timeseries and annual cycle against the hemispheric sea ice index (Fetterer et
189 al., 2017). The spatial locations of the observed ice edge are derived from the SSMR and
190 SSM/I satellite data (Comiso, 2000). The sea ice edge is defined as cells with 15%
191 concentration.

192

193 Unlike for sea ice extent, year-round, long-term gridded sea ice thickness and volume
194 data over the Arctic and Antarctic Oceans are not available. We use five years of gridded
195 ICESat satellite sea ice thickness data for the Arctic for the spring (FM; 2003-2007) and
196 autumn (ON; 2004-2008) (Kwok et al., 2009). In addition, we use gridded seasonally
197 averaged ICESat sea ice thickness data for the Antarctic for the summer (FM; 2003-
198 2007) and spring (ON; 2004-2008) (Kurtz & Markus, 2012). It should be noted that the
199 Antarctic sea ice thickness data is only available in areas with sea ice concentration of
200 50% and greater and that the data coverage is sparser over sea ice in the Antarctic as
201 compared to the Arctic because of the satellite track coverage. In the Antarctic, as
202 compared to the Arctic, there is additional uncertainty from snow loading on the sea ice.

203

204 In addition to these satellite observations, we also use reconstructed sea ice volume from
205 the Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) and the Global
206 Ice-Ocean Modeling and Assimilation System (GIOMAS) (Zhang & Rothrock, 2003).
207 PIOMAS and GIOMAS sea ice volume data are not strictly observations. PIOMAS
208 assimilates observed sea ice concentration and observed sea surface temperature, while
209 GIOMAS assimilates only observed sea ice concentration. Both PIOMAS and GIOMAS
210 are forced by the NCEP/NCAR atmospheric reanalysis (Kalnay et al., 1996). PIOMAS
211 has been widely used as a reference dataset in the Arctic for sea ice volume and analysis,
212 and has been found well to compare with available in situ observations (e.g. Schweiger et
213 al., 2011; Laxon et al., 2013; J. Stroeve et al., 2014; Lindsay & Schweiger, 2015).
214 However, GIOMAS has been less widely evaluated, in part because there are many fewer
215 observations of Antarctic sea ice thickness against which evaluation is possible.

216 Additionally, it should be noted that atmospheric reanalysis products rely on data
217 assimilation, and that data with which to assimilate are scarce in the Antarctic leading to
218 additional uncertainty. While there is uncertainty with GIOMAS, we will use it as a
219 reference in the Antarctic, as has been done in other climate model analyses (e.g., Shu et
220 al., 2015), because it is the best available spatially and temporally extensive sea ice
221 volume dataset in this region. Neither sea ice volume dataset should be considered
222 “truth”, but instead a consistent estimate of sea ice volume that is constrained by the
223 atmospheric reanalysis.

224

225 We also compare modeled Arctic sea ice volume from 1984-2014 with a new satellite-
226 derived product (Liu et al., 2020). The derived sea ice volume is based on the relationship
227 between ice age and ice thickness from collocated observations and an empirical ice
228 growth model. This relationship is then applied to derive sea ice thickness from the
229 weekly satellite ice age product available since 1984 (Tschudi et al., 2019). The derived
230 ice thickness and volume compare well with available satellite and submarine data,
231 though they exhibit a stronger decreasing trend as compared to PIOMAS (Liu et al.,
232 2020).

233

234 *2.3 Northward Heat Transport calculations*

235 Following Kay et al. (2012), we calculate the vertically integrated total northward heat
236 transport (NHT, Watts). NHT into the polar regions results from a combination of
237 atmospheric and ocean NHT, and sea ice export and the resulting latent heat loss from the
238 ice melt:

239
$$NHT = NHT_{atm} + NHT_{ocn} + NHT_{ice} \quad (1)$$

240 The total NHT across each latitude band (φ) and atmospheric NHT is calculated using
241 monthly mean top of atmosphere (TOA) energy flux:

242
$$NHT = -2\pi R_e^2 \int_{\varphi}^{\pi/2} N \cos(\varphi) d\varphi \quad (2)$$

243 where R_e is the radius of the earth in meters and N is the TOA energy flux (W m^{-2} , where
244 positive indicates the earth gains energy). N is calculated using the monthly mean TOA
245 net shortwave and longwave fluxes, which are standard model output. NHT_{atm} is then
246 calculated:

247
$$NHT_{atm} = -2\pi R_e^2 \int_{\varphi}^{\pi/2} (N - n) \cos(\varphi) d\varphi \quad (3)$$

248 where n is the total surface energy flux (W m^{-2} , positive when surface energy increases).
249 n is calculated using the net shortwave and longwave surface fluxes and the turbulent
250 sensible and latent heat fluxes, all of which are standard model output. We correct the
251 latent heat flux to account for snow melt, as detailed in Kay et al. (2012). The vertically
252 integrated NHT_{ocn} is calculated at each timestep during model integration and a standard
253 model diagnostic output. NHT_{ice} is found as a residual. Further details regarding the NHT
254 calculations are provided in the appendix of Kay et al. (2012). The NHT at a given
255 latitude can be divided by the Earth's surface area north of that latitude to obtain an NHT
256 forcing (W m^{-2}) that can be directly compared to other forcing (e.g. radiative forcing).

257

258 *2.4 Sea ice energy and mass budget calculations*

259 To better understand the processes driving sea ice evolution, we calculate the sea ice
260 surface energy budget and mass budget. For these calculations, we use monthly mean
261 variables output directly from the model simulations as part of the Sea Ice Model
262 Intercomparison Project (SIMIP; Notz et al., 2016) subset of CMIP6. The SIMIP variable
263 names are given in parenthesis, and further information about the SIMIP variables can be
264 found in Notz et al. (2016).

265

266 The net surface energy flux (Q_{net}) at the sea ice-atmosphere interface can be written:

267
$$Q_{net} = (SW_{down} - SW_{up}) + (LW_{down} - LW_{up}) + Q_{sens} + Q_{lat} + Q_{cond} \quad (4)$$

268 where SW_{down} (siflswdtop) is the downward shortwave radiation, SW_{up} (siflswutop) is the
269 upward shortwave radiation, LW_{down} (sifllwdtop) is the downward longwave radiation,
270 LW_{up} (sifllwutop) is the upward longwave radiation, Q_{sens} (siflsenstop) is the net sensible
271 heat flux, Q_{lat} (sifllatstop) is the net latent heat flux, and Q_{cond} (siflcondtop) is the net top
272 conductive heat flux through the ice. All variables have units of W m^{-2} and positive
273 values indicate surface energy gain.

274

275 The net change in sea ice mass (M_{net}) is given by:

276
$$M_{net} = M_{basal} + M_{frazil} + M_{snowice} + M_{top} + M_{bot} + M_{lat} + M_{evapsUBL} + M_{dyn}$$

277 (5)

278 Ice mass gain occurs through ice growth at the base of existing ice (M_{basal} ;
279 sidmassgrowthbot), ice growth in supercooled open ocean water (M_{frazil} ;
280 sidmassgrowthwat), and transformation of snow to sea ice ($M_{snowice}$; sidmassssi). Ice mass

281 loss occurs through melting at the top surface (M_{top} ; sidmassmeltop), melting at the base
282 of the ice (M_{bot} ; sidmassmeltop), and melting on the sides of the ice (M_{lat} ; sidmasslat);
283 note all of these values are negative indicating ice loss. The ice can also gain or lose mass
284 from evaporation or sublimation ($M_{evapsUBL}$; sidmassevapsUBL) or dynamical advection of
285 ice into or out of the domain (M_{dyn} ; sidmassdyn). These SIMIP mass budget variables all
286 have units of $\text{kg m}^{-2} \text{ s}^{-1}$, and a net positive (negative) value indicate ice mass gain (loss).
287 The total mass budget terms, used in the budget above, are calculated as follows (using
288 basal growth as the example term):

$$289 \quad M_{basal} = \frac{\sum M_{basal(\text{grid cell})} * \text{area}(\text{grid cell})}{\sum \text{area}(\text{grid cell})} \quad (6)$$

290 Where we sum the mass change in each grid cell multiplied by the area of the grid cell
291 over our region of interest, then normalize by the total area in the region. The result is the
292 mean mass change, for each term, over the basin of interest per unit time. We have
293 converted the change in mass to change in thickness (cm day^{-1}) using the constant sea ice
294 density (917 kg m^{-3}) used by CICE within CESM2 as this quantity is easily comparable
295 to observed sea ice mass change and is intuitive to visualize for an ice floe.

296

297 3. Sea Ice State

298 It is important to evaluate both the 2D areal coverage of sea ice, as measured by sea ice
299 extent or concentration, in part because long term observational records exist of these
300 fields and can be used as a reference. Yet, there is still high interannual variability of ice
301 extent (Swart et al., 2015). It is also important to assess the 3D sea ice volume, which is
302 defined as the mean grid cell thickness multiplied by the grid cell area. Hemispheric sea

303 ice volume is less sensitive to internal variability and therefore more directly tied to
304 climate forcing than 2D measures (e.g., Shu et al., 2015). Additionally, we examine the
305 mean annual cycles to identify any systematic seasonal differences between CAM6 and
306 WACCM6. Geographical locations or locations mentioned in the text are shown in
307 Figure S1.

308

309 *3.1 Arctic*

310 In the Arctic, throughout the PI experiment the CAM6 sea ice extent is significantly
311 lower than the WACCM6 extent (Figure 1a; Table 1). In the historical experiments, the
312 ensemble mean extent for CAM6 is significantly lower than the WACCM6 ensemble
313 mean for 23 of the 36 years in the historical period (Figure 1b). The observed Arctic sea
314 ice extent falls within the WACCM6 ensemble spread, while the CAM6 ensemble spread
315 tends to be lower than the observed sea ice extent. The model drifts slightly in the PI
316 period, and both configurations lose a small amount of ice over time. The historical
317 ensemble mean rate of loss is two orders of magnitude larger than in the PI period due to
318 transient greenhouse gas forcing, and the 35-year trend in annual mean ice extent loss
319 from both CESM experiments compares well with observations (Table 2). Further
320 analysis about CESM2 ice extent trends in the historical period and for future scenarios is
321 presented in detail in DeRepentigny et al., (2020) and thus not presented here.

322

323 The PI annual mean Arctic ice volume is significantly larger (by $3.9 \times 10^3 \text{ km}^3$ during
324 years 100-500) for WACCM6 than CAM6 (Figure 1c; Table 1). This difference is
325 evident in the ensemble mean over the historical period, with CAM6 always being lower

326 than WACCM6 by as much as $8 \times 10^3 \text{ km}^3$ (Figure 1d). The reconstructed mean sea ice
327 volume from the WACCM6 ensembles is more similar to the PIOMAS and GIOMAS
328 reconstructions, particularly later in the historical period (Figure 1d). Additionally, in the
329 Central Arctic (see Figure 1e) the WACCM6 ice volume compares well throughout the
330 historical period against newly available satellite derived ice volume data (Figure 1e). In
331 sum, throughout the historical period the CAM6 sea ice volume is well below any
332 reference dataset, while WACCM6 is more similar in magnitude. The historical rate of
333 ice volume loss is lower in CAM6 than WACCM6, and the CAM6 rate is more similar
334 with the reference data loss rates (Table 2). While the mean ice extent is smaller in
335 CAM6 than WACCM6, as detailed above, the large differences in ice volume indicate
336 that there must be large ice thickness differences between the CESM2 configurations as
337 well and this will be explored later in this section.

338

339 Throughout the year, in both the PI and historical periods, the CAM6 hemispheric extent
340 is significantly lower than WACCM6, though the difference is smallest in winter months
341 (Figure 2a). In the historical period the maximum modeled ice extent occurs in March.
342 The winter ice extent is lower than observed in both CESM2 configurations, mainly due
343 to less ice coverage in the Pacific, including the Bering Sea and Sea of Okhotsk (Figure
344 3a). In both the PI and historical periods, the CAM6 experiments have less extensive
345 winter ice than WACCM6, which is due to less ice coverage on both the Atlantic and
346 Pacific margins of the sea ice pack with the largest differences occurring in the Atlantic
347 sector (Figure 3c; Figure S2). The rate of spring ice loss for CAM6 is similar to
348 observations until July, while the WACCM6 loss is slower than observed (Figure 2a).

349 Both CESM configurations reach the minimum ice extent in September. The CAM6
350 mean September extent is significantly lower than WACCM6 in both the PI and
351 historical periods by $1 \times 10^6 \text{ km}^2$ and $2 \times 10^6 \text{ km}^2$ respectively, and much lower than
352 observed (Figure 2a). The WACCM6 ensemble mean summer extent is similar to
353 observations in the hemispheric average and spatial coverage of sea ice (Figure 2a, 3b).
354 In contrast, the historical CAM6 summer sea ice extent is too low over much of the
355 Arctic Basin with the largest difference in the East Siberian Sea (Figure 3d). A similar
356 difference in ice concentration focused in the East Siberian Sea exists in the PI period
357 between CAM6 and WACCM6 (Figure S2).

358

359 In every month, in both the PI and historical periods, the CAM6 sea ice volume is
360 significantly lower than the WACCM6 sea ice volume (Figure 2c). While the WACCM6
361 monthly mean ice volume is more similar to the PIOMAS and GIOMAS products, the
362 timing of the WACCM6 ice volume loss is delayed by a month compared to the
363 reconstructed volume and remains a bit higher during the annual September minimum.

364

365 We use the standard deviation to quantify monthly variability of sea ice extent and
366 volume. In both time periods the summer ice extent variability is higher than the winter
367 variability (Figure 2b) because the winter ice extent is constrained primarily by the land
368 boundaries and ocean heat content (Bitz et al., 2005). There is greater ice extent
369 variability throughout the year in the historical period compared to the PI likely due to
370 thinner sea ice (Goosse et al., 2009; Holland et al., 2008), and this increase is particularly
371 large in summer months. The CAM6 historical summer ice extent variability is much

372 higher than WACCM6, which is likely due to differences in the ice thickness detailed
373 later in this section. In the historical period, the year-round CAM6 ice volume variability
374 is similar magnitude to the PIOMAS and GIOMAS variability, and it is significantly
375 lower than WACCM6 (Figure 2d).

