Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Exact Quantitative Probabilistic Model Checking Through
Rational Search

Umang Mathur - Matthew S. Bauer -
Rohit Chadha - A. Prasad Sistla - Mahesh
Viswanathan

Received: date / Accepted: date

Abstract Model checking systems formalized using probabilistic models such as
discrete time Markov chains (DTMCs) and Markov decision processes (MDPs) can
be reduced to computing constrained reachability properties. Linear programming
methods to compute reachability probabilities for DTMCs and MDPs do not scale
to large models. Thus, model checking tools often employ iterative methods to
approximate reachability probabilities. These approximations can be far from the
actual probabilities, leading to inaccurate model checking results. On the other
hand, specialized techniques employed in existing state-of-the-art exact quantita-
tive model checkers, don’t scale as well as their iterative counterparts. In this work,
we present a new model checking algorithm that improves the approximate results
obtained by scalable iterative techniques to compute exact reachability probabili-
ties. Our techniques are implemented as an extension of the PRISM model checker
and are evaluated against other exact quantitative model checking engines.

We gratefully acknowledge the support of the following grants—Umang Mathur was par-
tially supported by a Google PhD Fellowship; Rohit Chadha was partially supported by
NSF CNS-1553548 and NSF CCF-1900924; A. Prasad Sistla was partially supported by NSF
CNS-1314485, NSF CCF-1319754, NSF CCF-1564296 and NSF CCF-1901069; and Mahesh
Viswanathan was partially supported by NSF CCF-1901069.

Umang Mathur - Mahesh Viswanathan
University of Illinois, Urbana Champaign
E-mail: {umathur3,vmahesh}@illinois.edu

Matthew S. Bauer
Galois Inc.
E-mail: mbauer@galois.com

Rohit Chadha
University of Missouri
E-mail: chadhar@missouri.edu

A. Prasad Sistla
University of Illinois, Chicago
E-mail: sistla@cs.uic.edu

2 Umang Mathur et al.

1 Introduction

Probabilistic models such as discrete time Markov chains (DTMCs) and Markov
decision processes (MDPs) are often used to describe systems in many applica-
tion areas such as distributed systems [25, 50], hardware communication proto-
cols [26], reliability engineering in circuits [15, 35, 46, 47], dynamic power man-
agement [14, 49], networking [42, 41] and security [20]. Probabilistic transitions
in these models are used to capture random faults, the uncertainty of the envi-
ronment, and explicit randomization used in algorithms. Analyzing properties of
these probabilistic models is typically achieved through Probabilistic Computation
Tree Logic (PCTL) model checking [51], wherein, a desired property of the model
is specified as a PCTL formula, and the validity of such a formula is evaluated
against the system in question.

PCTL is a quantitative extension of the temporal logic Computation Tree Logic
(CTL) used to describe how a system evolves over time. For example, a PCTL
formula v can be used to specify the property that almost surely no execution of
a probabilistic program leads to a state with a deadlock. Given xe {<, <, >, >},
the formula Pyyp[t)] expresses the property that the measure of computation paths
satisfying v is xp. For a DTMC or MDP M and a PCTL formula ¢, the PCTL
model checking procedure recursively computes the set of states of M that satisfy
subformulas of ¢. Each recursive step, in turn, reduces to constrained quantitative
reachability, wherein, given a set of good states G and a set of target states T,
the goal is to compute the measure of the paths that reach T while remaining
in G. If the model is decorated with costs or rewards, one may also be interested
in computing the expected cost/reward of reaching T. It is well known that the
constrained quantitative reachability problem for DTMCs and MDPs can be solved
in polynomial time by a reduction to linear programming [10, 51].

Despite low asymptotic complexity, linear programming, unfortunately, doesn’t
scale to large models and is rarely used to solve the constrained quantitative reach-
ability problem in practice. Instead, probabilistic model checkers [44, 23, 38, 32,
22, 39], typically compute approzimations to the exact reachability probabilities
through an iterative process. The most prevalent iterative technique is value iter-
ation, where exact reachability probabilities may only be approached in the limit.
For completion in a finite number of steps, it is common practice for model checking
tools to terminate value iteration based on various heuristics, for example, when
the difference between the computed reachability probabilities of successive itera-
tions is “small”. This approximation step may lead to unsound results [11, 31, 54],
particularly in systems where high magnitude changes in value iteration are pre-
ceded by periods of stability that cause iteration to terminate prematurely.

Another iterative technique for computing constrained quantitative reachabil-
ity is interval iteration [31, 17, 11, 53]. Aimed at addressing the shortcomings of
value iteration, interval iteration utilizes two simultaneous value iteration proce-
dures converging to the exact probability values from above and below. While,
this allows one to bound the error present in the approximation, the exact so-
lution cannot be obtained from such an interval bound. Further, state-of-the-art
model checkers typically implement these iterative procedures using floating-point
numbers and finite-precision arithmetic. As a result, both iterative techniques are
susceptible to overflows in floating-point calculations. The inherent imprecision in
the approximate answers, combined with the errors introduced from finite preci-

Exact Quantitative Probabilistic Model Checking Through Rational Search 3

sion arithmetic can be further compounded by the presence of nested probability
operators in PCTL formulas when the sets of good states G and target states T
are not correctly computed in the recursive step (see Example 3 in Section 3).

Contributions. In this article, we present a new algorithm and its implementa-
tion that sharpens approximate solutions computed by fast iterative techniques, to
obtain the ezact constrained reachability probabilities. The starting point of our
approach is the observation that when the transition probabilities in the model
are rational numbers, an exact solution is also a rational number of polynomially
many bits. The second ingredient in our technique is an algorithm due to Kwek
and Mehlhorn [40], which, given a “close enough” approximation to a rational
number, finds the rational number efficiently. The rough outline of our algorithm
is as follows. We use an iterative technique (value iteration or interval iteration) to
compute an approximate solution and then apply the Kwek-Mehlhorn algorithm
to find a close candidate rational solution. Since the approximate solution that we
start with is of unknown quality, the candidate rational solution obtained may not
be the exact answer. Therefore, we check if the candidate satisfies certain necessary
and sufficient conditions that characterize the actual solution. This allows one to
confirm the correctness of the candidate rational solution. If it is not correct, the
process is repeated, starting with an approximate solution of improved precision.
Precise details of the algorithm are given in Section 5.

We have implemented this approach as an extension of the PRISM model
checker, called RATIONALSEARCH. Our tool computes exact constrained reachabil-
ity probabilities and exact expected rewards when model checking DTMCs against
PCTL specifications. Our implementation also computes min reachability proba-
bilities and max expected rewards when model checking MDPs against PCTL
specifications. For max reachability probabilities, we currently support only the
ExpricIT engine of PRISM. Evaluation of our implementation against a broad set
of examples from the PRISM benchmark suite [2] and case studies [3] shows that
our technique can be applied to a wide array of examples. In many cases, our tool
is orders of magnitude faster than the exact model checking engines implemented
in state-of-the-art tools like PRISM [44] and STORM [22].

Related Work. The work closest in spirit to ours is [30], which presents an ap-
proach to obtain exact solutions for reachability properties for MDPs and dis-
counted MDPs. The underlying idea in [30] is to interpret the scheduler obtained
for an approximate solution, as a basis for the linear program corresponding to the
verification question. By examining the optimality of the solution associated with
this basis, the exact solution can be obtained by improving the scheduler using
the Simplex algorithm. This is significantly different from our approach. In par-
ticular, for the case of DTMCs (where there is no scheduler), the approach of [30]
reduces to solving a linear program, which is known to be not scalable. Since the
implementation from [30] is not available, we could not experimentally compare it
with our approach.

Several existing tools [22, 44] implement algorithms for exact quantitative
model checking. Essentially these tools work by creating a model representation
using rational numbers and performing a state elimination computation similar to
Gauss elimination. Much of the infrastructure of this computation can be derived
from parametric model checking techniques [21, 23, 33, 34] that analyze systems

4 Umang Mathur et al.

in which portions of the model are left unspecified. These computations are in-
trinsically more complicated than those performed by approximation engines. Our
techniques avoid these expensive computations while still producing exact solu-
tions for a large class of examples.

History and Organization. An extended abstract of this article appeared in [13].
The main difference from [13] is that in [13], we had claimed that in order to
check whether a candidate solution vector represents the actual exact solution of
max/min reachability probabilities or that of max/min expected costs for MDPs,
it suffices to only check that the candidate vector is a solution to a linear program.
This happens to be incorrect for the case of max reachability probabilities and min
expected costs (see Section 4), and additional checks are required to claim that the
candidate solution vector is indeed correct (Lemmas 1 and 3). We have modified
our algorithm to reflect this. We have also updated our prototype implementation
for computing max reachability probabilities and evaluated the new version on
our benchmarks. We do not currently support the computation of min expected
costs. We have also computed the asymptotic complexity of the algorithm (see
Theorem 2). Further, the version of RATIONALSEARCH evaluated in this work ex-
tends our original prototype by integrating with interval iteration and including
several performance enhancements. Additionally, we describe the full details of our
implementation and provide a more comprehensive evaluation of the tool.

The paper is organized as follows. Section 2 discusses preliminary notations,
definitions and algorithms concerning PCTL model checking of DTMCs and MDPs.
Section 3 describes iterative model checking techniques and their shortcomings.
In Section 4, we discuss fixpoint characterizations for solutions to PCTL model
checking questions of MDPs. In Section 5 we present our exact model checking
algorithm. Sections 6 and 7 describe the implementation and evaluation of our
techniques and we conclude with Section 8.

2 Preliminaries

A common technique in the analysis of systems is to model them as state transitions
systems where states describe information about the system at a point in time and
transitions describe how the system evolves from one state to another. When this
evolution is governed by random phenomena, such state transition systems can
then be enriched to capture probabilistic behavior. The resulting model is known
as a DTMC, in which every state is mapped to a distribution over the successor
states. MDPs generalize DTMCs, in that, the distribution over the successor states
is non-deterministically chosen. Our presentation of DTMCs and MDPs follows
[52]. We begin by formalizing DTMCs and introducing the logic Probabilistic
computation tree logic (PCTL), which is used to specify properties of DTMCs.
We then discuss the model checking algorithm for DTMCs. We next formally
describe MDPs and then present PCTL semantics and model checking for MDPs.
Unless otherwise stated, all the transition probabilities in the paper are assumed
to be rational numbers. The set of rational numbers shall be denoted as Q and the
set of non-negative rational numbers as QZ°.

Exact Quantitative Probabilistic Model Checking Through Rational Search 5

2.1 Discrete time Markov chains (DTMCs)

Syntazx and semantics. A DTMC is a tuple M = (Z, A, C, L) where Z is a finite set
of states, A : Z — Dist(Z) is the probabilistic transition function that maps every
state to a probability distribution over Z, C: Z x Z — Q=" is a cost (or reward)
structure and L : Z — 227 is a labeling function that maps states to subsets of
AP, the set of atomic propositions. For each z € Z, A(2) : Z — QN [0, 1] defines
a discrete probability distribution over Z, that is, A(z)(z') > 0 for all 2’ € Z, and
> ez A(2)(2') = 1. We will henceforth denote A(z)(z') by A(z,2").

Intuitively, a DTMC M evolves as follows. If M is in state z, it transitions
to state z/ with probability A(z,2’). Formally, a finite (resp. infinite) path p
of M is a finite (resp. infinite) sequence of states zo — z1 — --- such that
A2, zi41) > 0. We write p(i) to denote the i state z; in p. For a DTMC M,
the set of all infinite paths starting from state z will be denoted by Paths,(M).
For a finite path pg, = 20 — -+ — zm, starting at state zp, we associate a mea-
sure prob, (pan) = H;’;Bl Az, zi+1)- The cylinder set of pg, is Cyl(pgn) = {p €
Paths, (M) | pan is a prefix of p} and its associated measure is prob, (Cyl(psn)) =
prob. (pfin). This measure prob, can be extended to a unique probability mea-
sure over the smallest o-algebra on Paths.,(M) that contain all cylinder sets; the
resulting probability measure will also be denoted by prob, .

Reachability Probability and Expected Cost. Let z € Z and F C Z. The probability of
reaching F from the state z is defined to be the measure prob, (Reach) where Reach
is the set of all infinite paths p such that p(0) = z and p(i) € F for some ¢ > 0. For
defining expected cost, we first define the function cost.(F) : Paths, — Q=% such
that for any p € Paths. (M), cost.(F)(p) = Zlm:?)l C(zi,zig1) if zo = -+ = zm is
the shortest prefix of p such that zm, € F and cost.(F)(p) = oo if no such prefix
exists. Let E. be the usual expectation on Paths; (M) with respect to the measure
prob,. Then E;[cost.(F')] is defined to be the expected cost of reaching F. Observe
that, following [52], the expected cost E.[cost.(F)] is finite iff the set F' can be
reached from z with probability 1.