376

377 In the Central Arctic, the WACCM6 ensemble mean has a higher fraction of thicker ice
378 than CAM6 in both spring and autumn (Figure 4). The ICESat observations (available
379 2003-2009) and WACCM6 have similar peaks for most likely ice thicknesses, but the
380 ICESat observations have higher fractions of very thick ice in both seasons (Figure 4).
381 While the modeled ice is thinner than observed across the entire Central Arctic in both
382 seasons, the largest differences with ICESat occur along the Canadian Arctic Archipelago
383 and are co-located with the thickest sea ice (Figure 5). When we examine a longer
384 historical period and the PI records, neither of which have observations against which we
385 can compare, we find that the ice thickness distributions for CAM6 and WACCM6
386 remain distinctly different. In each time period, CAM6 has a lower fraction of thicker ice
387 in both winter and summer (Figure S3), and the largest magnitude spatial thickness
388 differences occur in the East Siberian Sea region (Figure S4,S5).

389

390 *3.2 Antarctic*

391 In the Antarctic, we find that CAM6 and WACCM6 mean extents are not statistically
392 different for PI years 100-500 (Table 1; Figure 6a). The differences in between
393 WACCM6 and CAM6 in mean sea ice extent (for years 100-500) are small, and the

394 smaller CAM6 extent over years 100-1200 are attributable to the PI drift over the
395 additional 700 years (Table 2). For the historical period, the two CESM configurations
396 generally maintain similar sea ice extent: there are significant differences in the annual
397 mean extent in only six of the 36 years over the historical period (Figure 6b). The net 35-
398 year trend over the historical period has been observed to be positive, while all ensemble
399 members from both configurations have a net negative trend over these years (Table 2).
400 The modeled historical ice loss rate is two orders of magnitude larger than the PI rate,
401 indicating that differences in forcing rather than model drift are likely to drive the
402 historical trends. The discrepancy in the sign of modeled and observed trends in Antarctic
403 sea ice has been previously documented for climate models (e.g. Landrum et al., 2012;
404 Mahlstein et al., 2013; J. Turner et al., 2013; Hobbs et al., 2015; Shu et al., 2015). The
405 observed dramatic loss after 2014 in Antarctic sea ice (Stuecker et al., 2017; Meehl et al.,
406 2019; Wang et al., 2019; Parkinson, 2019) occur after the CMIP6 historical forcing
407 period, which ends in December 2014, and are still being investigated. For mean ice
408 volume, over the PI the volume is similar with CAM6 slightly lower than WACCM6
409 over years 100-500 (Table 1; Figure 6c). During the historical period there are only four
410 years in which the ensemble mean volume is significantly different between CESM2
411 configurations (Figure 6d), and both the CESM2 configurations have a negative ice
412 volume trend while GIOMAS trends are positive (Table 2).

413
414 The mean annual cycle of Antarctic sea ice extent in the PI and historical periods is
415 similar for both the CAM6 and WACCM6 experiments (Figure 7a). While the timing and
416 magnitude of the historical minimum February sea ice extent agree well with NSIDC

417 observations, the maximum extent occurs in October and is $\sim 2 \times 10^6 \text{ km}^2$ smaller than the
418 observed maximum in September. There is no significant difference in monthly mean ice
419 extent variability in the PI between the CAM6 and WACCM6 experiments, though there
420 is in the historical. Spatially, the WACCM6 maximum ice concentration is too low in the
421 Indian Ocean sector of the Antarctic basin (Figure 8b). While the ice concentration
422 differences between CAM6 and WACCM6 are heterogenous and mostly insignificant
423 (Figure 8c,d), in winter months CAM6 has lower extent in the Atlantic and Indian Ocean
424 sectors compared with WACCM6 (Figure 8). In the PI period, however, CAM6 has
425 slightly higher ice concentration in the wintertime Indian and Pacific Ocean sectors
426 (Figure S6). There are differences in the timing of the minimum or maximum volume
427 between the two configurations and GIOMAS, with the largest magnitude differences
428 during wintertime (Figure 7c). However, as mentioned previously, there are uncertainties
429 associated with GIOMAS volume due to poorly constrained atmospheric reanalysis in
430 these regions.

431

432 While there are uncertainties in satellite observations of ice thickness, we compare the
433 spatial ice thickness in both CESM2 configurations with ICESat for 2003-2009. Overall
434 both CESM2 configurations have thicker ice than observed around the continent, but the
435 CESM2 ice is particularly thick in the Amundsen Bellingshausen Seas (Figure 9).
436 Spatially, the differences between CESM2 experiments in PI and historical thickness are
437 mostly small, insignificant, and heterogeneous, and the largest thickness differences are
438 found at the ice edge or in the Weddell Sea (Figure S7,S8). Histograms indicate that in
439 both the historical and PI the winter ice thickness distributions are similar in CAM6 and

440 WACCM6, and there are slight differences in summer historical distributions (Figure
441 S3).

442

443 A full examination of the WACCM6 and CAM6 sea ice mass and energy budgets (Figure
444 S9) shows that there are not significant differences in the net budgets in the Antarctic
445 between configurations. This is consistent with the very similar mean sea ice state.
446 Because the mean states are so similar between the CAM6 and WACCM6
447 configurations, we will not discuss the Antarctic further in this paper. Please refer to
448 (Raphael et al., 2020; Singh et al., 2020) for further analysis of the Antarctic sea ice in
449 CESM2 with the CAM6 atmospheric component.

450

451 **4. Exploring Differences in Preindustrial Arctic Sea Ice**

452 The differences in the mean Arctic sea ice extent and volume are surprising given that the
453 two CESM2 configurations have small atmospheric differences – primarily in the model
454 top and in the treatment of atmospheric chemistry. We examine the forcing and processes
455 that govern ice growth and melt to better understand these mean state differences. Many
456 of the differences between CAM6 and WACCM6 exist in both the historical and PI
457 periods, but the following analysis corresponds to PI years 100-500 for both CAM6 and
458 WACCM6 because there are many years for analysis without the additional influence of
459 transient atmospheric forcing. We focus on the region north of 70°N since it has the
460 largest differences in ice thickness and extent (Figure S1; Figure S5).

461

462 4.1 Northward Heat Transport

463 We use NHT to identify whether differences in heat flux convergence between CESM2
464 configurations could account for the differences in Arctic sea ice mean state. Equations
465 detailing the calculations shown in this paper are presented in section 2.3. We find that in
466 both the CAM6 and WACCM6 configurations the atmospheric component of the NHT
467 dominates the total NHT, which peaks at about 6 PW, while the sea ice component is the
468 smallest (Figure S10a). The net differences between the configurations are small (less
469 than 2% the total NHT) and primarily due to atmospheric NHT (Figure S10b). When we
470 examine the NHT differences as a forcing we find that over the Arctic CAM6 has 2-4 W
471 m^{-2} less NHT than WACCM6 (Figure 10a). This suggests that, given NHT alone, CAM6
472 might be expected to have more extensive and thicker ice, which is the opposite to our
473 results and implies another cause for the differences in CESM2 configurations.
474 Additionally, there are not significant differences in global or Northern Hemisphere
475 surface temperature climate between CESM2 configurations during the overlapping
476 simulation years (Table 1). We also find statistically insignificant differences in mean sea
477 level pressure and surface winds in the Arctic (not shown), which suggests atmospheric
478 circulation differences that could impact the sea ice dynamics and drive differences in
479 thickness are not responsible.

480

481 4.2 Mass and Energy Budgets

482 We examine the annual cycle of the sea ice mass budget to determine causes driving the
483 differences in ice growth and melt. There is net growth from September to May, mainly
484 due to congelation sea ice growth at the bottom of the ice (Figure S6c). During the

485 growth season, CAM6 has more ice growth, due primarily to congelation ice, than
486 WACCM6 (Figure 10b). The increased ice growth for the CAM6 configuration is likely
487 due to the thinner ice, which is less insulating, allowing for increased heat conduction
488 through the sea ice (Maykut, 1982). Both configurations have net ice mass loss from May
489 through September that is dominated by bottom melt (Figure S10c). Increased
490 summertime bottom melt in CAM6 dominates the net mass budget differences (Figure
491 10b; Figure S10c).

492

493 To investigate differences in the sea ice mass budget, we also examine differences in the
494 annual surface energy budget north of 70°N. We examine both the surface energy budget
495 for sea ice alone as well as the combined ice and ocean surfaces. The ice surface loses
496 heat from September to May (Figure 10c), which corresponds to the period of net ice
497 mass gain (Figure 10b). In the autumn (October-November) the CAM6 ice surface loses
498 $\sim 7 \text{ W m}^{-2}$ more than in WACCM6 (Figure 10c), which corresponds to the increase in
499 congelation growth at this time (Figure 10b). From June to August both the CAM6 ice
500 surface and total ice plus ocean surface gain a maximum of $\sim 4 \text{ W m}^{-2}$ more than the
501 WACCM6 surface (Figure 10c). The largest drivers of the difference in the surface
502 energy budgets are the downward shortwave and longwave radiative components (Figure
503 10c). In particular, CAM6 has over 10 W m^{-2} more incoming shortwave radiation, which
504 is partly compensated by $\sim 6 \text{ W m}^{-2}$ less incoming longwave radiation to both surfaces
505 compared to WACCM6. The incoming radiative differences are largest in June, but they
506 persist through the melt season. As expected with near-freezing surface temperatures
507 throughout the melt season, the outgoing longwave radiation is similar between the

508 configurations during the melt season. The outgoing shortwave radiation is slightly
509 higher in CAM6, and further analysis, detailed below, will determine if this difference is
510 due to more incoming shortwave or an increase in albedo.

511

512 Changes in surface albedo over sea ice are due to changes in ice surface conditions (e.g.
513 the loss of snow cover coupled with the increase in melt pond coverage), while the
514 differences in the total surface albedo are due to the combination of ice surface changes
515 and changes in ice fraction. CAM6 has a lower ice albedo and total surface albedo than
516 WACCM6, and the differences from WACCM6 are largest in August (Figure 11a). The
517 divergence between the ice albedo and surface albedo differences indicates that changes
518 in ice fraction between CAM6 and WACCM6 become increasingly important later in the
519 melt season. The seasonal progression through the melt season is important for driving
520 these changes.

521

522 The changes to the surface albedo and the resulting albedo feedback are likely
523 responsible for the mismatch in timing of maximum shortwave radiation differences
524 (June) and the maximum melt differences (July). In May and June, the sea ice is covered
525 by snow and the ice fraction is relatively similar between CAM6 and WACCM6 (Figure
526 11b). Additional incoming solar energy in CAM6 results primarily in increased surface
527 snow melt and not top melt of the ice itself (Figure 10b; Figure 11c). As a result of earlier
528 surface snow melt, the ice albedo in CAM6 decreases due to both the combination of bare
529 ice and melt pond coverage. The change in ice surface albedo results in increased solar
530 absorption, increased ice top melt, and a sharper decrease in sea ice fraction. As a result

531 of the decrease in ice coverage, the ocean absorbs solar radiation. This ocean energy gain
532 drives large differences in bottom melt by July, melting more ice.

533

534 The differences in NHT indicate that the CAM6 experiments have less heat flux
535 convergence from lower latitudes into the Arctic as compared to WACCM6. This cannot
536 explain the thinner ice present in the CAM6 simulations. Instead, the differences in mean
537 ice state between CAM6 and WACCM6 are related to local differences in radiation. The
538 difference in radiation triggers the ice-albedo feedback earlier in the CAM6, and this
539 feedback amplifies the differences in ice state later in the melt season when the radiative
540 differences are smaller. It is important to understand how the atmosphere in these
541 CESM2 configurations directly lead to the large differences in surface radiative fluxes.

542

543 *4.3 Clouds*

544 Based on the differences in radiative fluxes, which are closely related to clouds, we
545 examine differences in the Arctic shortwave feedbacks north of 70°N to investigate their
546 impact on the difference in mean sea ice state in the CESM2 configurations. Of particular
547 interest are: 1) the positive shortwave surface feedback in which melting ice and snow
548 lower surface albedo, increasing surface shortwave absorption; and 2) shortwave cloud
549 feedbacks, including the negative shortwave cloud feedback that results from increases in
550 liquid water resulting in higher cloud albedo and decreasing surface shortwave absorption
551 (Goosse et al., 2018). We evaluate these feedbacks using the approximate partial
552 radiative perturbation (APRP) method (Taylor et al., 2007). During the summer melt
553 season, we find that the combination of the surface albedo and cloud shortwave

554 feedbacks lead to greater shortwave fluxes in CAM6 than WACCM6, and that the
555 magnitude of the cloud term differences is larger than the surface term (Figure 12a).
556 CAM6 has a larger positive surface albedo feedback, consistent with the differences in
557 surface albedo discussed previously. For a negative cloud feedback, the positive
558 difference indicates that CAM6 has a smaller cloud feedback than WACCM6.

559

560 We examine differences in the Arctic cloud properties north of 70°N to identify how the
561 clouds differ throughout the year in CAM6 and WACCM6. The liquid water path (LWP)
562 is defined as the sum of the total liquid water in the atmospheric column, and similarly
563 the ice water path (IWP) is defined as the sum of the total ice water in the atmospheric
564 column. Compared to WACCM6, CAM6 has both lower LWP and IWP through the
565 summer months (Figure 12b). In May, CAM6 has ~22% lower LWP than WACCM6,
566 and in June CAM6 has ~25% less IWP. Throughout the year both configurations have
567 cloud fractions above 80% and the difference in cloud fraction between the two
568 configurations is never greater than 4% (Figure 12b). Maps of cloud property differences
569 show large and significant differences in LWP all summer that are co-located with the sea
570 ice (Figure 13). In contrast, the absolute differences in IWP and cloud fraction are more
571 consistent over both land and ocean (Figure 13), though maps show that the largest
572 percent differences occur over the Arctic sea ice throughout the melt season (Figure S11).