Ezample 1 Consider an embedded control system [43] comprised of an input pro-
cessor, a main processor, an output processor and a bus. In each cycle of the sys-
tem, the input processor collects data from a set of n sensors Si,S52,...,Sn. The
main processor polls the input processor and passes instructions to the output
processor controlling a set of m actuators Ai, As, ... Ayn. Communication between
processors occurs over the bus. The system is designed to tolerate failures in a
limited number of components. If the input processor reports that the number of
sensor failures exceeds some threshold MAX_FAILURES, then the main processor
shuts the system down. Otherwise, it activates the actuators, which again, are
prone to failure. When the probabilities with which each of these components fail
are known, one can model the system’s reliability using a DTMC. In Fig. 1, we
give a DTMC that models a single cycle of such a system with n = 2 sensors and
m = 1 actuator. For simplicity, we assume that each sensor fails with probability
Es and each actuator fails with probability E,. States of the model are labeled
with ef,...,e;, € {0,1} and e, ...,en, € {0,1}, where e = 1 denotes the failure of
sensor S; and ef = 1 denotes the failure of actuator A;. In Fig. 1, we omit labels
if they are not relevant in a particular state.

6 Umang Mathur et al.

Fig. 1 Markov chain for a simple embedded control system with two sensors and one actuator
tolerating a single sensor fault.

2.2 Probabilistic computation tree logic (PCTL)

Properties of DTMCs be expressed in the logic PCTL, which extends the temporal
logic CTL with the ability to reason quantitatively. We start by describing the
syntax and semantics of PCTL.

Syntaz. Analogous to CTL, PCTL has state formulas that model properties of
states and path formulas that model properties of paths.

Definition 1 Let a € AP be an atomic proposition, x€ {<,<,>,>}, p € [0,1],
¢ € Q2% and k € N. The syntax of PCTL is
¢pu=true|a| ¢ |SNG | Puplt] | Excld]

where ¢ = X¢ | dUP.
Here ¢ is a state formula and 1 a path formula.

Semantics. The state formulas are interpreted over states and path formulas over
infinite paths.

Definition 2 Let M = (Z, A, C, L) be a DTMC, ¢, ¢1, ¢2 be state formulas and
be a path formula. The satisfaction relation |= for PCTL state formulas and for
PCTL path formulas is defined by mutual induction:

M, z = true for all ze€ Z

M,zEa < a€L(z)

M,z = -9 & Mz

MzlEdi A2 & M,z ¢ and M,z = ¢2

M,z = Pupl] & pa(¥) xp

M,z = Exc[d] < ed) Xc

M, pl=Xo & Mop(l)Eo

M,pEgilps & Fi>0: (M,p(i) | ¢2 and Vi < i: M, p(j) E ¢1)

Exact Quantitative Probabilistic Model Checking Through Rational Search 7

where p. (1)) = prob,({p € Paths,(M) | M,p = ¢}), e:(¢) = E:[cost.(Z,)] with
Zy={ € Z| M, = ¢}.

Example 2 Consider the DTMC modeling an embedded control system from Ex-
ample 1. One can describe many important properties of this model using PCTL
as follows (x, x'€ {<,>,<,>} and p € [0,1])

1. The probability of success is xp:
Pup [true U “Sucess” |

2. The probability of reaching the set of states where there are no sensor failures
is Mp:
Pxp [trueld (eI + ...+ 5, =0)]

3. Let G be the set of states from which the probability of reaching a state where
sensor S fails is x % Let T be the set of states from which the probability of
reaching a state in which actuator A; fails is 0. The probability of remaining
in some state from the set G until reaching a state in T is x'p:

Pu'p [PN%[trueL{ (e1=1)] U P<oltrue U (ef=1)]]

2.3 PCTL model checking

The PCTL model checking question asks, given a state zg of a DTMC M and a
PCTL formula ¢, determine whether M, zp = ¢. Similar to the model checking
algorithm for CTL, the PCTL model checking algorithm recursively computes the
set of states satisfying a state sub-formula (see [52, 10] for the complete details).
We consider the special case when the formula ¢ is of the form Pup[¢1 U ¢2].

Let ¢,¢" be state formulas. To check whether M, 2o = Pxp[d U ¢], one re-
cursively computes the set of states Zy and Zy satisfying the state formulas ¢
and ¢', respectively. These can then be used to derive, for every z€Z, the quantity
p=(¢ U ¢') which represents the probability of reaching the set Z4 while remaining
in the set Z,, starting from the state z. Let Az. p-(¢ U ¢') denote the state-indexed
vector (or the function) that maps z € Z to p.(¢ U ¢’). The state-indexed vector
Az.pz (¢ U ¢') can be computed as the unique solution to following linear program
[52, 10]:

0 if 2z € Probg[¢ U ¢']
yo=4 1 if z € Proby[op U &' (1)
ST A(z,2') -y, otherwise
z'eZ

In the equation above, Probg[¢ U ¢'] and Probi[¢ U ¢'] are the set of states of M
that satisfy ¢ U¢’ with probability 0 and 1, respectively. These sets can be deter-
mined via a pre-computation step that analyzes the underlying graph structure of
the DTMC. The value of y. in the solution is exactly the value p.(¢ U ¢'). To verify
if M, 20 = Puplo U ¢'], one computes Az. p-(¢ U ¢') and compares p, (2 U 2') X p.
The model checking algorithm for —¢, ¢ A ¢, and Pwp[X¢] are as expected.

8 Umang Mathur et al.

To check whether Exc[¢], one recursively computes Z, satisfying the state for-
mula ¢. The expected costs {e.(¢) | 2 € Z} can then be computed as the unique
solution to the following linear program [52] (with the convention that 0-oco = 0):

yo={ iff z € Costoo[9] (2)
ST A(z,2') - (C(s,s') +y,r) otherwise
z'eZ

In the equation above, Costoo[¢] is the set of states for which the expected cost is
oo. The set Costo is exactly the set of states that satisfy ¢ with probability < 1,
and can be determined via a pre-computation step that analyzes the underlying
graph structure of the DTMC.

2.4 Markov decision processes (MDPs) and PCTL

Syntaz. An MDP is a tuple M = (Z, Act, A, C, L) where Z is a finite set of states,
Act is a finite set of actions, the partial function A : Z x Act — Dist(Z), called
probabilistic transition function, maps pairs of states and actions to probability
distributions over Z, C : Z x Act — Q=° is a cost (or reward) structure and L :
Z — 22 is a labeling function. The set enabled(z) = {o € Act | A(z,) is defined},
describing the actions enabled from a state z, is assumed to be non-empty for every
z € Z. An MDP, therefore, differs from a DTMC, in that, at each state z, there is
a choice among several possible distributions. The choice of which distribution to
trigger is resolved by a scheduler (or an attacker). Informally, an MDP M evolves
as follows. It starts from some state zg € Z. After i execution steps, if M is
in state z, the scheduler chooses an action a € enabled(z), which then defines a
unique probability distribution p given by A(z, «). The process then moves to state
Z in step (i + 1) with probability A(z,a)(z"). We will write A(z,a,2") to denote
A(z,)(2') when a € enabled().

Reachability Probability and Ezpected Cost. Formally, a path p of an MDP M is a
sequence zp—t»z1—2 - - such that for each i > 0, we have a;; € enabled(z;) and
A(zi, 41, zi+1) > 0. As discussed above, the choice of which action to trigger in
a given state is resolved by a scheduler, which is a function & from finite paths to
actions®. A path zo—2z1 =25 - - - is a G-path if §(z021 ... 2;) = aiqq foralli > 0. We
will write Paths.(M) for the set of infinite paths starting from z and Paths? (M)
for the set of infinite G-paths starting from z. The set of all schedulers will be
denoted by S. A scheduler & € S for MDP M induces a (potentially infinite)
DTMC M® where the states of M®, denoted Z, are the set of finite paths of M
and the transition function A® is as follows. For any two finite paths p,p’ € Z©
where p = 29 S, 2my o let
28 (p,)= {,u(z') if p’ is of the form p E@, 1 and Azm,6(p)) = u
0 otherwise.

1 One can alternatively define a scheduler as a function from finite paths into probability
distributions on actions. Both definitions are equivalent in the context of PCTL model checking.

Exact Quantitative Probabilistic Model Checking Through Rational Search 9

This allows one to use probability measure over DTMCs to define a probability
measure prob over the set of paths Paths® (M). One can also define the expected
cost of reaching a target set of states F with respect to a scheduler &, denoted
ES [cost-(F)], in a fashion similar to the DTMC case. Interested readers should
refer to standard texts such as [52, 10] for more details.

2.4.1 Probabilistic computation tree logic (PCTL)

Like DTMCs, properties of MDPs can be expressed in the logic PCTL. The se-
mantics of PCTL formulae stay the same, except for the semantics of Pxp[)] and
Exc[¢], which now require a quantification over all schedulers.

Definition 3 Let M be an MDP, ¢ be a state formula, and 1) be a path for-
mula. The satisfaction relation |= for PCTL state formulae is defined identically
to Definition 2, except for the following cases.

M,z = Pup[t)] & VEES, Pz S() xp
M,z = Exc[d] VG eS, e () X ¢

Where given an adversary & € S, p? (1)) = prob® ({p € PathsS (M) | M, p = 9}) and
ef (¢) = ES [cost.(Zy)] with Z, = {2/ € Z| M,2 |= ¢}.

2.5 PCTL model checking for MDPs

Similar to the PCTL model checking algorithm for DTMCs, the PCTL model
checking algorithm for MDPs recursively computes the set of states satisfying a
state sub-formula (see [52, 10] for the complete details). We illustrate the differ-
ences when we model check the probability and expected cost operators.

Puplé U ¢'] operator. For checking whether a state zo satisfies Pup[p U ¢'], we
recursively compute the sets of states Zy and Zy4 as in the case of DTMCs. Given

a state z, let pI (¢ U ¢) —maX D3 (¢U¢J) and pm'"(qSZ/{gZ)) = mln pS (qf)L{qS)

Thus, pT*(¢ U ¢') (resp. pg""(qﬁ U ¢')) is the maximum (resp. mlnlmum) prob-
ability of satisfying ¢ U ¢'. We note that both pT®(¢ U ¢') and pT™"(¢ U ¢)
exist [52, 10, 14, 9, 16]). Thus, in order to check whether M, 2o {= Puplp U ¢'], it
suffices to compute p3*(¢ U ¢') when xe€ {<,<} and to compute pm'"(qb Uugq' if
xe {>, >}. We explain below how these are computed.

In order to compute p3*(¢ U ¢'), we compute the function Az.pT*(¢ U ¢)
that maps each z € Z to pI™ (¢ U ¢'). For each z € Z, pick a variable y.. Consider
the following linear optimization problem:

min Y y. subject to
2€Z
v =0 if 2 € Prob™ (¢ U ¢/]
v, =1 if 2z € Prob "™ [¢ U ¢'] ®)
Z\ (Prob®[p U ¢'] U ProbT™[¢ U ¢'])
- N z € 0 1
Yz 2 Z%:ZA(Z’O"Z)y a € enabled(z)

10 Umang Mathur et al.

where Probmax[qb U ¢'] (ProbT?[¢ U ¢'] respectively) is the set of states z such that
pI (¢ U ¢') is 0 (1 respectively). The sets Probf®*[¢ U ¢'] and ProbT®*[¢ U ¢'] can
be computed using graph-theoretic algorithms. Now, the vector Az.pT®*(¢ U ¢')
is the wunique solution set for this linear optimization problem, ie, objective is
minimized and constraints satisfied if and only if we replace y. by pI®* (¢ U ¢').
Computation of Az. p™" (¢ U ¢'), the state-indexed vector that maps z €
Z to pT"(¢ U ¢'), is along similar lines; the objective changes to maximiza-
tion, Probd™[¢ U ¢'] and ProbT®[¢ U ¢'] are replaced by Probd™M[¢ U ¢'] and
Probm'"[qﬁ U ¢'] respectively, and the direction the last inequality is reversed. Here
ProbT"[¢ U ¢'] (ProbT"[¢ U ¢'] respectively) is the set of states z for which pT'" is
0 (1 respectively), and can be computed using graph-theoretic algorithms.