573

574 As described in Section 2, the CESM2 configurations that use CAM6 and WACCM6
575 have identical sea ice parameters and atmospheric cloud parameters. One important way
576 they differ, however, is with the inclusion of comprehensive chemistry and prognostic

577 aerosols including an improved formation of secondary organic aerosol (SOA) within the
578 WACCM6 (see Tilmes et al., 2019). During spring there are fewer accumulation mode
579 SOA, primary organic matter, black carbon, and sulfate aerosols over sea ice in CAM6 as
580 compared to WACCM6 (Figure 14). These differences in aerosol are similar in summer
581 for all aerosols except the SOA. In addition to fewer aerosols, there are also fewer liquid
582 cloud condensation nuclei (CCN) and cloud droplets in CAM6 (not shown). Thus, in
583 WACCM6 the improved aerosol formation in source regions outside the Arctic causes an
584 increase in the aerosols in the accumulation mode (in CESM2: 0.06-0.5 μm - the size
585 most relevant for CCN as they accumulate in the atmosphere and can be transported) and
586 therefore the amount of CCN reaching the Arctic. In the WACCM6 configuration, more
587 Arctic CCN tend to result in more and smaller cloud drops. As a result, there is less
588 precipitation, a longer lifetime for cloud drops, and higher LWP and cloud fractions,
589 which results in reduced shortwave flux to the surface that is only partially compensated
590 by increased longwave flux to the surface.

591

592 **5 Discussion and Conclusions**

593 We present the Arctic and Antarctic sea ice mean state from available PI and historical
594 experiments from two configurations of the CESM2 submitted to CMIP6. In the Arctic,
595 there is a significant difference in sea ice extent and thickness in both the PI and
596 historical periods between the CAM6 and WACCM6 configurations, with WACCM6
597 having thicker and more extensive ice. In the historical period, both CESM2
598 configurations well capture the decreasing trends in ice extent and ice volume observed
599 over the historical period as well as timing of the seasonal cycle in ice extent and volume.

600 In the winter, both configurations underestimate the maximum ice extent, but in summer
601 the WACCM6 minimum sea ice extent is very similar to observed while the CAM6 sea
602 ice extent is significantly lower. In both the PI and historical periods, the WACCM6 sea
603 ice is significantly thicker over the Arctic Basin throughout the year as compared to
604 CAM6. While the WACCM6 ice thickness is closer to observations, the model still fails
605 to capture the very thick ice observed along the Canadian Archipelago. There are
606 significant differences in the extent and volume variability between configurations as a
607 result of the sea ice thickness differences between the configurations. Further analysis
608 should be done to better understand trends and variability in the PI period as compared to
609 a similar length of time as the historical period.

610

611 In the Antarctic, the CAM6 and WACCM6 configurations are very similar in ice extent
612 and thickness throughout the year. While both CESM2 configurations have sea ice
613 extents similar to those observed, all ensembles have a decreasing trend in ice extent,
614 contrary to observations. Additionally, both CESM2 configurations capture the Antarctic
615 minimum extent but tend to underestimate the maximum extent and it occurs one month
616 after the observed maximum. In contrast to the Arctic, the CAM6 and WACCM6 sea ice
617 thickness in the Antarctic is not significantly different in the historical or PI period. This
618 is consistent with the mechanism suggested about for the Northern Hemisphere: there
619 would not be additional cloud condensation nuclei (CCN) over the Southern Ocean
620 region since the major sources of sea salt and dimethyl sulfide (DMS) as CCN are present
621 in both CAM6 and WACCM6.

622

623 The seasonality of the cloud differences between CESM2 configurations is especially
624 important for the sea ice response due to the impacts on the albedo feedback. A detailed
625 analysis of the CESM2 Arctic clouds has been completed by McIlhattan et al., (2020),
626 and we focus on only the cloud differences in CAM6 and WACCM6 that drive
627 differences in sea ice state. Previous observational and modeling studies have shown that
628 from approximately May/June through September the clouds and sea ice decouple due to
629 the relatively high static stability and low air-sea temperature gradients, so during these
630 months cloud forcing impacts sea ice evolution but sea ice does not strongly drive cloud
631 evolution (Kay & Gettelman, 2009; Morrison et al., 2018; Morrison et al., 2019; Huang
632 et al., 2019). While there are not shortwave radiative impacts during polar night,
633 longwave radiative impacts from clouds can still affect the surface. However, during
634 winter months, when there is active coupling between the clouds and sea-ice, the
635 differences in clouds between CAM6 and WACCM6 are small and contribute little to
636 differences in the sea ice mass budget. Near-surface liquid-water clouds are known to
637 dominate cloud radiative impacts in the Arctic (Morrison et al., 2018; Shupe & Intrieri,
638 2004). In early spring the sea ice in CAM6 experiences up to 16 Wm^{-2} more incoming
639 shortwave radiation (and up to 8 Wm^{-2} less incoming longwave radiation) than in
640 WACCM6. The modeled cloud fraction is fairly similar between experiments, but
641 through the melt season there is significantly more liquid water in the WACCM6 clouds
642 than in CAM6 indicating thicker cloud cover. The differences in incoming radiation and
643 liquid cloud are largest in early spring (May/June) when there is not yet a large difference
644 in sea ice fraction and near the transition period where the clouds become uncoupled
645 from the sea ice below. While there are differences in the cloud shortwave forcing

646 throughout the melt season, it is the impact of the early springtime forcing that initiate
647 differences in snow and ice melt, which sets off an albedo feedback. Similar mechanisms
648 in timing of cloud radiative fluxes have been found to affect the sea ice extent and
649 volume biases in other coupled models (e.g. West et al., 2019). As the thinner ice in the
650 CAM6 configuration melts slightly earlier, the area of ocean covered by sea ice decreases
651 and dark ocean water is exposed, leading to increased absorption of incoming shortwave
652 radiation that in turn heats the ocean waters and increases the ability to melt sea ice from
653 below exposing more ocean (Perovich et al., 2007). Ultimately this leads to less summer
654 ice cover in CAM6, less ice persisting through the year, and a thinner mean sea ice pack
655 throughout the Arctic Basin. The spatial differences in liquid water path (LWP) during
656 the melt season are centered over sea ice covered regions while the ice water path (IWP)
657 difference is more hemispherically uniform. The clouds and sea ice are decoupled in
658 these months; therefore, the processes constraining the large differences in LWP to be
659 over sea ice would not be driven by surface fluxes, and further in-situ observations of the
660 coupling between clouds, aerosols, and sea ice could better identify possible mechanisms.

661

662 The two CESM2 configurations analyzed share identical atmospheric dynamical cores,
663 identical resolution for the atmosphere, ocean, and sea ice, and identical parameterization
664 tuning for these same components. Additionally, the WACCM6 experiments provide the
665 forcing for CAM6 experiments. The fundamental difference in the CESM2
666 configurations driving differences in the Arctic clouds is the inclusion of interactive
667 chemistry and prognostic aerosols in WACCM6. Similar differences in aerosols and
668 cloud forcings were found in WACCM6 experiments with a simplified secondary organic

669 aerosol (SOA) parameterization as used in CAM6 (Tilmes et al., 2019). Of particular
670 importance are differences in the formation of SOA over source regions as the result of
671 the comprehensive SOA parameterization in WACCM6. This results in changes in
672 particulate organic matter, black carbon, and sulfate aerosol reaching high northern
673 latitudes through long-range transport. Because the relative aerosol differences exist in
674 both the PI and present-day conditions, the differences in CCN production between
675 CAM6 and WACCM6 do not depend strongly on transient greenhouse gas forcing.
676 Differences in the Arctic sea ice state between CAM6 and WACCM6 in the historical
677 and future scenario experiments may show similar mean state differences as shown here,
678 but this will likely depend on the evolution of aerosol emissions impacting the Arctic
679 clouds. In the WACCM6 configuration more aerosols are transported to the Arctic that
680 are available as CCN for cloud droplet formation. In the Antarctic, there is not a
681 significant difference in the mean sea ice state or mass budgets, which may be because
682 there is not a difference in aerosol transport to the region. Future work should analyze the
683 transport mechanisms and pathways of these aerosols to determine possible extra-polar
684 source regions that may be impacting Arctic clouds, which then in turn force the sea ice
685 below. Credibly simulating polar cloud processes, including understanding the aerosol
686 transport into the polar regions, is essential for realistic and believable historical and
687 future climate projections of sea ice cover in both poles.

688

689 **6 Model and Data Availability**

690 Previous and current CESM versions are freely available
691 (www.cesm.ucar.edu:/models/cesm2). The CESM2 data analyzed in this manuscript have

692 been contributed to CMIP6 and are freely available at the Earth System Grid Federation
693 (ESGF; <https://esgf-node.llnl.gov/search/cmip6/>), from the NCAR Digital Asset Services
694 Hub (DASH; <https://data.ucar.edu>), or from the links provided from the CESM website
695 (www.cesm.ucar.edu). The scripts used for this analysis in this paper can be found at:
696 https://github.com/duvivier/CESM2_sea_ice_JGR_2019

697

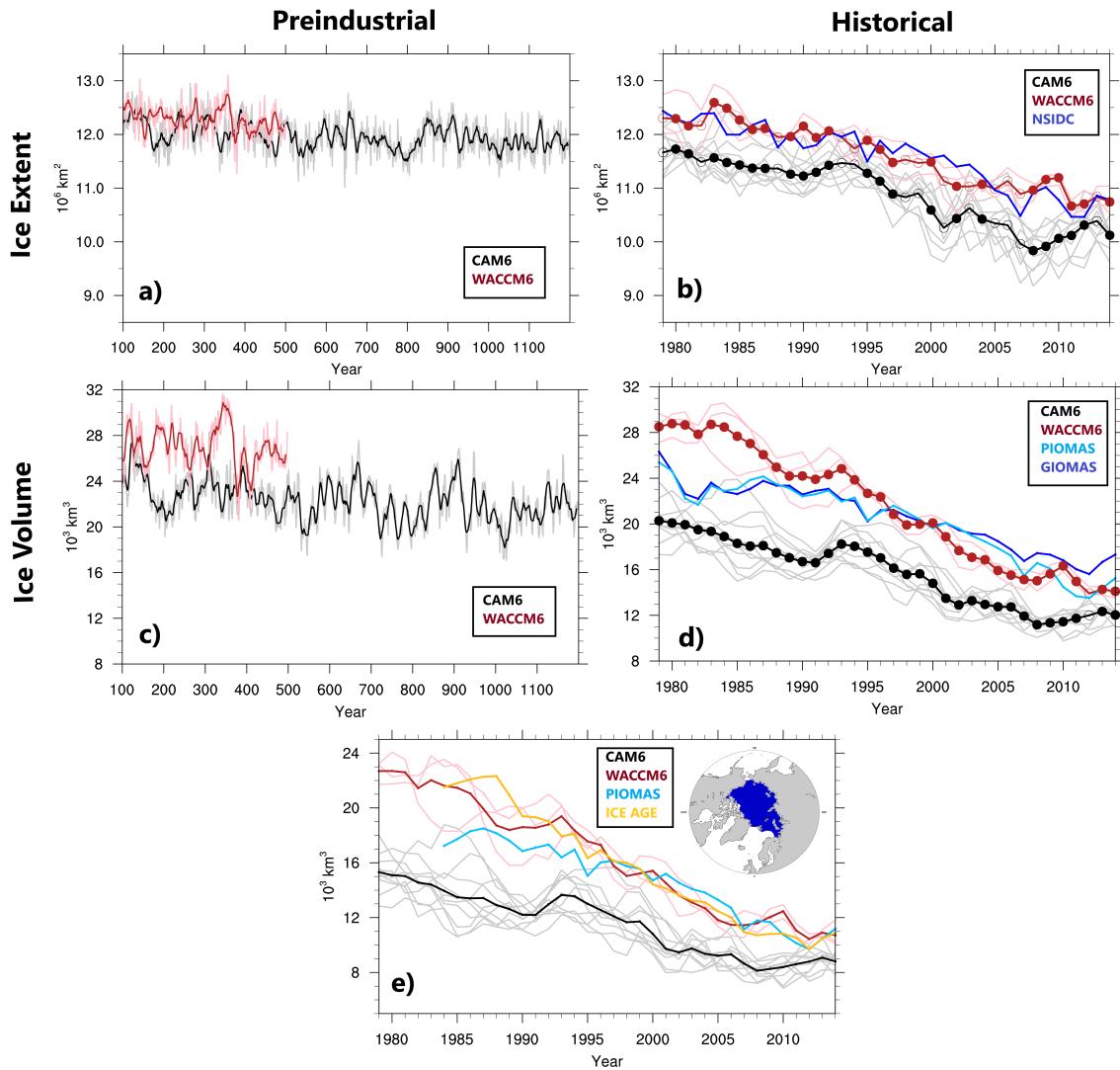
698 7 Acknowledgements

699 The CESM project is supported primarily by the National Science Foundation (NSF).
700 This material is based upon work supported by the National Center for Atmospheric
701 Research (NCAR), which is a major facility sponsored by the NSF under Cooperative
702 Agreement No.1852977. Computing and data storage resources, including the Cheyenne
703 supercomputer (doi:10.5065/D6RX99HX), were provided by the Computational and
704 Information Systems Laboratory (CISL) at NCAR. We thank all the scientists, software
705 engineers, and administrators who contributed to the development of CESM2. J. E. Kay
706 was supported by NSF CAREER (AGS #1554659). M. M. Holland acknowledges
707 support from NSF #1724748.