Ewp|@] operator. For checking whether a state zo satisfies Exp[¢], we recursively
compute the set of states Zy as in the case of DTMCs. Given a state z, let eI'*(¢) =

max eS(¢) and T (¢) = gnn €S (¢). Thus, eT(¢) (eM"(¢) respectively) is the
€

maximum (minimum respectively) expected cost of reaching the set Z,. Again, we
note that both eI (¢) and e™"(¢) exist [52, 10, 14]). Thus, it suffices to compute
eM> () when xe {<,<} and to compute eT"(¢) if xe {>,>}.
In order to compute eZ2*(¢), we compute the state-indexed vector Az.el™(¢).
For each 2 € Z, pick a variable y,. Consider the following linear optimization
problem (with the convention that 0-co = 0):

min > y. subject to

z2€Z
Yz = if z € Zg
Yz = 00 iff z € Cost™[¢]
y: > C(z,0) + Y Az,0,2") -y if 2€ Z\ (Zy U Costie[4]), a € enabled(z)

z'eZ

(1)
where Costiy is the set of states z such that eJ'®*(¢) = oo. Observe that z € Costg*
if and only if there is a scheduler & such that pS (¢) < 1. This allows computation
of the set Costiy™ using graph-theoretic methods. Now, the vector Az. eZ*(¢) is the
unique solution for this linear optimization problem, i.e., the objective is minimized
and constraints satisfied if and only if we replace y. by €7 (¢). Computation of
Az.eM"(¢) is along similar lines; the objective changes to maximization, CostT2¥[¢]
is replaced by CostM"[¢], and the direction the last inequality is reversed. Here
CostMi"[¢] is the set of states z such that eMM is 00, Observe that z € CostT"[g] if
and only if p¥ (¢) < 1, for all schedulers &. The set CostT"[¢] can also be computed
graph-theoretically.

3 Approximate model checking

As discussed before, solving quantitative properties of DTMCs and MDPs by a
reduction to linear programming does not scale well enough to make it a viable
solution technique in practice. As a result, techniques for approximating solutions
to the model checking problem using floating-point arithmetic have been widely
adopted. In this section, we describe two such techniques, value iteration and inter-
val iteration, and demonstrate how each approach can produce incorrect solutions.

Exact Quantitative Probabilistic Model Checking Through Rational Search 11

3.1 Iterative Techniques

The linear program described in Equation (1) for DTMCs can equivalently be
expressed in the below, for some appropriate matrix A and vector b.

T=Az+b

This allows for an alternate approach to solving the linear program from Equa-
tion (1) known as walue iteration. In the case of DTMCs, the unique solution to
Equation (1) can be computed iteratively as the the limit of the following sequence.

To(z) =

1 if 2 € Probi[¢ U ¢/
0 otherwise . (5)
Ti1 = AZ; + 0

For the case of MDPs, the unique solution that minimizes the objective function
of the linear program in Equation (3) and used to compute maximum probabilities
of satisfying [¢ U ¢'] can be obtained as the limit of the iterative sequence {z;};>0:

ro(2) 1 if 2 € ProbT®™[¢ U ¢']
Tolz) =
0 0 otherwise .

1 if z € Prob[¢p U ¢']
Ziy1(2) = 0 if 2 € ProbJ™[¢ U ¢']
max{ > A(z,a,?) z;(z') | acenabled(z)} otherwise
z'eZ

(6)

For the solution to the linear program that is used to compute minimum prob-
abilities, the iterative sequence is similar except that max is replaced by min. The
iterative sequences for computing expected costs can be similarly defined with
one notable variation. For computing min expected costs, the MDPs have to be
transformed to get rid of cost 0 cycles. We refer the reader to [52, 28, 9] for details.
In many cases, the sequence does not converge in a finite number of steps, and
therefore model checkers terminate the sequence when successive vectors v, and
vk4+1 become “close enough”. The choice of stopping criterion is based mainly on
heuristics. The PRISM model checker, for example, implements two criteria (i) ab-
solute convergence, and (ii) relative convergence. Under the absolute criterion, value

iteration terminates if the norm ||vg41 — vi|| <e for some € > 0. Under the relative
lvrt1—vkll
.
techniques only approximate solutions, value iteration remains the popular choice

for widely used tools that analyze PCTL properties as it vastly outperforms linear
programming techniques, despite their theoretically better asymptotic complexity.

As originally observed in [27], value iteration provides no guarantees about the
quality of the solution, regardless of the stopping criterion used. To help rectify
this problem, Haddad et. al. [31] and Brézdil et. al. [17] concurrently introduced
interval iteration for computing min/max reachability probabilities in DTMCs and
MDPs. In this approach, one simultaneously computes two sequences of vectors,

criterion, termination occurs when < e. In spite of the fact that iterative

12 Umang Mathur et al.

one converging to the solution from below and one converging to the exact solu-
tion from above. In this setting, the stopping criterion becomes straightforward;
terminate when the distance between the two vectors is within some e thresh-
old. Assuming the absence of floating-point errors, this effectively gives a small
e-neighborhood that contains the actual solution. In order to achieve convergence,
interval iteration requires a pre-processing step that transforms the underlying
graph of the model. The interval iteration technique was extended to expected
costs in [11].

Both iterative techniques described above can be further enhanced by perform-
ing arithmetic operations using Multi-terminal binary decision diagrams (MTBDDs)
[29, 36]. MTBDDs generalize BDDs [18] by allowing terminal values to be different
from 0 or 1. Similar to the role of BDDs in symbolic model checking [45], MTBDD
based model checkers leverage the performance benefit due to the succinct repre-
sentations of the data structures involved.

3.2 Shortcomings of iterative techniques

When computing constrained reachability probabilities using value iteration, both
the absolute and relative convergence criteria can result in solutions that are very
far from the actual answers. In [31], the authors give a DTMC and a PCTL
property whose solution is %, yet PRISM reports 9.77 x 10~* for the absolute
criterion and 0.198 for the relative criterion. This drastic error is the result of a
premature termination of value iteration. Several other sources of imprecision can
also cause state-of-the-art quantitative model checkers to produce unsound results.
For example, consider a PCTL formula of the form P>,(¢) and a system M such
that the probability measure of the formula 1 is exactly p. When value iteration,
with floating-point numbers, is used to compute this measure, the value p may
only be approached in the limit, and hence the procedure will return some p’ that
approximates p from below. This means that the formula P>, () will evaluate to
false, where of course the correct value is true. This phenomenon was first pointed
out in [54]. We also demonstrate a similar phenomenon with the DTMC from
Example 1. For the sake of illustration, let E; = % Clearly, from the initial state,
the probability of reaching a state where sensor 1 fails is exactly % and hence
the formula Poy [true U (ej=1) | evaluates to false for the initial state. However,
PRISM returns true. Errors such as these can be compounded in PCTL formulas
containing nested operators, wherein the recursive step of the model checking
algorithm returns an incorrect set of states. This can lead to substantial logical
errors in model analysis, as we demonstrate with the example below.

Ezxzample 3 Let us instantiate the DTMC from Example 1 with n = 14 sensors,
m = 1 actuator, MAX_FAILURES=1 and with E; = E, = % Recall the third
PCTL property of the embedded control system given in Example 2:

Porp [Py [trueU (ef=1)] U P<otrue U (ef=1)]].

When x is <, the PRISM model checker returns “0.7096993582589287” as the
probability for the initial state with both value iteration and interval iteration?.

2 Using the HYBRID engine, the absolute convergence criterion and e = 1016,

Exact Quantitative Probabilistic Model Checking Through Rational Search 13

With our tool RATIONALSEARCH, one can verify that the correct probability is
212895/229376, or “0.9281485421316964”. Further, when x is <, PRISM again
returns the value given above for both iterative techniques. This time, the ac-
tual solution, as generated by RATIONALSEARCH, is 0. The errors above are the
result of the fact that PRISM incorrectly computes the set of states satisfying
Py 1 [true U (ef=1)]. This error in the recursive step results in an incorrect formu-
lation of the constraints in the outermost constrained reachability problem.

When using interval iteration, we may be unable to conclude whether the
DTMC or the MDP being model checked satisfies the given formula. For example,
when checking whether a DTMC M satisfies a formula P>, (¢), we cannot provide
a definite answer if the interval iteration returns that the probability of satisfying
1 lies in the interval (a,b) where p € (a,b).

4 Fixpoint formulations for constrained reachability and expected costs

As discussed in Section 2.3, the probability, associated with each state z in a
DTMC, of satisfying a PCTL path formula ¢ U ¢’ can be characterized as the
unique solution to a system of linear equations. Similarly, the expected cost of
reaching some state satisfying ¢ in a DTMC M starting from any given state z in
M can also be characterized as the unique solution to a linear program. In both
these cases, the solution can be seen as the unique fix point of a linear transforma-
tion. Thus, when given a candidate solution for the collection of probabilities (or
the collection of expected costs), we can check the correctness of this collection by
plugging the candidate solution in the corresponding system of equations. In the
case of MDPs, the max probabilities, min probabilities, max expected and min
expected costs can also be characterized as a solution to a system of equations.
For MDPs, however, the system of equations may have multiple solutions. We will
show below that when the system of equations for MDPs is not guaranteed to have
a unique solution, we can perform an additional graph-theoretic check to confirm
that a given candidate solution for the set of probabilities (or the set of expected
costs) is correct. Such a confirmation check, as we will discuss in Section 5, is
crucial to our algorithm for computing exact answers.

4.1 Fixpoint formulation for constrained reachability in MDPs

Let M = (Z,Act,A,C, L) be an MDP and ¢,¢’ be PCTL state formulas. The
state-indexed vector P™(¢ U ¢') = Az.pT® (¢ U ¢') can be characterized as the
least fix point (least under pointwise ordering) of the set of equations:

yz =0 if z € ProbJ®[¢ U ¢']
yr =1 if 2 € Prob?®[¢ U ¢']
Yz = D Az a,2) ye if 2 € 2\ (Probf™[p U ¢/] U ProbT™[¢ U ¢'])

max
bled
a€enabled(z) ey

(7)
The state-indexed vector P™" (¢ U ¢') = Xz.pT" (¢ U ¢’) can be similarly charac-
terized by replacing max by min. For min, the fix point, in fact, turns out to be

14 Umang Mathur et al.

unique [9]. For max, the fix point is not unique, although several references claim
this to be case (see Theorem 10.100 in [10] for example). The non-uniqueness has
also been pointed out by [31]. However, for the max case, we show that a simple
graph-theoretic check can be performed to verify if a given fix point to the set
of equations is indeed the exact solution P™®*. We describe this below. We shall
need the notion of a memoryless scheduler, namely a scheduler that assigns the
same action to any two finite paths ending in the same state (see [52, 10, 9]). A
memoryless scheduler Gy can be considered as a function from states to actions
instead of a function from paths to actions.

Let V: Z — [0, 1] be a solution of the set of equations in Equation (7). We start
by defining a directed graph that is obtained from M by selecting, for each state,
the set of actions that potentially achieve the maximum reachability probabilities.

Definition 4 Let V : Z — [0,1] be a fix point of Equation (7). Let Z° = Z\
(Prob™® [U ¢'] U ProbT[¢ U ¢']) For each state z € Z°, let

argmaxy = {« € enabled(z) | V(z) = Z Az, a,2") - V(Z)}.
ez

Let Gy = (Z,E) be a directed graph such that (21,22) € E iff 21 € Z° and 3a €
argmax\Z/1 such that A(z1,a,22) > 0.

With the above definition of the graph Gy, we can characterize the solution to
the max reachability problem for MDPs as follows.

Lemma 1 Let M = (Z,Act, A,C,L) be a MDP and ¢,¢' be PCTL state formulas.
For each state z of M, let pT** (¢ U ¢') be the mazimum probability of satisfying ¢ U ¢'.
LetV : Z — [0,1] be a solution of the set of equations given by Equation (7). Consider
Gy as defined in Definition 4 above. Let Zy be the set of states z such that there is no
path from z to any state 2’ € ProbT®[¢ U ¢'] in the graph Gy. Then,

Zo = Proby™[p U ¢'] & Vz € Z.V(2) = pI™ (o U ¢).

Proof If Z = Prob{®*[¢ U ¢'] U Prob[¢ U ¢'] then the lemma is immediate. So
we will consider the case that Z\ (Probf®™[¢ U ¢'] U ProbT®[¢ U ¢']) # 0. Note also
that we have that for each state z € Z, V(2) > p® (¢ U ¢') as the state-indexed
vector P™® = \z. pT® (¢ U ¢') is the least fix point of Equation (7).

It can be easily shown that in order to establish the Lemma, we can assume
that ¢ is true, ¢’ is some a € AP, Prob{™®*[¢ U ¢'] and Prob?"®[¢ U ¢'] consists of
exactly one state (say rej and acc respectively), exactly one action ag is enabled
in rej and acc, A(rej, ag) = rej, and A(acc, ap) = acc.

(=) It suffices to show that V(z) < pT®™(¢ U ¢') for each state z € Z. Let
Z" = Z\ (ProbT®™[p U ¢'] U ProbT*[¢ U ¢]). Let m be the cardinality of Z°. From
the fact that Probd®[¢ U ¢']| = Zo, we can construct inductively an enumeration
Z1,...,2m of states in Z° and an enumeration of actions a1, ...,am in Act such
that for each 1 <i < m,

1. o4 € argmax\zli7 and
2. A(z;, a,2) # 0 for some z € {acc, 21,...,2i—1}

Exact Quantitative Probabilistic Model Checking Through Rational Search 15

Consider the memoryless scheduler &y for the MDP M, that picks a; when
the last state in the execution is z; € Z° and picks ag otherwise. By definition,
probSV (true U a) < pT™(true U a) for each z € Z. Thus, it suffices to show that
probSV(true U a) = V(z) for each z € Z.