708 **Figures and Tables**

709

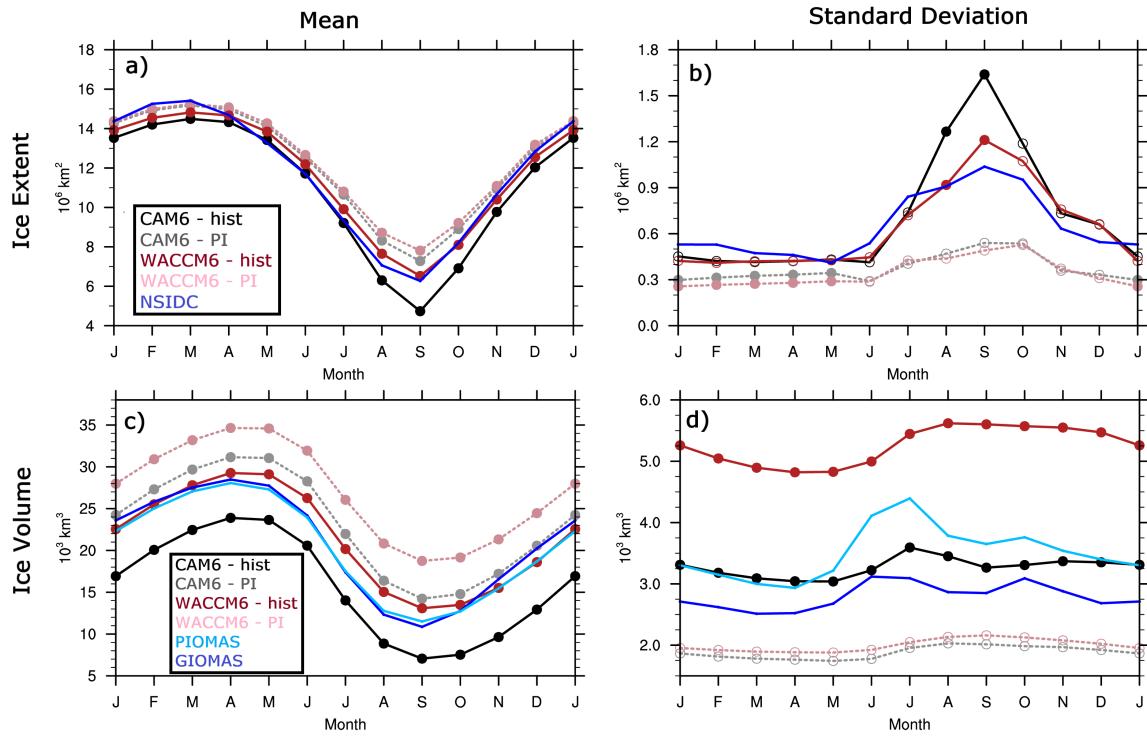
		CAM6 (yrs. 100-1200)		CAM6 (yrs. 100-500)		WACCM6 (yrs. 100-500)	
		mean	standard deviation	mean	standard deviation	mean	standard deviation
Surface Temperature (K)	Global	278.3	1.6	278.2	1.6	278.1	1.7
	NH	257.5	11.7	257.3	11.8	257.3	12.0
	SH	252.6	6.5	252.5	6.5	252.4	6.5
Sea Ice Extent (10^6 km 2)	NH	12.0	0.30	12.1	0.30	12.3	0.27
	SH	13.1	0.48	13.6	0.46	13.5	0.44
Sea Ice Volume (10^3 km 3)	NH	22.3	1.96	23.1	1.96	27.0	1.93
	SH	14.1	0.91	14.5	0.89	14.2	0.84


710

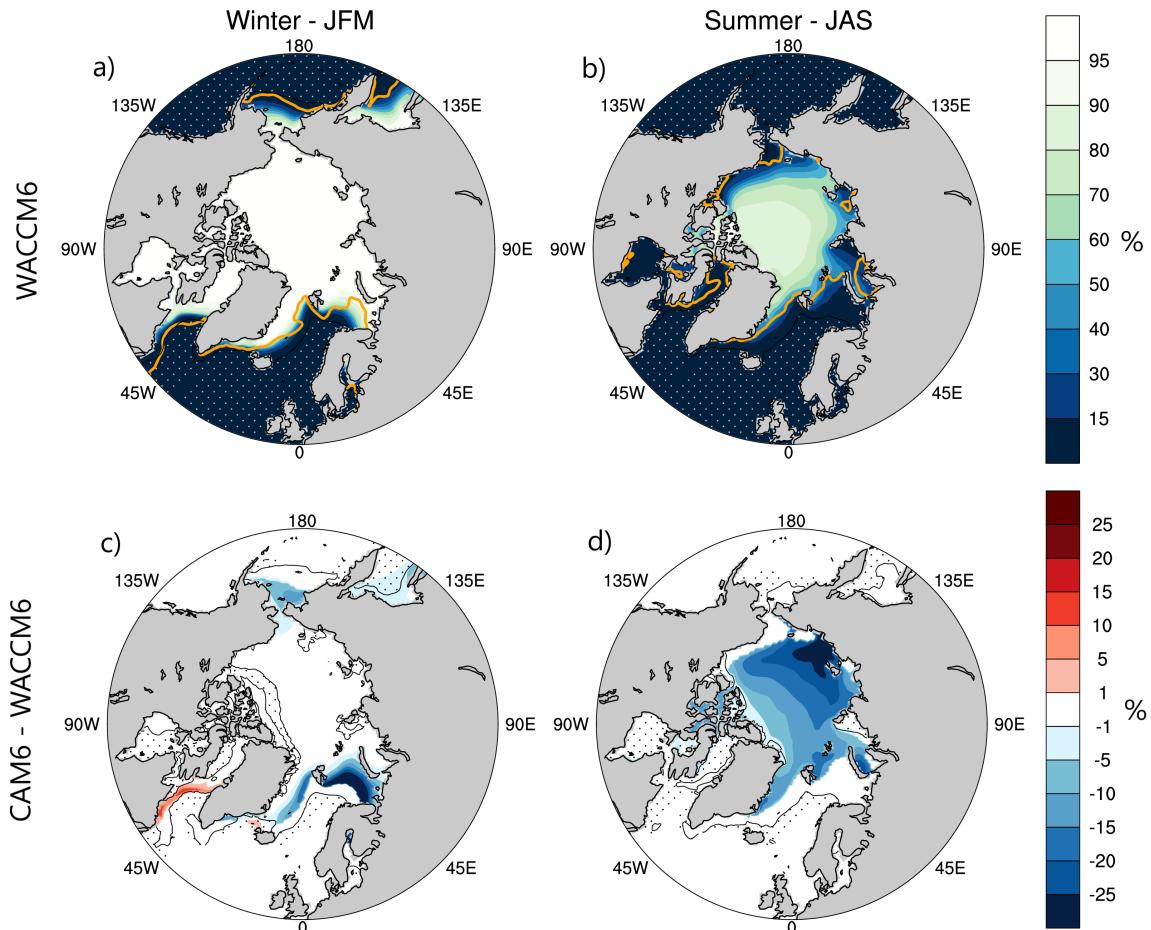
711 **Table 1:** CAM6 and WACCM6 global, Northern Hemisphere (NH), and Southern
 712 Hemisphere (SH) annual mean and standard deviation surface temperature (K), sea ice
 713 extent (10^6 km 2), and sea ice volume (10^3 km 3). Means were calculated from the PI
 714 experiment over the years listed. Bold values in the CAM6 columns indicate when the
 715 value is significantly different at the 95% level from WACCM6 as as determined by a
 716 Welch's t-test for the mean values and an F-test for the standard deviation values.

		Preindustrial		Historical (1979-2014)		
		CAM6 (yrs. 100- 1200)	WACCM6 (yrs. 100-500)	CAM6	WACCM6	Reference
Sea Ice Extent ($10^6 \text{ km}^2/\text{decade}$)	NH	-0.0031	-0.0063	-0.53	-0.52	-0.53
	SH	-0.0067	-0.011	-0.41	-0.56	+0.20
Sea Ice Volume ($10^3 \text{ km}^3/\text{decade}$)	NH	-0.020	-0.031	-2.72	-4.82	-2.50 (-3.03)
	SH	-0.013	-0.015	-0.68	-0.86	+0.55

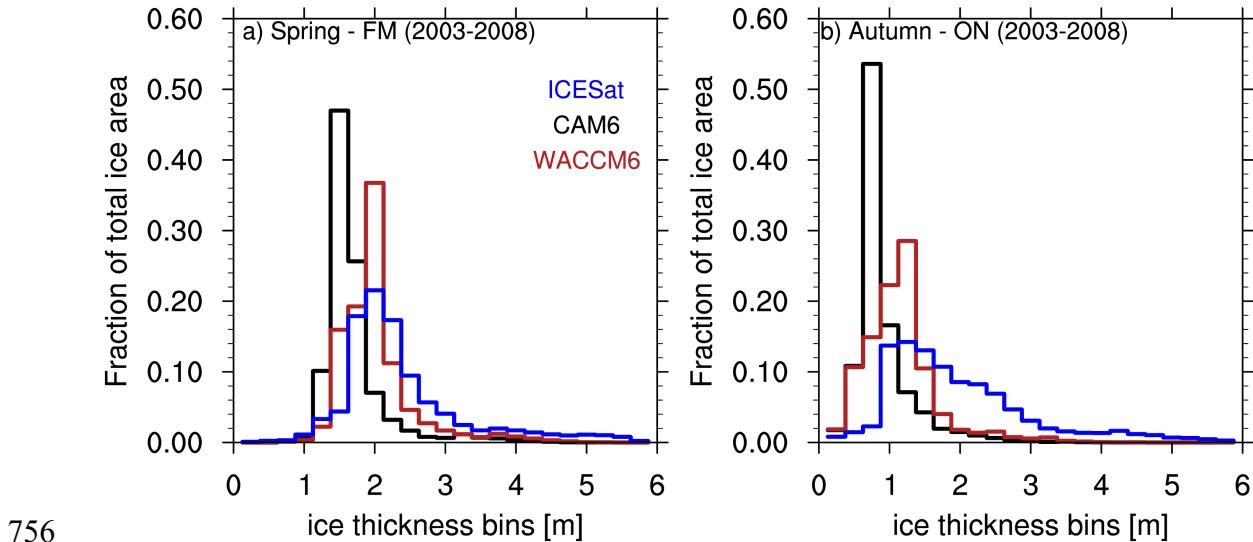
717


718 **Table 2:** Hemispheric trends in annual mean sea ice extent ($10^6 \text{ km}^2/\text{decade}$) and sea ice
 719 volume ($10^3 \text{ km}^3/\text{decade}$) for CAM6 and WACCM6 ensemble mean during the PI and, in
 720 parenthesis, historical periods. The observed historical trend in sea ice extent is calculated
 721 from the NSIDC sea ice index (Fetterer et al., 2017). The observed historical trend in sea
 722 ice volume is from the reference PIOMAS dataset (Zhang and Rothrock, 2003), and for
 723 the Northern Hemisphere the PIOMAS sea ice volume trend (Schweiger et al., 2011) is
 724 shown in parenthesis.

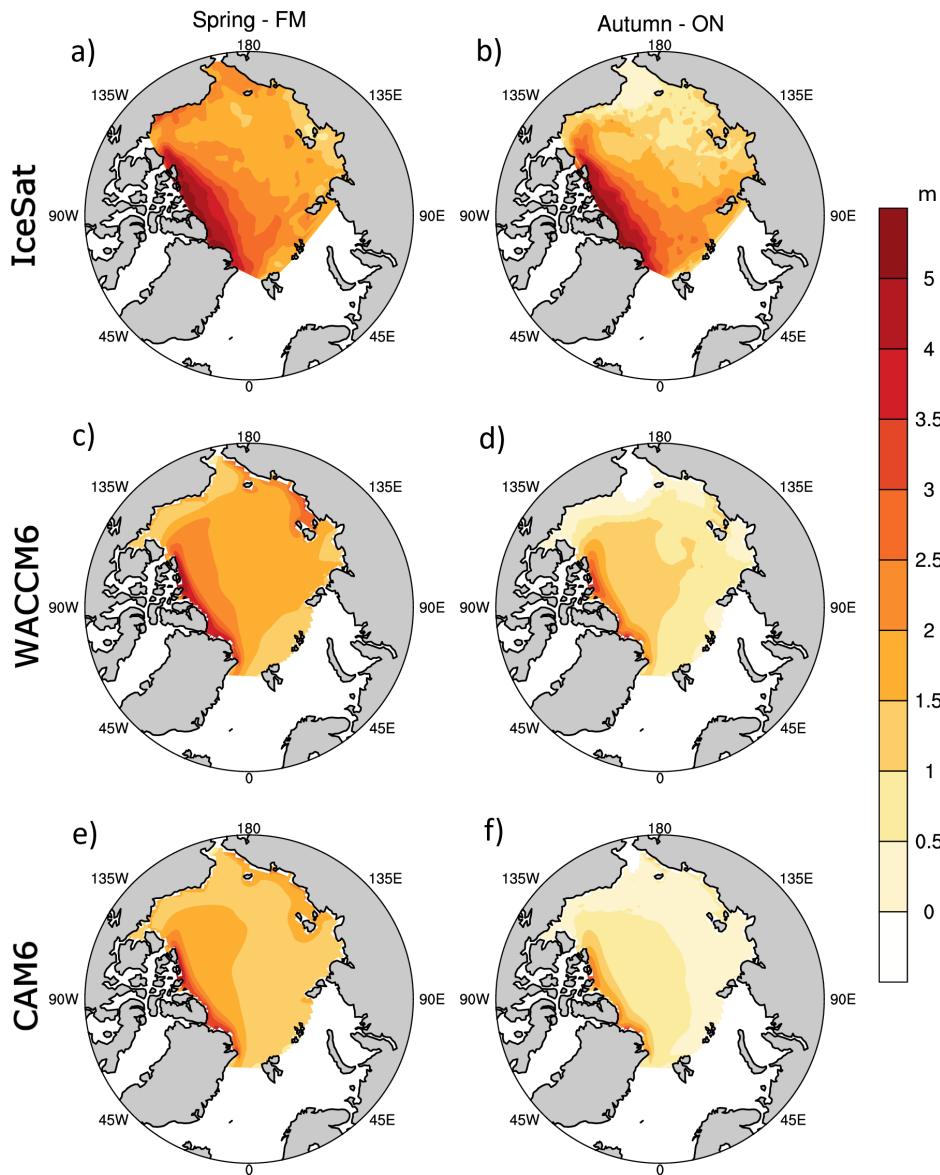
725


726 **Figure 1:** Time series of the (a), (b) annual mean Northern Hemispheric sea ice extent
 727 (10^6 km^2) and (c), (d) annual mean Northern Hemispheric sea ice volume (10^3 km^3), and
 728 (e) Arctic Basin (inset) annual mean sea ice volume (10^3 km^3). In (a),(c), for the PI period
 729 the 10-year running mean and raw annual values are shown for CAM6 (black and grey),
 730 respectively) and WACCM6 (red and pink, respectively). In (b),(d),(e) for the historical
 731 (1979-2014) individual ensembles and ensemble mean are shown for CAM6 (grey and
 732 black, respectively) and WACCM6 (pink and red, respectively), and large solid circles
 733 indicate years in which the CAM6 and WACCM6 ensemble means are different at the