Let us now construct a DTMC, My, from M which picks for each state z,
the action &y/(z). Formally, the DTMC My = (Z, Ao, C, L) where Ag(z,2') =
A(z,6y(z),2) for all z,2' € Z. Tt is easy to see that probSV (true Ua) is the prob-
ability that z satisfies the formula true Ua in My. By construction of My, this
probability is 0 (1 respectively) if and only if z is rej (acc respectively). Thus,
{probSV(true U a)}.cz is the unique solution of the set of equations:

Trej = 0
Zacc = 1 (8)
T, = Z A(z,6y(2),2') -z, otherwise.

ez

As oy € argmax\zli, we get by construction, V is also a solution to Equation (8). By
uniqueness, we must have that probSV(true U a) = V(z) for each z € Z.

(«) The maximum probability of reaching acc is realized by a memoryless
scheduler, namely a scheduler that assigns the same action to any two finite paths
ending in the same state (see [52, 10, 9]). Fix one such scheduler &. We have that
for all states z € Z,V(z) = pT®™(true U a) = prob® (true U a). From this, it is easy

to show that the following hold:

1. &(z) € argmax, y for all z € Z\ {acc, rej}.

S(2 S(zp_
2. For each z € Z \ {acc, rej}, there is a finite path p = 2| &) (i>l) z) such

that 2; = z and 2z = acc.

From the above two observations, we have that Probl®*[¢ U ¢'] = Zo. O

4.2 Fixpoint formulation for expected costs in MDPs.

Let M = (Z,Act, A,C, L) be an MDP and ¢ be a PCTL state formula. The state-
indexed vector E™ = Az.e7?*(¢) can be characterized as a fix point of the fol-

lowing set of equations [28] (with the convention that 0-oco = 0):

Yz = 0 if z € Zd’
Yz = 0O if z € Cost*[¢)]

/ . (9)
y>= max C(z,a)+ g A(z,,2") - y,» otherwise

a€enabled(z) =y
While E™® is described to be the least fix point of Equation (9) in [28], we, in
fact, show that Equation (9) admits only one solution.

Lemma 2 Let M = (Z,Act,A,C, L) be a MDP and ¢ be a PCTL state formula. Let
Zg be the set of states of M that satisfy ¢. For each state z of M, let €™ (¢) be the
mazimum expected cost of reaching the set of states Zy. Then E™™ = Xz.el® (@) is
the unique solution to Equation (9).

16 Umang Mathur et al.

Proof We only need to show that Equation (9) has a unique solution. Let vi
and V? be two solutions of Equation (9). Observe that V'(z) = V?(z) for each
2 € Zy U Cost®®[¢]. Let U = Z\ (Z, U Cost®*[¢]) and d = max,cp |V (2) — V2(2)|.
It suffices to show that d = 0.

We will establish the result reductio ad absurdum. Assume d > 0. By definition,
each state z € U does not belong to the set Cost5d™[¢]. This implies that for all
schedulers & and state z € U, pS (true U ¢) = 1. This leads to the following
observations:

1. For z € U and « € enabled(z), probability of transitioning from z on action «
to each state in CostTo*[¢] is 0.
2. For each k = 1,2, z € U and « € enabled(z), let b = C(z,a)+ > A(z,a,2')-

z'eU
V¥(2'). By definition and the previous observation, VF(z) = max o5
a€enabled(z)
3. There is an enumeration z1,...,z, of states in U such that for each 1 <i < n

and action a, if o € enabled(z;) then A(z;,a,z) # 0 for some state z € Zy U
{zj 11 <7<}

Claim |V1(z;) — V?(2;)| < d for each 1 <i < n.

Proof The proof proceeds by induction on .
Base case: Fix ag € enabled(z1). By construction of z1, > A(z1,a0,2’) < 1.

z'eU
We have that for each k =1, 2,
vfla“ C(z1,a0) + > A(z1, o0, 2 Vk(z/)
z'eU
= C(z1,a0) + > A(z1, 0, z/) . (Vk(z/) — V3_k(z/) + V3_k(z'))
z'eU
=C(z1,a0) + Y. A(z1, 0,2 - Vg_k(z’)
z'eU
+ 30 Ala,a0,2) - (VE(E) = VETE()
z'eU
=3P 4 S Alar,a0,2)) - (V) = VETR(Y)
z'eU
< ka0 g Z A(z1,00,2') - d
z'eU
<of M 4de 3 A, a0,2)
z'eU
< vgl o 4 g1 < max vg’fk’a‘) —|—d:V37k(z1)+d.

a€enabledz;

Since ag is an arbitrary action in enabled(z1), we get that
VF(21) < V37%(21) + d for each k € {1,2}.

Thus, both V!(z1) —=V2(21) < d and V?(21) —V!(21) < d establishing the base case.
Induction step: Assume that we have |V!(z;) — V2(2;)| < d for each 1 < i < . Now,
consider z;11 and fix ag € enabled(z,11). By construction of zp 1,

— either Y A(zpy1,00,2) <1
z'elU
— or A(zgy1,00,25) > 0 for some 1 < j < L.

Exact Quantitative Probabilistic Model Checking Through Rational Search 17

If Y A(ze41,20,2') < 1 then we can show by an argument similar to the one
z'eU
used in base case that

vfﬁf < vg’;’f +d for each k =1, 2.

Now, consider the case when A(zp41,a0,2;) > 0 for some 1 < j < £. Fix one
such jo. Thus, we have A(zgy1, a0, 2j,) > 0. By Induction hypothesis, we also have
that |V!(zj,) — V3(zj,)| < d. For each k = 1,2,

o2 =l Y Az an,) - (VI - VITRE))
z'eU
vg‘;ﬁ,ao + A(ZZ+1’ o, Zjo) : (Vk (Zjo)k_ V3ik(zjok))+
Z A(Z[+1,CZO,Z/)) (V (Z/) - V3_ (Z/))
. Z’GU\{ZjO}
,Uz;ﬂ,OéU + A(Zf+17 Qo, Zjo) : (Vk(zju) - V3_k(zju))
+ Z A(Z€+17a07zl) -d

IN

. 2'€U\{zj, }
3—k,
< v2£+1 o +A(ZE+170¢O7ZJ‘O) d+ 2\% }A(Zg+1,0[0,2/) -d
2'eU\{zj,
3—k,
= Vzp o +d- Z A(ZlJrlvO‘O: Z/)
z'eU

= 0+ d 1< VIR(z)
Since ay is an arbitrary action in enabled(zsy1), we get once again that
Vk(2g+1) < V?’*k(z“_l) + d for each k € {1,2}.

Thus, we get both V! (2p11)—V?(2411) < d and V?(zp41)—V*(2441) < d establishing
the induction step. (End: Proof of claim) O

Thus, we have that d = max,cy7|V'(2) — V2(2)| < d, which is a contradiction. O

The state-indexed vector E™"(¢) = Az.eT"(¢) can also be characterized as a
fix point of the following set of equations [28, 9]:

Yz = 0 if z € Z¢)
Yz = 00 iff z € Costiy"[¢]
- / . (10)
Yz = mmozEenabIed(z)C(zy a) + Z A(z,a,2) -y, otherwise
z'eZ

However, in this case, the fix point may not be unique. E’"i”(¢>) is the greatest fix
point of Equation (10) [9]. Nevertheless, we can perform an additional check to
see if a given solution of Equation (10) is indeed the function E™"(¢).

Let V : Z — QZ° be a solution of the set of equations given by Equation (10).
We start by defining a directed graph that is obtained from M by selecting for each
state, the set of actions that potentially achieve the minimum expected costs.

Definition 5 Let V : Z — Q=% be a fix point of Equation (10). For each state
z€ Z\ (Zy U Cost3"[¢]), let

argmin = {a € enabled(z) | V(z) = C(z,a) + Z Az, a,2") - V(Z)}.
z'eZ
Let Hy = (Z,E) be a directed graph such that (z1,22) € Eiff z1 € Z\ (Z, U
CostT"[¢]) and Ja € argminy, st A(z1,a, 22) > 0.

18 Umang Mathur et al.

The following can be proved along the same lines as Lemma 1:

Lemma 3 Let M = (Z,Act, A,C, L) be a MDP and ¢ be a PCTL state formula. For
each state z of M, let eI (¢) be the minimum, expected cost of reaching the set Zy. Let
V:Z — Q2% be a solution of the set of equations given by Equation (10). Consider
Hy as defined in Definition 5 above. Let Zoo be the set of states z such that there is
no path from z to any state 2’ € Zy in the graph Hy. Then

Zoo = Cost@i"[¢] & Vz € Z.V(z) = eT"(¢).

5 Exact model checking

As demonstrated in Section 3, approximate solution techniques can lead to unre-
liable results and the incorrect analysis of systems. To rectify this serious limita-
tion, tools such as PRISM and STORM have implemented exact model checking
engines, which make heavy use of techniques from parametric model checking
[21, 23, 33, 34]. The idea behind these engines is to interpret the probabilistic
model (DTMC or MDP) as a finite automaton in which transitions probabilities
are described by letters of an alphabet. When one is interested in costs, states
are additionally labeled by a cost structure. Using techniques derived from state
elimination [37], one can then calculate a regular expression representing the lan-
guage of this automaton. The core idea of this translation is to eliminate a state
s by increasing the probability of moving from each predecessor s; of s to each
successor s2 of s by the probability of moving from s; to s2 when passing through
s. In the case of parametric model checking, various techniques can then be used
to translate the regular expression into a rational function over the parameters of
the model. When using this approach for exact model checking, one can likewise
derive a parameter-free function that describes the property in question.

Although they rectify the problems with approximation techniques, the ex-
act quantitative model checking engines implemented in tools like PRISM and
STORM don’t scale as well as their iterative counterparts. See Example 4 below
and Section 7 for a complete analysis. The goal of our technique, to which the re-
mainder of this section is dedicated, is to utilize the advantages of fast approximate
model checking techniques to produce exact solutions.

Ezample 4 Again consider the DTMC modeling an embedded control system with
the parameters given in Example 3. To guarantee the correctness of one’s analy-
sis, exact solution techniques must be employed. Unfortunately, the exact model
checking engines of PRISM and STORM do not scale well enough to analyze this
example, which contains about 4.8 million states and about 44 million transitions.
Under our test setup (see Section 7), both tools reached a 30-minute timeout
when trying to analyze the properties from Example 3. On the other hand, RaA-
TIONALSEARCH found the exact answer to both the formulae in under a minute.

We now describe our approach for exact model checking. The broad idea is to
utilize approximate solutions generated by an iterative technique, and then succes-
sively refine these solutions to the exact solution. We begin by first describing the
first ingredient of our solution — the Kwek Mehlhorn algorithm [40] in Section 5.1.
We then describe the overall algorithm in Section 5.2.

Exact Quantitative Probabilistic Model Checking Through Rational Search 19

5.1 The Kwek-Mehlhorn algorithm

Given an ordered set of integers of bounded size, the classical binary search algo-
rithm can be used to find the smallest element in the set that is larger than a given
value, in logarithmic time. Kwek and Mehlhorn [40] extend this methodology to
efficiently locate the rational number with the smallest size in a given interval. In
our paper, we present a novel application of this technique, where approximate
answers to quantitative model checking problems can be used to generate exact
solutions efficiently.

Let I = [%, 3] be an arbitrary interval with rational end-points. It was estab-
lished [40] that for such an interval, there exists a unique rational amin (1) /bmin (1)
such that for all rational numbers § € I, amin(/) < a and bmin(f) < b We
will call amin(I)/bmin(I) the minimal fraction of I. Further, this minimal frac-
tion amin(I)/bmin(I) can be found using Algorithm 1 from [40]. The input to the
FINDFRACTION procedure are integers denoting the numerators and denominators
of the endpoints of the interval I, and the output is a pair of integers, correspond-
ing to the numerator and denominator of the unique minimal fraction of the input
interval.

Algorithm 1 Compute the minimal rational in [%, F

function FINDFRACTION(a, 3, v, §):
if L%J =[%] and % ¢ N then
b, a + FINDFRACTION(J, v mod 6, 8, @ mod 3)
return L%jb +a, b
else
return [%'\, 1
end if
end function

Let Qu = {p/a|p,q € {1,...,M}}N[0,1]. For p € N, if § € Qs is contained

in the interval [z, %] of length 2—]\1/12 then ¢ is the unique element of Qs in

[5hes, L55]. Tt turns out that ¢ must also be the minimal element of [5£, &3],

meaning it can be found using Algorithm 1 in time O(log M).