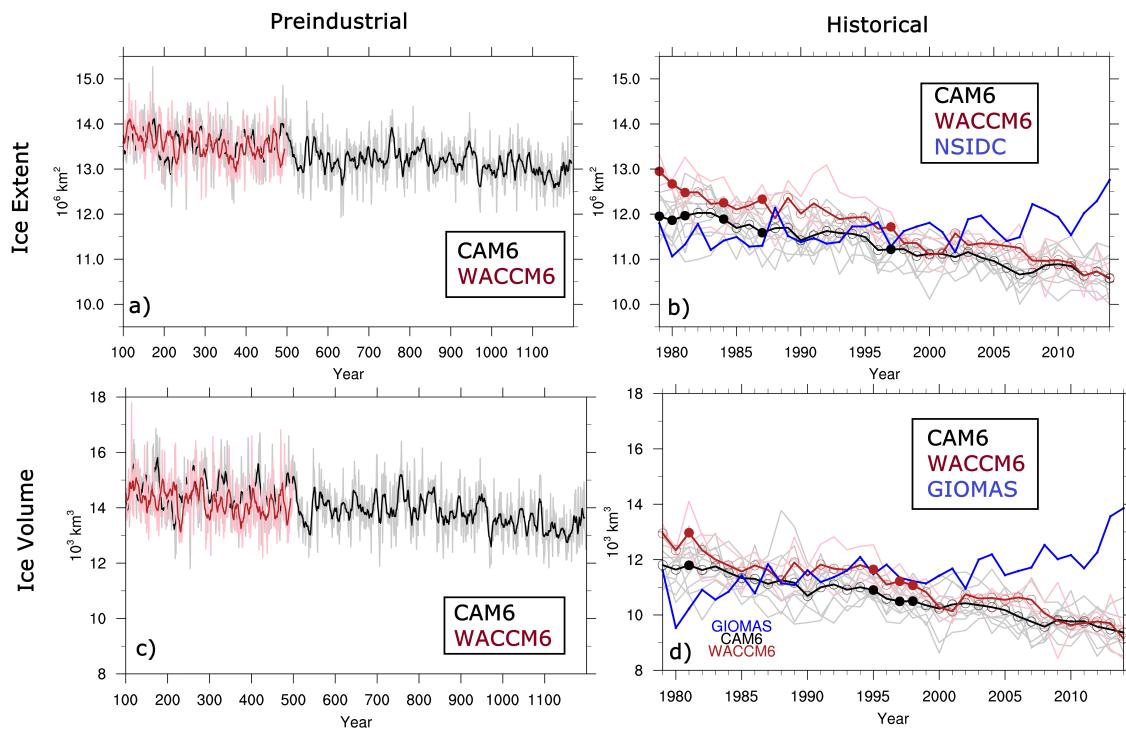
734 95% significance level. In (b) the NSIDC sea ice index (Fetterer et al., 2017) is shown in
735 blue. In (d) the reference sea ice volume for PIOMAS (Schweiger et al., 2011) and
736 GIOMAS (Zhang and Rothrock, 2003) are shown in light blue and dark blue
737 respectively, and (e) includes both the PIOMAS reference sea ice volume and the Ice Age
738 ice volume (Liu et al. 2019) in orange.

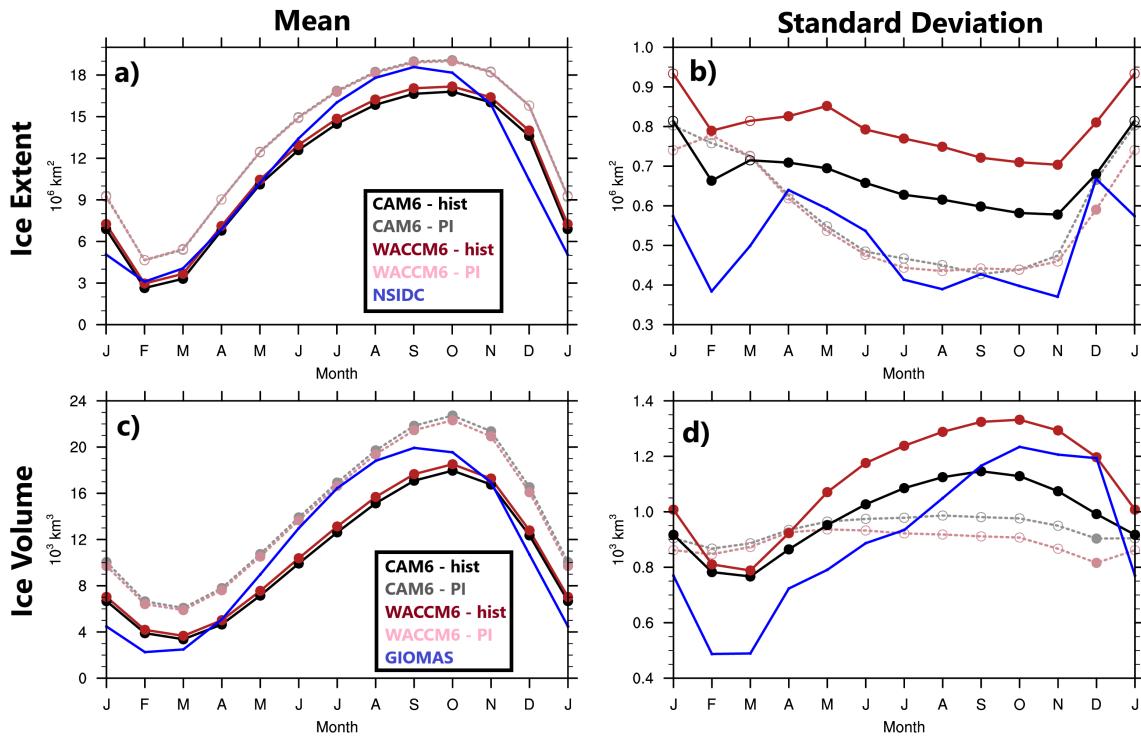

739

740 **Figure 2:** Northern Hemispheric annual cycle of (a), (b) sea ice extent (10^6 km^2) and (c),
 741 (d) sea ice volume (10^3 km^3) for the (a),(c) mean and (b),(d) standard deviation. The PI
 742 statistics are calculated over years 100-500, and historical statistics are calculated for
 743 1979-2014 and all ensemble members. Large solid circles indicate months in which the
 744 CAM6 and WACCM6 ensemble means are different at the 95% significance level. In
 745 (b),(c) the NSIDC sea ice index (Fetterer et al., 2017) is shown in blue. In (c),(d) the
 746 reference sea ice volume for PIOMAS (Schweiger et al., 2011) and GIOMAS (Zhang and
 747 Rothrock, 2003) are shown in light blue and dark blue respectively.

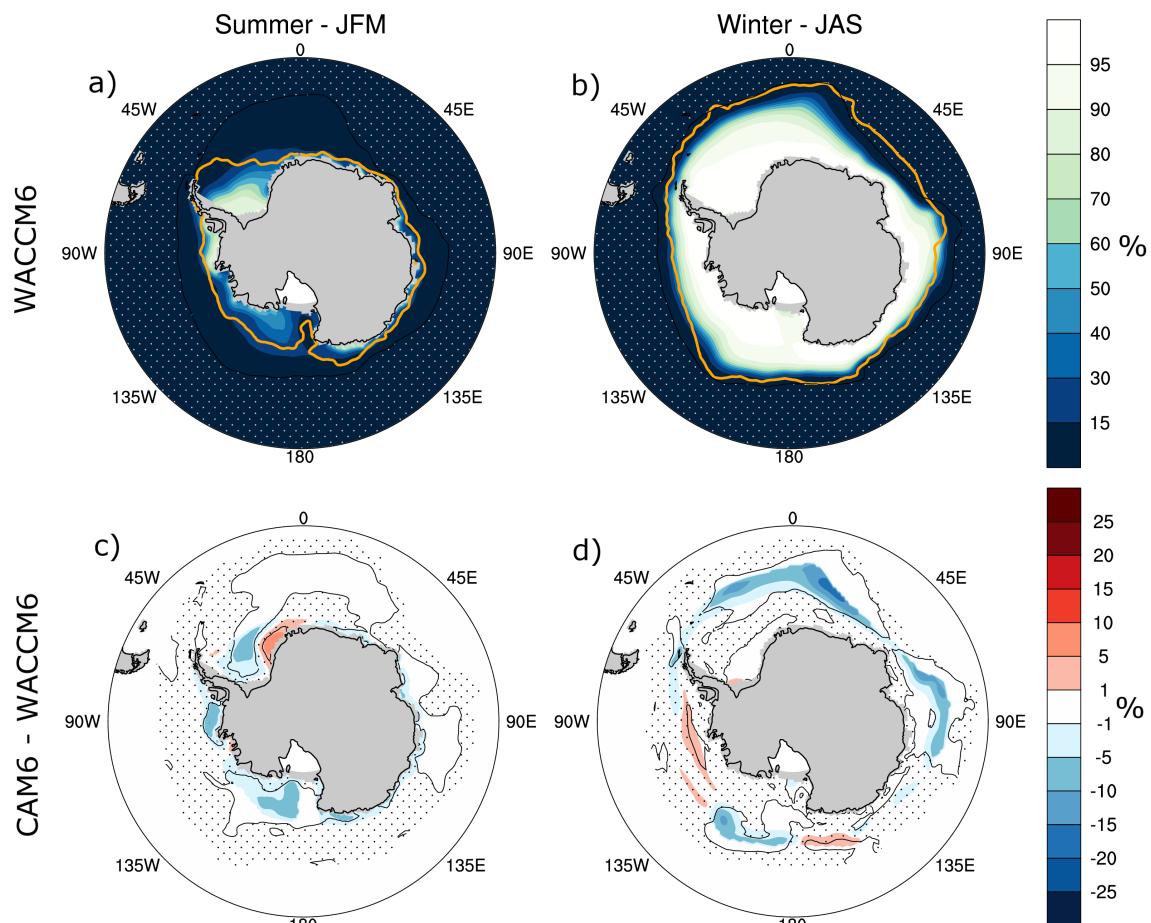

748

749 **Figure 3:** Arctic historical (1979-2014) ensemble mean sea ice concentration (%) for
 750 (a),(b) WACCM6 and (c),(d) difference (CAM6-WACCM6) in winter (January-March)
 751 and summer (July-September) months. In (a),(b) stippling indicates grid points where
 752 WACCM6 has 0% sea ice concentration, and in (c),(d) stippling indicates locations
 753 where the CAM6 and WACCM6 values are not different at the 95% significance level.
 754 The observed sea ice edge (Comiso, 2000; concentration = 15%) is shown in orange on
 755 (a) and (b).

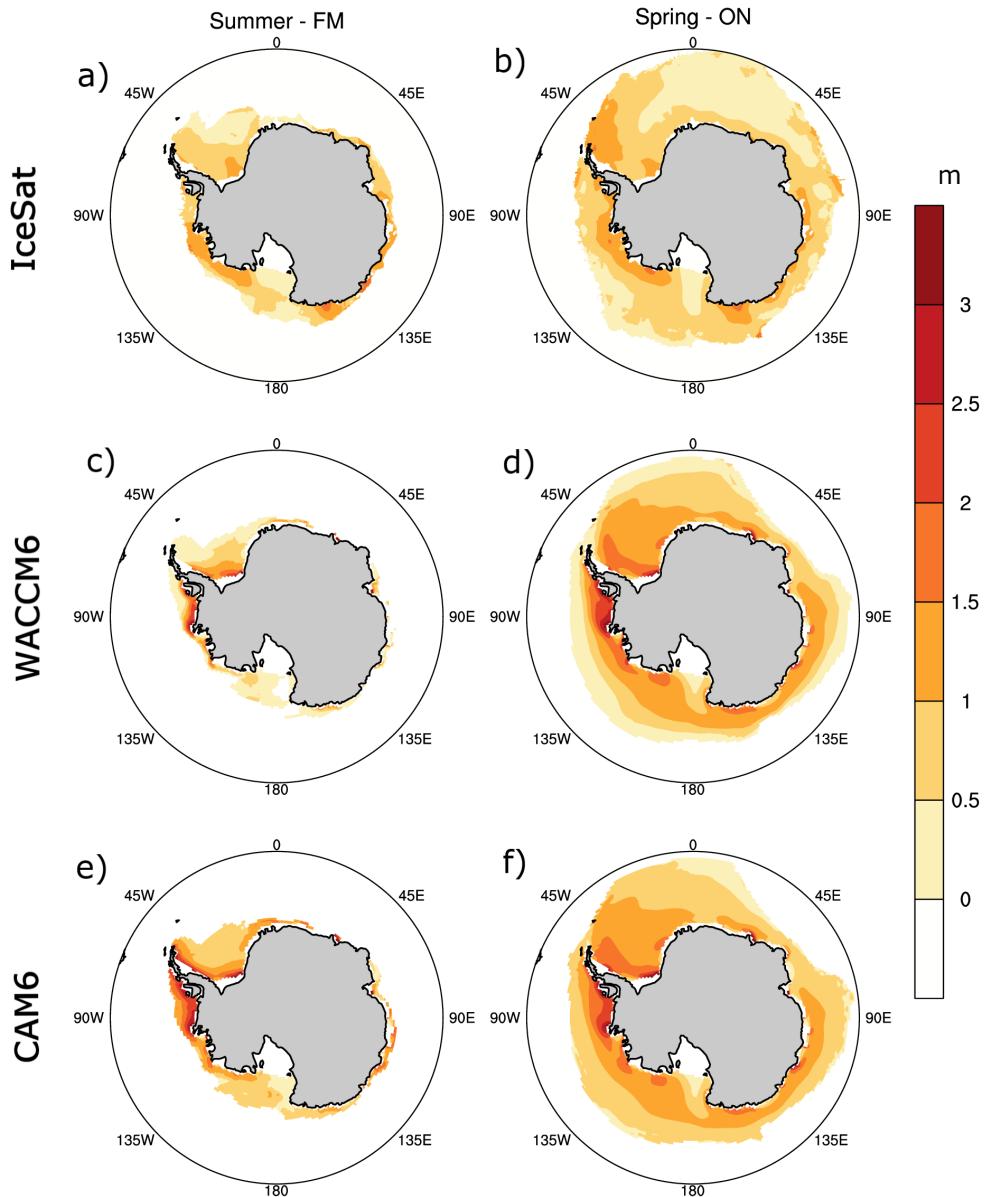

756


757 **Figure 4:** Histogram of the sea ice thickness (m) distribution in the Arctic Ocean for (a)
 758 spring (February-March) and (b) autumn (October-November) normalized by the fraction
 759 of the total ice area covered. The ICESat data (Kwok et al. 2009; blue) are averaged over
 760 autumn 2004-2008 and spring 2003-2007, while the CAM6 (black) and WACCM6 (red)
 761 data are averaged over 2003-2008 for both spring and autumn and only over the central
 762 Arctic Ocean where ICESat data are co-located (See Figure 5).