5.2 Rational search

In this section, we explain our approach for the exact quantitative model checking
of PCTL formulas. The critical insight we exploit is that iterative techniques for
solving constrained reachability typically converge very fast and produce a precise
enough answer. Using this precise approximation, we can then effectively construct
a small interval so that the minimal fraction in the interval corresponds to an
element of the exact solution vector, and thus the Kwek-Mehlhorn algorithm can
be employed to find the exact solution.

Recall that each iterative technique for approximating a set of equations, like
those given in Equations (1) and (3), yields a different guarantee on the precision
of an approximate solution. The difference between the approximation generated
by interval iteration and the actual solution is bounded by a given € value, provided

20 Umang Mathur et al.

there are no errors generated by floating-point arithmetic. Value iteration, on the
other hand, comes with no such guarantees. When an approximate solution vector
contains values of known precision, like in the case of interval iteration, one can
translate it into an exact solution vector as follows. For each value ¢ in the vector,
construct the interval [—e€, g+ €] and run Algorithm 1 to find the smallest rational
in this interval. Then, check that the generated rational values V* are correct by
verifying that they satisfy the fix point equations for constrained reachability and
expected costs. In addition, if the algorithm also checks that condition on the graph
Gy« (or Hy~) also hold in accordance with Lemma 1 (Lemma 3 respectively) if
we are computing max reachability probabilities (min reachability respectively)
properties. Lemmas 1 and 3, along with the uniqueness of the fix points for the
rest of the cases, imply that these checks are only satisfied by the desired solution
vector. If these checks fail for the candidate solution vector, one obtains a more
precise approximation and re-runs the procedure.

When a solution vector contains values of unknown quality, we can find exact
solutions using a similar technique. Here the idea is to “guess” a sequence intervals,
with decreasing sizes, that may contain the actual value. This process is formalized
in Algorithm 2, which takes as input the model M, a maximum precision P and
a state-indexed vector VI that approximates the exact solution vector V.

Algorithm 2 Sharpen values of unknown precision

function SHARPEN(M, P, VT, £ obj):
for all p € {1,..., P} do
for all z € Z do
O‘?/87FY7 0+ BOUNDS(p7 VT(Z))
V*(2) < |VI(2)]| + FINDFRACTION(, 8,7, §)
end for
if FIXPOINT(M, V*, £, obj) then
return V*
end if
end for
return null
end function

For a given precision p and state z, BOUNDS(p,V'(z)) returns a, 3,7, such
that « is the first p decimal digits of the fractional part of VI(z), 8 = 107, v =
a+ 1 and § = B. Observe that a/8 is the rational representation of the first
p digits of the fractional part of il (). From this approximation, we identify a
sharpened solution vector V* using the FINDFRACTION procedure from Algorithm 1.
The procedure FIXPOINT then tests if V* is the correct solution by checking if the
equation satisfies the appropriate fix point equation in addition to the check, if
needed, required by Lemma 1 or 3. If the input vector v is not precise enough,
then SHAPREN returns “null”, indicating that more precision is required to infer
an exact solution. The guarantees of Algorithm 2 are formalized as follows. Let
VP satisfying [V(z) — Vb(2)] < 107° for all z € Z be an approximate solution
vector of precision b. Then, Lemma 4 establishes that starting from a close enough
approximation, Algorithm 2 finds the actual solution vector.

Lemma 4 Let M be an MDP with the set of states Z. Let £ be a PCTL path formula
or a PCTL state formula. Given an objective obj € {max, min}, let V be the vector

Exact Quantitative Probabilistic Model Checking Through Rational Search 21

Az -pgbj [€] if € is a path formula and the vector Az - e3P [€] if € is a state formula. Let

b, P € N be such that P > b and Vb is an approximate solution vector of precision b. If
V(z) € QL\/WJ for every z € Z, then SHARPEN(M, P,V® £ obj) = V.

Proof Fix a state z and assume V(z) € Qpy for M=|,/100/2|. If P>b then

SHARPEN(M, P, V?, ¢, obj) searches for V(z) in I = [a/8,v/6] for a, B, 7,8 = BoUNDS(b, V®(2)).
Now, V(z) € I since V®(z) satisfies |V(z) — Vb(z)| < 107°. Further, |I| = 107° <

ﬁ. Due to Kwek et. al. [40], we have that an interval of size ﬁ contains at

most 1 element of Q. Clearly, FINDFRACTION(a, 3,7, d) returns V(z) which is the

unique “minimal” element in TN Qpy. a

Using the techniques for sharpening an approximate solution into an exact
value from Algorithm 2, we can now derive a procedure for solving constrained
reachability (and hence PCTL) formulas exactly. The procedure is given in Algo-
rithm 3, which takes as arguments an MDP or DTMC M, a constrained reach-
ability formula ¢ and a precision e. The ITERATION procedure can be either of
value iteration or interval iteration. Algorithm 3 begins by running the iteration
procedure up to a given precision e. If the procedure is value iteration, e is used
in the convergence criterion — absolute or relative — described in Section 3. In
the case of interval iteration, ¢ defines the bound on the maximum error in the
approximate solution vector. The approximate solution vector il generated by
the iteration procedure is then used by the SHAPREN procedure, which attempts
to strengthen the approximate answer to an exact one. Note the version of the
SHAPREN varies according to the iterative method being utilized. If it succeeds, the
whole process terminates. Otherwise, V! is further refined by re-invoking 1TERA-
TION with an increased e precision, and the sharpening process is repeated.

Algorithm 3 Rational Search

function RATIONALSEARCH(M, &, obj, €o):
Vinit NI (M, ¢)
€ < €0
while true do
VT« ITERATION(M, &, obj, VInit ¢)
V* ¢+ SHARPEN(M, [log;(1)], VT.€, obj)
if V* Z null then
return V*
end if
Vinit — VT
€ < ¢/10
end while
end function

When successive approximations in value iteration or interval iteration are
computed using arbitrary precision arithmetic, the correctness guarantees of Al-
gorithm 3 can be stated as follows.

Theorem 1 Let M be an MDP with the set of states Z. Let € be a PCTL path formula
or a PCTL state formula. Given an objective obj € {max,min}, let V be the state-
indezed vector Az - p [€] if € is a path formula and the vector Az - 2P [€] if € is a state
formula. Then, RATIONALSEARCH(M, &, 0bj, €0) (with eg > 0) terminates and returns

the exact solution vector V.

22 Umang Mathur et al.

Proof 1t is easy to see that there is a b > 0 such that, for every state z, V(z) € Qn
for N = |4/10%/2|. Now, since value iteration converges in the limit, we have that
the first b digits of Vf(z) match that of V(z) for each state z € Z, eventually.
Also, in every iteration of the loop in Algorithm 3, SHARPEN is invoked with an
incremented value of P and eventually P > b. O

We now state the complexity of computing the exact solutions using RATIO-
NALSEARCH. As before, we assume that the transition probabilities are given as
rational numbers.

Theorem 2 Let M be an MDP with the set of states Z. Letn = |Z|, m = |{(z, o, 2')|a €
enabled(2), A(z,a)(2') > 0}| and let § be the largest denominator in any probability
value in the transition function of M. Let £ be a PCTL path formula. Let pyin be the
min{d(z,a,2’) | A(z,a)(z") > 0}. Given an objective obj € {max, min} and let V be the
state-indexed vector \z-p2> [€]. Let ¢ = w. Then, RATIONALSEARCH(M, &, obj, 1)

min

makes at most O(£) value iteration steps, O(nt?) calls to FINDFRACTION, and O((?)
calls to FIXPOINT, assuming arbitrary precision arithmetic.

Proof Observe that we can assume without loss of generality that there is at least
one transition probability that is contained in the open interval (0,1) (Otherwise,
the value iteration finishes in zero steps as all probabilities are 0 or 1).

We will proceed as follows. We assume that the objective obj is min. We first
estimate the number of iterations k of value iteration that are required to reach an
approximate solution state-indexed vector VT of precision b such that VT can be
used to obtain the exact solution V using one call to SHARPEN based on Lemma 4..

From [19], we know that the maximum denominator (and thus maximum nu-
merator) of any value in {V(z)|z € Z} is less than §". Now, the required precision

b satisfies |4/ 1%“ > 64 giving us
6—8m
2

Let us now estimate an upper bound on the number of steps of value iteration
that are required to guarantee that the resulting approximate solution vector ||V —
V|| < 107°. Here, the norm || - || is defined to be the pointwise maximum.

Let U = [0, 1]Z be the set of all state-indexed vectors. For a vector Z we denote

107 <

its 2*® component by #(z). Consider the function f : U — U be the function such
that _
0 if z € Probg""[¢]
: min
f(i:)(z) — 1 / / if z € Prob7 [5]
min Z A(z,a,2") - Z(2") otherwise
a€enabled(z) oy

Observe that value-iteration described in Section 3 is such that Zg is the vector
all of whose components is 0, and Z;1.1 = f(Z;). The n-th iterate of f, namely f",
is a contracting mapping (Please see Appendix A for the proof):

Claim For all vectors z,y € U,
1" (@) = f* @I < gllz - gl

where ¢ = (1—ppin) and pmin is the smallest non-zero probability in the description
of M.

Exact Quantitative Probabilistic Model Checking Through Rational Search 23

Let VI = z,.,, be the required approximation, obtained after i - n value iteration
steps. Using, Banach’s fixpoint theorem [12], we have
i i
q - q
< —.

qi

IV = Zin|| < 7q||in —Zol| =

1

Based on our requirement for k = i - n, we will need only one function call to
SHARPEN if ‘ .
1 - 67 m
<107 <

Let ip be an integer such that

5—8m(1 _ q)

i0
q < D)

We have that ip is an upper bound on i.
. —8m
Now g0 < & "1=0) 2(1_‘1) iff

iolog(1 — pmin) < —1 — 8mlog§ + n 10g pmin-

. —8m
Since log(1 — ply;,) is negative, we get that ¢*° < 572(17‘1) iff

—1 —8mlogd + nlog pmin

0 log(l - prnlﬁn
Observe that pmin > %. Thus, log pmin = —log § and hence

10gpmin < — 10g5)
log(1 = ppi,) ~ log(1 = pii,)

. —8m
Thus, ¢ < w if

—1—8mlogd —nlogd

10 >
IOg(l - pﬁin)

Using the inequality In(1 + z) < z for > —1, we have that In(1 — pli,) < —pmin

and hence =112 and hence =1 < Since multiplying an

1 1
O T () Prin = log(1—ppi,)
inequality by a negative number changes signs, we get that

1+ 8mlogd + nlogd S —1 —8mlogd —nlogd
Prmin - log(1 —pris) .

. —8m
Thus, ¢ < # if

) 1+ 8mlogd + nlogd
0 > n .
Prin

Thus, we are guaranteed to terminate the algorithm using one call to SHARPEN
after k steps, where
_ 14+ 8mlogd+nlogd n(m + n)logé

n=0(
pT,Tl,in pgin

k=io-n) = 0(0).

24 Umang Mathur et al.

Now, let us analyze the calls to SHARPEN. Note that the j* call to SHARPEN
has precision P; = j. The maximum value of P; is k. Every call to SHARPEN gives
rise to nP; calls to FINDFRACTION and Pj calls to FIXPOINT, giving us O(nf?) calls
to FINDFrRACTION and O(£2) calls to FIXPOINT.

When obj is max, then please note that there is a memoryless scheduler & :
Z — Act such that for each state z € Z, pT(¢) = p$ (¢). Consider the functions
f1, fo : U — U defined as follows:

0 if = € Prob™[¢]
1 max
A@) () =11 o e Probl]
Z A(z,6(z),z') -z(z) otherwise
z'eZ
and
0 if 2 € Prob™®[¢]
3 max
Fo(@)(2) = 1 o if 2 € Prob] €]
MaXq cenabled(x) Z A(z,0,2") - Z(z') otherwise
z'eZ

Observe that value-iteration described in Section 3 is such that Tg is the vector all
of whose components is 0, and Z; 1 = fa(%;) = f4(Z0).

Now, it is easy to see that the required solution vector V is the pointwise limit
lim; o0 fi(Zo) = lim;_o0 f4(Zo). Further, we also have that for each i, fi(Zo) <
f4(Z0) <V and hence ||V — Z;|| < ||V — fi(Zo)||. Observe that we can show f{ is
contracting with factor 1 — prr:, exactly like the claim above. The theorem now
follows similar to the case when obj is min. a

Ezample 5 Our experiments show that Algorithm 3 can make non-trivial improve-
ments to solution quality. Consider the standard example of tossing N biased coins
independently, where each coin yields heads with probability 1/3 and tails with
probability 2/3. Analyzing the DTMC model to compute the probability of the
event that 11 coins land heads, PRISM’s floating-point model checker returned the
decimal “0.000005645029269476758”. Our tool could correctly determine the exact
probability to be 1/177,147 by examining with the first 12 digits of this approxi-
mate answer. This is remarkable given that the period of this fraction (and hence
its most succinct decimal representation) is almost 20,000 digits long. Moreover,
the algorithm is able to simultaneously infer the reachability probabilities for all
of the roughly 200,000 states of the model with a single fixpoint check. This illus-
trates another advantage of our technique; the algorithm is agnostic of the number
of initial states in the system. The exact model checking engine of PRISM, on the
other hand, currently only supports systems with a single initial state.

6 Implementation

We have implemented Algorithm 3 in our tool RATIONALSEARCH, which is an exten-
sion of the PRISM model checker (version 4.3.1). RATIONALSEARCH is available for
download at [8]. Before describing our integration with PRISM, we briefly describe
the relevant portions of its architecture. PRISM is a Java-based tool comprised of

Exact Quantitative Probabilistic Model Checking Through Rational Search 25

four solution engines, three of which (MTBDD, HYBRID, SPARSE) are based (entirely
or partially) on symbolic methods using compact data structures like MTBDDs.
The fourth engine (EXpPLICIT) manipulates sparse matrices, vectors and bit-sets
directly (without any symbolic data structures).

The SPARSE engine is similar to the EXPLICIT engine in that it uses explicit data
structures for storing vectors and matrices. However, it makes use of symbolic data
structures during model construction, allowing it to efficiently remove portions of
the state space that are not reachable. This is achieved through a conjunction of
the MTBDD representing the model’s state space with a BDD representing the
characteristic function for the reachable states of the model. The MTBDD engine
is based entirely on symbolic data structures. During value iteration, the transi-
tion matrix and solution vector are both given as MTBDDs. The matrix-vector
multiplications used to update the solution vector are carried out over these data
structures. As described in [48], one drawback of this approach is that the size of
the MTBDD storing the solution vector can grow substantially as more compu-
tations are performed. To tackle the MTBDD size explosion, the HYBRID engine
combines the advantages present in both the symbolic and explicit engines. In
particular, it stores the solution vector as a fixed size array and the transition
matrix as an MTBDD (which can usually be done succinctly due to symmetry
in the model). Updates to the solution vector are carried out by operations over
these mixed-type data structures.

RATIONALSEARCH implements Algorithm 3 on top of all four engines for model
checking DTMCs against PCTL specifications. For exact model checking of MDPs,
our tool RATIONALSEARCH implements Algorithm 3 for all four engines when the
PCTL specification does not involve computing any max probabilities and mini-
mum expected costs. RATIONALSEARCH only supports the EXPLICIT engine for the
case of max probabilities and min rewards in MDPs, for which the fixpoint check
involves additional graph-theoretic analyses (see Section 4). The architecture of
our extension is outlined in Fig. 2. It intercepts PRISM’s routine for solving con-
strained reachability probabilities and expected costs, sharpening the probabili-
ties every time it is invoked. These engines are built using floating-point numbers,
which can store at most 16 digits in the fractional part of the decimal expansion
of any floating-point number. Hence, the convergence criteria support a mini-
mum ¢ of 107!¢. Our implementation, thus, bypasses the ¢ refinement loop from
Algorithm 3 and directly invokes the procedure ITERATION for the maximum preci-
sion supported by doubles. Further, for computing max reachability probabilities,
checking whether the candidate solution vector returned by the EXPLICIT engine
is a fixpoint, we do not take recourse to Lemma 1. Instead, we take advantage
of PRISM’s ability to return a candidate memoryless scheduler that achieves the
maximum reachability property. The candidate scheduler & returned by PRISM
is a proper scheduler, whose definition we articulate below.

Definition 6 Let M = (Z,Act, A, C, L) be a MDP and ¢, ¢’ be PCTL state for-
mulas. A memoryless scheduler & for M is said to be proper for M, ¢, ¢’ if for
each z € Z\ProbJ®[¢ U ¢'] U Prob™[¢ U ¢'], there is a sequence of states z1, ..., 2
such that

— 21 =2,
— 2y € ProbT®™[¢ U ¢'], and
— A(2;,6(z),2i41) >0 for each 1 <7 < £.

26 Umang Mathur et al.

In order to check whether a given candidate solution, \A/7 to the set of Equa-
tions (7) is indeed the actual exact solution V = Az-pI"" (¢ U ¢'), it suffices to check

that the proper scheduler, &, returned by PRISM is such that &(z) € argmaxg for
every z € Z \ Probl™®[¢ U ¢'] U ProbT®[¢ U ¢'] :

Proposition 1 Let M = (Z,Act,A,C,L) be a MDP, ¢,¢' be PCTL state formu-
las and & a proper memoryless scheduler for M, ¢, ¢'. For each state z of M, let
P> (p U ¢') be the mazimum probability of satisfying ¢ U ¢' in M. Let V : Z — [0,1]
be a solution of the set of equations given by Equation (7). Suppose further that

V(z) = Z A(z,6(2),2') -V(Z) for each z € Z \ Proby®™[p U ¢'] U Prob™ ¢ U ¢'].
ez

Then Vz € Z,V(z) = p™™ (¢ U ¢').

Proof As V = Az - p® (¢ U ¢') is the least fix point of Equation (7), we have that
for each state z € Z,
pS(eU) <pT¥ (U) < va.

Thus, it suffices to show that p& (¢ U ¢') = V(z) for each z € Z.

Let propg, propgs be distinct propositions. Given a proper memoryless scheduler
S for M, ¢, ¢, let ngb’ = (Z,Act, A, C, L®) be the DTMC such that A® (z,2') =
A(z,6(2),7), L9(z) = {props} if M,z = ¢ and L®(z) = {propy } if M,z |= ¢'.
It is easy to see that pS(¢ U ¢') is exactly the probability of z satisfying the
formula propy U propy in Mg,¢,. Observe further that from the fact that & is
proper, the set of states of M%«b’ that satisfy prop,, U prop, with probability 0
(1 respectively) is exactly the set ProbJ®[¢ U ¢'] (ProbT®*[¢ U ¢'] respectively).
Since M® is a DTMC, V€ = Xz - pS (¢ U ¢') is the unique solution to the set of
equations:

yz =0 if z € ProbJ™ ¢ U ¢/
ys = if z € Prob?®[¢p U ¢']

1
Yz Z AS(z,2) yy = Z A(z,a,2') -y, otherwise
2'eZ 2'eZ

(11)

Finally, observe that V is a solution to the above Equation (11). Hence, we must
have p2 (¢ U ¢') = V(z) for each z € Z.]

Among the four engines, EXPLICIT is the only one implemented entirely in
Java. To support the EXPLICIT engine, our tool uses the libraries JScience [7]
and Apfloat [4] to construct the transition matrix using rational entries, perform
matrix-vector multiplications for the fixpoint check in Algorithm 3, and implement
the Kwek-Mehlhorn algorithm (Algorithm 1).

PRISM implements the remaining three engines using an extension of the
CUDD library [5]. The off-the-shelf version of CUDD only supports floating-point
numbers at the terminals. RATIONALSEARCH enhances CUDD by allowing terminals
to hold either floating-points or arbitrary-precision rational numbers provided by
the GNU MP library [6]. Our extension allows the data type at a terminal node to
be easily interchanged, and the full suite of MTBDD operations can be performed
regardless of the data type.

Exact Quantitative Probabilistic Model Checking Through Rational Search 27

Kwek Mehlhorn

PCTL Formula
© |
Candidate solution

I
1
1
I
1
__ Approximate 1 ,(P4
solution ,/ -7 vEs NO
i P
CUDD S l
CUDD 4E Lo -
— GMP
A imati Exact
pproximation SHARPEN — Found —> xac
Engine Solution
[
Not
found
L e+« €/10 4

Fig. 2 RationalSearch Architecture: Given a PCTL formula ¢, PRISM (equipped with
CUDD) approximates the solution using value/interval iteration. The SHARPEN procedure uses
this approximation VT and employs FINDFRACTION, in conjunction with the rational extension
to CUDD (CUDD + GMP), to generate a candidate rational vector. If this candidate rational
vector satisfies an appropriate fixpoint check, it is guaranteed to be correct. Otherwise, the

process is repeated with a better approximation.

RATIONALSEARCH makes use of this extended CUDD functionality in the fol-
lowing manner. When the model is parsed, it constructs two transition matrices,
one with doubles at the terminal nodes and one with rationals. The procedure
ITERATION uses double-precision transition matrix to generate a double-precision
solution vector. RATIONALSEARCH translates this solution vector into a candidate
solution vector stored as a rational MTBDDs using sHARPEN. The fixpoint check
from SHARPEN can then be performed by an MTBDD matrix-vector multiplication

between rational MTBDDs.

Algorithm 3 has also been integrated into the STORM model checker. Their
implementation® differs from ours in that it supports running ITERATION with both
floating-point and arbitrary-precision numbers. It begins by running value iteration
using floating-point numbers and attempts to infer and exact solution from the ap-
proximation. If double-precision is determined to be insufficient for extracting the
precise solution, the approximation engine is re-invoked using arbitrary-precision
numbers. Another significant difference in the STORM implementation is that
STROM uses the Sylvan [24] MTBDD library instead of CUDD. Sylvan provides

built-in support for arbitrary precision arithmetic.

3 Information about the implementation of Algorithm 3 in STORM was obtained through

private email conversations with the developers.

28 Umang Mathur et al.

7 Evaluation

Setup. We evaluated our tool against examples involving quantitative reachability
and costs from the PRISM benchmark suite and case studies [2, 3] and compared
the results with the exact parametric engines implemented in PRISM and STORM.
In particular, we used version 4.3.1 of PRISM and version 1.0.0 of STORM. Our
tests were carried out on an Intel core i7 dual-core processor @2.2GHz with 8Gb
RAM running macOS 10.12.4.

Benchmarks. Our focus has been to evaluate the performance of our technique
on different probabilistic models (MDPs and DTMCs) against different objectives
(Reachability, Cost, full-fledged PCTL). Our PCTL examples, in particular, have
been crafted from scratch. Our benchmarks have been selected from the PRISM
benchmark suite and case studies [2, 3] by keeping some key objectives in mind.
First, in order to stress-test our technique, we tried to choose benchmarks with
large state spaces. In fact, most of our benchmarks have state spaces of the or-
der of 10°-10°. Second, we also selected some benchmarks (for example, biased
coins, ECS, leader election) for which the probability values corresponding to the
properties have high precision, that is, their decimal representation requires many
digits. We believe that such benchmarks demonstrate the need for exact model
checking, as well as, the effectiveness of our technique in determining the correct
rational representations of the probabilities. In this process of benchmark selec-
tion, we omitted benchmarks for which the resulting answers are trivial (either 0 or
1 probability) or those for which our technique could not result in a fix point. We
recall that due to floating-point errors, PRISM’s approximate answer may never
get close enough (in a precise sense stated in Theorem 1, Section 5) to the actual
exact answer (despite an arbitrary number of iterations) and as a consequence,
RATIONALSEARCH may declare that it did not find an exact answer. We note that
our tool never reports an incorrect answer.

Performance overhead. We examined the overhead incurred by RATIONALSEARCH’S
extension of PRISM. The results are given in Table 1 for the approximation en-
gines ExpriciT, MTBDD and HYBRID of PRISM. Due to the similarity between the
ExprICIT and SPARSE engines, we chose to only report metrics for the former. In
Table 1, all of the tests were conducted using value iteration as the approximation
scheme. The overhead incurred for interval iteration is similar and thus not re-
ported. The quantitative properties tested against in two of the MDP benchmarks
(‘Fair Exch.” and ‘Dice Coin’) involve computation of max probabilities. Recall
that RATIONALSEARCH supports this combination only for the EXPLICIT engine,
and as a result, the corresponding entries in columns 8-11 (MTBDD and HYBRID
engines) are marked ‘-’ for these benchmarks.

On several examples with large state spaces, the EXPLICIT engine fails with an
out-of-memory exception. This can be attributed to the fact that the implemen-
tation stores two copies of the transition matrix in memory. On all the examples
where ExpLICIT fails, the symbolic engines (MTBDD and HYBRID) find the solu-
tion quickly, typically with an overhead of less than 50%. For the examples on
which the ExpricIT engine did not encounter an out-of-memory exception, over-
head times where much higher. One major reason for this difference is that the

Exact Quantitative Probabilistic Model Checking Through Rational Search 29

EXPLICIT engine stores the solution vector as an array. Further, in this case, Ra-
TIONALSEARCH runs the SHARPEN procedure for each element of this array, thus
resulting in redundant computation when a number appears multiple times. By
contrast, the symbolic engines perform symmetry reductions on the data struc-
tures and store only distinct values at the terminal nodes of the solution vector.
As a result, SHARPEN needs only be run once for each terminal node.

Table 1 Experimental Evaluation of RATIONALSEARCH Overhead:. Columns 1-5 describe
the benchmark examples. Columns 6-10 report the performance and overhead metrics for
RATIONALSEARCH’s extension of the various PRISM engines. Running times are reported in
seconds. Overhead percentages were calculated by examining the time the routines added by
RATIONALSEARCH contributed to the overall running time. All tests were conduced with the
absolute convergence criterion (e = 1071%), javamaxmem=4g and cuddmaxmem=4g. TO represents
a timeout (set to 30 minutes), OOM indicates an out of memory exception and MP indicates
that more than double precision is required to produce an exact answer. We write n/a if
information could not be determined due to a timeout or an out of memory exception.