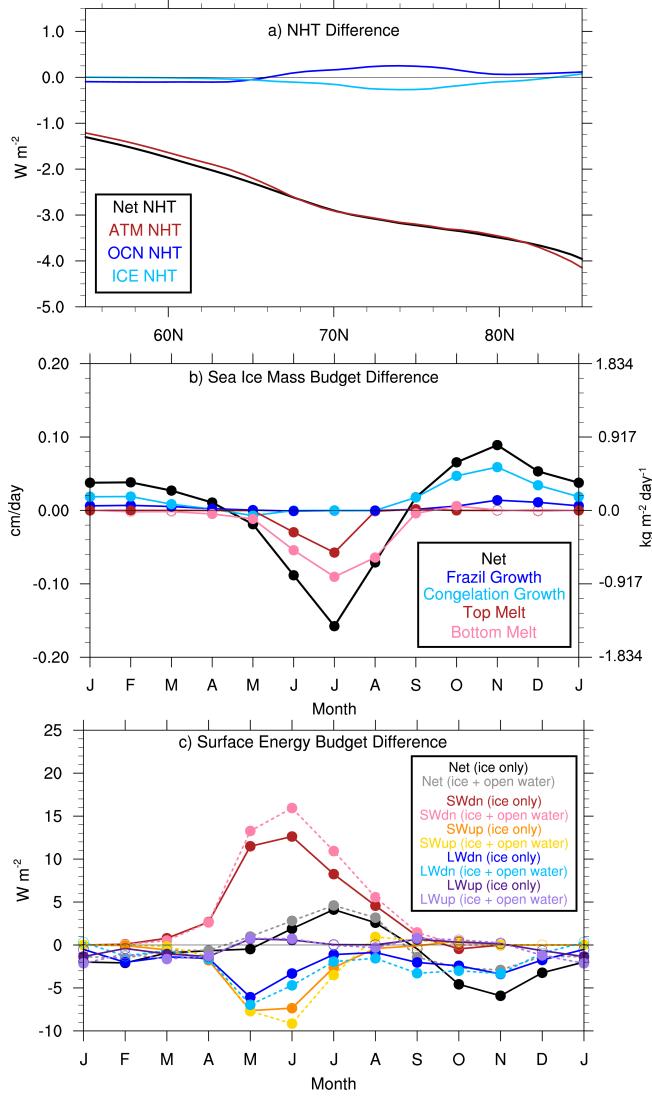
763


764 **Figure 5:** Sea ice thickness (m) from (a),(b) ICESat data (Kwok et al. 2009), (c),(d)
 765 WACCM6, and (e),(f) CAM6 for (left) spring (February-March) and (right) autumn
 766 (October-November). The ICESat data are averaged over autumn 2004-2008 and spring
 767 2003-2007, while the WACCM6 and CAM6 data are averaged over 2003-2008 for both
 768 spring and autumn. The WACCM6 and CAM6 ensemble averages of all available
 769 members are shown in panels (b)-(d) and show only the regions with co-located ICESat
 770 data.

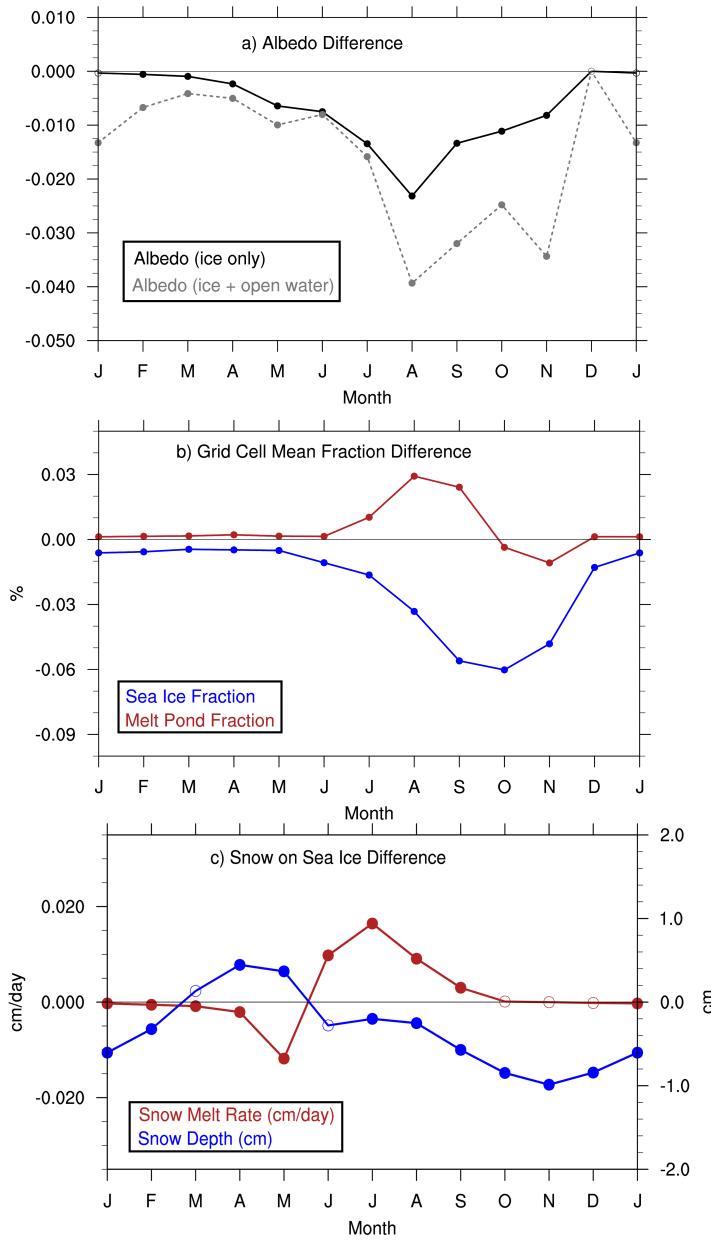
773 **Figure 6:** As in Figure 1 (a) – (d), but for the Southern Hemisphere.


774

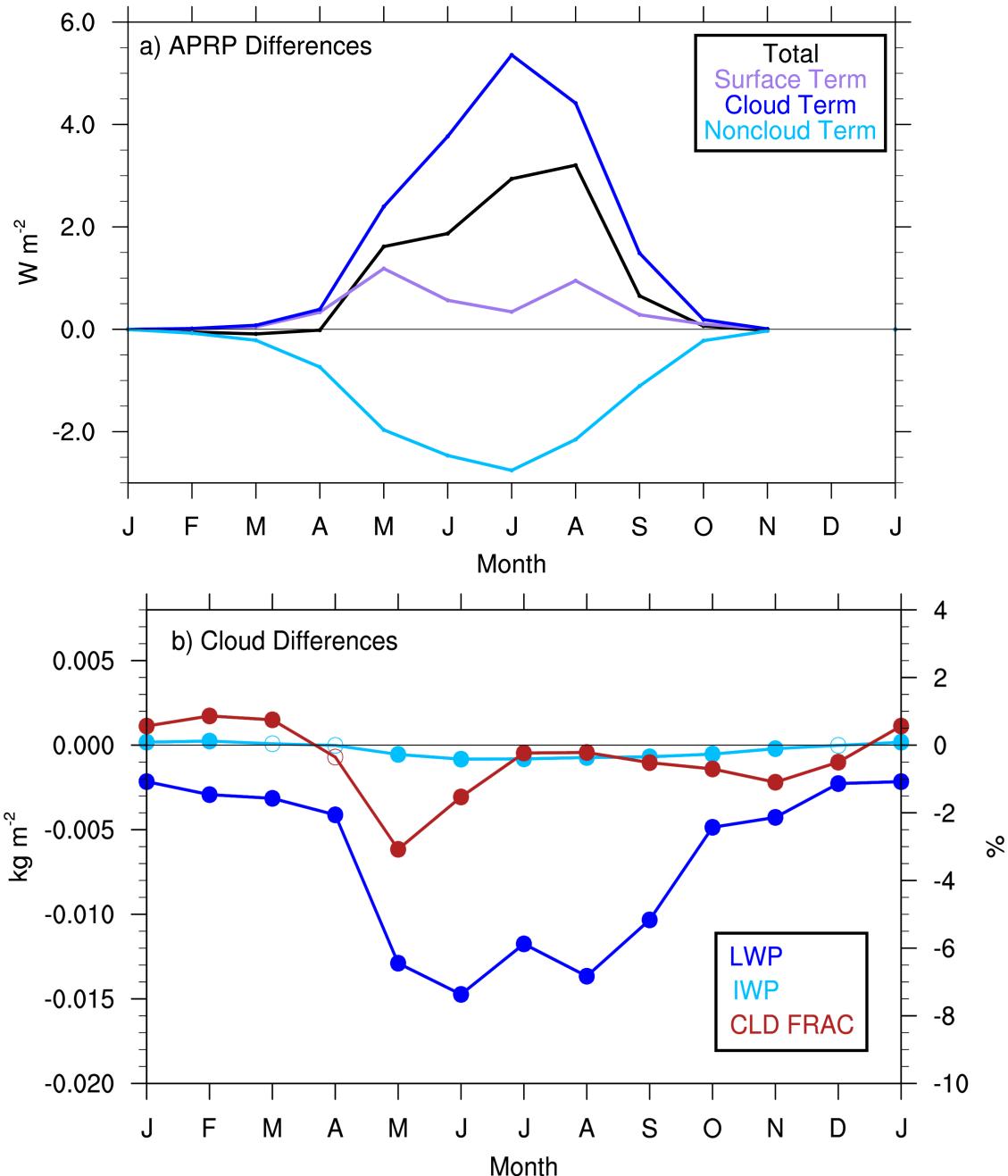
775 **Figure 7:** As in Figure 2, but for the Southern Hemisphere.


776

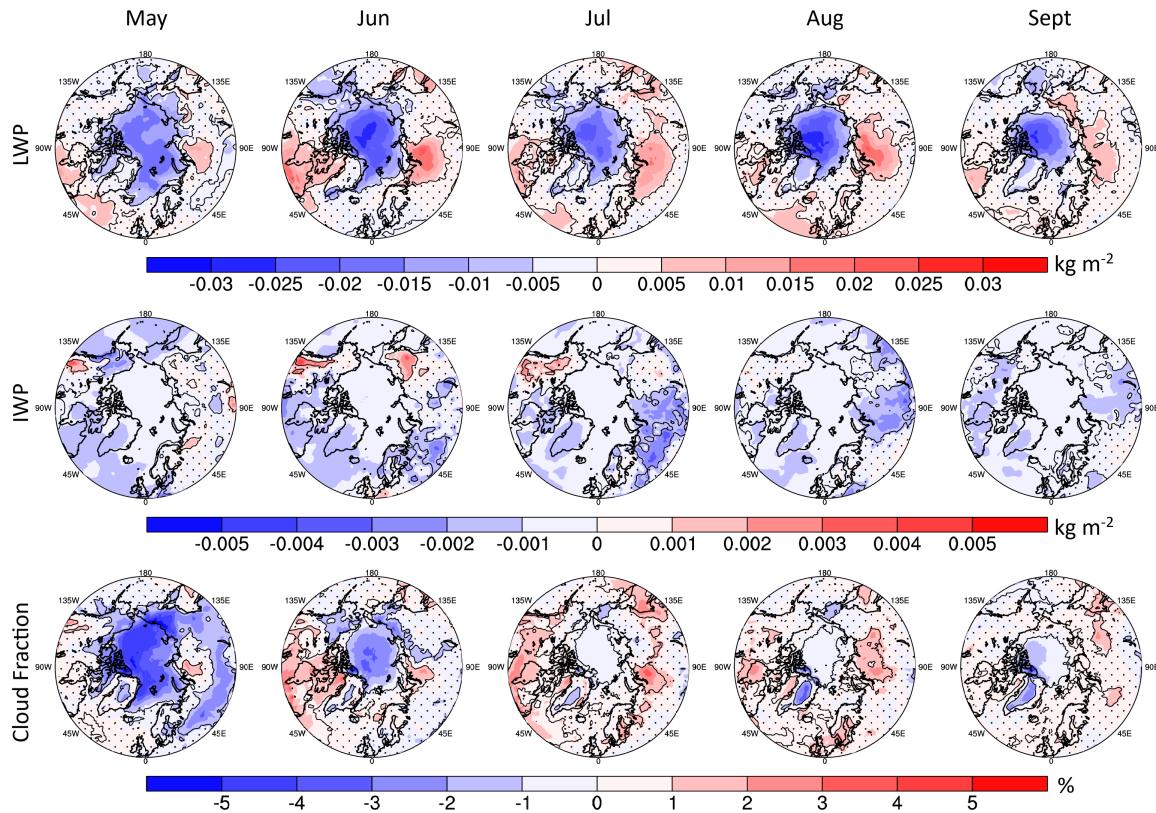
777 **Figure 8:** As in Figure 3, but for the Southern Hemisphere.