1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 8 ‘ 9 10 ‘ 11
MODEL ExpLICIT MTBDD HYBRID
Name Type Prop Param States Time Overhead Time Overhead Time Overhead
Biased Coins | DTMC | Reach 15 14348907 OOM n/a .18 62% 2.23 3%
IPv4 DTMC | Reach 100000 100003 4.1 254% 1708 1% 1702 1%
Crowds DTMC | Reach 15 119800 MP n/a MP n/a MP n/a
Lead. Elec. DTMC Cost 4 12302 1.5 117% 6.3 27% 19.6 %
ECS DTMC | PCTL 14 4815782 OOM n/a 4 70% 11.1 1%
Dice MDP Reach 6 4826809 OOM n/a .57 48% 2.4 6%
Din. Crypt. MDP Reach 9 855095 OOM n/a 381 41% .84 13%
Fair Exch. MDP Reach 400 321600 11.4 490% - - - -
Firewire MDP Reach 11000 428364 87.7 640% 15.1 % 16.7 7%
Din. Phil. MDP Cost 3 956 .54 55% 2.86 1% .22 10%
Virus MDP Cost 3 809 A7 70% 2.3 1% 2 19%
Dice Coin MDP PCTL 1 728 .59 114% - - - -

An encouraging observation from our results was that the overhead times did
not vary drastically with the size of the model or the type of property being
checked. In particular, both PCTL properties that we examined required solving
three instances of constrained reachability properties. In spite of this, the overhead
induced by RATIONALSEARCH on these examples remained consistent with the other
examples.

Comparison with exact engines. We also compared RATIONALSEARCH with the exact
engines implemented in PRISM and STORM. The results are reported in Table 2.
The existing exact engines of both PRISM and STORM were invoked with the
-exact flag. In addition, STORM also uses the flag ——-minmax:method pi. RATIO-
NALSEARCH was run with the underlying HYBRID engine and value iteration with
absolute convergence criterion (with e = 10716) as the underlying approximation
scheme. We set javamaxmem=4g and cuddmaxmem=4g wherever applicable. As before,
Table 2 does not include benchmarks ‘Fair Exch.” and ‘Dice Coin’ from Table 1.
This is because these benchmarks are MDP models, and the specifications to be
tested involve computation of max probabilities, which the HYBRID engine of Ra-
TIONALSEARCH does not currently support.

30 Umang Mathur et al.

Table 2 Experimental Comparison of Exact Engines:. Columns 1-5 describe the bench-
mark examples. Columns 6,8,10 report the running times (in seconds) for each of the tools.
Columns 7,9,11 report the portion of the model checking times (Columns 6,8,10) used for
model construction. The configuration options for each of the tools is described in the main
text. TO represents a timeout (set to 30 minutes) and OOM indicates an out of memory ex-
ception. We write n/a if information could not be determined due to a timeout or an out of
memory exception. The PE in Columns 8 and 9 represent a parsing error in STORM.

1 | 2 [s] 4«] 5 s | 7 s | o w [

MODEL PRISM ExacTt STORM Exacr RATIONALSEARCH

Name Type Prop Param States Time Model Time Model Time Model
Biased Coins | DTMC | Reach 15 14348907 TO n/a 458 375 2.23 .02
1Pv4 DTMC | Reach 100000 100003 1141 6 342 6 1702 1701
Lead. Elec. DTMC Cost 4 12302 70 1.7 1.37 0.2 19.6 1.2
ECS DTMC PCTL 14 4815782 TO 1435 TO 104 11.1 .04
Dice MDP Reach 6 4826809 TO 1016 109 76 2.4 .05
Din. Crypt. MDP Reach 9 855095 TO 39 12 11.5 .84 .06
Firewire MDP Reach 11000 428364 244 6.8 27 2.4 16.7 6.6
Din. Phil. MDP Cost 3 956 2.1 2 13 125 22 .03
Virus MDP Cost 3 809 1.3 5 PE PE 2 .05

RATIONALSEARCH drastically outperformed PRISM’s exact engine; in many
cases, by several orders of magnitude. For about half of the examples, PRISM’s
exact engine reached the 30-minute timeout. In every case, RATIONALSEARCH was
able to find the exact solution in a matter of seconds. The comparison with the
STORM tool is more competitive. For the majority of the small and medium-size
examples (IPv4, Fair Exchange, Firewire, Dining Philosophers), the running times
for both engines were within the same order of magnitude. However, the perfor-
mance benefit of RATIONALSEARCH became apparent with large models (Biased
Coins, Dice, ECS). RATIONALSEARCH achieved a 200x speed-up on the example of
the biased coins and 45x speed-up on the dice example. For the embedded control
system example, RATIONALSEARCH returned a solution in a matter of seconds while
both PRISM and STORM hit the 30 minute timeout.

In order to check the scalability of each of the exact engines, we also compared
the running times on specific models (Biased Coins and Dice) where the number
of states is governed by parameters that can be tuned to change the size of the
underlying models. The results are depicted in Fig. 3, where we use an approximate
engine of PRISM as a baseline for our comparative analysis. Several interesting
observations can be made here. As expected, the approximate engine of PRISM is
the fastest. Since, RATIONALSEARCH is crucially tied to the approximate engine(s)
in PRISM, it is not surprising again, that (RATIONALSEARCH) scales very well on
large models, with comparable performance to the underlying approximate engine
because of the low overhead our technique imposes. While the existing exact model
checking engines in PRISM and STORM do perform well when the models are
small, the performance quickly degrades when the models become reasonably large
(the scale is a logarithmic scale). This clearly demonstrates the power of the insight
that the approximate answers from fast iterative model checking techniques can
be utilized to obtain exact rational solutions with only a little overhead.

Comparison of iterative techniques. The final goal of our evaluation was to determine
which approximation technique, amongst value iteration and interval iteration,

Exact Quantitative Probabilistic Model Checking Through Rational Search 31

Biased Coins Dice
T F T 7
10° - E I]
r 1 102 E El
10! £ El []
F 1 10t E E
100 E E L i
S 1 100k E
1071 £ E [)
g fotE E
10721 | | | I L | | | L
2 4 6 8 10 2 3 4 5 6
‘ —e— RATIONALSEARCH —— PRISM Exact PRISM Approx —e— STORM Exact

Fig. 3 Scaling Comparison. Running times for various model checking engines on the biased
coins (left) and dice (right) examples. In both graphs, the values on the x-axis represent the
parameters of the given model, and the values on the y-axis represent the running times
(in logio scale). The configuration options for RATIONALSEARCH, PRISM Exact and STORM
exact identical to those in Table 2. PRISM approx was invoked using the same base options
as RATIONALSEARCH. No data point is given for PRISM Exact with parameter six on the dice
example as a 30-minute timeout was reached.

could be more effectively integrated with Algorithm 3. In particular, we compared
the two approaches for speed and the quality of their approximations. The results
are given in Table 3. We integrated RATIONALSEARCH with the implementation of
interval iteration in PRISM from prior work [11], available at [1].

To our surprise, we found that the interval iteration implementation from [1]
did not always produce an approximate solution within the specified e threshold.
In particular, for the dice example under parameter six, the approximations for
both e = 1076 and e = 1072 were not within the given threshold. This resulted in
RATIONALSEARCH not being able to infer an exact solution. Several other examples
also suffered from this symptom. Although the approximate probabilities for the
initial states were precise enough, poor approximations for the other states in the
solution vector prevented RATIONALSEARCH from finding an exact solution.

The accuracy and precision of solution produced by approximation techniques
varied according to the e threshold and the iterative technique used. Although we
have not reported the numbers in Table 3, there are also examples for which the ap-
proximations for value (interval) iteration differ across the solution engines (for the
same value of €). In spite of the difference in the approximations, RATIONALSEARCH
is able to infer an exact solution for all of these different approximations.

In terms of speed, we observed only a small variance in the performance of the
two techniques on the benchmarks we used. In most cases, value iteration slightly
outperformed interval iteration. The difference is primarily a result of the extra
cost incurred by interval iteration to perform the additional pre-processing steps
it requires. This cost outweighs the savings afforded by the version of SHARPEN
used with interval iteration that requires only a single fixpoint. In addition, our
benchmarks did not identify any examples for which the improved precision of
interval iteration allowed RATIONALSEARCH to infer an exact solution where value

32 Umang Mathur et al.

Table 3 Experimental Comparison of Iterative Techniques. Columns 1-5 describe the
benchmark examples. Columns 6 and 9 are the approximate values generated by value itera-
tion and interval iteration, respectively. Columns 8 and 10 report the running times for each
engine (including the time for model construction). Column 7 gives the number of fixpoints
checks computed by Algorithm 2. We do not report the number of fixpoint checks for inter-
val iteration as the implementation of SHARPEN for this technique always calculates a single
fixpoint. The probabilities given in columns 5,6 and 9 represent the probability of satisfying
the given property from the initial state. The model types and properties for the evaluated
examples are the same as in Table 1. Both iterative techniques were invoke using the HYBRID
engine with the options javamaxmem=4g and cuddmaxmem=4g. We write n/a in column 10 if no
fixpoint was found by the SHAPREN procedure.

1 [2 | 3 [1] 5 6 [7] s 1 9 D
MODEL VALUE ITERATION INTERVAL ITERATION
Name Param States Epsilon Solution Approx FP Time Approx Time
Firewire 11000 428364 10-6 2087481/2097152 0.9953885078430176 n/a n/a 0.9953885078430176 n/a
Firewire 11000 428364 10712 2087481/2097152 0.9953885078430176 11 16.2 0.9953885078430176 277
Dice 3 2197 106 1/216 0.004629455506801605 4 1 0.004629705101251602 n/a
Dice 3 2197 1012 1/216 0.00462962962906488 4 .1 0.0046296296297008155 n/a
Dice 6 4826809 1076 1/46656 2.131238579750061E-5 | n/a n/a 2.143591779395712E-5 n/a
Dice 6 4826809 10712 1/46656 2.143347024102793E-5 9 2.6 2.1433470555450964E-5 n/a
Din. Crypt. 9 855095 106 1/256 0.00390625 4 .71 0.00390625 97
Din. Crypt. 9 855095 10712 1/256 0.00390625 4 1 0.00390625 1
Biased Coins 11 177147 1076 1/177147 5.645029269476758E-6 10 A1 5.645029269476758E-6 n/a
Biased Coins 11 177147 10-12 1/177147 5.645029269476758E-6 10 15 5.645029269476758E-6 1
Din. Phil. 3 956 106 27 26.999990834143837 1 13 27.00000014876298 .28
Din. Phil. 3 956 10-12 27 26.99999999999123 1 14 27.000000000000142 .22
Lead. Elec. 4 12302 10-¢ 256/49 5.2244897630362175 3 12.2 5.224489867467293 30.1
Lead. Elec. 4 12302 10-12 256/49 5.224489795918261 3 12.4 5.22448979591833 29.7

iteration could not. The preceding observations, in conjunction, lead us to conclude
value iteration is the more effective partner for Algorithm 3.

8 Conclusion

Techniques for exact model checking allow one to avoid logical errors in system
analysis that can arise due to approximation techniques. We presented an algo-
rithm and tool, RATIONALSEARCH, that computes the exact probabilities described
by PCTL formulas for DTMCs and MDPs. Our tool works by sharpening ap-
proximate results obtained through value iteration, allowing it to benefit from the
performance enhancements gained through approximation techniques. Our experi-
mental evaluation concurs with this hypothesis, and shows that our approach often
performs significantly better than existing exact quantitative model checking tools
while also scaling to large model sizes. We believe there are also performance en-
hancements that can be achieved by a tighter integration with the Kwek-Mehlhorn
algorithm, wherein computations from previous iterations can be reused.

Acknowledgements. We thank the anonymous reviewers for their useful comments.
In particular, we would like to thank the reviewer who pointed out that it is
insufficient to check that a proposed solution was a solution to a system of linear
equations when computing max reachability probabilities and min expected costs.