778

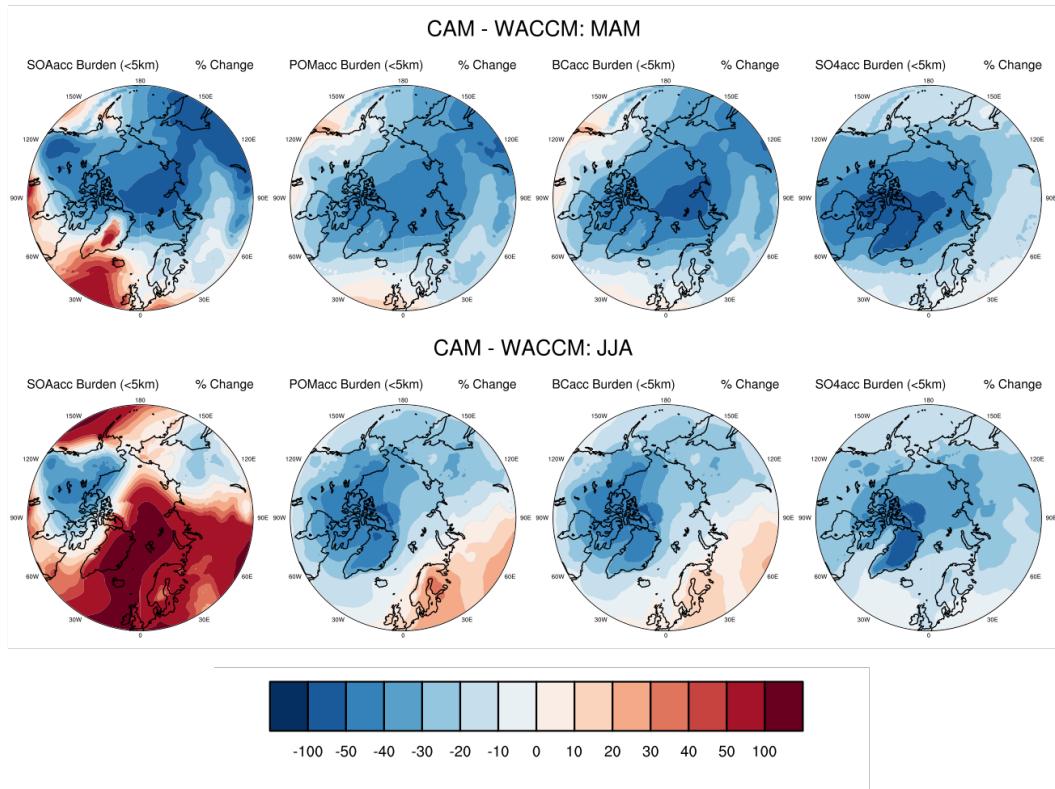
779 **Figure 9:** Sea ice thickness (m) from (a),(b) ICESat data (Kurtz and Markus 2012),
 780 (c),(d) WACCM6, and (e),(f) CAM6 for (left) summer (February-March) and (right)
 781 spring (October-November). The ICESat data are averaged over summer 2004-2008 and
 782 spring 2003-2007, while the WACCM6 and CAM6 data are averaged over 2003-2008 for
 783 both spring and summer. The WACCM6 and CAM6 ensemble averages of all available
 784 members are shown in panels (b)-(d) and show only the regions with sea ice
 785 concentration above 50% to be consistent with the ICESat data.


786

787 **Figure 10:** Difference (CAM6-WACCM6) in (a) zonal mean northward heat transport
 788 divided by the surface area north of the given latitude (W m^{-2}) and component terms, (b)
 789 net sea ice mass budget (cm day^{-1} left axis; $\text{kg m}^{-2} \text{ day}^{-1}$ right axis) and component terms,
 790 and (c) net surface energy budget (W m^{-2}) and radiative component terms over sea ice
 791 only (solid; dark colors) and over the ocean and ice surface (dashed; light colors). In
 792 (b),(c) large solid circles indicate when the CAM6 and WACCM6 values are different at
 793 the 95% significance level. The CAM6 and WACCM6 means are calculated over the PI
 794 years 100-500.


795

796 **Figure 11:** Monthly mean difference (CAM6-WACCM6) in (a) surface albedo over sea
 797 ice only (solid; black) and over the whole surface (dashed; grey), (b) fraction (%) of grid
 798 cell covered by sea ice (blue) and melt ponds (red), and (c) the melt rate for snow on sea
 799 ice (red; cm/day) and depth of snow on sea ice (blue; cm). Large solid circles indicate
 800 when the CAM6 and WACCM6 values are different at the 95% significance level. The
 801 CAM6 and WACCM6 means are calculated over the PI years 100-500.



802

803 **Figure 12:** Monthly mean difference (CAM6-WACCM6) over 70-90°N for (a) mean
 804 APRP shortwave feedback terms (W m^{-2}) and (b) cloud fraction (%) and cloud liquid
 805 water path and ice water path (kg m^{-2}). Large solid circles indicate when the CAM6 and
 806 WACCM6 values are different at the 95% significance level. The CAM6 and WACCM6
 807 means are calculated over the PI years 100-500.

810 **Figure 13.** Monthly mean difference (CAM6-WACCM6) for (top row) cloud LWP (kg
 811 m^{-2}), (middle row) cloud IWP (kg m^{-2}), and (bottom row) cloud fraction (%) for the
 812 months of May, June, July, August, and September. Stippling indicates locations where
 813 the CAM6 and WACCM6 values are not different at the 95% significance level. The
 814 CAM6 and WACCM6 means are calculated over the PI years 100-500.

815

816 **Figure 14:** Percent change in (CAM6-WACCM6) Arctic aerosol burden for (top row)
 817 spring (March-May) and (bottom row) summer (June-August). Aerosols shown are (left
 818 column) Secondary Organic Aerosols, (left-middle column) Primary Organic Matter,
 819 (right-middle column) Black Carbon, and (right column) Sulfates.

820 **References**

821 Alexander, M. A. (2004). The Atmospheric Response to Realistic Arctic Sea Ice
822 Anomalies in an AGCM during Winter. *JOURNAL OF CLIMATE*, 17, 16.
823 [https://doi.org/10.1175/1520-0442\(2004\)017<0890:TARTRA>2.0.CO;2](https://doi.org/10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2)

824 Bailey, D. A., Holland, M. M., DuVivier, A. K., Hunke, E. C., & Turner, A. K. (2020).
825 Impact of Sea Ice Thermodynamics in the CESM2 sea ice component. *Journal*
826 *of Geophysical Research: Ocean*.

827 Barnes, E. A., & Screen, J. A. (2015). The impact of Arctic warming on the midlatitude
828 jet-stream: Can it? Has it? Will it? *Wiley Interdisciplinary Reviews: Climate*
829 *Change*, 6(3), 277–286. <https://doi.org/10.1002/wcc.337>

830 Barnhart, K. R., Miller, C. R., Overeem, I., & Kay, J. E. (2015). Mapping the future
831 expansion of Arctic open water. *Nature Climate Change*, 6(3), 280–285.
832 <https://doi.org/10.1038/nclimate2848>

833 Bitz, C. M., Holland, M. M., Hunke, E. C., & Moritz, R. E. (2005). Maintenance of the
834 Sea-Ice Edge. *Journal of Climate*, 18(15), 2903–2921.
835 <https://doi.org/10.1175/JCLI3428.1>

836 Boisvert, L. N., & Stroeve, J. C. (2015). The Arctic is becoming warmer and wetter as
837 revealed by the Atmospheric Infrared Sounder. *Geophysical Research Letters*,
838 42(11), 4439–4446. <https://doi.org/10.1002/2015GL063775>

839 Comiso, J. C. (2000). Bootstrap sea ice concentrations from Nimbus-7 SSMR and
840 DMSP SSM/I-SSMIS, version 2. Boulder, Colorado USA: National Snow and Ice
841 Data Center. Digital media. Retrieved from <http://nsidc.org/data/nsidc-0079>

842 Danabasoglu, G., Lamarque, J. -F., Bacmeister, J., Bailey, D. A., DuVivier, A. K.,
843 Edwards, J., et al. (2020). The Community Earth System Model Version 2
844 (CESM2). *Journal of Advances in Modeling Earth Systems*, 12(2).
845 <https://doi.org/10.1029/2019MS001916>

846 Danabasoglu, Gokhan, Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W.
847 G., et al. (2012). The CCSM4 Ocean Component. *Journal of Climate*, 25(5),
848 1361–1389. <https://doi.org/10.1175/JCLI-D-11-00091.1>

849 DeRepentigny, P., Tremblay, L. B., Newton, R., & Pfirman, S. (2016). Patterns of Sea
850 Ice Retreat in the Transition to a Seasonally Ice-Free Arctic. *Journal of
851 Climate*, 29(19), 6993–7008. <https://doi.org/10.1175/JCLI-D-15-0733.1>

852 DeRepentigny, P., Jahn, A., Holland, M. M., & Smith, A. (2020). Arctic Sea Ice in Two
853 Configurations of the Community Earth System Model Version 2 (CESM2)
854 During the 20th and 21st Centuries. *Journal of Geophysical Research: Oceans*.
855 <https://doi.org/10.1029/2020JC016133>

856 Deser, C., Sun, L., Tomas, R. A., & Screen, J. (2016). Does ocean coupling matter for
857 the northern extratropical response to projected Arctic sea ice loss?
858 *Geophysical Research Letters*, 43(5), 2149–2157.
859 <https://doi.org/10.1002/2016GL067792>

860 Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. H., & Windnagel, A. K. (2017). Sea
861 Ice Index, Version 3. *NSIDC: National Snow and Ice Data Center. Boulder*,
862 *Colorado USA*. <https://doi.org/10.7265/N5K072F8>

863 Gettelman, A., Mills, M. J., Kinnison, D., Garcia, R., Smith, A., Marsh, D., et al. (2019).
864 The Whole Atmosphere Community Climate Model Version 6 (WACCM6).
865 *Journal of Geophysical Research-Atmospheres*.
866 Goosse, H., Arzel, O., Bitz, C. M., de Montety, A., & Vancoppenolle, M. (2009).
867 Increased variability of the Arctic summer ice extent in a warmer climate.
868 *Geophysical Research Letters*, 36(23), L23702.
869 <https://doi.org/10.1029/2009GL040546>
870 Goosse, Hugues, Kay, J. E., Armour, K. C., Bodas-Salcedo, A., Chepfer, H., Docquier, D.,
871 et al. (2018). Quantifying climate feedbacks in polar regions. *Nature Communications*, 9(1), 1919. <https://doi.org/10.1038/s41467-018-04173-0>
872 Hobbs, W. R., Bindoff, N. L., & Raphael, M. N. (2015). New perspectives on observed
873 and simulated Antarctic Sea ice extent trends using optimal fingerprinting
874 techniques. *Journal of Climate*, 28(4), 1543–1560.
875 Holland, M. M., Bitz, C. M., Hunke, E. C., Lipscomb, W. H., & Schramm, J. L. (2006).
876 Influence of the Sea Ice Thickness Distribution on Polar Climate in CCSM3.
877 *Journal of Climate*, 19(11), 2398–2414. <https://doi.org/10.1175/JCLI3751.1>
878 Holland, M. M., Bitz, C. M., Tremblay, L.-B., & Bailey, D. A. (2008). The Role of Natural
879 Versus Forced Change in Future Rapid Summer Arctic Ice Loss. In E. T.
880 DeWeaver, C. M. Bitz, & L.-B. Tremblay (Eds.), *Geophysical Monograph Series*
881 (pp. 133–150). Washington, D.C.: American Geophysical Union.
882 <https://doi.org/10.1029/180GM10>
883 Huang, Y., Dong, X., Bailey, D. A., Holland, M. M., Xi, B., DuVivier, A. K., et al. (2019).
884 Thicker clouds and accelerated Arctic sea ice decline: The atmosphere-sea ice

886 interactions in spring. *Geophysical Research Letters*, 2019GL082791.

887 <https://doi.org/10.1029/2019GL082791>

888 Hunke, E. C., Hebert, D. A., & Lecomte, O. (2013). Level-ice melt ponds in the Los

889 Alamos sea ice model, CICE. *Ocean Modelling*, 71, 26–42.

890 <https://doi.org/10.1016/j.ocemod.2012.11.008>

891 Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., & Elliott, S. (2015). CICE: the

892 Los Alamos Sea Ice Model Documentation and Software User's Manual

893 Version 5.1 LA-CC-012. Retrieved from <http://oceans11.lanl.gov/trac/CICE/wiki/SourceCode>

894 Hunter, C. M., Caswell, H., Runge, M. C., Regehr, E. V., Amstrup, S. C., & Stirling, I.

895 (2010). Climate change threatens polar bear populations: a stochastic

896 demographic analysis, 91(10), 15.

897 Jahn, A., Sterling, K., Holland, M. M., Kay, J. E., Maslanik, J. A., Bitz, C. M., et al. (2012).

898 Late-Twentieth-Century Simulation of Arctic Sea Ice and Ocean Properties in

899 the CCSM4. *Journal of Climate*, 25(5), 1431–1452.

900 <https://doi.org/10.1175/JCLI-D-11-00201.1>

901 Jahn, A., Kay, J. E., Holland, M. M., & Hall, D. M. (2016). How predictable is the timing

902 of a summer ice-free Arctic? *Geophysical Research Letters*, 43(17), 9113–

903 9120. <https://doi.org/10.1002/2016GL070067>

904 Jenouvrier, S., Holland, M., Stroeve, J., Serreze, M., Barbraud, C., Weimerskirch, H., &

905 Caswell, H. (2014). Projected continent-wide declines of the emperor

906 penguin under climate change. *NATURE CLIMATE CHANGE*, 4, 4.