Exact Quantitative Probabilistic Model Checking Through Rational Search 33

References

1. (2017) Ensuring the Reliability of Your Model Checker: Inter-
val Tteration for Markov Decision Processes. https://wwwtcs.inf.tu-
dresden.de/ALGI/PUB/CAV17/
2. (2017) PRISM Benchmark Suite. http://www.prismmodelchecker.org/benchmarks/,
[Online; accessed 5-May-2020]
3. (2017) PRISM Case Studies. http://www.prismmodelchecker.org/casestudies/,
[Online; accessed 5-May-2020)]
(2019) Apfloat. http://www.apfloat.org/
(2019) CUDD. http://vlsi.colorado.edu/ fabio/CUDD /html/
(2019) GNU Multiple Precision Arithmetic Library. https://gmplib.org/
(2019) JScience. http://jscience.org/
(2019) RationalSearch. https://publish.illinois.edu/rationalmodelchecker/
de Alfaro L (1997) Formal verification of probabilistic systems. PhD thesis,
Stanford University
10. Baier C, Katoen JP (2008) Principles of Model Checking (Representation and
Mind Series). The MIT Press

11. Baier C, Klein J, Leuschner L, Parker D, Wunderlich S (2017) Ensuring the
reliability of your model checker: Interval iteration for markov decision pro-
cesses. In: Computer Aided Verification
12. Banach S (1922) Sur les opérations dans les ensembles abstraits et leur ap-
plication aux équations intégrales. Fundamenta Mathematicae 3(1):133-181,
URL http://eudml.org/doc/213289

13. Bauer MS, Mathur U, Chadha R, Sistla AP, Viswanathan M (2017)
Exact quantitative probabilistic model checking through rational
search. In: Proceedings of the 17th Conference on Formal Meth-
ods in Computer-Aided Design, FMCAD Inc, Austin, TX, FM-
CAD 17, pp 92-99, DOI 10.23919/FMCAD.2017.8102246, URL
http://dl.acm.org/citation.cfm?id=3168451.3168475
14. Benini L, Bogliolo A, Paleologo GA, De Micheli G (1999) Policy optimiza-
tion for dynamic power management. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems

15. Bhaduri D, Shukla SK, Graham PS, Gokhale MB (2007) Reliability analysis
of large circuits using scalable techniques and tools. IEEE Transactions on
Circuits and Systems I: Regular Papers 54

16. Bianco A, de Alfaro L (1995) Model checking of probabilistic and nonde-
terministic systems. In: Foundations of Software Technology and Theoretical
Computer Science, 15th Conference, Springer, Lecture Notes in Computer Sci-
ence, vol 1026, pp 499-513

17. Bréazdil T, Chatterjee K, Chmelik M, Forejt V, Kietinsky J, Kwiatkowska
M, Parker D, Ujma M (2014) Verification of markov decision processes using
learning algorithms. In: Automated Technology for Verification and Analysis,
Springer International Publishing, Cham, pp 98-114

18. Bryant RE (1986) Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on 100(8)

19. Chatterjee K, Henzinger TA (2008) Value Iteration, Springer Berlin Heidel-

berg, Berlin, Heidelberg, pp 107-138. DOI 10.1007/978-3-540-69850-0_7

© 0N

34

Umang Mathur et al.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Chaum D (1988) The dining cryptographers problem: Unconditional sender
and recipient untraceability. Journal of cryptology 1(1)

Daws C (2004) Symbolic and parametric model checking of discrete-time
markov chains. In: International Colloquium on Theoretical Aspects of Com-
puting, Springer, pp 280294

Dehnert C, Junges S, Katoen JP, Volk M (7777) A storm is coming: A modern
probabilistic model checker. In: Computer Aided Verification: 29th Interna-
tional Conference, CAV 2017

Dehnert C, Junges S, Jansen N, Corzilius F, Volk M, Bruintjes H, Katoen
JP, Abraham E (2015) Prophesy: A probabilistic parameter synthesis tool. In:
International Conference on Computer Aided Verification, CAV

van Dijk T, van de Pol J (2015) Sylvan: Multi-core decision diagrams. In:
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, Springer, pp 677-691

Dijkstra EW (1982) Self-stabilization in spite of distributed control. In: Se-
lected writings on computing: a personal perspective, Springer

Duflot M, Kwiatkowska M, Norman G, Parker D (2006) A formal analysis of
bluetooth device discovery. International Journal on Software Tools for Tech-
nology Transfer (STTT) 8(6):621-632

Forejt V, Kwiatkowska M, Norman G, Parker D (2011) Automated verifica-
tion techniques for probabilistic systems. In: International School on Formal
Methods for the Design of Computer, Communication and Software Systems,
Springer, pp 53-113

Forejt V, Kwiatkowska MZ, Norman G, Parker D (2011) Automated verifi-
cation techniques for probabilistic systems. In: Formal Methods for Eternal
Networked Software Systems - 11th International School on Formal Methods
for the Design of Computer, Communication and Software Systems, SFM, pp
53-113

Fujita M, McGeer PC, Yang JY (1997) Multi-terminal binary decision dia-
grams: An efficient data structure for matrix representation. Formal methods
in system design 10(2-3):149-169

Giro S (2012) Efficient computation of exact solutions for quantitative model
checking. In: Proc. 10th Workshop on Quantitative Aspects of Programming
Languages (QAPL’12)

Haddad S, Monmege B (2014) Reachability in mdps: Refining convergence
of value iteration. In: International Workshop on Reachability Problems,
Springer, pp 125-137

Hahn EM, Hermanns H, Wachter B, Zhang L (2010) PARAM: A model checker
for parametric Markov models. In: International Conference on Computer
Aided Verification (CAV’10)

Hahn EM, Han T, Zhang L (2011) Synthesis for pctl in parametric markov
decision processes. In: NASA Formal Methods Symposium, Springer, pp 146—
161

Hahn EM, Hermanns H, Zhang L (2011) Probabilistic reachability for para-
metric markov models. International Journal on Software Tools for Technology
Transfer 13(1):3-19

Han J, Chen H, Boykin E, Fortes J (2011) Reliability evaluation of logic cir-
cuits using probabilistic gate models. Microelectronics Reliability

Exact Quantitative Probabilistic Model Checking Through Rational Search 35

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Hoey J, St-Aubin R, Hu A, Boutilier C (1999) Spudd: Stochastic planning
using decision diagrams. In: Proceedings of the Fifteenth conference on Un-
certainty in artificial intelligence

Hopcroft JE (2008) Introduction to automata theory, languages, and compu-
tation. Pearson Education India

Jeannet B, D’Argenio P, Larsen K (2002) Rapture: A tool for verifying Markov
decision processes. In: Proc. Tools Day, affiliated to 13th Int. Conf. Concur-
rency Theory (CONCUR’02)

Katoen JP, Khattri M, Zapreevt I (2005) A markov reward model checker. In:
Second International Conference on the Quantitative Evaluation of Systems
(QEST’05), IEEE

Kwek S, Mehlhorn K (2003) Optimal search for rationals. Information Pro-
cessing Letters 86(1):23-26

Kwiatkowska M, Norman G, Sproston J (2002) Probabilistic model checking
of the IEEE 802.11 wireless local area network protocol. In: Proc. 2nd Joint
International Workshop on Process Algebra and Probabilistic Methods, Per-
formance Modeling and Verification (PAPM/PROBMIV’02)

Kwiatkowska M, Norman G, Sproston J (2003) Probabilistic model checking
of deadline properties in the IEEE 1394 FireWire root contention protocol.
Formal Aspects of Computing 14(3):295-318

Kwiatkowska M, Norman G, Parker D (2004) Controller dependability analysis
by probabilistic model checking. In: 11th IFAC Symposium on Information
Control Problems in Manufacturing (INCOM’04)

Kwiatkowska M, Norman G, Parker D (2011) Prism 4.0: Verification of prob-
abilistic real-time systems. In: International Conference on Computer Aided
Verification, Springer, pp 585-591

McMillan KL (1993) Symbolic Model Checking. Kluwer Academic Publishers,
Norwell, MA, USA

Mohyuddin N, Pakbaznia E, Pedram M (2011) Probabilistic error propagation
in a logic circuit using the boolean difference calculus. In: Advanced Tech-
niques in Logic Synthesis, Optimizations and Applications, Springer, pp 359—
381

Norman G, Parker D, Kwiatkowska M, Shukla S (2005) Evaluating the reliabil-
ity of nand multiplexing with prism. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems

Parker D (2002) Implementation of symbolic model checking for probabilistic
systems. PhD thesis, University of Birmingham

Qiu Q, Qu Q, Pedram M (2001) Stochastic modeling of a power-managed
system-construction and optimization. IEEE Transactions on computer-aided
design of integrated circuits and systems

Rabin M (1983) Randomized Byzantine generals. In: Proc. Symposium on
Foundations of Computer Science, pp 403-409

Rutten J, Kwiatkowska M, Norman G, Parker D (2004) Mathematical Tech-
niques for Analyzing Concurrent and Probabilistic Systems, P. Panangaden
and F. van Breugel (eds.), CRM Monograph Series, vol 23. American Mathe-
matical Society

Rutten JJ, Kwiatkowska M, Norman G, Parker D (2004) Mathematical tech-
niques for analyzing concurrent and probabilistic systems. American Mathe-
matical Soc.

36 Umang Mathur et al.

53. St-Aubin R, Hoey J, Boutilier C (2001) Apricodd: Approximate policy con-
struction using decision diagrams. In: Advances in Neural Information Pro-
cessing Systems, pp 1089-1095

54. Wimmer R, Kortus A, Herbstritt M, Becker B (2008) Probabilistic model
checking and reliability of results. In: Design and Diagnostics of Electronic
Circuits and Systems, 2008. DDECS 2008. 11th IEEE Workshop on, IEEE,
pp 1-6

A Proof of the claim in Theorem 2

It can be shown easily that f is non-expanding, i.e, for any Z1,Z2 € U,
[1f(22) — f(@)]] < [|Z1 — 22|

We will assume without loss of generality that ProbTi"[g] consists of exactly one element zg.
Further, we assume that ProbJ"[¢] consists of at least 1 element as otherwise the claim is
trivially true.
Let Z7 = Z \ (ProbT"[¢] U ProbT"[¢]). For & € U,z € Z* and a € enabled(z), we denote
the sum Z A(z,0,2") - (') by hz,z,a. By definition
2'eZ

TOE = catiia oo

Fix Z,§ € U. The definition of Z” implies that for any scheduler &, the probability of
reaching zp from a state z € Z7 is not zero. From this, there it follows that there is an
enumeration z1, 22, ...z, of Z” such that for any 1 < i < r and any action a € enabled(z;),
Az, a,z;) > 0 for some 0 < j <.

We will show by induction on 0 < i < 7,

[FHH@) (z0) = £ @) (=] < (1= pin) 12 = 3.
Observe that this suffices to conclude the claim since this implies for any z; € Z7,

IF (@) (z0) = [@ (z0)] < IFH@) (=) — £ @) ()l
<A =py)llz =9l < (A —pri)llz —gll-

- Now we show, by induction, that for each 0 < i < r, |FN (@) () — £ @) ()] < (1 —
Prin) 1 = 9.

Base case: The base case is trivial since f(Z)(z0) = 1 = f(¥)(20)-

Induction hypothesis: Let |fit1(z)(z;) — £ (9)(2:)] < (1 —pt.)||Z — || for each 0 <5 < L.

min

Fix B € enabled(z¢41). Denote the set {z0, 21, ..., 2¢} by Zs. We have that

hprs2a) ey = D Azer1,8,2) - fH@)()

z'eZ
= hf“'Q(@),zHlvB + Z Aze41,8,2") - (£ @) () - £ @) ()
z'eZ
gt Yo A 82 (@) - 1 @)E)+
z'€Zy

D Al 8,2) - (FHH@E) = £ @)

z'eZ\Zy

Exact Quantitative Probabilistic Model Checking Through Rational Search 37

Now, note that (1 —pi.) < (1— pfnin) for each 7 < £. Thus, we get by induction hypothesis,

hpevz(a) 0,8 S Ppeea(g) a8 T (0= Phin) D Alzesr, 5,2 - 17 —
z'€Zy

Y Az, 8.2) - (@) = S @)

z'eZ\Z,

As f is non-expanding, we get that

hf‘+2(5)7ze+1,/3 S hpevagy a8t (1= Proin) Z Alzey1,8,2) -1z — g+

z'eZy
Z A(Z£+17ﬁ7z/)4”i7g||
z'€eZ\Z,
S hyeragyzppy,s TG D Alzeg, 8,27)
z'eZ

“PhinllZ =Gl - X orez, Alzetr, B,2")
< hfe+2(?j)vzz+1v5 + Hj - gH(l _pﬁﬂn Zz’EZg A(Z€+lvﬁvz/))'

By construction, , A(zp41,8,2")) > Pmin and hence
y 2'eZ, +

- 041
hper2(z),zp0,8 S Pper2(g) sy, T 11 =G =PIl

Now, we have that

= - — £+1
F2@) (1) S hperagay oy 8 < Bpera(gy oo + 11 = 11— PEEDIL

As f is arbitrary, the above inequality also holds for the 8 that minimizes thz(??)vzeH,B'

Hence,
2 @) (zer1) < F2 @) (zegn) + 117 = 9111 = P DI
Similarly, we can show that

P (zer) < @) (o) + 112 = gl = P DI

Thus, we get
IF2(@) (2e41) = F2 (@) (zeg1)] < (1= pet DIz = 9|

as required.