908 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996).
909 The NCEP/NCAR 40-Year Reanalysis Project. *Bulletin of the American*
910 *Meteorological Society*, 77(3), 437–471. [https://doi.org/10.1175/1520-0477\(1996\)077<0437:TNYRP>2.0.CO;2](https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2)

911
912 Kay, J. E., & Gettelman, A. (2009). Cloud influence on and response to seasonal Arctic
913 sea ice loss. *Journal of Geophysical Research*, 114(D18).
914 <https://doi.org/10.1029/2009JD011773>

915 Kay, J. E., Holland, M. M., & Jahn, A. (2011). Inter-annual to multi-decadal Arctic sea
916 ice extent trends in a warming world. *Geophysical Research Letters*, 38(15).
917 <https://doi.org/10.1029/2011GL048008>

918 Kay, J. E., Raeder, K., Gettelman, A., & Anderson, J. (2011). The Boundary Layer
919 Response to Recent Arctic Sea Ice Loss and Implications for High-Latitude
920 Climate Feedbacks. *Journal of Climate*, 24(2), 428–447.
921 <https://doi.org/10.1175/2010JCLI3651.1>

922 Kay, J. E., Holland, M. M., Bitz, C. M., Blanchard-Wrigglesworth, E., Gettelman, A.,
923 Conley, A., & Bailey, D. (2012). The Influence of Local Feedbacks and
924 Northward Heat Transport on the Equilibrium Arctic Climate Response to
925 Increased Greenhouse Gas Forcing. *Journal of Climate*, 25(16), 5433–5450.
926 <https://doi.org/10.1175/JCLI-D-11-00622.1>

927 Kovacs, K. M., Lydersen, C., Overland, J. E., & Moore, S. E. (2011). Impacts of changing
928 sea-ice conditions on Arctic marine mammals, 14.

929 Kurtz, N. T., & Markus, T. (2012). Satellite observations of Antarctic sea ice thickness
930 and volume. *Journal of Geophysical Research: Oceans*, 117(C8), n/a-n/a.
931 <https://doi.org/10.1029/2012JC008141>

932 Kwok, R. (2018). Arctic sea ice thickness, volume, and multiyear ice coverage: losses
933 and coupled variability (1958–2018). *Environmental Research Letters*,
934 13(10), 105005. <https://doi.org/10.1088/1748-9326/aae3ec>

935 Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor, I., Zwally, H. J., & Yi, D. (2009).
936 Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008.
937 *Journal of Geophysical Research: Oceans*, 114(C7), C07005.
938 <https://doi.org/10.1029/2009JC005312>

939 Labe, Z., Magnusdottir, G., & Stern, H. (2018). Variability of Arctic Sea Ice Thickness
940 Using PIOMAS and the CESM Large Ensemble. *Journal of Climate*, 31(8),
941 3233–3247. <https://doi.org/10.1175/JCLI-D-17-0436.1>

942 Landrum, L., Holland, M. M., Schneider, D. P., & Hunke, E. (2012). Antarctic Sea Ice
943 Climatology, Variability, and Late Twentieth-Century Change in CCSM4.
944 *Journal of Climate*, 25(14), 4817–4838. <https://doi.org/10.1175/JCLI-D-11-00289.1>

946 Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., et al.
947 (2013). CryoSat-2 estimates of Arctic sea ice thickness and volume.
948 *Geophysical Research Letters*, 40(4), 732–737.
949 <https://doi.org/10.1002/grl.50193>

950 Lindsay, R., & Schweiger, A. (2015). Arctic sea ice thickness loss determined using
951 subsurface, aircraft, and satellite observations. *The Cryosphere*, 9(1), 269–
952 283. <https://doi.org/10.5194/tc-9-269-2015>

953 Liu, Y., Key, J. R., Wang, X., & Tschudi, M. (2020). Multidecadal Arctic sea ice
954 thickness and volume derived from ice age. *The Cryosphere*, 14(4), 1325–
955 1345. <https://doi.org/10.5194/tc-14-1325-2020>

956 Mahlstein, I., Gent, P. R., & Solomon, S. (2013). Historical Antarctic mean sea ice area,
957 sea ice trends, and winds in CMIP5 simulations. *Journal of Geophysical
958 Research: Atmospheres*, 118(11), 5105–5110.
959 <https://doi.org/10.1002/jgrd.50443>

960 Maykut, G. A. (1982). Large-scale heat exchange and ice production in the central
961 Arctic. *Journal of Geophysical Research*, 87(C10), 7971.
962 <https://doi.org/10.1029/JC087iC10p07971>

963 McIlhattan, E. A., Kay, J. E., & L'Ecuyer, T. S. (2020). Arctic Clouds and Precipitation in
964 the Community Earth System Model Version 2. *Journal of Geophysical
965 Research: Atmospheres*.

966 Meehl, G. A., Arblaster, J. M., Chung, C. T. Y., Holland, M. M., DuVivier, A., Thompson,
967 L., et al. (2019). Sustained ocean changes contributed to sudden Antarctic sea
968 ice retreat in late 2016. *Nature Communications*, 10(1).
969 <https://doi.org/10.1038/s41467-018-07865-9>

970 Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., et
971 al. (2019). Chapter 3: Polar Regions. In H. O. Portner, D. C. Roberts, V.

972 Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, et al. (Eds.), *IPCC Special*
973 *Report on the Ocean and Cryosphere in a Changing Climate.*

974 Mills, M. J., Richter, J. H., Tilmes, S., Kravitz, B., MacMartin, D. G., Glanville, A. A., et al.
975 (2017). Radiative and Chemical Response to Interactive Stratospheric Sulfate
976 Aerosols in Fully Coupled CESM1(WACCM). *Journal of Geophysical Research: Atmospheres*, 122(23), 13,061-13,078.
977
978 <https://doi.org/10.1002/2017JD027006>

979 Moon, T. A., Overeem, I., Druckenmiller, M., Holland, M., Huntington, H., Kling, G., et
980 al. (2019). The Expanding Footprint of Rapid Arctic Change. *Earth's Future*,
981 7(3), 212–218. <https://doi.org/10.1029/2018EF001088>

982 Morrison, A., Kay, J. E., Chepfer, H., Guzman, R., & Yettella, V. (2018). Isolating the
983 Liquid Cloud Response to Recent Arctic Sea Ice Variability Using Spaceborne
984 Lidar Observations. *Journal of Geophysical Research: Atmospheres*, 123(1),
985 473–490. <https://doi.org/10.1002/2017JD027248>

986 Morrison, A., Kay, J. E., Frey, W. R., Chepfer, H., & Guzman, R. (2019). Cloud Response
987 to Arctic Sea Ice Loss and Implications for Future Feedbacks in the CESM1
988 Climate Model. *Journal of Geophysical Research: Atmospheres*.
989
990 <https://doi.org/10.1029/2018JD029142>

991 Notz, D., Jahn, A., Holland, M., Hunke, E., Massonnet, F., Stroeve, J., et al. (2016). The
992 CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice
993 through climate-model simulations. *Geoscientific Model Development*, 9(9),
3427–3446. <https://doi.org/10.5194/gmd-9-3427-2016>

994 Parkinson, C. L. (2019). A 40-y record reveals gradual Antarctic sea ice increases
995 followed by decreases at rates far exceeding the rates seen in the Arctic.
996 *Proceedings of the National Academy of Sciences*, 116(29), 14414–14423.
997 <https://doi.org/10.1073/pnas.1906556116>

998 Perovich, D. K., Light, B., Eicken, H., Jones, K. F., Runciman, K., & Nghiem, S. V. (2007).
999 Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005:
1000 Attribution and role in the ice-albedo feedback. *Geophysical Research Letters*,
1001 34(19), L19505. <https://doi.org/10.1029/2007GL031480>

1002 Pithan, F., & Mauritsen, T. (2014). Arctic amplification dominated by temperature
1003 feedbacks in contemporary climate models. *Nature Geoscience*, 7(3), 181–
1004 184. <https://doi.org/10.1038/ngeo2071>

1005 Polvani, L. M., & Smith, K. L. (2013). Can natural variability explain observed
1006 Antarctic sea ice trends? New modeling evidence from CMIP5. *Geophysical
1007 Research Letters*, 40(12), 3195–3199. <https://doi.org/10.1002/grl.50578>

1008 Raphael, M. N., Handcock, M. S., Holland, M. M., & Landrum, L. L. (2020). An
1009 assessment of the temporal variability in the annual cycle of daily Antarctic
1010 sea ice in the NCAR Community Earth System Model, Version 2: A
1011 comparison of the historical runs with observations. *Journal of Geophysical
1012 Research: Oceans*.

1013 Richter-Menge, J. A., Osborne, E., Druckenmiller, M., & Jeffries, M. O. (Eds.). (2019).
1014 The Arctic [in “State of the Climate in 2018”]. *Bulletin of the American
1015 Meteorological Society*, 100(9), S141–S168.

1016 Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., & Kwok, R. (2011).
1017 Uncertainty in modeled Arctic sea ice volume. *Journal of Geophysical*
1018 *Research*, 116, C00D06. <https://doi.org/10.1029/2011JC007084>

1019 Shu, Q., Song, Z., & Qiao, F. (2015). Assessment of sea ice simulations in the CMIP5
1020 models. *The Cryosphere*, 9(1), 399–409. <https://doi.org/10.5194/tc-9-399-2015>

1021 Shupe, M. D., & Intrieri, J. M. (2004). Cloud radiative forcing of the Arctic surface:
1022 The influence of cloud properties, surface albedo, and solar zenith angle.
1023 *Journal of Climate*, 17(3), 616–628. [http://dx.doi.org/10.1175/1520-0442\(2004\)017<0616:CRFOTA>2.0.CO;2](http://dx.doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2)

1026 Singh, H. K. A., Landrum, L., & Holland, M. M. (2020). An Overview of Antarctic Sea
1027 Ice in the CESM2: Analysis of the Seasonal Cycle, Predictability, and
1028 Atmosphere-Ocean-Ice Interactions. *JAMES*.

1029 Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., et al. (2010).
1030 The Parallel Ocean Program (POP) Reference Manual Ocean Component of
1031 the Community Climate System Model (CCSM) and Community Earth System
1032 Model (CESM). *Rep. LAUR-01853*, 141. Retrieved from
1033 <https://ccsm.ucar.edu/models/cesm1.2/pop2/doc/sci/POPRefManual.pdf>

1034 Stroeve, J., Barrett, A., Serreze, M., & Schweiger, A. (2014). Using records from
1035 submarine, aircraft and satellites to evaluate climate model simulations of
1036 Arctic sea ice thickness. *The Cryosphere*, 8(5), 1839–1854.
1037 <https://doi.org/10.5194/tc-8-1839-2014>

1038 Stroeve, Julienne, & Notz, D. (2018). Changing state of Arctic sea ice across all
1039 seasons. *Environmental Research Letters*, 13(10), 103001.
1040 <https://doi.org/10.1088/1748-9326/aade56>

1041 Stuecker, M. F., Bitz, C. M., & Armour, K. C. (2017). Conditions leading to the
1042 unprecedented low Antarctic sea ice extent during the 2016 austral spring
1043 season. *Geophysical Research Letters*.
1044 <https://doi.org/10.1002/2017GL074691>

1045 Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E., & Jahn, A. (2015). Influence of internal
1046 variability on Arctic sea-ice trends. *Nature Climate Change*, 5(2), 86–89.
1047 <https://doi.org/10.1038/nclimate2483>

1048 Taylor, K. E., Crucifix, M., Braconnot, P., Hewitt, C. D., Doutriaux, C., Broccoli, A. J., et
1049 al. (2007). Estimating Shortwave Radiative Forcing and Response in Climate
1050 Models. *Journal of Climate*, 20(11), 2530–2543.
1051 <https://doi.org/10.1175/JCLI4143.1>

1052 Tilmes, S., Hodzic, A., Emmons, L. K., Mills, M. J., Gettelman, A., Kinnison, D. E., et al.
1053 (2019). Climate Forcing and Trends of Organic Aerosols in the Community
1054 Earth System Model (CESM2). *Journal of Advances in Modeling Earth Systems*,
1055 11(12), 4323–4351. <https://doi.org/10.1029/2019MS001827>

1056 Tschudi, M. A., Meier, W. N., Stewart, J. S., Fowler, C., & Maslanik, J. (2019). EASE-Grid
1057 Sea Ice Age, Version 4. Retrieved from
1058 <https://doi.org/10.5067/UTAV7490FEPB>

1059 Turner, A. K., & Hunke, E. C. (2015). Impacts of a mushy-layer thermodynamic
1060 approach in global sea-ice simulations using the CICE sea-ice model. *Journal*

1061 *of Geophysical Research: Oceans*, 120(2), 1253–1275.

1062 <https://doi.org/10.1002/2014JC010358>

1063 Turner, J., Bracegirdle, T. J., Phillips, T., Marshall, G. J., & Hosking, J. S. (2013). An
1064 Initial Assessment of Antarctic Sea Ice Extent in the CMIP5 Models. *Journal of*
1065 *Climate*, 26(5), 1473–1484. <https://doi.org/10.1175/JCLI-D-12-00068.1>

1066 Turner, J., Phillips, T., Marshall, G. J., Hosking, J. S., Pope, J. O., Bracegirdle, T. J., & Deb,
1067 P. (2017). Unprecedented springtime retreat of Antarctic sea ice in 2016: The
1068 2016 Antarctic Sea Ice Retreat. *Geophysical Research Letters*, 44(13), 6868–
1069 6875. <https://doi.org/10.1002/2017GL073656>

1070 Wang, Z., Turner, J., Wu, Y., & Liu, C. (2019). Rapid Decline of Total Antarctic Sea Ice
1071 Extent during 2014–16 Controlled by Wind-Driven Sea Ice Drift. *Journal of*
1072 *Climate*, 32(17), 5381–5395. <https://doi.org/10.1175/JCLI-D-18-0635.1>

1073 West, A., Collins, M., Blockley, E., Ridley, J., & Bodas-Salcedo, A. (2019). Induced
1074 surface fluxes: a new framework for attributing Arctic sea ice volume balance
1075 biases to specific model errors. *The Cryosphere*, 13(7), 2001–2022.
1076 <https://doi.org/10.5194/tc-13-2001-2019>

1077 Zhang, J., & Rothrock, D. A. (2003). Modeling Global Sea Ice with a Thickness and
1078 Enthalpy Distribution Model in Generalized Curvilinear Coordinates.
1079 *MONTHLY WEATHER REVIEW*, 131, 17.

1080